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A B S T R A C T

This paper aims to improve the customer-oriented reliability indices (CORIs), load-oriented
reliability indices (LORIs), and the security of the electric distribution system (EDS). This is
achieved through the optimal placement and sizing of wind turbine distributed generators
(WTDGs) and superconducting magnetic energy storages (SMESs), which incorporate DSTATCOM
functionality. The LORIs include energy not supplied (ENS) and average energy not supplied
(AENS), while the CORIs consist of the system average interruption frequency index (SAIFI),
system average interruption duration index (SAIDI), average service unavailability index (ASUI),
and customer average interruption duration index (CAIDI). The network security index (NSI),
which assesses the risk of current flow in lines approaching critical levels, is also examined. A
multi-objective function based on optimized weight factors is developed to simultaneously reduce
NSI, ASUI, ENS, SAIDI, and SAIFI using an enhanced walrus optimization algorithm (EWaOA)
along with sensitivity factors analysis. This optimizer is an improved form of the traditional
Walrus Optimization Algorithm (WaOA), designed to balance exploration and exploitation stages
better, thereby avoiding local optima and improving overall performance. The EWaOA algo-
rithm’s effectiveness is tested on seven benchmark functions and compared with the conventional
WaOA and other recent algorithms. The paper also explores the discharge as well as charging real
power in addition to initially SOC of SMESs. The proposed method is applied to the IEEE 33-bus
EDS, considering a mixed time-varying voltage-dependent (TVVD) load model. The results indi-
cate that the optimal integration of WTDGs and SMESs with DSTATCOM functionality signifi-
cantly enhances the reliability and security of the tested EDS.
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1. Introduction

1.1. Motivation

Recently, the integration of wind turbine distributed generators (WTDGs) into electric distribution systems (EDSs) has gained
significant attention among energy planners worldwide, offering the potential to reduce fossil fuel consumption and carbon emissions,
while enhancing the technical performance of power networks in place of conventional energy sources. Without a doubt, WTDGs and
photovoltaic (PV) systems are the most widely adopted renewable sources due to their adaptability and cost-effectiveness [1-3].
Renewable energy sources (RES) notably enhance the performance of EDSs, particularly through the Distribution Static Compensator
(DSTATCOM) functionality of inverters interfacing these sources, which improves reliability, voltage profiles, power loss mitigation,
power quality, and reduces the load on conventional Var sources [4-6].
However, the inherent unpredictability of factors such as wind speed, solar irradiance variations, and fluctuating load demands

introduces substantial operational and practical challenges to EDS reliability, including power outages and security issues like line
overloading [7-9]. Overcoming these challenges to achieve the desired outcomes is a formidable task, underscoring a pivotal issue in
both the planning and operational phases of integrating renewable sources and storage devices, necessitating careful consideration.
Despite the various benefits of radial EDSs, these systems, with their radial structure, have a restriction on low reliability, which has

the highest impact on the unavailability of supply and forced outages for customers. Also, the security indicator concerns the excessive
loading of network branches above their nominal transfer capacity [10,11].
Nowadays, superconducting magnetic energy storage (SMES) is one of the most popular and significant kinds of energy storage

units because of its great power (0.1–10 MW), long lifespan, high efficiency of 98 %, rapid response time and unlimited charging and
discharging cycles [12,13]. As a result, the SMES device is thought to be able to meet the predictable peak load in addition to resolving
different EDS concerns, such as improving both voltage-dip, transient stability, and power quality. However, the use of liquid nitrogen
for efficient cooling in a high-temperature superconducting coil (SC) can drastically reduce the excessive cost and the mechanical stress
of the SMES [14-16].
The SMES device is considered a significant SC that stores electrical energy through a magnetic field generated by a DC flow,

exhibiting zero losses at cryogenic temperatures. Depending on the load profile, the SMES device can either generate or consume active
and reactive powers. Fig. 1 depicts a schematic diagram of the SMES device, comprising a superconducting coil, a nitrogen cryogenic
refrigerator for maintaining superconducting conditions, and a power conditioning system (PCS) connected to the external grid [17,
18].

1.2. Literature review

A variety of research techniques have been addressed for enhancing the reliability of the EDSs, involving the inclusion of renewable
energy resources (RESs), the integration of ESSs, network reconfiguration, and capacitor banks. The impact of electric vehicles on EDSs
has been investigated using a probabilistic reliability-based assessment approach. The reliability metrics utilized include the average
service availability indicator (ASAI), the SAIDI, the ENS, and the SAIFI [19]. Optimally allocated battery ESSs were demonstrated for
improving the reliability of the EDS according to ENS and ESSs life cycle cost based on the grey wolf algorithm [20] and
teaching-learning-based algorithm [21]. Optimal sizing and scheduling of battery system for improving the reliability and perfor-
mance of EDSs integrated with uncertain solar sources have been studied [22]. Optimal inclusion of battery storage along with RESs
simultaneously in an EDS for minimizing electrical power loss and enhancing ENS, ASAI, AENS, SAIDI, and SAIFI in [23], as well as
reducing both ENS, voltage dip, power losses, and load cost in the EDS [24]. The goals regarding ENS and minimizing power losses are

Fig. 1. Schematic diagram for the components of the SMES device [18].
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rooted in the sine-cosine Optimizer [25]. Additionally, the refined and bolstered hybrid algorithms [26] was used for optimizing the
placement and capacity ratings of RESs. Exploring ENS as a reliability benchmark, our study delved into enhancing stability, improving
voltage profiles, and minimizing power losses [27] through a coordinated allocation of RESs alongside network reconfiguration.
The work discusses a reconfiguration-based approach [28] aimed at bolstering reliability indicators such as SAIDI, ENS, and SAIFI,

while simultaneously reducing power losses. This is achieved through a customized adaptation of the genetic algorithm. The network’s
reconfiguration along with ESSs capability was applied in order to assess the short-term reliability indicators, comprising the risk of
ENS and customer minute loss [29]. ENS enhancement as well as maximization of cost-saving based on the SCA was studied using the
optimal inclusion of RESs and capacitors [30] and the optimal allocation of capacitors [31]. A suggested approach [32] for the optimal
integration of SMESs andWTDGs within an EDS aims to enhance reliability indicators and the line loading index. This method employs
a hybrid scheme combining equilibrium optimization with sensitivity factors, though it does not account for uncertainties in the
system’s components.
The DSTATCOM capability of renewable sources-interfacing inverters has been employed in literature for diverse applications. For

instance, in [33-35], the authors enabled the DSTATCOM functionality of connected inverters to maximize the hosting capacity of RES
in EDSs. Moreover, in [36], optimal allocation of inverter-based PVs in IEEE 33-bus EDS equipped with their inherent DSTATCOM
capability for improving ENS, AENS, SAIFI, SAIDI, CAIDI, ASUI, and NSI using particle swarm algorithm with the consideration of
uncertainty in both PV power generation and the load profile.
Furthermore, the survey [37-40] delves into enhancing the network’s security, particularly by minimizing line loading. In the IEEE

