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ABSTRACT Energy providers and the power grid are severely harmed by electricity theft, which also
causes economic and non-technical losses. Energy theft causes a decline in power quality and overall
profitability. Smart grids may address the problem of power theft by merging data and energy flow. The
analysis of smart grid data helps to find power theft. The prior methods, however, could have done a better
job of identifying energy theft. In this research, we presented an active learning-based machine learning
model for energy theft identification and classification of a smart grid. The suggested approach is based
on the following steps. We use a dataset from the Open Energy Data Initiative (OEDI), an energy research
database that gets information from numerous OEDI offices and labs. Next, we pre-process the data and
employ machine learning methods like Active Learning (AL) based Random Forests (RFAL), eXtreme
Gradient Boosting (XGboostAL), Decision Tree (DTAL), Gradient Boosting (GBAL), K-Nearest Neighbors
(KNNAL), Categorical Boosting (CatboostAL) and Light Gradient BoostingMachine (LGBMAL) classifier.
Using the smart grid-based energy theft detection dataset, the proposed RFALmodel outperforms competing
models and obtains an accuracy of 70.61%. The principles of smart grid tasks streamline decisions and
enhance interaction between humans andmachines by combiningALwithmachine learning. The application
of this technology in this area has the potential to enhance the accuracy of energy theft detection and
electricity-related problems and consequences.

INDEX TERMS Active learning, energy theft detection, machine learning, privacy, smart grid, security.

I. INTRODUCTION
Electricity is needed for our daily existence. Energy losses
frequently happen throughout energy generation, transmis-
sion, and distribution. The two categories of electrical

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

losses are Technical Losses (TLs) and Non-Technical Losses
(NTLs) [1]. The NTLs are defined as distinguishing between
total losses and TLs, which mainly occur by electricity
theft. The TL is intrinsic to electricity transport and is
triggered by inner activities in the power plan’s parts, such
as the gearbox liner and transformers [2]. This unlawful
behavior frequently involves manipulating, tampering, or
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circumventing electrical meters. These fraudulent electricity
practices could result in power companies losing money.
Consider the projected $4.5 billion in annual losses from
electricity theft in the United States (US) [3]. Electricity theft
is assessed to cost utility companies more than 20 billion
yearly. Energy points, heavy burdens on electrical systems,
major remuneration losses for the power supplier, and risks
to general security can all result from electricity theft.

The three energy theft detection tactics categories are the
network-oriented approach, the data-oriented approach, and a
hybrid technique that merges the two methodologies [4]. The
network design must be changed frequently when employing
network- and hybrid-oriented resolutions and adding new
devices [1]. It is problematic to use these concepts widely
because the grid architecture cannot be accessed due to safety
considerations, and installing new devices is expensive. Data-
oriented strategies increase the efficiency of doubted energy
theft detection and evaluation by concentrating solely on
the data generated by smart meters and neglecting network
models or further devices. Thus, data-driven methods of
predicting power theft have become increasingly popular
recently [5].
A ‘‘smart grid’’ is a system that combines traditional

electricity networks with automated communication tools.
The smart grid may confirm that electrical energy is utilized
effectively, according to previous research [6], [7], [8].
Effectual energy management is essential to accomplishing
this goal, which has attracted global attention to the
acceptance and commencement of smart cities (SCs) [9]. SGs
utilize the Internet of Things (IOTs) by incorporating sensing
instruments, actuators, transmission and network devices for
sound smart cities (SCs) planning, essentially employing
the Internet of Things (IOTs) to deliver advanced, secure,
economically inclined, economically driven, effective energy
supplies and services [10]. The authors of [11] proposed
an architecture to lessen the effects of peak demands while
permitting the trade of more power for a lower price. The
unpredictable conduct of bearable power is reduced using a
technique based on an information-gap decision approach.
A smart meter transmits data to and from particular energy
consumers and the power grid.

Advanced metering infrastructure (AMI) data is useful
for identifying electricity theft [12]. The main methods of
detecting power theft are inspecting problematic hardware or
equipment, examining unauthorized line diversions, and con-
trasting malevolent and legitimate meter records. However,
these techniques are quite expensive and time-consuming
when verifying all the meters in a system. Additionally,
these manual methods are unable to prevent cyberattacks.
Machine learning and deep learning techniques are examples
of artificial intelligence-based methods that are trending
nowadays. Classification and clustering models are further
subcategories of existing machine learning techniques.

To our best knowledge, this research is the first to
apply an active learning-based strategy to theft detection
successfully. Customer energy use data is subjected to

machine learning and deep learning techniques to dis-
cover and spot odd patterns. This work used an artificial
intelligence-based methodology and developed an active
learning model based on machine learning that uses various
classifiers. We focus on utilizing active learning to achieve
the following benefits. The first benefit of active learning lies
in transforming the traditional, passive data labeling process
into a dynamic and intelligent decision-making system.
Unlike conventional supervised learning, active learning
takes an inquisitive approach by autonomously selecting the
most informative data points for labeling, optimizing data
acquisition efficiency. This means fewer labeled examples are
needed, reducing the cost and time associated with manual
labeling. Active learning adapts and evolves with the model’s
growing knowledge, effectively improving its performance
while leveraging domain expertise when required. It ensures
diversity in sample selection, reducing overfitting risks, and
excels in scenarios where data is scarce, expensive or where
the data distribution evolves.

A. RESEARCH CONTRIBUTION
This study makes several important contributions, including:

• Proposed an active learning-based machine learning
model for energy theft identification and classification
using a smart grid-based dataset.

• Pre-processing is carried out to improve the accuracy
of analyzing and categorizing energy theft data. Elim-
inating noise and converting the categorical data into
numerical using a well-known, one-hot encoding in
energy theft classes.

• The accuracy of the suggested method can be signifi-
cantly improved by incorporating pooled-based active
learning approaches with machine learning algorithms.
The active learning framework enhances prediction
skills by selecting insightful samples for manual anno-
tation and iteratively improving the models. Together,
they guarantee a more focused and efficient method,
increasing precision for the task.

