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Abstract: This review comprehensively examines the burgeoning field of intelligent techniques
to enhance power systems’ stability, control, and protection. As global energy demands increase
and renewable energy sources become more integrated, maintaining the stability and reliability of
both conventional power systems and smart grids is crucial. Traditional methods are increasingly
insufficient for handling today’s power grids’ complex, dynamic nature. This paper discusses the
adoption of advanced intelligence methods, including artificial intelligence (AI), deep learning (DL),
machine learning (ML), metaheuristic optimization algorithms, and other AI techniques such as
fuzzy logic, reinforcement learning, and model predictive control to address these challenges. It
underscores the critical importance of power system stability and the new challenges of integrating
diverse energy sources. The paper reviews various intelligent methods used in power system analysis,
emphasizing their roles in predictive maintenance, fault detection, real-time control, and monitoring.
It details extensive research on the capabilities of AI and ML algorithms to enhance the precision and
efficiency of protection systems, showing their effectiveness in accurately identifying and resolving
faults. Additionally, it explores the potential of fuzzy logic in decision-making under uncertainty,
reinforcement learning for dynamic stability control, and the integration of IoT and big data analytics
for real-time system monitoring and optimization. Case studies from the literature are presented,
offering valuable insights into practical applications. The review concludes by identifying current
limitations and suggesting areas for future research, highlighting the need for more robust, flexible,
and scalable intelligent systems in the power sector. This paper is a valuable resource for researchers,
engineers, and policymakers, providing a detailed understanding of the current and future potential
of intelligent techniques in power system stability, control, and protection.

Keywords: smart grid; artificial intelligence; power system stability; power system protection;
wavelet transformation; neural network; evolutionary algorithms

1. Introduction

A power system constitutes a network of electrical components facilitating electricity
generation, transmission, distribution, and utilization. Power systems engineering, a branch

Appl. Sci. 2024, 14, 6214. https://doi.org/10.3390/app14146214 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14146214
https://doi.org/10.3390/app14146214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1035-3005
https://orcid.org/0000-0001-6065-8013
https://orcid.org/0000-0003-2290-998X
https://orcid.org/0009-0007-5011-5358
https://orcid.org/0000-0002-0505-3553
https://orcid.org/0000-0003-1290-5280
https://doi.org/10.3390/app14146214
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14146214?type=check_update&version=2


Appl. Sci. 2024, 14, 6214 2 of 39

of electrical engineering, encompasses studying and managing electric power systems and
associated devices like generators, motors, and transformers [1,2].

The primary objective of power system operation and control is to furnish customers
with high-quality electricity at reasonable costs while upholding system stability and relia-
bility [3]. However, the demand surges as the electric power system evolves, necessitating
enhanced monitoring and control. This surge in workload and operational responsibilities
strains the existing energy management systems (EMSs), typically numerical analysis soft-
ware, making targeted processing during power system operation, particularly during fault
states, challenging [4]. Leveraging artificial intelligence (AI) tools to support operational
personnel in monitoring and decision-making minimizes staff workload and enhances
incident response efficiency [5]. This convergence of electric power operations and AI
represents a significant trend in recent years.

AI, commonly characterized as the intelligence exhibited by machines and software,
including robots [6,7] and computer programs [8,9], is a scientific discipline that explores,
develops, and simulates human behavior and its underlying principles [10]. The term pri-
marily denotes creating systems possessing human-like cognitive processes and attributes,
such as reasoning, learning from experience, generalization, discrimination, and error
correction. Artificial general intelligence (AGI) refers to the hypothetical intelligence of
a machine capable of performing any intellectual task achievable by a human [11]. AI
techniques have proven instrumental in addressing numerous challenges in power systems,
and their effectiveness is further amplified when combined with traditional mathematical
approaches. Examples of these techniques include artificial neural networks (ANNs) [12,13],
fuzzy logic (FL) [14–17], adaptive-network-based fuzzy inference systems (ANFISs) [18,19],
artificial intelligent techniques [20–24], and expert systems [25,26].

This research provides a detailed review of AI applications in power systems, partic-
ularly in stability, control, and protection, identifying key challenges and research gaps
based on recent publications from 2017 to 2022. The main advantages of this review article
are as follows.

1. The paper analyses AI and metaheuristic optimization applications in modern power
system stability and protection, highlighting their role in enhancing predictive main-
tenance and fault detection.

2. It identifies critical research gaps and future directions in integrating intelligent
techniques with smart grids and traditional power systems, offering a roadmap for
advancing this crucial field.

3. This paper also discusses how AI integration improves smart grid operation and
energy efficiency. AI algorithms analyze sensor, meters, and grid infrastructure data
to find energy conservation and grid optimization opportunities. AI improves grid
efficiency, energy savings, and environmental impact by adjusting power distribution,
voltage, and routing in real time.

The article is organized as follows. Section 2 explains the need for AI in power systems.
Section 3 defines four critical categories of AI and lists the types commonly used in power
systems. Section 4 provides an overview of the AI techniques commonly applied to different
aspects of power system problems. Section 5 compares the modulation approaches and
intelligent techniques for power system stability, control, and protection. Section 6 discusses
the various control methods employed by intelligent techniques. Section 7 covers recent
intelligent strategies developed in the power system over the last two decades. Section 9
discusses challenges and offers recommendations for future work. Finally, Section 10
summarizes and concludes the main points of the article.