33-bus EDN, this involved optimizing the allocation of different ESSs to minimize line loading and various objective functions (OFs).
Specifically, in [37], active power delivery was optimized, while [38,39] explored optimal ESS allocation considering both active and
reactive power delivery. Moreover, [40] demonstrates the effective integration of RESs and capacitors to mitigate line loading and
various OFs in a rural EDS, accounting for the stochastic uncertainty associated with RESs. Moreover, the reliability and security of the
IEEE 33-bus EDN with constant load are enhanced by assigning the optimal planning of uncertain multiple WTGs along with optimized
plug-in electric vehicles (PEVs) with controlled and uncontrolled charging patterns using a bi-level particle swarm algorithm with the
consideration of the impacts of the annual load growth on the EDN’s reliability and security. The DSTATCOM functionality of the
WTDG interfacing inverter and the ASUI function are not considered. The weighting factors of the investigated objective functions are
considered as constant values [41].

1.3. Research gaps

According to the aforementioned studies presented in Section 1.2, most research studies addressed many methods in the area of
enhancing some of individual reliability indices as problem formulation. Besides, a minimization of weighted-sum multi-objective
function accommodating the LORIs, CORIs, and the network security index using WTDGs and SMESs incorporating DSTATCOM
functionality based on an enhanced walrus optimization algorithm (EWaOA) along with sensitivity factors analysis has not been
investigated before. Also, the mixed TVVD load model, protection device installation, and feeder failure rate model have a less
attention of the researchers. Based on these gaps, one may ask whether the optimal integration of WTDGs and SMESs considering
DSTATCOM Functionality can enhance the EDS’s reliability and security. Additionally, the proposed EWaOA algorithm can be able to
solve the investigated problem and find an optimal solution with a lesser computational time.

1.4. Research novelties

The main contributions of this study could be summarized as follows:

✓ Developing an optimized approach for siting and rating WTDGs and SMESs, incorporating their DSTATCOM functionality. This
aims to bolster the reliability and security of the EDS by concurrently minimizing ENS, SAIFI, SAIDI, ASUI, and NSI as Multi-
Objective Functions (MOF) using optimized weight factors.

✓ Utilizing sensitivity analysis to identify optimal buses for integrating WTDGs and SMESs.
✓ Enhancing the performance of the traditional Walrus Optimization Algorithm (WaOA) by proposing an improved version, named
EWaOA.

✓ Investigating the optimal SMESs discharge as well as charging real powers, in addition to initially SOC.
✓ Examining the impact of protection device installation and the feeder failure rate (FFR) on the EDS’s reliability values.
✓ Evaluating the effectiveness of the proposed method by applying a mixed TVVD load model on the IEEE 33-bus EDS.

1.5. Research organization

The main structure of this research unfolds as follows: Section 2 lays out the models for Load, WTDG, and SMES. In Section 3, the
paper delves into problem identification and its associated constraints concerning the reliability and security enhancement of the EDS
using WTDGs and SMESs. Meanwhile, Section 4 introduces both the original and enhanced Walrus Optimization Algorithm. Section 5
offers an in-depth evaluation of the proposed EWaOA through benchmark functions test as well as its application for enhancing the
reliability and security of the IEEE 33-bus System. Lastly, Section 6 encapsulates the conclusions drawn from this study.
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2. Load-demand, WTDG, and SMES models

2.1. Load-demand model

Different load demand models over the whole day are investigated in this present study involving residential, industrial, and
commercial load models at the highest possible level of 1 p.u. Furthermore, Fig. 2 shows the normalized different load demand over the
whole day. The hourly active load power Pj(t) and reactive load power Qj(t) as a function of voltage exponents at load point j for each
load model are presented as follows:

Pj(t) = Poj(t) × Vρ
j (t) (1)

Qj(t) = Qoj(t) × Vσ
j (t) (2)

where Vj represents the voltage at load node j, Qoj and Poj denote the reactive and real load power for the rated voltage at node j,
accordingly., as well as the σ and ρ represent reactive and real load voltage exponents, respectively, which their values are given in
[42].

2.2. WTDG model

The output power produced by the WTDG (PWTDG,rated) during wind speed vw can be determined as follows:

PWTDG =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PWTDG, rated

0 if vw〈vci and vw〉vco
(
vw − vci
vw,r − vci

)

if
(
vci ≤ vw ≤ vw,r

)

PWTDG, rated if
(
vw,r < vw ≤ vco

)

(3)

where vco, vw,r, and vci are cut-out wind speed, rated wind speed, and cut-in wind speed of the WTDG, respectively; PWTDG,rated rep-
resents the WTDG’s rated power. The WTDG parameters as well as the wind speed profile used in this present study are presented in
[44,45].

2.3. Charging and discharging modes of the SMES

In the charging state of the SMES, it works as a load-demand, which can store the additional produced power of the WTDGs when
the load power PL is lesser than WTDGs power.

PS(t) = max{ − |ΔP(t)|,
(
ES(t − 1) − ES,max

)

Δt ηC
, − PS,rated

}
(4)

SOCS(t) = min
{(

SOCS(t − 1) −
PS,C(t)Δt ηC
ES,rated

)

, SOCS,max
}

(5)

During the discharging mode of the SMES, the device operates as a generator, supplying power to meet the load whenever the
power from the WTDG falls below the load requirement.

Fig. 2. Normalized different load demand over the whole day [43].
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PS(t) = max{|ΔP(t)|,
(
ES(t − 1) − ES,min

)
ηD

Δt
, PS,rated

}
(6)

SOCS(t) = max
{(

SOCS(t − 1) −
PS,D(t)Δt

ηD ∗ ES,rated

)

, SOCS,min
}

(7)

where PS(t) is the power exchange in the SMES device during each hour, with positive negative, and zero estimates through the
discharging state,charging state, and idle state of the SMES device, respectively; ΔP(t) is the difference between WTDGs and load
powers; ηC and ηD are charging and discharging efficiencies, respectively; PS,rated is the rated power of SMES;SOCS(t) represents the
SMES’s SOC during each hour, indicating the energy stored within it;SOCS,min and SOCS,max defines the lower and upper SOC
boundaries of the SMES, respectively; Δt signifies the time interval. The SMES’s initial SOC (SOCinit) is also optimized [46-48].