• ALRF classifier performed well, outperforming the
outcomes of the conventional method and obtaining
an accuracy of 70.61%. This significant improvement
highlights the random forest algorithm’s effectiveness
and potential to improve classification accuracy in
various applications.

B. RESEARCH ORGANIZATION
To make understanding easier, the paper is divided into
separate sections. Section II presents an extensive overview of
earlier studies. A summary of the dataset selection procedure
and the proposed approach is presented in Section III.
Section IV thoroughly analyses the experiments and accom-
panying results. Section V concludes the paper and suggests
future research directions.

II. LITERATURE REVIEW
This section looks further into the exhaustive details of
prior scholarly research on energy theft detection using
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smart grids. It has been split into three sections exploring a
distinct strategy. These strategies include machine learning,
deep learning, and ensemble methods based on smart grids
detecting energy theft.

A. THEFT DETECTION USING MACHINE LEARNING
ALGORITHMS
Authors in [13] proposed a machine learning-based approach
to automated theft identification in a smart grid setting.
The OEDI platform owns the publicly available data,
which is utilized to model and create a multi-class theft
detection dataset. The authors used multiple classifiers with
several assessment alternatives (mechanisms) to evaluate
the suggested dataset. According to empirical findings, the
theft detection-based RF model outperforms other developed
models in performance metrics by 10% or more. The author
in [14] proposed an ensemble machine-learning model for
identifying energy theft in smart grids using consumer usage
trends. Several ML algorithms are examined to determine
their false positive and detection rates. The performance
of detection is enhanced by using a data pre-processing
technique.

To combat over-fitting, the statistical technique of minority
over-sampling is also used. Bagging models beat other
algorithms, according to a thorough investigation of a real-
world dataset of 5,000 clients. The models with more trees
and random forests have the highest AUC scores (0.90).
The precision study reveals that the suggested bagging
techniques outperform existing ones. A detection method
that uses statistical and machine learning is presented in this
study to gauge the confidence in a theft [15]. An energy
theft prediction unit established on a fine tree regression
architecture uses an anomaly detection approach to identify
questionable data. The suggested approach’s training phase
uses chronological data on moderate load consumption
per unit location, smart meter readings, and temperature.
A possibility density process determines doubtful data and
calculates the conviction in theft to fit the difference between
the true and estimated data. The findings collected show how
well the designed detection method works. Author in [16]
presented a methodology using randomized tree algorithms
to predict electricity theft in smart grids. SMOTE technique
is applied to the used dataset to balance the classes, and the
hyperparameter of the presented methodology is optimized
by applying a grid search optimization approach. The pro-
posed methodology uses different evaluation measurements
and achieves 98% accuracy in model evaluation.

B. THEFT DETECTION USING DEEP LEARNING
ALGORITHMS
Authors in [17] proposed a technique for predicting elec-
tricity theft using smart meter data that tracks energy con-
sumption. This method would help energy supply companies
overcome energy scarcity, unforeseen power consumption,
and poor power management. They devised the Convolu-
tional Neural Network (CNN). This methodology-based DL

algorithm first distinguishes between the periodic energy, and
that is not while maintaining the fundamental characteristics
of data on power usage. According to the findings, the deep
CNNmodel surpasses earlier models and has the highest level
of accuracy for identifying energy theft. The results show
that it is possible to recognize atypical unmoving behavior,
and an adjustable premises system can do so with high
accuracy and long-term usage. This [18] article presents a
cost-effective data-driven ETD method that greatly lowers
the expenses of data labeling without compromising the
accuracy of ETD. The method is implemented systematically
using an intellectual deep active learning (DAL) system. The
DAL technique effectively chooses the best cases for the
ETD model. The effectiveness of the suggested approach is
demonstrated by experimental test results using a real ETD
dataset provided by the State Grid Corporation of China.

The authors in [19] examined electricity thefts in
the distributed generation (DG) space. In this incursion,
unscrupulous consumers misuse smart meters, scrutinizing
their renewable-based DG units to falsely declare that they
have contributed more electricity to the grid and overcharged
the utility company. The detection of such harmful behavior
is being researched using deep machine learning. To address
the issue of electricity theft, the article [20] suggests a deep
reinforcement learning (DRL) method that uses samples
from real datasets. Multiple alternative scenarios that use the
suggested approach are given. A deep Q network (DQN)
and a double deep Q network (DDQN) with various deep
neural network designs are first used to build a global
detection model. Second, using the global detector alters
the consumption habits of current customers and increases
the difficulty of fending off recently launched cyberattacks.
Results show that the proposed DRL approach can effectively
learn new consumption patterns. Author in [21] research uses
Long and Short Term Memory (LSTM) and Convolutional
Neural Network (CNN) to extract abstract features from
electricity usage data. The prototype per class, which is
utilized to predict the labels of unidentified data, is generated
after computing the parameters of the abstract feature.
The prototype is symbolic because it trained the network
using several balanced portions of the training data. When
anomalous data only make up 2.5% and 1.25% of normal
data, respectively, the suggested method has been shown
to detect electricity theft more successfully than certain
standard techniques like CNN, RF, etc. The suggested
strategy performs better than other cutting-edge techniques.

C. THEFT DETECTION USING HYBRID MODEL
Authors in [22] investigated the issue of a change and
transmitting (CAT) AMI system in which the system operator
needs to supply readings of the power consumption regularly.
First, process a dataset of actual power usage values to
assemble a benign dataset for the CAT AMI. After that,
they suggest a fresh series of attacks designed specifically
for the CAT AMI to produce a harmful dataset. Then,
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to detect fraudulent clients, offer a broad and hybrid DL
electricity theft sensor. The presented sensor is trained
on benign and harmful data from all customers utilizing
the documented CAT measurements. The results of their
simulations show that their models have a heightened
detection rate and a lower percentage of false alarms when
identifying malevolent clients. In [23], the author offers deep
learning-based detectors that can successfully block cyber-
attacks on smart grid AMI networks that steal electricity.
First, they introduce a customer-specific detector based on
recurrent neural networks (RNNs) and deep feed-forward
networks (DFFN). Then, instead of creating customer-
specific detectors, they create generalized electricity theft
detectors that are more resistant to contamination attempts.
Hyperparameter optimization is researched for all detectors
to increase the effectiveness of the developed detectors.
Grid search techniques based on sequential, random, and
genetic optimization are used in particular to optimize the
hyperparameters of the detectors.