2. The Need for AI in Power Systems over Traditional Techniques

The integration of AI in power systems offers significant advantages over traditional
techniques due to several key factors.

First, AI is better suited to handle modern power systems’ increasing complexity
and scale. Traditional methods like state estimation and optimal power flow (OPF) have
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limitations when dealing with the vast amounts of data and intricate interdependencies
in today’s power grids. In contrast, AI techniques such as neural networks and machine
learning can efficiently process large datasets and uncover complex patterns, as shown in
the table summarizing AI applications [27].

Second, processing data and making real-time decisions is crucial for maintaining
system stability and control. Traditional PID control and automatic generation control
(AGC) techniques rely on predefined rules and parameters, which may not adapt quickly
enough to real-time changes. AI methods, including deep learning and reinforcement
learning, enable real-time data processing and adaptive decision-making, enhancing the
system’s responsiveness to dynamic conditions [28].

Predictive capabilities are another area where AI outperforms traditional approaches.
Traditional methods like load shedding and frequency response analysis typically address
issues reactively after they occur. As detailed in the AI techniques table, AI techniques
like predictive analytics and time series analysis allow for accurate forecasting of future
conditions, enabling proactive measures to maintain stability and prevent faults.

Moreover, AI’s ability to continuously learn and adapt is a significant advantage.
Traditional techniques often involve fixed rules and settings, which might not be optimal
under varying conditions. AI algorithms, particularly those involving reinforcement
learning, can continuously improve by learning from new data and adjusting to changing
system conditions.

Handling uncertainty effectively is another reason for AI’s superiority. Power systems
face various uncertainties, such as fluctuating demand and renewable energy variability.
Techniques like fuzzy logic and Bayesian networks, part of AI, can model and manage
these uncertainties more robustly than traditional methods.

Optimization capabilities provided by AI through metaheuristic algorithms like parti-
cle swarm optimization (PSO) and genetic algorithms (GAs) offer powerful solutions for
complex problems in power systems. These algorithms can find optimal or near-optimal
solutions for stability control, protection settings, and control actions, which are often
challenging with traditional methods [29].

Finally, AI enhances monitoring and control through advanced tools like smart sensors
and IoT devices. These tools provide real-time data that, when analyzed using AI, lead
to more informed and effective control strategies, thereby improving the overall stability
and protection of the power system. AI offers significant improvements over traditional
techniques, which are presented in Table 1, in handling complexity, real-time processing,
predictive accuracy, adaptability, optimization, and uncertainty management, making it
indispensable for modern power system stability, protection, and control.

Table 1. Traditional techniques in power system stability, protection, and control [30–35].

Traditional Technique Role in Stability Role in Protection Role in Control

Proportional–Integral–
Derivative (PID) Control

Maintaining system stability by
fine-tuning control parameters

Enhancing fault-tolerant
control, maintaining
protection under varying
conditions

Maintaining stable voltage
and frequency, fine-tuning
control actions

State Estimation
Providing accurate system state
information for stability
assessment

Ensuring reliable protection
by accurate system
monitoring

Enhancing control decisions
by providing accurate
state data

Optimal Power Flow
(OPF)

Ensuring stable and optimal
operation of the power system by
optimizing power flows

Minimizing system losses and
enhancing protection by
optimal resource allocation

Optimizing control strategies
for efficient power
distribution

Contingency Analysis Evaluating system stability under
different failure scenarios

Identifying potential
protection issues and
vulnerabilities

Preparing control actions for
different contingency
scenarios
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Table 1. Cont.

Traditional Technique Role in Stability Role in Protection Role in Control

Power System Stabilizers
(PSSs)

Enhancing dynamic stability by
dampening power system
oscillations

Improving protection
response by stabilizing system
conditions

Stabilizing system frequency
and voltage during
disturbances

Load Shedding
Maintaining system stability by
shedding load during critical
conditions

Protecting the system from
cascading failures by
controlled load reduction

Controlling system load to
prevent instability

Under-Voltage Load
Shedding (UVLS)

Preventing voltage collapse and
maintaining stability by shedding
load during low voltage
conditions

Enhancing protection by
preventing voltage-related
issues

Managing voltage levels to
ensure stable operation

Under-Frequency Load
Shedding (UFLS)

Maintaining system frequency
and stability by shedding load
during low-frequency conditions

Protecting the system from
frequency-related issues

Managing system frequency
to prevent instability

Power Flow Analysis
Assessing system stability by
analyzing power flows through
the network

Identifying protection needs
by analyzing current and
voltage profiles

Enhancing control by
providing detailed power flow
information

Frequency Response
Analysis

Maintaining system frequency
stability by analyzing and
responding to frequency
deviations

Protecting the system from
frequency-related
disturbances

Controlling system frequency
through real-time adjustments

Reactive Power
Compensation

Enhancing voltage stability by
managing reactive power flows

Protecting the system from
voltage instability

Controlling reactive power to
maintain voltage levels

Fault Analysis
Ensuring system stability by
identifying and analyzing fault
conditions

Enhancing protection by
accurate fault detection and
classification

Preparing control actions for
fault conditions

Relay Coordination
Ensuring coordinated operation
of protection relays for system
stability