2.4. DSTATCOM functionality of WTDG and SMES interfacing inverters

To achieve voltage regulation within EDS, a proactive approach involves optimizing the functionality of interfacing inverters.
Emphasized within the IEEE 1547 standard, this approach underscores the significance of effectively managing reactive power ca-
pabilities. The graphical representation in Fig. 3 explains the operational boundaries of these inverters, portrayed as a semicircle.
Notably, the inverter’s capacity is delineated by its rated capacity (Srated) with Pout illustrating active power outputs of WTDG/SMES
and Qmaxdenoting maximum reactive power capacity. When operating at peak active power injection levels (i.e., Prated = Srated), the
injected/absorbed reactive power will be zero. Hence, the inverter’s reactive power dynamics are contingent upon both its rated
capacity and the system’s output power. Consequently, adherence to inverter capacity constraints necessitates rigorous computation of
reactive power thresholds for WTDGs and SMESs inverters, as follows.

⎧
⎪⎨

⎪⎩

QWTDG,maxt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
SWTDG, rated

)2
−
(
PWTDGt

)2
√

QWTDG, mint = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
SWTDG, rated

)2
−
(
PWTDGt

)2
√ (8)

⎧
⎪⎨

⎪⎩

QS,maxt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
SS, rated

)2
−
(
PSt
)2

√

QS, mint = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
SS, rated

)2
−
(
PSt
)2

√ (9)

where SWTDG,ratedand SS,ratedrepresent the rated capacity of the interfacing inverters of WTDG and SMES, respectively; PWTDGt and PSt are
the output powers of the WTDG and SMES, respectively; the superscripts min and max indicate the minimum and maximum values,
respectively.

3. Problem identification

This section presents the identification of various OFs to improve the studied EDS’s reliability and security. To achieve this
objective, the work addresses the simultaneous optimization of optimal sites and ratings for WTDGs and SMESs, both with and without
their DSTATCOM functionality. This optimization aims to enhance the LORIs, CORIs, and security index of the EDS. The locations and
ratings of DG units are typically selected based on an objective function designed to enhance the reliability and security of the dis-
tribution system. This objective function guides the selection process.
The proposed EWaOA is employed to determine the optimal locations and ratings of DG units. The algorithm iteratively searches for

the best combination of locations and ratings that satisfy the defined objective while adhering to system constraints. A set of candidate
buses is pre-determined using sensitivity analysis where DG units can potentially be placed. The algorithm evaluates different com-
binations of these candidate buses to identify the optimal locations that contribute to the overall system performance improvement.
On the other hand, the ratings of the DG units are determined by considering the maximum allowable capacity for each unit and the

impact of different capacities on the system. The EWaOA adapts the DG ratings during the optimization process, adjusting them to

Fig. 3. Reactive power capability of the interfacing inverters.
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ensure they provide the best possible performance in terms of the objective function. Then, the final locations and ratings are those that
yield the most favorable outcomes according to the objective function while satisfying all system constraints. The EWaOA’s ability to
handle complex, non-linear optimization problems ensures that the selected DG placements and sizes are both efficient and effective.
In this current study, the following objective functions (OFs) can be written as follows:

Obj.Funct. = min
ϑ

{
ω1fobj1+ω2fobj2+ω3fobj3+ω4fobj4+ω5fobj5

}
, (10)

where:

ω1 + ω2 + ω3 + ω4 + ω5 = 1, (11)

where ϑ is the decision variables vector which comprises the optimal sizes and locations of the WTDGs and SMESs along with hourly
optimal powers of charging and discharging of the SMESs; ω1,ω2,ω3,ω4 and ω5 are the optimal weighting factors. It is worth to mention
that the sensitivity analysis is used to obtain the candidate sites of the WTDGs and SMESs [32].
The several OFs can be mathematically expressed as follows [49,50]:

fobj1 = ENS =
∑NP

P =1
LmanP UP . (12)

This OF denotes the represents the cumulative energy shortfall experienced by customers due to line failures, measured in MWh per
year. P denotes the load point; NP is the number of load nodes; LmanP signifies the annual average load demand at load node P ; UP

represents the total annual hours of power supply unavailability (measured in hours per year) at load node P .
Upon computing the ENS value, the average energy not supplied (AENS) can be determined. AENS is defined as the ratio of ENS

value to the customers’ number (NCP ) at load nodeP over the course of the year, measured in kWh per customer per year. This can be
calculated using the formula:

AENS =
ENS ∗ 1000
∑NP

P =1NCP

(13)

The second objective function can be calculated by,

fobj2 = SAIFI =
∑NP

P =1λPNCP
∑NP

P =1NCP

. (14)

This OF illustrates the average frequency of service interruptions encountered by a customer (interruptions /customer/year). λP is
the average failure, which is one of the investigated reliability indices and can be evaluated by [51],

λP =
∑Nout

i=1
λi, (15)

In this equation, λi denotes the failure rate of the ith component; Nout indicates the total number of outages impacting load node P .
The linear correlation assesses the failure rate λLini t concerning the compensation percentage when the current flowing in the branch is
not entirely compensated. This relationship is established as follows [52]:

λLini =
λiniti − λbesti⃒

⃒Ioldi
⃒
⃒

×
⃒
⃒Inewi

⃒
⃒+ λbesti (16)

In this context, λbesti and λiniti represent the best and initial failure rates, respectively. |Inewi | and |Ioldi | denote the magnitude of current
flowing in the ith feeder after and before the inclusion of WTDGs and SMESs.
The third OF describes the average outage time experienced by a customer per year, measured in hours per customer per year. It can

be formulated as follows:

fobj3 = SAIDI =
∑NP

P =1UPNCP
∑NP

P =1NCP

, (17)

in which UP is the annual outage time and can be calculated by,

UP =
∑Nout

i=1
λiri, (18)

where ri represents the repair time of the ith component in hours.
Upon calculating the SAIDI value, the fourth OF depicts the ASUI, which represents the time when power, as needed by system

consumers, was unattainable for all the 8760 h in a year. It can be calculated as follows:
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fobj4 = ASUI =
∑NP

P =1UPNCP

8760 ∗
∑NP

P =1NCP

(19)

The last OF is the network security index (NSI), which can be computed by,

fobj5 = NSI =

∑Nl

l =1
Il
Imax
l

Nl

, (20)

where Il and Imaxl are the line current and its maximum value, respectively; Nl represents the total number of lines. This function
illustrates that if a line current rises to its maximum value, the respected line will be overloaded. Minimizing this OF will lead to
reducing the outages of power branches, which improves the security of the studied system.

3.1. Constraints of the problem

The following problem constraints are needed for solving the investigated optimization problem including:

3.1.1. Equality constraints

PSub(t) +
∑np

p=1
PWTDG,p(t) +

∑np

p=1
PS,p(t) =

∑nl

l =1
Ploss,l (t) +

∑np

p=1
PL,p(t) (21)

QSub(t) =
∑nl

l =1
Qloss,l (t) +

∑np

p=1
QL,p(t) (22)

where PSub(t) and QSub(t) presents the substation’s real and reactive powers during each hour. The active and reactive powers of load at
node p during each hour are denoted by PL,p(t) and QL,p(t), respectively. Additionally, Ploss,l (t) and Qloss,l (t) represent the real and
reactive power losses of line l during each hour.