Authors in [24] present FedDetect, an innovative federated
learning system for energy theft prediction that protects
privacy. A system comprises a data center, a control center,
and numerous prediction stations. Every detection station in
this system can only see data from nearby clients, who can
process their data using a local differential privacy approach
to maintain privacy. They create a safe protocol so detecting
stations can send encrypted training parameters to the CC
and the DC, facilitating the model’s training. The aggre-
gated parameters are then computed using homomorphic
encryption, and the modified model’s parameters are sent
back to the detection stations. On the cutting-edge temporal
convolutional network (TCN), they created a deep learning
model to identify energy theft. The results of the experiments
show that the suggested federated learning architecture may
accomplish high detection accuracy with less computational
overhead.

Unlike current approaches, the suggested strategy contains
a novel active learning mechanism that uses uncertainty
sampling to specify the query strategy. This method demon-
strates excellent effectiveness in learning from unlabeled
data. A promising new path for improvements in this area is
introduced by incorporating active Learning in theft detection
using smart grids.

III. PROPOSED METHODOLOGY
The main purpose of the presented methodology is to use
active learning to create an accurate predictive model for theft
detection. This method uses machine learning algorithms
with active learning for implementation and includes several
stages, such as dataset preprocessing and model selection.
The widely utilized smart grid-based theft detection is used
in this proposed method to increase the model’s efficacy.
Figure 1 shows a graphical illustration of the approach.
The starting point of the proposed method consists of the

two processes of dataset preparation andmodel selection. The
dataset with 10 classes for smart grid-based theft detection is

used in this investigation. A label encoder is used in dataset
preparation to apply one hot coding technique to classes.
An AL-based ML model is trained to determine theft in the
smart grid. The proposed Algorithm 1 is an active learning
pipeline usingmachine learningmethods to classify text input
according to its intended use. Data preprocessing, which
includes label encoding using one hot encoding technique,
is the first step in the procedure. The pipeline introduces
four classifiers: the decision tree, gradient boosting, catboost,
K-nearest neighbor, and LGBM. These classifiers implement
the active learningmethodology by creating anActiveLearner
object. With this method, the theft detection class is trained
and classified iteratively by examining the most ambiguous
data examples. In a three-iteration iteration count, the samples
are labeled according to the classes to which they belong. The
accuracy, macro-averaged F1 score, and weighted average F1
score of each classifier are then assessed on the test data. Each
classifier receives a final classification report and evaluation
data for all classifiers, allowing for performance comparison.
This process is useful when there is a lack of labeled data, and
iterative labeling of more data samples is required to improve
classification performance.

A. DATASET DESCRIPTION
OEDI is the main source of the data, an energy research
database compiling information from numerousOEDI offices
and labs [25]. The original data (12 months) includes
measurements of energy use from diverse users throughout
the year. Readings are taken at regular intervals. The dataset
includes sixteen consumer categories, each with a different
energy usage pattern. Dataset shapes for the training dataset
are 22,330 with 10 classes, and for testing, they are 22,330.

B. DATA PREPROCESSING
Dataset preprocessing is an essential phase in data analysis
andML that involves cleaning, converting, and systematizing
natural data into a structure appropriate for further analysis or
training ML classifiers. Appropriate preprocessing enhances
models’ quality and effectiveness by addressing missing
values, outliers, inconsistent formats, and noise in the data.
One-hot encoding creates binary columns (0 or 1) for each
category, effectively creating a ‘‘dummy’’ variable for each
category. StandardScaler is a common data preprocessing
technique in machine learning and data analysis. It is a
part of the scikit-learn library (sklearn) in Python and is
used to standardize or normalize the features of a dataset.
Standardization is particularly useful when the features in
your dataset have different scales, and you want to bring them
to a common scale with a mean of 0 and a standard deviation
of 1. In this research, we use these two techniques for data
preprocessing.

C. ACTIVE LEARNING
Despite potential fluctuations, it aims to maximize archi-
tecture interpretation while undervaluing labeling expenses.
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FIGURE 1. Proposed model for the detection of energy theft utilizing active learning.

AL incorporates several sampling techniques, such as
uncertainty sampling, query by committee, and data density
sampling, to choose samples with distinctive characteristics
into a single framework. In pooled-based Active Learning,
the semantic annotation is started with a pool of unlabeled
instances from the dataset. The most useful data points from
this pool are chosen and annotated by a human professional,
which causes the model to be retrained.

This iterative procedure is continued until the necessary
degree of accuracy is attained. The research uses hyperparam-
eters, particularly ‘‘n_queries’’ and ‘‘uncertainty_sample,’’
to regulate the active learning process. The ‘‘n_queries’’
option controls how often the model iterates, which involves
three training processes. The algorithm chooses the most
instructive samples for labeling at each iteration. The ‘‘uncer-
tainty_sample’’ parameter, configured to a query strategy
value, is also thought to be the most instructive in each
iteration. This decision is supported by uncertainty sampling,
a well-known and successful method for picking data points
with high electability. The active learning algorithm improves
the model’s performance by iteratively choosing and labeling
the most relevant samples from the pool of unlabeled
data by combining these parameters and methods. The
equations 1,2,3,4,5,6 of the pooled-based active learning
algorithm [26] reads as follows:

g_it = train model with(x_it, y_it) (1)

w1:it = git (x1:it ) (2)