Enhancing protection
reliability by ensuring proper
relay operation

Coordinating control actions
to prevent system instability

Transformer Tap Changer
Control

Maintaining voltage stability by
adjusting transformer tap settings

Enhancing protection by
managing voltage levels
through transformer
adjustments

Controlling voltage levels to
ensure stable operation

Automatic Generation
Control (AGC)

Maintaining system frequency
and power balance by adjusting
generation levels

Protecting the system from
imbalances by controlling
generation

Optimizing control of
generation units for stable
operation

Voltage Regulators
Maintaining voltage stability by
regulating voltage levels at
various points in the network

Enhancing protection by
ensuring voltage levels remain
within acceptable limits

Controlling voltage levels to
prevent instability

Synchronous Condensers Enhancing dynamic stability by
providing reactive power support

Protecting the system from
voltage instability by
managing reactive power

Controlling reactive power for
stable voltage levels

Capacitor Banks Enhancing voltage stability by
providing reactive power support

Protecting the system from
voltage sags and swells

Managing reactive power to
maintain voltage levels

Static VAR Compensators
(SVC)

Enhancing voltage stability by
dynamically managing
reactive power

Protecting the system from
voltage-related issues

Controlling reactive power to
maintain stable voltage levels

Phasor Measurement
Units (PMUs)

Enhancing system stability by
providing real-time monitoring
and analysis of system dynamics

Enhancing protection by
providing accurate and timely
system information

Improving control decisions
by providing real-time
system data
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3. Artificial Intelligence (AI) Techniques in Power Systems

The growing complexity and volume of data used in power system analysis make
traditional methods more challenging. This is because such data require more time and
computational resources to process accurately, leading to increased computation time and
a need for higher accuracy. Traditional methods may also struggle to adapt to the changing
nature of such data. Due to the ever-increasing energy consumption and the expansion of
the current electrical transmission networks and lines, the modern power system functions
near its limits [36]. Therefore, it is essential to continuously examine the system states in a
much more detailed manner than previously necessary to operate the power and control
systems with less conservatism in this condition.

Power system planning, operation, diagnostics, and design are now tough challenges
that must be solved using sophisticated computer technologies. Among these computer
technologies, AI has recently become increasingly popular and used in various power
system applications [3,6]. AI techniques exceed traditional methodologies regarding ro-
bustness, stability, and response speed. Traditional procedures, on the other hand, use
memory to complete the tasks mentioned above. As a result, adding a few extra capabilities
in AI controllers makes them more expensive than traditional ways. Figure 1 depicts four
significant AI categories: artificial neural networks, fuzzy logic, evolutionary methods, and
expert systems. These four techniques are widely used and will be briefly discussed in this
section: artificial neural networks, fuzzy logic, expert systems, and evolutionary methods.
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3.1. Artificial Neural Networks

An artificial neural network (ANN) [38] is a system inspired by biology that converts
one set of inputs into another set of outputs using a network of neurons. Each neuron in
the network produces one output as a function of the inputs that it receives. A fundamental
neuron can be considered a processor that performs a straightforward nonlinear operation
on the information supplied to generate a single output. In order to construct computers
that are capable of handling real-world problems that involve identifying patterns and
pattern recognition, it is necessary to understand the behavior and interconnections of
neurons. This can be achieved by examining the neural circuitry. Brinkman et al. [39]
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have reviewed the experimental evidence for metastable dynamics in neural systems and
explored the theoretical approaches for studying metastable activity in neural circuits.

Artificial neural networks (ANNs) are classified based on their structure and the way
they process information [40]. The architecture of an ANN refers to the number of layers it
has, while the topology refers to the pattern of connections between the layers. ANN can
have either a feedforward or recurrent structure. In a feedforward ANN, the information
flows in only one direction, as shown in Figure 2. In a recurrent ANN, the information is
passed back and forth between layers. The typical structure of an artificial neural network
is illustrated in Figure 3 below.
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The issues with power generation, transmission, and distribution can be input to
ANNs to find an appropriate solution. ANNs work on biological instincts and perform
biological evaluations of real-world situations. It is possible to establish the precise values
of the parameters given the limitations of a realistic transmission and distribution system.
For instance, ANNs may numerically determine the values of inductance, capacitance,
and resistance in a transmission line while accounting for variables such as environmental
influences, imbalanced circumstances, and other potential issues [42]. Additionally, a
transmission line’s resistance, capacitance, and inductance values can be supplied as inputs
to produce a composite normalized value for the parameters. The skin effect and proximity
impact can be somewhat diminished in this way.

Artificial neural networks (ANNs) primarily address the skin effect and proximity
impact through their pattern recognition capabilities derived from training data, including
various scenarios. By processing historical data where these effects were significant, ANNs
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can learn to predict and mitigate their impacts under similar circumstances. The neural
network accomplishes this by adjusting real-time operational parameters such as frequency,
phase angle, and current amplitude to minimize these undesirable effects. Moreover,
the application of ANNs extends to optimizing the physical configuration of cables and
scheduling load operations, which can inherently reduce skin effects and proximity impact.
For instance, ANNs can suggest alterations in the layout or the cross-sectional area of cables
to reduce these effects without compromising the system’s efficiency or safety.