3.1.2. Inequality constraints
It is worth mentioning that to handle the inequality constraints, only agents that satisfy the constraints are retained for the next

generation. This ensures that the optimization process adheres strictly to the defined boundaries and maintains feasible solutions
throughout the iterations.
The current flow Il through branches during each hour must be saved within permissible limits as follows:

Il (t) ≤ Imaxl (23)

The voltage magnitude at each load point during every hour must adhere to predetermined permissible limits, defined as follows:

Vmin ≤ Vp(t) ≤ Vmax (24)

where Vmin and Vmax represent the lower and upper voltage values, respectively, where the lower value equal to 0.95 p.u. and the upper
value equal to 1.05 p.u.
The rated power of each WTDG should be considered in this limit:

∑np

p=1
Pw,r,p ≤ PWTDG,max (25)

where the PWT,max are equal to the peak load value of each type.
The limits related to the rate of power PS,rated and energy storage capacity ES,rated of the SMES can be presented in Eq. (26) and Eq.

(27), respectively,

PS,rated,min ≤ PS,rated ≤ PS,rated,max (26)

where PS,rated, min and PS,rated, max shows the minimum and maximum bounds of the rated power of the SMES, respectively.

ES,rated,min ≤ ES,rated ≤ ES,rated,max (27)

where ES,rated, min and ES,rated, max represent the min and the max constraints of the sored energy of the SMES, respectively.

− PS,rated ≤ PS(t) ≤ +PS,rated (28)

Here, the negative and positive polarities of PS,rated shows the SMES can work in the charging and discharging states.

SOCS,min ≤ SOCS(t) ≤ SOCS,max (29)
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where SOCS,max and SOCS,min are taken as 0.9 and 0.1, as investigated before [32].
Ensuring seamless operation for consecutive days, the SMES’s final SOC (SOCS(T)) at the conclusion of entire day time should

remain primed for continuous utilization on the following day time. This is achieved by setting it equivalent to the initially SOC
(SOCS(0)) as outlined in [32]:

SOCS(T) = SOCS(0) (30)

The injected and absorbed reactive power of the connected inverters of WTDG and SMESmust remain within specified thresholds, a
condition that can be mathematically expressed as:

QWTDG,mint ≤ QWTDGt ≤ QWTDG,maxt (31)

QS,mint ≤ QSt ≤ Q
S,max
t (32)

where QWTDGt and QSt are the reactive power delivered and consumed by WTDG and SMES interfacing inverters, respectively.

4. Optimization technique

4.1. The original algorithm

TheWalrus Optimization Algorithm (WaOA), which mimics walrus behavior during migration, was inspired by natural phenomena
[52]. These creatures inhabit cold climates, usually close to the North Pole. In a herd, the male that has the largest muscles and the
longest tusks is regarded as the dominant member who guides the group. When the ice begins to crack andmelt during the annual onset
of summer, Walruses tend to migrate to stony beaches or outcrops. However, this journey poses risks due to their natural predators,
including the polar bear and the killer whale, also known as orca. The algorithm simulates the movements of three majestic walruses,
reflecting their behaviors.

• Leading the group to eat: at this point, the dominant walrus, who is the best individual, is tracked to direct the other individuals into
regions of potential. This leads to significant shifts in the locations of the individuals. This stage maximizes the algorithm’s capacity
for global search and exploration, enhancing its ability to navigate through a wide range of possibilities.

• Herd migration: This stage significantly alters people’s places yet again. The locations of the people are thought to be likely
migratory destinations. When a random position is chosen, the other participants advance toward it. To evade premature
convergence and getting trapped in local optima, the population update at this stage ensures that it doesn’t rely solely on a single
member, even if that member currently holds the best position.

• Predator battle or flee: in this stage, individual walrus positions are somewhat altered as they confront their predators in con-
strained areas surrounding their positions. Better convergence is achieved and the algorithm’s capacity for local search and
exploitation is enhanced.

Mathematically, the process can be represented as follows:

i Initialization: the plotting of the population as:

X =
[
Xm,n

]
=

⎡

⎣
X1,1 ⋯ Xm,1

⋮ ⋱ ⋮
X1,n ⋯ Xm,n

⎤

⎦ (33)

F =

⎡

⎣
F1
⋮
FN

⎤

⎦ =

⎡

⎣
F(X1)

⋮
F(XN)

⎤

⎦ (34)

where n represents the people number, m denotes the decisions’ number, F signify the desired objective function, and X is the WaOA
population.

i Feeding strategy:

The person with the tallest tusks, or the best solution, leads the other individuals to the best feeding place in this step. The strongest
person comes up with the best answer. The dominant (strongest) walrus leads the update of the positions, which can be mathematically
represented as follows:

XL1i,j = Xi,j + rndi,j.
(
SWj − Ii.j.Xi,j

)
(35)
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Xi = XL1i , F
L1
i < Fi; else : Xi = Xi (36)

where XL1i represents the updated location discovered for walrus i based on the feeding tactic; XL1i,j denotes its j
th dimension; FL1i in-

dicates its objective function value; rndi,j are random numbers drawn from the interval [0, 1]; SW represents the best candidate so-
lution, identified as the strongest walrus; Ii.j are randomly selected integers from either 1 or 2. These integers contribute to enhancing
the algorithm’s exploration capability.

i Migration:

This step simulates the walrus’s migration to stony areas or outcrops, where each individual randomly chooses the position of
another individual in a different section of the search space. The present location is replaced if the newly suggested site yields superior
results for the objective function. This has the following mathematical expression:

XL2i,j = Xi,j + rndi,j.
(
XKj − Ii.j.Xi,j

)
, FK < Fi; else : XL2i,j = Xi,j + rndi,j.

(
Xi.j − Xk,j

)
(37)

Xi = XL2i , F
L2
i < Fi; else : Xi = Xi (38)

where XL2i signifies the recently generated location for the ith walrus during the second stage, XL2i,j represents its j
th dimension, FL2i

denotes its fitness functional output. Xk, where k ∈ {1, 2,…, N} and k ∕= i, indicates the position of the chosen seahorse to which the ith

seahorse migrates. XKjrepresents the jth dimension of the selected seahorse, and FK represents its fitness functional output.

i Marauder escape or competition:

They battle and flee from their predators in the vicinity of their present sites because of the likelihood of being attacked. Imitating
this kind of behavior enhances the effectiveness of the local search algorithm. This has the following mathematical expression:

XL3i,j = Xi,j+(LLtlcl,j +
(
ULtlcl,j − rnd.LL

t
lcl,j

)
(39)

Local limits : LLtlcl,j =
LLj
t
;ULtlcl,j =

ULj
t

(40)

Xi = XL3i , F
L3
i < Fi; else : Xi = Xi (41)

where XL3i refers to the newly created location for the i
thwalrus according to the 3rd phase, XL3i,j represents its jth dimension, FL3i denotes

its fitness functional output, t indicates the iteration curve, LLj, and ULj are the lowest and maximum limits of the jth variable,
respectively, LLtlcl,j as well asUL

t
lcl,j are local minimum and local maximum limits permissible for the jth variable, respectively, to imitate

local searches within the proximity of the nominee solutions.