Vit = i ϵ V : argmaxw ϵ yp(w|xi,w1:it ) (3)

jit = jit ϵ argmax(j) ϵ UitH (p(w|xjit , y1:it−1)) (4)

xit+1 = xit υ xjit (5)

yit+1 = yit υ yjit (6)

where j_it is the index comparing to the considerable illumi-
nating instance from the set, g_it represents the architecture
trained on the labeled dataset at iteration it, w_1:it is a vector
of the architecture outcome for every labeled sample, V_it
illustrates the group of unlabeled samples at iteration it,
and H(.) and signifies the entropy. The suggested research
employs data preprocessing approaches and an active and
unpredictable learning methodology. Three iterations and
seven classification algorithms, such as RF, XGBoost, DT,
GB, CB, KNN and LGBM, are used to calculate the
active learning parameters. RF is an ensemble algorithm
based on decision trees and combines the predictions of
multiple decision trees to improve accuracy and reduce
overfitting. Several parameters we used in this research,
such as n_estimators, max_depth,min_samples_split and
min_samples_leaf. A DT recursively splits the dataset into
subsets based on the most significant attribute at each
node, ultimately creating a tree-like structure of decisions.
Criterion, splitter and max_depth are used as parameters
in this research. KNN is a non-parametric algorithm that
makes predictions based on the majority class or mean value
of the k-nearest data points to a given query point. This
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Algorithm 1 Pseudo Code of Energy Theft Detection Using
Active Learning
1: Input Energy consumption data as input feature, Energy

Theft as labels
2: Nit= 3 {Number of Iteration}
3: Qstrategy = USample {Query Strategy = Uncertain sample}

4: Output Energy Theft Detection
5: EMeasure: Accuracy, Precision, Recall, F1-Score
6: Initialization ‘a’
7: List of Algorithms: Random Forest, XGBoost, Decision

Tree, Gradient Boosting, KNN, CatBoost and LGBM
8: ‘Alg_names’ represents their names, and ‘algorithms’

provide a list
9: Split training and testing sets.

10: for Algorithm in algorithms do
11: Set the Active Learner’s initialization parameters

as follows:
12: Create an Active Learner object on training data.
13: Create a custom_query_strategy method called

X_pool that accepts a pool of unlabeled samples as
input.

14: The tasks give back the function uncertainty_sampling
with the active learner, X_pool

15: Set ‘n_iterations’ to 3 and give it the value ‘‘active
learning iterations.’’

16: for Each Iteration(n) do
17: Increment iteration
18: Command ‘‘custom_query_strategy’’ with

‘‘X_test’’ as the parameter and allocate the
outcome to ‘‘query_idx’’

19: choose ‘‘X_test’’ and ‘‘y_test’’ established on the
indicator in ‘‘query_idx’’.

20: X_pool and y_pool should be given the resulting
values accordingly

21: Take as an input the predictions for the cases in the
‘‘X_pool’’ that are the most uncertain

22: Transfer the values to the ‘‘y_pred_pool’’ variable.
23: With the inputs ‘‘X_pool’’ and ‘‘y_pred_pool,’’ add

the ambiguous samples and their anticipated labels
to the ‘‘learner’’ object.

24: end for
25: Provide the overall classifier assessment metrics
26: For every classifier, generate their final classification

results.
27: end for

research used n_neighbors and weights parameters in the
KNN algorithm.1 Gradient Boosting builds an ensemble
of decision trees to make predictions.2 It is known for
its high predictive accuracy and ability to handle complex

1https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html

relationships in data. XGBoost combines the predictions
of multiple decision trees to create a more accurate and
robust model, and the parameters used in this research
are learning_rate, max_leaf_nodes, min_samples_leaf and
l2_regularization. CatBoost is particularly designed for
categorical feature support and is known for its efficiency
and ease of use. The parameters used in this research are
num_of_iterations, learning_rate and depth. LightGBM is
a gradient-boosting framework designed for efficiency and
speed. boosting_type, num_leaves and learning_rate are used
parameters in this research. The method gradually expands
the defined dataset while removing unknown samples by
adding annotated examples from the test set. The purpose of
pragmatic performance metrics is to efficiently identify and
rank critical aspects of classifier performance.

IV. EXPERIMENTAL RESULT AND DISCUSSION
This section thoroughly examines the application of an active
learning strategy that blends machine learning techniques to
the smart-grid-theft-detection dataset. The data set is split
into 20% for model testing and 80% for model training. This
model uses the strength of machine learning classifiers to
learn from the provided dataset. Additionally, several metrics,
including accuracy, precision, recall, F1-score, and confusion
matrix, are used to assess this model’s performance. These
metrics all demonstrate the model’s efficacy. This section
describes the test results, evaluates them, and offers a
thorough and insightful interpretation.

A. EVALUATION MEASUREMENTS
This study assesses the model’s efficacy using many
evaluation criteria, including accuracy, precision, recall, F1
score, and confusion matrix, which are crucial and offer
insightful information about the model’s performance. The
first statistic is accuracy, which is frequently considered
the foundation of performance evaluation. With the total
number of samples, it calculates the percentage of correctly
classified samples. The following equation 7 makes this
simple to understand. Despite being calculated relatively
uncomplicated, the measure has much significance.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(7)

Since accuracy represents the proportion of correctly
positive predictions to all positive predictions made by
the model, it is a crucial evaluation parameter used in
performance evaluation. Equation 8 illustrates this value
proportionally, enabling a precise understanding of the metric
conceptual equation.

Precision =
TP

TP+ FP
(8)

Recall, often called sensitivity, offers an evaluation metric
that concentrates on the proportion of accurate positive
predictions to all positive cases. This balanced viewpoint
offers a special benefit throughout the estimation process,
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as seen by the calculation in Equation 9. This equation is
an excellent example of the value of recall as an intuitive
indicator for assessing model performance.

Recall =
TP

TP+ FN
(9)

The appropriately titled F1 score serves as a harmonic
mean of memory and precision since it can accurately
convey the underlying meaning of balanced performance.
The F1-score, which combines these two measurements,
is a frequently used estimation of model performance
and is particularly helpful during evaluation. Equation 10,
which appears complex but offers much insight, accurately
describes this fundamental estimation computation.