The enhanced capability of ANNs to predict and manage such complexities arises
from their layered structure, which can model intricate relationships within data much
more effectively than traditional computational methods. This allows for a nuanced
understanding and handling of the skin effect and proximity impact, ensuring more stable
and efficient power system operations. In practical applications, a study detailed in [43]
explored various neural network techniques for evaluating steady-state stability in power
networks. This analysis included five algorithms: cascade-forward NN (CFNN), Elman
NN (ENN), layer recurrent NN (LRNN), linear layer NN (LLNN), and feedforward NN
(FFNN). Performance comparisons employed the regression learner algorithm (RLA) using
root mean squared error (RMSE) and response plot graphs on IEEE 30-bus and NGP
systems. FFNN and CFNN closely predicted both systems’ stability, with FFNN ranking
first for accuracy and predictability on the IEEE 30-bus system, followed closely by CFNN.
Conversely, CFNN ranked first and FFNN second for the NGP system, with LLNN securing
third place for both systems, while ENN and LRNN filled the remaining positions.

3.2. Fuzzy Logic (FL)

Fuzzy systems, often known as fuzzy logic [14], are logical frameworks for normal-
izing and standardizing approximative reasoning [44]. Fuzzy logic can generate precise
and accurate answers from specific or even approximative facts and data, comparable to
how humans make decisions. The benefits of using fuzzy logic compared to traditional
approaches are highlighted in Figure 4. Carreon-Ortiz et al. [45] studied and explained
the concept of fuzzy logic, which uses reasoning similar to human reasoning. The human
brain functions through fuzzy logic, and we can employ this technology in machines to
make them function like humans. Fuzzification improves the ability to represent compli-
cated issues at low or moderate solution costs by enhancing expressive power, generality,
and modeling capabilities. Fuzzy logic permits a specific degree of ambiguity during an
analysis because this ambiguity can specify accessible information. Fuzzy logic is valuable
in many applications because it reduces issue complexity. Fuzzy logic is appropriate for
use in many aspects of power systems when there is uncertainty in the currently available
information. For instance, a problem can be applied to numerical inputs and outputs
instead of only symbolic ones and may entail logical reasoning. The conversions from
numerical to symbolic inputs and back again for the outputs are provided by fuzzy logic.

3.3. Expert System

An expert system, as delineated by [25], refers to a computer program employing
artificial intelligence techniques to replicate the decision-making prowess of a human
expert within a particular domain. It translates the knowledge and proficiency of a human
expert into a series of rules and procedures executable by a machine [26]. These systems
are adept and well-versed in a specific subject matter. Figure 5 illustrates the structure of
an expert system. Typically, the procedural aspect of the program is stored independently
from the knowledge base and may be represented in various formats such as models,
frames, decision trees, or rules. As rule-based or knowledge-based systems, expert systems
utilize knowledge and interaction mechanisms to address challenges that exceed human
intelligence and expertise.
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Expert systems are built on creating codes, which are more accessible than calculating
and estimating the value of parameters because they are essentially computer programs.
Therefore, it is simple to make changes even after completing the design. These systems
are unable to accommodate brand-new issues or unplanned circumstances. Many power
system applications mirror the capabilities of expert systems in areas including decision-
making, knowledge archiving, and problem-solving using logic, heuristics, and judgment.
Expert systems are beneficial for these issues when a large amount of data and information
must be processed quickly.

Writing the codes for expert systems is more accessible than actually calculating and
predicting the value of parameters used in generation, transmission, and distribution
because expert systems are essentially computer programs. As computer programs, any
changes may be easily made, even after completing the design. Estimating these numbers
and performing additional studies to improve the procedure’s efficiency is possible. Table 2
provides a summarized comparison of different AI approaches based on features.
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Table 2. Comparison of different AI approaches based on features [48,49].

Feature Expert Systems Artificial Neural Networks Fuzzy Logic (FL)

Knowledge used Expert knowledge in the form
of rules, objects, frames, etc.

Information extracted from
the training set of cases.

Expert knowledge in the form
of protection criteria.

Trouble- shooting and
improving a relay Change of rules required.

Complex—the internal signals
are almost impossible

to interpret.

Convenient—the internal
signals arc understandable

and analyzable.

Self-learning Possible. Natural. Possible.

Handling unclear cases
is Possible. Possible. Natural. Natural.

Robustness Non-critical and easy to
ensure. Difficult to ensure. Non-critical and easy to

ensure.

Setting a relay Convenient. A large number of simulations
are required.

Convenient. Both knowledge
and simulation are used.

Computations Extensive. Dedicated hardware. Moderate.

3.4. Evolutionary Methods

Recently, the optimization of power systems has made use of evolutionary computa-
tion techniques, such as genetic algorithms (GAs), evolutionary programming (EP), and
differential evolution (DE). Natural selection underlies evolutionary algorithms, which are
a potent optimization approach. These algorithms can converge to the global optimum with
less computational effort and are straightforward to implement. Evolving computation
has many benefits, such as its conceptual simplicity, wide range of domain applications,
effectiveness in solving real-world problems, adaptability in including domain knowledge,
hybridization with traditional techniques, parallelism, robustness, self-adoption, and need
for minimal human expertise. These methods can be applied to various problems without
extensive mathematical knowledge. DE is quickly becoming one of the most popular
evolutionary computation methods, and it is being used to solve many different kinds of
complex optimization issues in power systems.