4.2. The improved EWAOA technique

The "High and Low Velocity Ratios" method denotes an enhancement proposed based on the Marine Predator Algorithm (MPA)
[53]. This method has been applied to improve several techniques and helped to solve many optimization problems such as the pa-
rameters of the controller combine proportional-integral-derivative (PID) and fractional order control methods using Enhanced Runge
Kutta Optimizer [54] and optimal size and location of several FACTS devices to achieve minimizing fuel costs and minimizing power
losses using Enhanced Tuna Swarm Optimization [55]. This enhancement addresses the challenge of potential entrapment at a local
minimum in finding the optimal solution. The high-velocity ratio stage constitutes the initial phase of this method. The mathematical
model for this stage is defined by Eqs. (42.1 to 42.3).

t <
1
3
Tmax (42.1)

S = RB
̅→

⊗
(
E − RB

̅→
⊗ xi(t)

)
(42.2)

xi(t+1) = xi(t) + P. RB
̅→

⊗ S (42.3)

In these expressions, RB
̅→ represents a vector of random integers drawn from a normal distribution, simulating Brownian motion,

while ⊗ signifies element-wise multiplication. The updated location is obtained by multiplying RB
̅→with the previous position, using P
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Fig. 4. Flowchart of proposed EWaOA algorithm.
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Table 1
The statistical outcomes from the evaluation of 7 benchmark functions employing the EWaOA algorithm alongside other contemporary approaches.

Function EWaOA WaOA JS INFO TSO ARO

F1 Best 1.4E-307 1.2E-116 6.48E-15 4.44E-49 4.6E-118 1.59E-26
Average 7.1E-280 4.2E-113 7.73E-12 1.84E-43 1.07E-94 1.07E-21
Median 9.1E-292 7.8E-114 5.7E-13 9.67E-46 5.3E-106 4.68E-23
Worst 1.3E-278 2.6E-112 1.22E-10 2.45E-42 2.15E-93 7.08E-21
std 0 6.8E-113 2.71E-11 5.79E-43 4.8E-94 2.18E-21
Rank 1 2 6 4 3 5

F2 Best 6.3E-153 5.86E-60 1.13E-07 1.08E-24 2.98E-58 1.34E-14
Average 9.8E-146 1.07E-57 3.31E-06 1.83E-22 1.66E-50 1.15E-12
Median 1.1E-147 3.97E-58 1.5E-06 1.11E-23 2.01E-52 1.22E-13
Worst 8E-145 9.08E-57 1.67E-05 3.2E-21 2.41E-49 1.78E-11
std 2.1E-145 2.08E-57 4.46E-06 7.11E-22 5.44E-50 3.94E-12
Rank 1 2 6 4 3 5

F3 Best 1.3E-295 9.94E-89 0.043236 1.16E-39 3.4E-113 4.28E-21
Average 1.7E-270 1.94E-82 37.7777 1.27E-32 1.48E-89 5.08E-15
Median 1.5E-274 5.51E-86 2.63887 4.71E-35 9.2E-100 6.99E-17
Worst 2.1E-269 3.72E-81 289.5644 1.65E-31 2.79E-88 6.41E-14
std 0 8.3E-82 76.37593 3.71E-32 6.24E-89 1.51E-14
Rank 1 3 6 4 2 5

F4 Best 1.4E-145 2.29E-56 1.66E-08 1.21E-22 4.03E-60 8.35E-13
Average 2.2E-137 2.76E-54 2.28E-07 8.95E-19 8.06E-49 2.6E-09
Median 3E-141 5.56E-55 1.66E-07 1.88E-20 1.61E-50 7.79E-10
Worst 4.1E-136 2.11E-53 7.36E-07 1.5E-17 8.05E-48 2.28E-08
std 9.2E-137 5.46E-54 1.78E-07 3.34E-18 1.89E-48 5.09E-09
Rank 1 2 6 4 3 5

F5 Best 0.030462 0.045605 0.042193 23.12486 3.3E-05 0.048127
Average 0.09287 0.148116 0.654502 24.43097 2.932789 2.57084
Median 0.085141 0.156112 0.458008 24.41788 0.100044 1.069097
Worst 0.205322 0.346533 2.763539 25.78378 26.85013 16.26736
std 0.04706 0.082098 0.735235 0.620893 8.100797 3.783419
Rank 1 2 3 6 5 4

F6 Best 2.43E-08 3.89E-06 9.87E-07 1.16E-06 5.72E-06 0.009568
Average 5.37E-08 9.76E-05 2.02E-05 1.47E-05 0.003695 0.044563
Median 4.9E-08 0.000113 1.68E-05 8.52E-06 0.00104 0.039666
Worst 1.11E-07 0.000154 6.11E-05 3.81E-05 0.018609 0.098375
std 2.35E-08 3.97E-05 1.86E-05 1.31E-05 0.00494 0.026373
Rank 1 4 3 2 5 6

F7 Best 1.02E-05 5.73E-06 0.000288 0.000201 2.22E-05 3.22E-05
Average 8.66E-05 8.53E-05 0.001159 0.00178 0.000684 0.001407
Median 7.07E-05 7.24E-05 0.000994 0.00135 0.00065 0.00115
Worst 0.00021 0.000289 0.00267 0.005593 0.002054 0.003564
std 6.02E-05 7.12E-05 0.000648 0.001428 0.000585 0.001071
Rank 2 1 4 6 3 5

Average Rank 1.142857 2.285714 4.857143 4.285714 3.428571 5
Final ranking 1 2 5 4 3 6
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=0.5 as a constant, where RB
̅→ is a vector of uniformly distributed random values ranging from 0 to 1. This scenario occurs during the

initial third of iterations when the step size is large, representing a heightened level of exploratory capability. t and Tmax refer to the
current iteration and the maximum iteration, respectively. The most fit solution (E) is chosen to construct a matrix, as illustrated in Eq.
(43):

E =

⎡

⎢
⎢
⎣

xtbest 1.1 ⋯ xtbest 1.D
⋮ ⋱ ⋮

xtbest n.1 ⋯ xtbest n.D

⎤

⎥
⎥
⎦ (43)