F1 − score = 2 ×
Precision+ Recall
Precision+ Recall

(10)

The confusion matrix, which is meticulously built to give
precise insight into the effectiveness of the classification
model, is a notable and distinctive metric utilized in the
evaluation process. This crucial tool expertly contrasts the
actual and anticipated numbers to demonstrate the model’s
effectiveness. The confusion matrix is a special type of
display that shows four values: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
The columns of the matrix correlate to the actual class
labels, whereas the rows indicate the actual class labels. The
correctly identified examples are situated along the diagonal,
whereas the incorrectly classified cases are centered on the
diagonal elements, which is an intriguing characteristic. The
values in the confusion matrix serve as a useful evaluation
tool for identifying model strengths and shortcomings,
resulting in insights that considerably improve the model and
yield positive results.

B. ANALYSIS AND RESULTS
The study assessed the accuracy and F1-score of seven active
learning-based classifiers for detecting energy theft using
smart grids: RF-AL, XGBoost-AL, DT-AL, GB-AL, KNN-
AL, CB-AL, and LGBM-AL. Three iterations of each classi-
fier are examined to ascertain its accuracy rate. Compare the
outcomes of active learning with straightforward models as
well. Table 1 gives a detailed presentation of the experimental
macro-averaged metrics outcomes for AL.

The findings reveal that at iteration 2, the RFAL model
has the greatest accuracy (0.7061) and f1-score (0.6952).
XGBoostAL obtained the greatest accuracy of 0.6913 at
iteration 2 with a f1-score of 0.6734. DTAL attained the
greatest accuracy of 0.6490 at iteration 2 with a f1-score
of 0.6483. GBAL model attained the maximum accuracy
of 0.6151 with a f1-score of 0.5897 at iteration 2. KNNAL
model attained the greatest accuracy of 0.6242 with an f1-
score of 0.6123 at iteration 3. At iteration 3, CBAL attained
the best accuracy of 0.6762 with a f1-score of 0.6540.

Table 2 displays RFAL results on weighted average
metrics. The table includes the evaluation measurement

TABLE 1. Result based on micro average metrics.

TABLE 2. Random forest result on weighted average metrics.

values. The model column represents the proposed model
result on classes from ‘‘RFAL #0’’ to ‘‘RFAL #6.’’ RFAL
#2 performs exceptionally well, achieving good results in
precision, recall, and an F1-score with a value of 1.00. RFAL
#6 performance is very low as it achieves precision with a
value of 0.43, recall of 0.33, and an F1-score of 0.37, while
RFAL #0, #1, #3, #4, and #5 achieve precision, recall, and
F1-score between the range of 0.45 to 0.97. RFAL#5 achieved
good precision, recall and f1-score.

TABLE 3. XGBoost result on weighted average metrics.

Table 3 provides XGBoosstAL results onweighted average
metrics. The table includes the proposed model’s precision,
recall, and F1-score values. The model column represents the
proposed model result on classes from ‘‘XGBoostAL #0’’ to
‘‘XGBoostAL #6.’’ XGBoostAL #2 performs exceptionally
well, achieving good results in precision, recall, and an
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F1-score with a value of 1.00. XGBoostAL #6 performance
is very low as it achieves precision with a value of 0.45, recall
of 0.25, and an F1-score of 0.32, while XGBoostAL #0, #1,
#3, #4, and #5 achieve precision, recall, and F1-score between
the range of 0.39 to 0.97. XGBoostAL#5 has good precision,
recall and f1-score.

TABLE 4. Decision tree result on weighted average metrics.

Table 4 displays DTAL results on weighted average
metrics. The table includes the proposed model’s precision,
recall, and F1-score values. The model column represents
the proposed model result on classes from ‘‘DTAL #0’’
to ‘‘DTAL #6.’’ DTAL #2 performs exceptionally well,
achieving good results in the precision, recall, and an F1-
score with a value of 1.00. DTAL #6 performance is very low
as it achieves precision with a value of 0.32, recall of 0.34,
and an F1-score of 0.33, while DTAL #0, #1, #3, #4, and #5
achieve precision, recall, and F1-score between the range of
0.41 to 0.90. DTAL#5 has good precision, recall and f1-score.

TABLE 5. Gradient boosting result on weighted average metrics.

Table 5 displays GBAL results on weighted average met-
rics. The table includes the proposed approach’s precision,
recall, and F1-score values. The model column represents
the proposed approach results on classes from ‘‘GBAL #0’’
to ‘‘GBAL #6.’’ GBAL #2 performs exceptionally well,
achieving good results in precision, recall, and an F1-score
with a value of 1.00. GBAL #6 performance is very low as
it achieves precision with a value of 0.36, recall of 0.20,
and an F1-score of 0.26, while GBAL #0, #1, #3, #4, and
#5 achieve precision, recall, and F1-score between the range
of 0.25 to 0.90. GBAL#5 has good precision, recall and f1-
score.4 balance recall and f1-score well. GBAL#5 has good
recall and f1-score.

Table 6 displays KNNAL results on weighted average met-
rics. The table includes the proposed approach’s precision,
recall, and F1-score values. The model column represents
the proposed approach results on classes from ‘‘KNNAL #0’’
to ‘‘KNNAL #6.’’ KNNAL #2 performs exceptionally well,

TABLE 6. K-nearest neighbour result on weighted average metrics.

achieving good results in precision, recall, and an F1-score
with a value of 1.00. KNNAL #6 performance is very low as
it achieves precision with a value of 0.34, recall of 0.22, and
an F1-score of 0.27, while KNNAL #0, #1, #3, #4, and #5
achieve precision, recall, and F1-score between the range of
0.34 to 0.91. KNNAL#5 has good precision, recall and f1-
score.

TABLE 7. CatBoost result on weighted average metrics.

Table 7 displays CBAL results on weighted average met-
rics. The table includes the proposed approach’s precision,
recall, and F1-score values. The model column represents
the proposed approach result on classes from ‘‘CBAL #0’’
to ‘‘CBAL #6.’’ CBAL #2 performs exceptionally well,
achieving good results in precision, recall, and an F1-score
with a value of 1.00. CBAL #6 performance is very low as it
achieves precision with a value of 0.46, recall of 0.23, and an
F1-score of 0.32, while CBAL #0, #1, #3, #4, and #5 achieve
precision, recall, and F1-score between the range of 0.39 to
0.97. CBAL#5 has good precision, recall and f1-score.