The method of numerical optimization known as differential evolution (DE) was
developed by [50], and it is characterized by being straightforward, easily implementable,
significantly faster than other methods, and highly reliable. In contrast to previous evolu-
tionary algorithms, the fittest offspring competes directly with the fittest parent. Due to
the nature of the competition, the convergence speed increases. DE combines a standard
random generator’s adaptive random search with the true coded GA. Points in a contin-
uous space are better represented using floating point numbers used in DE. It has been
proven that this strategy is a strong contender for resolving optimization problems with
absolute values.

3.4.1. Genetic Algorithm

An optimization method based on the study of natural selection and natural genetics
is known as a genetic algorithm (GA) [51]. Its fundamental tenet is that a population’s
fittest member has the best chances and potential for survival. Genetic algorithms provide
a global approach based on biological metaphors. The genetic algorithm distinguishes itself
from other optimization techniques in several ways:

• Rather than directly manipulating the variables, the genetic algorithm operates on
coded representations.

• Instead of targeting a single optimal point, the genetic algorithm explores the popula-
tion of potential solution points to identify optimal solutions.

• The genetic algorithm relies solely on information from the objective function.
• Unlike deterministic laws, the genetic algorithm employs probability transition laws.
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Derived from a basic model of population genetics, the genetic algorithm comprises
the following components:

• Individuals are represented by chromosomes encoding the variables.
• An initial population of individuals is established.
• An evaluation function acts as the environment, ranking individuals based on their

fitness or survival ability.
• Genetic operators dictate the formation of a new population from the previous one

through a defined procedure.
• Parameters for the genetic algorithm are predefined.

Applications in power systems encompass various areas:

• Planning tasks include wind turbine placement, reactive power optimization, network
feeder routing, and capacitor positioning.

• Operational aspects include hydro-thermal plant coordination, maintenance schedul-
ing, loss reduction, load management, and control of flexible alternating current
transmission systems (FACTS).

• Analytical functions include reducing harmonic distortion, designing filters, control-
ling load frequency, and performing load flow analysis.

Since the survival of the fittest is the foundation of GAs, several strategies can be
suggested to improve the effectiveness of power system operations and boost power output.
The most effective strategy among these can be chosen using genetic algorithms, since it is
the way that best withstands all restrictions (survival of the fittest) [52].

3.4.2. Metaheuristic Optimization Technique

Particle swarm optimization (PSO), a population-based evolutionary technique, offers
several notable advantages over alternative optimization methods:

• PSO can handle objective functions that may not be continuous, convex, or differen-
tiable, as it operates as a non-gradient, derivative-free approach, unlike deterministic
methods [53].

• PSO utilizes the fitness function value to guide the search for optimality in the problem
space rather than relying on derivative information (first and second order) to locate
an optimal solution [54].

• By utilizing the fitness function value, PSO circumvents the need for approximations
and assumptions often employed by conventional optimization techniques on problem
objectives and constraint functions.

• Due to its stochastic nature, PSO can effectively address specific optimization problems
characterized by objective functions with stochastic and noisy attributes.

• In contrast to deterministic approaches, the quality of a solution produced by PSO is
not dependent on the initial solution.

• Being a population-based search technique, PSO enables the algorithm to evaluate
multiple solutions in a single iteration, thereby reducing the risk of becoming trapped
in local minima [55].

• The adaptability of the PSO algorithm allows for integration and hybridization with
other approaches, whether deterministic or heuristic, when necessary.

• PSO requires fewer parameters to calibrate and adjust than many other metaheuristic
approaches.

• Due to its utilization of straightforward mathematics and Boolean logic operations,
the PSO method is generally easy to understand, implement, and program.

Various heuristic methods, such as genetic algorithms, simulated annealing, evolution-
ary programming, and ant colony optimization, compete with PSO alongside conventional
gradient-based optimization algorithms. While these methods may handle various opti-
mization challenges similar to PSO, they often have significant drawbacks:

• Additional parameter adjustment is necessary.
• They frequently demand longer computation times.
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• Highly complex programming abilities are needed to create and adapt competing
algorithms to fit various categories of optimization problems.

Most demand a sizeable population of members, resulting in more fitness evalua-
tions. Some strategies involve binary conversion instead of working with actual valued
variables directly.

The following algorithms have advantages over PSO: MATLAB’s genetic algorithm,
simulated annealing, and the commercial versions of Excel premium solver (evolutionary
programming). However, it is worth noting that some of these methods are only available
in commercial versions. An extensive collection of books and academic articles provides
in-depth coverage of various competing approaches, particularly in the case of genetic
algorithms and evolutionary programming [56].

The same category’s additional heuristic methods are enumerated in [57]. These meth-
ods are becoming more widely used primarily because of their dependability, simplicity,
and capacity to handle increasingly precise models without unpleasant approximations.
Like other metaheuristic optimizers, PSO’s main flaws are its lack of a solid mathematical
foundation and inability to guarantee theoretically global optimum solutions. Many com-
mon benchmark optimization problems that academics use to test new global optimization
strategies have shown that PSO performs well. Reference [58] is a valuable resource that
has examined and investigated the promising convergence properties of the PSO algorithm,
where Clerc and Kennedy were successful in laying the mathematical groundwork to
describe how a simplified PSO model behaves while looking for the best answer. However,
there is a need for further research to address the remaining challenges in the use of the
particle swarm optimization (PSO) algorithm, such as the social influence component
and the development of general guidelines for adjusting its parameters to suit various
optimization problems.