The matrix E is formed by duplicating the optimal solution n times, where n denotes the count of search agents, and D signifies the
number of dimensions. The recommended approach involves employing Lévy flight during the second phase, occurring towards the
conclusion of the optimization procedure and characterized through a heightened exploitation capacity. Eqs. (44.1 to 44.3) offer a
mathematical depiction of this phase:

t >
1
3
Tmax (44.1)

S = RL
̅→

⊗
(
RL
̅→

⊗ E − xi(t)
)

(44.2)

xi(t+1) = E+ P.CF ⊗ S (44.3)

The EWaOA algorithm integrates the Lévy method, where RL is multiplied by E and added to the position to update its location. The
Lévy flights enhance the exploration capabilities of algorithms by allowing for larger and more varied search jumps. This strategic
incorporation not only facilitates an enhanced exploration capability but also amplifies the likelihood of evading local optima and
improves the chances of finding a global optimum. Consequently, these adaptations fortify the algorithm’s capacity to explore a
broader solution space, thus refining its overall effectiveness. The flowchart of the proposed EWaOA algorithm is depicted in Fig. 4

5. Evaluation and discussion of EWaOA results

5.1. Benchmark functions test

Thorough testing was carried out in consistent settings to establish fair comparison conditions and ensure an objective evaluation.
Fifty search agents were deployed for our evaluation, with a 200-iteration limit. Each method has been running 20 times on our own,
recognizing that these algorithms are inherently stochastic. MATLAB R2016a software was utilized to implement the algorithms on a
high-end Windows 10 64-bit Professional PC through 8 GB of RAM. This made the computing environment for our experiments
dependable and consistent. It is noted in this assessment how parameter configurations affected algorithm performance. The parameter
values were taken from the original papers written by the creators of each method in order to ensure an even comparison. This
approach preserved consistency and got rid of the chance of bias from randomly selected parameters. Especially, jellyfish optimization
algorithm (JS) [56], weighted mean of vectors (INFO) [57], artificial rabbits optimization (ARO) [58], tuna swarm optimization (TSO)
[59], and the original WaOA were among the algorithms we compared. The EWaOA technique outperformed the other seven
benchmark functions, making it stand out [60]. The results consistently beat the results of several modern algorithms, as Table 1
shows. Over a broad range of benchmark functions, EWaOA regularly scored top ranks in terms of worst, average, median, and best
outcomes. The EWaOA algorithm excels in consistently discovering optimum outcomes, as shown by its repeated top-ranking per-
formance across various benchmark functions. Its remarkable efficacy in comparison to fashionable techniques underscores its
adeptness in tackling demanding optimization challenges. These outcomes substantiate the EWaOA technique as a dependable and
robust method for addressing an extensive array of optimization problems.
Fig. 5 illustrates the convergence curves for each method across the 7 benchmark functions (F1, F2, F3, F4, F5, F6, and F7).

Applying this visual representation to certain benchmark functions offers insightful information on how each algorithm evolves over
iterations. In addition, Fig. 6 displays several boxplots that provide a concise summary of each algorithm’s performance over the same
set of benchmark functions. The best, average, and worst results of each technique are displayed in these boxplots, providing a
thorough overview of their performance. It is noteworthy that the EWaOA technique has remarkable convergence behavior, as shown
in Fig. 5, constantly convergent towards optimal solutions for all benchmark functions. To further highlight EWaOA’s competitive edge
over other algorithms, Fig. 6’s boxplots constantly show it as a top-performing algorithm. These convergence curves and boxplot
results demonstrate how reliable and efficient the EWaOA method is, as well as how well it performs in reaching convergence and
making good results for a variety of benchmark functions.
Furthermore, TheWilcoxon’s rank and Friedman’s rank tests are performed to validate the superiority of the proposed algorithm as

follows:
A. Wilcoxon’s rank test results
In this subsection, the variances between EWaOA and other techniques are additional analyzed statistically using the Wilcoxon

Fig. 5. The convergence curves for all methods across the seven benchmark functions.
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rank-sum test (WRST), which is a paired valuation is employed to notice important differences between the two algorithms. The
achieved results of the test between EWaOA and each approach, conducted at a significance level ofα=0.05 are presented in Table 2,
where the symbols "+/=/-" present whether EWaOA performs better, similarly, or worse than the compared method. Moreover, the
table contains statistical findings for EWaOA across different dimensions and functions, demonstrating whether EWaOA performs
better, similarly, or worse than the comparison technique. EWaOA verifies superior statistical performance in F1-F7 with Dim=30
when compared to other methods, confirming its important supremacy across most functions. Also, it is confidently concluded that the
proposed EWaOA algorithm shows the best overall performance when compared to other techniques.

B. Friedman’s rank test results
Table 3 presents the statistical results attained using Friedman tests for seven benchmark functions using the studied methods. A

lower ranking value shows superior algorithm performance. Regarding to the results, the ranking order of the six methods is as follows:
EWaOA, WaOA, TSO, INFO, JS, and ARO.

5.2. Application of the proposed EWaOA for reliability and security enhancement

In this section, we implement the proposed EWaOA to address the examined problem concerning LORIs, CORIs, and the security
index on the IEEE 33-bus EDS, featuring a capacity of 3715 kW & 2300 kVAr. Utilizing the standard IEEE 33-bus EDS, depicted in
Fig. 7, we conduct tests and assess the proposed methodology. The number of clients at each service bus is detailed in [32]. The EDS’s
feeders are categorized into one main residential feeder and three commercial and industrial lateral feeders, delineated as follows:

(i) The main residential feeder is outfitted with a self-closing circuit breaker and 16 sectionalizes at the onset of each branch
(ii) 7 fuses fixed at the outset of every EDS’s branch for each commercial lateral feeder.
(iii) A single industrial feeder comprises eight fuses, with one positioned at the start of each branch along the feeder.

The primary objective of this research is to improve multiple reliability indices, encompassing LORIs, CORIs, and the security index
of the analyzed EDS, by integrating optimized WTDGs and SMESs. This enhancement is explored through the following scenarios:

Base case: In this case, estimation of the EDS’s reliability and security before integration of WTDGs and SMESs.
Case #1: Estimation of the EDS’s reliability and security after optimal sites and ratings of WTDGs and SMESs simultaneously

without enabled DSTATCOM functionality.
Case #2: Estimation of the EDS’s reliability and security in the MOF with optimal weighting factors after optimal sites and ratings

of WTDGs and SMESs simultaneously associated with their DSTATCOM functionality.
Case #3: Estimation of the EDS’s reliability and security in the MOF without optimal weighting factors (i.e., equal factors) after

optimal sites and ratings of WTDGs and SMESs simultaneously associated with their DSTATCOM functionality.
In the current paper, the subsequent presumptions are taken into consideration as shown in Table 4 as follows:

5.2.1. Identifying LSF measures for mixed load
At this juncture, Fig. 8 illustrates the LSF results of the addressed EDS for the mixed load model. Notably, the load points exhibiting

the highest LSF values for the mixed load demand model (# 6, 8, 28, 9, 13, 10, 29, 31, 30, 27, 14, 7, 17, 12, 26, 15, 16, 11, 32, 18, and
33) are identified as suitable locations for deploying WTDGs and SMESs.