TABLE 8. LGBM result on weighted average metrics.

Table 8 provided the LGBMAL results on weighted
average metrics. The table includes the proposed approach’s
precision, recall, and F1-score values. The model column
represents the proposed approach results on classes from
‘‘LGBMAL #0’’ to ‘‘LGBMAL #6.’’ LGBMAL #2 performs
exceptionally well, achieving good results in precision,
recall, and an F1-score with a value of 1.00. LGBML #6
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FIGURE 2. (a) CM for RFAL (b) CM for XGBoostAL(c) CM for DTAL (d) CM for GBAL (e) CM for CBAL (f) CM for KNNAL (g) CM for LGBMAL.

performance is very low as it achieves precision with a
value of 0.43, recall of 0.23, and an F1-score of 0.30, while
LGBMAL #0, #1, #3, #4, and #5 achieve precision, recall,
and F1-score between the range of 0.37 to 0.93. LGBMAL#5
outperforms precision, recall and f1-score.

Figure 2 displays the confusion matrix (CM) for active
learning-based algorithms. Figure 2a shows the CM for
an RFAL, and for XGBoostAL is displayed in Figure 2b.
Figure 2c shows the CM for a DTAL, and for GBAL is shown
in Figure 3d. The CM for the CBAL is shown in Figure 2e and
for KNNAL is shown in Figure 2f and for the LGBMAL is
shown in Figure 2g. The Y-axis displays the actual labels, and
the X-axis displays the expected labels.

RF accurately predicted 464 occurrences of label 0,
325 occurrences of label 1, 662 occurrences of label 2,
283 occurrences of label 3, 619 occurrences of label 4,
609 occurrences of label 5, and 185 occurrences of label
6. The cases that XGBoost correctly predicted instances
included 532 for label 0, 290 for label 1, 661 for label 2,
247 for label 3, 596 for label 4, 613 for label 5, and 142 for

label 6. The DT scored admirably, making 416 accurate
predictions for label 0, 269 for label 1, 663 for label 2, 257 for
label 3, 502502 for label 4, 569 for label 5, and 192 for label 6,
among other labels. GB produced 469 accurate predictions
for label 0, 214 for label 1, 661 for label 2, 157 for label 3,
530 for label 4, 568 for label 5, and 115 for label 6. The KNN
demonstrated case prediction with 428 for label 0, 277 for
label 1, 661 for label 2, 216 for label 3, 504 for label 4, 576 for
label 5, and 124 for label 6. For labels 0, 1, 2, 3, 6, 14, 5,
and 6, CB obtained 512 precise predictions, 261 for label 1,
661 for label 2, 218 for label 3, and 136 for label 6. In the end,
the LGBM classifier attained 132 for label 6 and 529 correct
predictions for label 0, 294 for label 1, 661 for label 2, 232 for
label 3, 603 for label 4, and 619 for label 5.

Essential evaluation measures that set new standards in
learning-based classification tasks include the Receiver Oper-
ating Characteristic (ROC) curve. Due to their unchanging
capacity to comprehend classifying model performance,
these measures are widely acknowledged. To this purpose,
the ROC curve reveals, for various threshold levels, an asso-
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FIGURE 3. (a) ROC curve for RFAL (b) ROC curve for XGBoostAL (c) ROC curve for DTAL (d) ROC curve for GBAL (e) ROC curve for CBAL (f) ROC curve for
KNNAL (g) ROC curve for LGBMAL.

ciation between the TPR and the FPR. The AUC completely
embraces the genuine value in its entirety by performing on an
aggregate of the two-dimensional domain discovered under
the ROC curve. The best algorithm has a pronounced ROC
curve that crosses the graph’s upper-left intersection.

Contrary to this, an AUC of 0 would be required for
an algorithm with an ROC curve meeting the bottom-right
intersection. The ROC Curves for RFAL are displayed in
Figure 3a and for XGBoostAL are displayed in Figure 3b.
The ROC Curves for DTAL are displayed in Figure 3c and
for GBAL are displayed in Figure 3d. The ROC Curves
for CBAL are displayed in Figure 3e and for KNNAL are
displayed in Figure 3f. The ROC Curves for the LGBMAL
are displayed in Figure 3g. The TPR is shown on the Y-axis,
and the FPR is on the X-axis. Effective AUC values for RF
varied from 0.96 to 0.99. AUC values of 1.00 are displayed by
RF, XGBoost, DT, GB, CB, KNN and LGBM, all performing
well in making accurate and trustworthy predictions. These
encouraging outcomes show how this methodology can
manage complex, high-dimensional databases.

V. CONCLUSION AND FUTURE DIRECTION
Dataset-based energy theft detection has gained several note-
worthy advantages due to integrating smart grids with active
learning-based algorithms. In addition to addressing label
encoding datasets, applying machine learning models and
data preprocessing approaches improves the generalization
capacities of the algorithms. The models become more
resilient and flexible by training on various preprocessed data.
The classification models can also be improved iteratively
by adopting active learning methodologies. To use these
tactics, informative samples must be chosen for manual
labeling. Human knowledge must also be incorporated into
training, and the algorithm’s performance must be updated
and improved constantly. By using a dynamic approach,
the models are kept current and accurate. This paradigm’s
good accuracy (70.06%) suggests that it can minimize false
positives and negatives in energy theft identification.

The suggested active learning-based classification system
offers intriguing future research and application directions
when integrated with electricity smart grids. These involve
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expanding the model to classify additional smart grid
conditions, continuously enhancing the model with feedback
and collaboration, strengthening the explainability of the
classification model, and combining additional data sources
for a thorough understanding of energy theft. They also
include integrating the system into electricity platforms for
monitoring and detecting, real-time monitoring using various
devices, and expanding the model to classify other smart
grid conditions. The only limitation of this research is that
it has low accuracy compared with other studies that could be
addressed by combining deep learning algorithms with active
learning-based methodologies; these future possibilities can
advance the detection of energy theft and enhance results.
Improved energy theft detection in smart grids can lead
to various economic benefits, including increased revenue,
reduced operational costs, and enhanced grid reliability and
efficiency. However, economic consequences, such as initial
investments, privacy concerns, and regulatory challenges,
must be carefully managed. Balancing these factors is
essential to maximize the economic advantages of smart grid
technology while minimizing potential drawbacks.