In the initial discussion of evolutionary methods, it might have been understated
how much expertise is required to effectively apply these algorithms within complex
power systems. While evolutionary algorithms (EAs) such as genetic algorithms and
differential evolution are conceptually straightforward, involving principles such as mu-
tation, crossover, and selection, their practical application demands significant expertise
in optimization techniques and power systems’ domain-specific challenges. These chal-
lenges include accommodating nonlinear loads, adhering to regulatory constraints, and
understanding the physical limitations of grid infrastructure. Moreover, optimizing the pa-
rameters of EAs, such as population size, mutation rates, and crossover methods, requires
a deep understanding of both the algorithms and the system being optimized. Therefore,
while the foundational elements of evolutionary algorithms are simple to grasp, their
successful implementation in the context of power systems is a sophisticated process that
necessitates substantial domain-specific expertise and meticulous customization.

The genetic algorithm is extensively utilized for reactive power optimization due to its
ability to search for global optimal solutions through multiple paths, effectively addressing
discrete and nonlinear problems. In [59], an enhanced genetic algorithm is introduced to
tackle reactive power optimization issues, enhancing optimization outcomes. Using this
improved genetic algorithm, standard test systems simulate reactive power optimization
and compare results between the standard and enhanced genetic algorithms. Simulation
outcomes indicate the proposed algorithm’s feasibility and effectiveness, with the enhanced
genetic algorithm exhibiting lower active network loss and superior global convergence
performance and speed. Similarly, the study in [49] aimed to assess the efficiency of various
versions of the differential evolution (DE) method concerning accuracy and speed for
adequacy assessment in electrical power systems. Different DE methods were evaluated,
including standard DE, composite DE, JDE, chaotic DE, and adaptive DE, employing
mutation strategies like DE/rand/1, DE/best/1, DE/rand/2, etc. Independent software
developed in C++ facilitated experimentation on systems with three and seven adequacy
zones. The most effective bundles, aDE and DE/rand/1, exhibited universality, stability
in objective function values, and computational efficiency, highlighting the necessity for
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precise method selection and parameter tuning in evolutionary algorithms to achieve
optimal results in complex power systems. Various metaheuristic algorithms in power
system aspects are highlighted in Table 3.

Table 3. Roles and applications of metaheuristic algorithms in power system stability, control,
protection, and other aspects [60–67].

Metaheuristic
Algorithm Role in Stability Role in Protection Role in Control Other Roles

Particle Swarm
Optimization (PSO)

Optimizing stability
control strategies, tuning
stability parameters

Designing optimal
protection schemes,
fault diagnosis

Optimizing control
parameters, load flow
optimization

Renewable energy
scheduling, grid
optimization

Artificial Bee Colony
(ABC)

Enhancing stability
through optimized
control actions, tuning
system parameters

Fault detection and
classification, adaptive
protection schemes

Real-time control
optimization, voltage
control

Energy management,
resource allocation

Genetic Algorithms
(GAs)

Optimization of stability
control strategies, tuning
of control parameters

Designing optimal
protection settings,
fault diagnosis

Solving complex
control optimization
problems, load flow
optimization

Renewable energy
scheduling, grid
optimization

Ant Colony
Optimization (ACO)

Enhancing system
stability by finding
optimal paths for power
flow

Fault detection,
designing robust
protection schemes

Control parameter
optimization, dynamic
load balancing

Network optimization,
resource scheduling

Differential Evolution
(DE)

Stability optimization
through parameter
tuning, dynamic stability
analysis

Designing adaptive
protection schemes,
fault classification

Control strategy
optimization, real-time
system adjustments

Demand forecasting,
renewable energy
integration

Simulated Annealing
(SA)

Stability enhancement by
optimizing control
actions, mitigating
stability issues

Optimizing protection
settings, fault detection

Control parameter
tuning, load flow
optimization

Preventive
maintenance, energy
management

Harmony Search (HS)
Stability control
optimization, tuning
system parameters

Fault diagnosis,
designing adaptive
protection schemes

Real-time control
optimization, voltage,
and frequency control

Resource allocation,
demand response
management

Firefly Algorithm
(FA)

Stability enhancement
through optimized
control strategies,
parameter tuning

Fault detection,
adaptive protection
schemes

Control optimization,
load flow management

Smart grid operations,
energy storage
management

Bat Algorithm (BA)

Optimizing stability
control parameters,
enhancing dynamic
stability

Fault classification,
designing robust
protection schemes

Real-time control
adjustments,
optimizing control
actions

Renewable energy
management, asset
optimization

Cuckoo Search (CS)
Stability optimization,
enhancing system
resilience

Designing optimal
protection settings,
fault detection

Control parameter
tuning, dynamic load
balancing

Energy management,
predictive maintenance

Grey Wolf Optimizer
(GWO)

Stability control
optimization, enhancing
system stability

Fault detection and
classification, adaptive
protection settings

Control strategy
optimization, voltage,
and frequency
regulation

Resource scheduling,
demand forecasting

Whale Optimization
Algorithm (WOA)

Stability enhancement
through parameter
optimization, dynamic
stability analysis

Fault diagnosis,
designing adaptive
protection schemes

Real-time control
optimization, load flow
management

Smart grid operations,
energy storage
management
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Table 3. Cont.