5.2.2. Verification of the efficiency of the E-WaOA technique
A statistical analysis was conducted to assess the effectiveness of the proposed EWaOA algorithm by comparing its results with

those obtained using the WaOA, genetic algorithm (GA), and particle swarm optimization (PSO) techniques. Tables 5 and 6 presents
the evaluation of the proposed EWaOA in comparison among the existing algorithms through various statistical metrics, including the
best, worst, average, and standard deviation values on using Case #1 and Case #2, respectively. The EWaOA algorithm demonstrated
superior statistical performance, evidenced by its lower values in comparison to the conventional WaOA, GA, and PSO techniques.
Moreover, the EWaOA offers additional benefits in improving the reliability and security of distribution systems using WTDGs and
SMESs.

5.2.3. Optimal sites and ratings of WTDGs & SMESs
This sub-section presents the outcomes related to optimal sites and ratings of WTDGs and SMESs simultaneously in the tested EDS

as depicted in Table 7 for Case #1 and Case #2.

5.2.4. Optimum weighting factors
Table 8 displays the optimumweighting factors related to the addressed MOF. It is clearly observed that the index μ_5 related to the

EDS’s security has a significant weighting factor when it comes to power-quality characteristics for preventing perturbation and
congestion in the tested EDN.

Fig. 6. The boxplots representing all techniques for the seven benchmark functions.
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5.2.5. Enhancement of the LORIs
The daily LORIs, which includes the ENS and AENS, are computed as composite values derived from the hourly LORIs. Table 9

presents the ENS and AENS values for a full day before and after the incorporation of WTDGs and SMESs, both without and with their
DSTATCOM functionality (Case #1 and Case #2, respectively). This is an addition to the results of the ENS and AENS are depicted on
using Case #3. It is evident that the introduction of WTDGs and SMESs results in a reduction of the daily ENS and AENS, with decreases
of 5.32 % in Case #1, 7.72 % in Case #2, and 7.65 % in Case #3 compared to the base-case scenario. Consequently, there is an
enhancement in ENS and AENS for each respective case. It is obvious that the best results for the ENS and their average are the results
of Case #2, which it’s MOF depending on optimal weighting factors. Furthermore, the AENS values for each hour following the
simultaneous integration of WTDGs and SMESs are lower than those before their integration in the studied EDS, indicating an
enhancement in the EDS’s LORIs, as depicted in Fig. 9.

5.2.6. Improvement of the CORIs
Table 10 provides an assessment of the daily SAIDI (h/Cust. /yr.), CAIDI (h/Cust. /inter.), SAIFI (inter./Cust. /yr.), and ASUI with

and without the deployment of WTDGs and SMESs, both without and with their DSTATCOM functionality (Case #1 and Case #2,
respectively). This is an addition to the results of the CORIs are depicted on using Case #3. It is evident that employing WTDGs and

Table 2
Statistical results of the Wilcoxon rank-sum test.

EWaOA vs WaOA JS INFO ARO TSO

Function P winner P winner P winner P winner P winner

F1 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 +

F2 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 +

F3 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 +

F4 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 +

F5 2.94E-02 + 2.47E-04 + 6.80E-08 + 9.13E-07 + 8.60E-01 =

F6 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 +

F7 7.15E-01 = 6.80E-08 + 7.90E-08 + 1.20E-06 + 1.04E-04 +

WRST (+/=/-) 6/1/0 7/0/0 7/0/0 7/0/0 6/1/0

Table 3
Friedman test for the six algorithms.

Function EWaOA WaOA JS INFO ARO TSO

F1 1 2.1 6 4 5 2.9
F2 1 2.05 6 4 5 2.95
F3 1 3 6 4 5 2
F4 1 2.1 5.95 4 5.05 2.9
F5 1.95 2.65 3.45 5.9 4.5 2.55
F6 1 3.95 2.6 2.55 6 4.9
F7 1.6 1.75 4.6 4.95 4.45 3.65
Mean ranks 1.221429 2.514286 4.942857 4.2 5 3.121429

Fig. 7. The schematic diagram of the typical IEEE 33-bus EDS.
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SMESs along with their DSTATCOM functionality (Case #2) leads to a reduction in the daily SAIFI, SAIDI, CAIDI, and ASUI by 7.01 %,
8.03 %, 1.21 %, and 7.91 %, respectively, compared to Case #1 and Case #3. Consequently, there is an improvement in the values of
CORIs on using Case #2, which it’s MOF depending on optimal weighting factors. Additionally, Figs. 10, 11, 12, and 13 illustrate that
the different types of CORIs during each hour over the day after the implementation of WTDGs and SMESs with their DSTATCOM
functionality are lower than those before their integration in the studied EDS, indicating an enhancement in the EDS’s CORIs.

5.2.7. Improvement of the security index
A comparison of NSI values for the previous case studies is depicted in Table 11. It is shown that the deployment of WTDGs and

SMESs results in a reduction of the daily NSI by 25.85% in Case #1, 37.23 % in Case #2, and 36.98% in Case #3 compared to the base-
case scenario. Therefore, there is an improvement in the NSI value on using Case #2, which it’s MOF depending on optimal weighting
factors. Additionally, the hourly NSI values following the simultaneous integration of WTDGs and SMESs are lower than those before
their integration in the studied EDS, indicating an enhancement in the EDS’s security, as shown in Fig. 14. This improvement can be
attributed to the decrease in grid current-flow magnitude within the EDS due to the deployment of WTDGs and SMESs.

5.2.8. Examination of SMES’s SOC
The first SMES’s charging and discharging powers occur during hours (15–18) and (20–21), respectively, with SOCini1 equal to 0.44,

as depicted in Fig. 15(a). Also, the second SMES’s charging and discharging powers occurred during hours (15–18) and (20–21),
respectively, with SOCini2 equal to 0.36 for the mixed load under consideration, as depicted in Fig. 15(b).

Table 4
Basic assumptions for different components of the investigated EDS.

Component Assumptions

SMES unit – It discharges when the load exceeds 75 % of the peak load.
– It charges using surplus energy generated by WTDGs.
– The rated power of the SMESs ranges from 0 to 1.1 MW.
– The rated capacity of the SMESs ranges from 0 to 5 MWh.
– The charging and discharging efficiency of SMESs is set at 0.98.