REFERENCES
[1] R. Jiang, R. Lu, Y. Wang, J. Luo, C. Shen, and X. Shen, ‘‘Energy-

theft detection issues for advanced metering infrastructure in smart grid,’’
Tsinghua Sci. Technol., vol. 19, no. 2, pp. 105–120, Apr. 2014.

[2] S. McLaughlin, B. Holbert, A. Fawaz, R. Berthier, and S. Zonouz,
‘‘A multi-sensor energy theft detection framework for advanced meter-
ing infrastructures,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 7,
pp. 1319–1330, Jul. 2013.

[3] P. McDaniel and S. McLaughlin, ‘‘Security and privacy challenges in the
smart grid,’’ IEEE Secur. Privacy, vol. 7, no. 3, pp. 75–77, May 2009.

[4] G. M. Messinis and N. D. Hatziargyriou, ‘‘Review of non-technical loss
detection methods,’’ Electr. Power Syst. Res., vol. 158, pp. 250–266,
May 2018.

[5] P. Glauner, N. Dahringer, O. Puhachov, J. A. Meira, P. Valtchev, R. State,
and D. Duarte, ‘‘Identifying irregular power usage by turning predictions
into holographic spatial visualizations,’’ in Proc. IEEE Int. Conf. Data
Mining Workshops (ICDMW), Nov. 2017, pp. 258–265.

[6] H. Gul, N. Javaid, I. Ullah, A. M. Qamar, M. K. Afzal, and G. P. Joshi,
‘‘Detection of non-technical losses using SOSTLink and bidirectional
gated recurrent unit to secure smart meters,’’ Appl. Sci., vol. 10, no. 9,
p. 3151, Apr. 2020.

[7] M. Adil, N. Javaid, U. Qasim, I. Ullah, M. Shafiq, and J.-G. Choi, ‘‘LSTM
and bat-based RUSBoost approach for electricity theft detection,’’ Appl.
Sci., vol. 10, no. 12, p. 4378, Jun. 2020.

[8] M. Nazari-Heris, M. A. Mirzaei, B. Mohammadi-Ivatloo, M. Marzband,
and S. Asadi, ‘‘Economic-environmental effect of power to gas technology
in coupled electricity and gas systems with price-responsive shiftable
loads,’’ J. Cleaner Prod., vol. 244, Jan. 2020, Art. no. 118769.

[9] A. Chojecki, M. Rodak, A. Ambroziak, and P. Borkowski, ‘‘Energy
management system for residential buildings based on fuzzy logic: Design
and implementation in smart-meter,’’ IET Smart Grid, vol. 3, no. 2,
pp. 254–266, Apr. 2020.

[10] A. O. Otuoze, M. W. Mustafa, O. O. Mohammed, M. S. Saeed,
N. T. Surajudeen-Bakinde, and S. Salisu, ‘‘Electricity theft detection by
sources of threats for smart city planning,’’ IET Smart Cities, vol. 1, no. 2,
pp. 52–60, Dec. 2019.

[11] H. R. Gholinejad, A. Loni, J. Adabi, and M. Marzband, ‘‘A hierarchical
energy management system for multiple home energy hubs in neighbor-
hood grids,’’ J. Building Eng., vol. 28, Mar. 2020, Art. no. 101028.

[12] J. I. Guerrero, C. León, I. Monedero, F. Biscarri, and J. Biscarri,
‘‘Improving knowledge-based systems with statistical techniques, text
mining, and neural networks for non-technical loss detection,’’ Knowl.-
Based Syst., vol. 71, pp. 376–388, Nov. 2014.

[13] S. Zidi, A. Mihoub, S. M. Qaisar, M. Krichen, and Q. A. Al-Haija,
‘‘Theft detection dataset for benchmarking and machine learning based
classification in a smart grid environment,’’ J. King Saud Univ.-Comput.
Inf. Sci., vol. 35, no. 1, pp. 13–25, Jan. 2023.

[14] S. K. Gunturi and D. Sarkar, ‘‘Ensemble machine learning models for the
detection of energy theft,’’ Electr. Power Syst. Res., vol. 192, Mar. 2021,
Art. no. 106904.

[15] A. Ali, M. Mokhtar, and M. F. Shaaban, ‘‘Theft cyberattacks detection in
smart grids based on machine learning,’’ in Proc. 5th Int. Conf. Commun.,
Signal Process., their Appl. (ICCSPA), Dec. 2022, pp. 1–4.

[16] S. Y. Appiah, E. K. Akowuah, V. C. Ikpo, and A. Dede, ‘‘Extremely
randomised trees machine learning model for electricity theft detection,’’
Mach. Learn. with Appl., vol. 12, Jun. 2023, Art. no. 100458.

[17] E. U. Haq, C. Pei, R. Zhang, H. Jianjun, and F. Ahmad, ‘‘Electricity-theft
detection for smart grid security using smart meter data: A deep-CNN
based approach,’’ Energy Rep., vol. 9, pp. 634–643, Mar. 2023.

[18] L. Zhu, W. Wen, J. Li, C. Zhang, B. Zhou, and Z. Shuai, ‘‘Deep active
learning-enabled cost-effective electricity theft detection in smart grids,’’
IEEE Trans. Ind. Informat., 2023.

[19] M. Ismail, M. F. Shaaban, M. Naidu, and E. Serpedin, ‘‘Deep learning
detection of electricity theft cyber-attacks in renewable distributed
generation,’’ IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3428–3437,
Jul. 2020.

[20] A. T. El-Toukhy, M. M. Badr, M. M. E. A. Mahmoud, G. Srivastava,
M. M. Fouda, and M. Alsabaan, ‘‘Electricity theft detection using deep
reinforcement learning in smart power grids,’’ IEEE Access, vol. 11,
pp. 59558–59574, 2023.