Metaheuristic
Algorithm Role in Stability Role in Protection Role in Control Other Roles

Dragonfly Algorithm
(DA)

Enhancing stability by
optimizing control
parameters, dynamic
stability enhancement

Fault detection,
adaptive protection
schemes

Control optimization,
dynamic load
balancing

Resource allocation,
demand response
management

Salp Swarm
Algorithm (SSA)

Optimizing stability
control actions,
enhancing system
resilience

Fault classification,
designing robust
protection schemes

Real-time control
adjustments,
optimizing control
actions

Renewable energy
management, asset
optimization

Crow Search
Algorithm (CSA)

Stability control
optimization, enhancing
system stability

Fault detection and
classification, adaptive
protection settings

Control strategy
optimization, voltage,
and frequency
regulation

Resource scheduling,
demand forecasting

Sine Cosine
Algorithm (SCA)

Stability enhancement
through parameter
optimization, dynamic
stability analysis

Fault diagnosis,
designing adaptive
protection schemes

Real-time control
optimization, load flow
management

Smart grid operations,
energy storage
management

Elephant Herding
Optimization (EHO)

Optimizing stability
control parameters,
enhancing dynamic
stability

Fault detection,
adaptive protection
schemes

Control optimization,
dynamic load
balancing

Resource allocation,
demand response
management

Moth-Flame
Optimization (MFO)

Stability control
optimization, enhancing
system resilience

Fault detection and
classification, adaptive
protection settings

Control strategy
optimization, voltage,
and frequency
regulation

Resource scheduling,
demand forecasting

Grasshopper
Optimization
Algorithm (GOA)

Enhancing stability by
optimizing control
parameters, dynamic
stability enhancement

Fault detection,
adaptive protection
schemes

Control optimization,
dynamic load
balancing

Resource allocation,
demand response
management

League
Championship
Algorithm (LCA)

Stability enhancement
through parameter
optimization, dynamic
stability analysis

Fault diagnosis,
designing adaptive
protection schemes

Real-time control
optimization, load flow
management

Smart grid operations,
energy storage
management

Flower Pollination
Algorithm (FPA)

Optimizing stability
control actions,
enhancing system
resilience

Fault classification,
designing robust
protection schemes

Real-time control
adjustments,
optimizing control
actions

Renewable energy
management, asset
optimization

Jaya Algorithm
Stability control
optimization, enhancing
system stability

Fault detection and
classification, adaptive
protection settings

Control strategy
optimization, voltage,
and frequency
regulation

Resource scheduling,
demand forecasting

Quantum PSO
(QPSO)

Enhancing stability
through quantum-based
parameter optimization

Fault detection,
adaptive protection
schemes

Real-time control
optimization, dynamic
load balancing

Smart grid operations,
energy storage
management

Teaching–Learning-
Based Optimization
(TLBO)

Stability control
optimization, enhancing
dynamic stability

Fault detection and
classification, adaptive
protection settings

Control strategy
optimization, voltage,
and frequency
regulation

Resource scheduling,
demand forecasting

Shuffled
Frog-Leaping
Algorithm (SFLA)

Optimizing stability
control parameters,
enhancing system
resilience

Fault detection,
designing adaptive
protection schemes

Control optimization,
dynamic load
balancing

Resource allocation,
demand response
management
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4. Applications of AI Techniques in Power Systems

AI tools can effectively solve power system problems when the characteristics of
the problem align well with those of the AI tool. It is worth noting that the nonlinear
behavior of various components and the entire system is an essential aspect of power
system problems that are often relevant to AI applications. Nonlinearities in power systems
can be classified into three categories: near linear, continuous nonlinear, and discrete. Many
power system problems can be treated as near linear during regular operation, allowing for
numerical approaches to minimize solution times.

As power systems experience increased stress due to larger loads and power transfers,
the nonlinearities may become too significant to ignore, and control limits may become
necessary [68]. Both near-linear and nonlinear power systems can also experience planned
and unplanned discrete changes due to switching operations, which can be automatic or
manual. The nonlinear behavior of components in power systems can make it challenging
to address each component individually. However, at the same time, nonlinear problems
are well suited for AI tools to tackle.

Regarding the application of artificial intelligence (AI) in power systems as case studies,
real-world applications demonstrate the practicality of AI technologies and highlight their
successes and limitations. For instance, a case study involving a major power utility’s use
of machine learning algorithms to predict and manage load distribution could be detailed,
illustrating the positive impact on operational efficiency and energy savings. Conversely,
a discussion of a situation where AI failed to predict a system failure due to unforeseen
circumstances, such as extreme weather conditions, would provide valuable lessons on the
limitations of current AI implementations. Including such examples would offer readers a
clearer understanding of AI technologies’ practical applications, challenges, and real-world
performance in managing complex power systems. These enhancements will ensure the
discussion is theoretical and grounded in practical evidence reflecting AI’s current state
and potential in this field.