EDS – Two load nodes within the EDS are designated for the installation of one WTDG and one SMES each.
– The λiniti for feeder branch is set at 0.2 failures per kilometer per year.
– Circuit breakers, sectionalizes, fuses, and system buses are assumed to have complete reliability.
– For the ith feeder, λbesti is determined as 85 % of the initial rate λiniti
– The switching time for feeder branch is set at 0.5 h.
– The repair time for feeder branch is 4 h for a branch in the primary feeder and 2 h for a branch in the lateral feeders.

WTDG unit – The maximum power per load point is 2.2 MW.

Fig. 8. Outcomes of the values of the LSF for mixed load model.
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5.2.9. Examination of reactive power injected by WTDGs& SMESs
Fig. 16 illustrates the optimal delivered/consumed reactive powers by the connected inverters of the WTDGs and SMESs,

considering their DSTATCOM functionality. It is evident that positive reactive power indicates injection, while negative indicates
absorption. These quantities of delivered/consumed reactive powers have notable impacts on the LORIs, CORIs, and security index of
the tested EDS.

5.3. Final discussion of this study

The proposed EWaOA outperforms the other algorithms considered (i.e., WaOA, JS, INFO, ARO, and TSO) based on the results of
benchmark function tests, Wilcoxon’s rank test, and Friedman’s rank test. Additionally, the EWaOA demonstrates superior perfor-
mance in solving the problem related to LORIs, CORIs, and the security index for the IEEE 33-bus EDS. Moreover, the optimal indices
for LORIs, CORIs, and the security index are obtained in Case #2, which evaluates the reliability and security of the EDS within the
MOF using optimal weighting factors, after determining the optimum sites and ratings for WTDGs and SMESs, along with their
DSTATCOM functionality are the best.

6. Conclusions

In this research, an effective algorithm, EWaOA, has been presented to address global optimization challenges while simulta-
neously enhancing the reliability and security of electrical distribution systems (EDS). Through rigorous evaluation on seven
benchmark functions, the performance of the intended EWaOA technique was assessed, comparing its outcomes with those of the

Table 5
Statistical results of the EWaOA in comparison among the existing algorithms on using Case #1.

Parameter Type of optimizer

EWaOA WaOA GA PSO

Best 0.830380 0.833819 0.846447 0.837794
Worst 0.897435 1000.578 1000.79 1000.927
Average 0.853645 34.17862 434.0898 267.4951
STD 0.018392 182.5237 503.8749 449.7325

Table 6
Statistical results of the EWaOA in comparison among the existing algorithms on using Case #2.

Parameter Type of optimizer

EWaOA WaOA GA PSO

Best 0.747377 0.760629 0.78337 0.7624
Worst 0.759453 0.776178 1.069076 0.8050
Average 0.753541 0.768443 0.834051 0.7777
STD 0.002816 0.004042 0.057293 0.0097

Table 7
Optimal sites and ratings of WTDGs & SMESs.

Items 1st WTDG (KW /# Load point) 1st SMES (KW/ KWh) 2nd WTDG (KW /# Load point) 2nd SMES (KW/ KWh)

Data 2200 / # 6 584/2705 645 / # 14 337/1289

Table 8
The optimum weighting factors related to the studied MOF.

Item weighting factors

μ1 μ2 μ3 μ4 μ5

Value 0.1 0.1 0.1 0.1 0.6
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Table 9
Values of the LORIs for various studied cases.

Items Base case Case #1 Case #2 Case #3

ENS (MWh/yr) 582.38 551.35 537.40 537.81
AENS (kWh/Cust./yr) 31.99 30.2937 29.5277 29.5502
ENS and AENS reduction % ​ 5.32 7.72 7.65

Fig. 9. Hourly values of the (a) ENS and (b) AENS for different case studies.
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Table 10
Values of the CORIs for various studied cases.

Items Base case Case #1 Case #2 Case #3

SAIFI 177.32 168.6438 164.8864 164.8894
SAIFI reduction % ​ 4.91 7.01 7.0102
SAIDI 298.98 282.9986 274.9783 275.0934
SAIDI reduction % ​ 5.35 8.03 7.989
CAIDI 40.46 40.2684 39.9733 39.9773
CAIDI reduction % ​ 0.49 1.211 1.193
ASUI 0.0341 0.0323 0.0314 0.0314
ASUI reduction % ​ 5.27 7.91 7.91

Fig. 10. Hourly values of the SAIFI for the above-mentioned case studies.

Fig. 11. Hourly values of the SAIDI for the above-mentioned case studies.
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Fig. 12. Hourly values of the CAIDI for the above-mentioned case studies.

Fig. 13. Hourly values of the ASUI for the above-mentioned case studies.

Table 11
Values of the NSIs for various studied cases.

Items Base case Case #1 Case #2 Case #3

NSI 205.38 152.2730 128.9021 129.6020
NSI reduction % ​ 25.85 37.23 36.98
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original WaOA algorithm and other contemporary algorithms across various functions. Several key conclusions emerged:
An approach for optimizing the siting and ratings of WTDGs and SMESs has been proposed, considering their DSTATCOM func-

tionality, with the aim of improving the security and reliability of EDS. This involved the simultaneous minimization of key reliability
indices such as NSI, SAIFI, ASUI, SAIDI, and ENS using a Multi-Objective Optimization Framework (MOF) with optimized weight
factors. Employing the LSF to identify the most suitable EDS buses for the inclusion of WTDGs and SMESs enhances the efficiency and
effectiveness of the deployment process. Investigation into the optimum discharge and charge and powers of SMESs, along with their
initially SOC, was conducted, along with examining the impact of the FFR mechanism and the setting up of protection devices on the
EDS’s reliability, providing insights into their role in enhancing the system’s reliability.
Comprehensive testing of the proposed method was carried out on the IEEE 33-bus EDS, utilizing a mixed TVVD load model to

simulate real-world conditions. The outcomes show that the optimal integration of WTDGs and SMESs, along with their DSTATCOM
functionality, can significantly enhance the EDS’s reliability and security, leading to notable improvements in system performance.
Overall, this research highlights the capability of the intended EWaOA algorithm to address global optimization challenges while
concurrently improving the reliability and security of EDS.
The investigated IEEE 33-bus EDN is a small-scale network, which may be a technical limitation of the present research work.

However, the economic limitation of the SMES is its high cost. But, its implementation of suitable high-temperature superconductors
(HTS) can face this challenge. With the use of the HTS system, the refrigeration cost is minimized and the system is improved and stable
by producing lower mechanical stresses. These limitations along with the PV’s installation and the weather uncertainties will be
considered in future research work.
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Fig. 14. Per-hour NSI outcomes for different case studies.
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Fig. 15. Hourly SOC and interchange powers of (a) 1st SMES and (b) 2nd SMES.
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