[21] X. Sun, J. Hu, Z. Zhang, D. Cao, Q. Huang, Z. Chen, and W. Hu,
‘‘Electricity theft detection method based on ensemble learning and
prototype learning,’’ J. Mod. Power Syst. Clean Energy, vol. 2023,
pp. 1–12, Jan. 2023.

[22] M. I. Ibrahem, S. Abdelfattah, M. Mahmoud, and W. Alasmary,
‘‘Detecting electricity theft cyber-attacks in CAT AMI system using
machine learning,’’ in Proc. Int. Symp. Netw., Comput. Commun. (ISNCC),
Oct. 2021, pp. 1–6.

[23] M. Nabil,M. Ismail,M.Mahmoud,M. Shahin, K. Qaraqe, and E. Serpedin,
‘‘Deep learning-based detection of electricity theft cyber-attacks in smart
grid AMI networks,’’ in Deep Learning Applications for Cyber Security,
2019, pp. 73–102.

[24] M. Wen, R. Xie, K. Lu, L. Wang, and K. Zhang, ‘‘FedDetect: A novel
privacy-preserving federated learning framework for energy theft detection
in smart grid,’’ IEEE Internet Things J., vol. 9, no. 8, pp. 6069–6080,
Apr. 2022.

[25] J. B. Leite and J. R. S. Mantovani, ‘‘Detecting and locating non-technical
losses in modern distribution networks,’’ IEEE Trans. Smart Grid, vol. 9,
no. 2, pp. 1023–1032, Mar. 2018.

[26] S. Tong, Active Learning: Theory and Applications. Stanford, CA, USA:
Stanford Univ., 2001.

SIDRA ABBAS (Graduate Student Member, IEEE) received the B.S.
degree from the Department of Computer Science, COMSATS University
Islamabad, Islamabad, Pakistan. Her research interests include computer
forensics, machine learning, criminal profiling, software watermarking,
intelligent systems, and data privacy protection.

IMEN BOUAZZI was born in Kasserine, Tunisia,
in 1988. She received the engineering degree in
applied science in technology (specialty-electronic
and microelectronics) from the Higher Institute
of Computer Science and Mathematics of Mona-
stir, Tunisia, in 2013, and the Ph.D. degree in
science and technology from the University of
Monastir, Tunisia, in 2018. She is currently with
the Department of Industrial Engineering, King
Khalid University, Saudi Arabia. Her research

interest includes wireless technology management.

1716 VOLUME 12, 2024



S. Abbas et al.: Improving Smart Grids Security

STEPHEN OJO received the B.Sc. degree (Hons.)
in electrical and electronics engineering from The
Federal University of Technology Akure, Nigeria,
in 2014, and the M.Sc. and Ph.D. degrees in
information systems degree from Girne American
University, Cyprus, in 2017 and 2021, respectively.
He is currently an Assistant Professor with the
Department of Electrical and Computer Engineer-
ing, College of Engineering, Anderson University,
Anderson, SC, USA. Before Joining Anderson

University, he was a Lecturer with Girne American University, Cyprus,
where he taught courses in distributed computing, advanced programming,
and electric circuits. He was also a Research Scholar with Vodafone
Telecommunication Company, Cyprus, where he developed a multiplicative-
based model for signal propagation in wireless networks. He is a full-time
Faculty Member with Anderson University, where he teaches computer
programming, electric circuits, machine learning, artificial intelligence in
wireless mobile networks, and biomedical applications. He has authored
and coauthored several peer-reviewed journals. His research interests include
wireless networks, machine learning for wireless mobile networks, machine
learning, and AI in biomedical devices. He was awarded the Mobil and Full
Ph.D. Scholarships throughout the undergraduate program.

GABRIEL AVELINO SAMPEDRO (Senior Mem-
ber, IEEE) is currently with the Faculty of Infor-
mation and Communication Studies, University of
the Philippines Open University, Philippines. His
research interests include the Internet of Things
and artificial intelligence.

AHMAD S. ALMADHOR (Senior Member,
IEEE) received the B.S.E. degree in computer
science from Jouf University (formerly Al-Jouf
College), Al-Jouf, Saudi Arabia, in 2005, the
M.E. degree in computer science and engineering
from the University of South Carolina, Columbia,
SC, USA, in 2010, and the Ph.D. degree in
electrical and computer engineering from the
University of Denver, Denver, CO, USA, in 2019.
From 2006 to 2008, he was a Teaching Assistant

and the College of Sciences Manager, and then a Lecturer with Jouf
University, from 2011 to 2012. Then, he became a Senior Graduate Assistant

and a Tutor Advisor with the University of Denver, in 2013 and 2019. He is
currently an Assistant Professor of CEN and the VD of the College of
Computer and Information Science, Jouf University. His research interests
include AI, blockchain, networks, smart and microgrid cyber security,
integration, image processing, video surveillance systems, PV, EV,machines,
and deep learning. His awards and honors include the Jouf University
Scholarship (Royal Embassy of Saudi Arabia in D.C.) and the Al-Jouf
Governor Award for Excellence.

ABDULLAH AL HEJAILI received the bachelor’s
degree in computer science from the Tabuk Teach-
ers College, Saudi Arabia, in 2007, and the mas-
ter’s degree in computer science from CLU, USA,
in 2011. He is currently pursuing the Ph.D. degree
with the Informatics School, University of Sussex.
He is a Lecturer in computer science with the
University of Tabuk. His research interests include
technology-enhanced learning, image processing,
virtual, augmented reality, motion capture, and

education applications.

ZUZANA STOLICNA received the Ph.D. degree from Comenius University
in Bratislava, in 2013. The subject of the habilitation thesis was the
development of the economic policy of the Slovak Republic from the
transformation period to the present. She is currently a Docent with the
Department of Economics and Finance, Faculty of Management, Comenius
University in Bratislava. In addition to pedagogy, she is also engaged in
scientific and publishing activities. She has more than 20 years of experience
in teaching economics with the University. She has written several university
textbooks, contributions at domestic and foreign conferences, and magazine
articles. As for research projects, she was a member of the research team of
the VEGA projects.

VOLUME 12, 2024 1717