AI tools can be used to train personnel to solve problems in various areas of power
systems. Experience and good heuristics often improve the quality and efficiency of
solutions. Power system personnel can participate in simulations that utilize AI tools to
apply stored knowledge and gain experience and insights from others. To determine which
characteristics of power system problems are suitable for AI tools, the problems can be
categorized based on power system operation, restoration, power system security, power
system stability and stabilizer, voltage stability, and protection. Table 4 presents AI’s critical
roles in various aspects of power system stability, control, and protection, highlighting the
AI techniques used and the benefits they bring to the power system.

Table 4. Roles and applications of AI techniques in power system stability, control, protection, and
other aspects [69–74].

AI Techniques Role in Stability Role in Protection Role in Control Other Roles

Machine Learning
Predicting system behavior
under various conditions,
fault prediction

Fault detection and
classification, adaptive
protection schemes

Optimizing control
parameters, real-time
adjustments

Demand forecasting,
load balancing

Neural Networks
Modeling and predicting
dynamic system responses,
stability assessment

Pattern recognition for
fault diagnosis,
real-time fault location

Voltage and frequency
control, predictive
control strategies

Renewable energy
integration, energy
storage management

Fuzzy Logic

Handling uncertainties in
stability analysis
decision-making under
imprecise conditions

Adaptive protection
settings, fault tolerance

Control of nonlinear
systems, voltage
control

Demand response
management, grid
management
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Table 4. Cont.

AI Techniques Role in Stability Role in Protection Role in Control Other Roles

Reinforcement
Learning

Learning optimal strategies
for system stability
enhancement, dynamic
stability control

Adaptive and
self-learning protection
schemes

Autonomous control
actions, real-time
system optimization

Preventive
maintenance, energy
management systems

Predictive Analytics
Forecasting stability
margins, predicting critical
system conditions

Predicting potential
faults, preventive
protection measures

Anticipating control
needs, optimizing
control actions

Demand forecasting,
asset management

Genetic Algorithms
Optimization of stability
control strategies, tuning of
control parameters

Designing optimal
protection settings,
fault diagnosis

Solving complex
control optimization
problems, load flow
optimization

Renewable energy
scheduling, grid
optimization

Expert Systems
Utilizing expert knowledge
for stability analysis,
decision support

Implementing
rule-based protection
schemes, fault analysis

Providing control
decisions based on
expert rules

Energy management,
smart grid operations

Deep Learning

Detailed stability modeling,
high-dimensional data
analysis for stability
prediction

Advanced pattern
recognition for fault
diagnosis, self-learning
protection schemes

Complex control
scenario analysis,
predictive control

Predictive
maintenance,
demand forecasting

Time Series Analysis
Forecasting
stability-related
parameters, trend analysis

Historical data analysis
for fault prediction,
trend-based protection
measures

Anticipating control
needs based on
historical data

Demand forecasting,
energy consumption
analysis

Recurrent Neural
Networks (RNNs)

Predicting future stability
conditions, handling
time-dependent stability
data

Time-dependent fault
pattern recognition,
dynamic protection
adjustments

Control decisions based
on time-series data

Demand forecasting,
energy management

Long Short-Term
Memory (LSTM)

Long-term stability
forecasting, handling
sequential stability data

Sequential fault pattern
recognition,
time-sequence-based
protection adjustments

Control strategies
considering long-term
dependencies

Long-term demand
forecasting, energy
storage management

Data Mining
Extracting stability-related
patterns, identifying
stability risks

Discovering hidden
fault patterns,
enhancing protection
measures

Extracting control
patterns from large
datasets, optimizing
control actions

Preventive
maintenance, asset
management

Clustering
Algorithms

Grouping similar stability
conditions, identifying
critical stability clusters.

Clustering fault events,
identifying common
fault characteristics

Grouping similar
control scenarios,
optimizing control
based on clusters

Customer
segmentation,
demand response
management

Bayesian Networks
Probabilistic stability
assessment, handling
uncertainty in stability data

Probabilistic fault
diagnosis, enhancing
protection reliability

Decision-making under
uncertainty,
probabilistic control
strategies

Predictive
maintenance, risk
management

Proportional–
Integral–Derivative
(PID) Control

Fine-tuning control
parameters for stability
and maintaining system
stability under varying
conditions

Enhancing
fault-tolerant control,
maintaining protection
under varying
conditions

Maintaining stable
voltage and frequency,
fine-tuning control
actions

System automation,
process control

Model Predictive
Control (MPC)

Predictive stability
management, optimizing
control actions for future
stability

Predictive protection
measures, optimizing
protection actions
based on future
predictions

Anticipating future
control needs,
optimizing control
strategies

Energy management,
process optimization
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Table 4. Cont.

AI Techniques Role in Stability Role in Protection Role in Control Other Roles

Support Vector
Machines (SVMs)

Classifying stability
conditions, identifying
stability threats

Fault classification,
enhancing protection
reliability

Classifying control
scenarios, optimizing
control actions

Fault diagnosis,
pattern recognition

Ensemble Learning

Combining multiple
models for robust stability
prediction, improving
stability assessment
accuracy

Enhancing fault
detection accuracy,
combining multiple
protection models

Combining multiple
control strategies for
robust control decisions

Demand forecasting,
predictive
maintenance

Smart Grids

Enhancing overall grid
stability, integrating
stability-enhancing
technologies

Intelligent protection
schemes, self-healing
grids

Dynamic control of
distributed energy
resources, real-time
grid optimization

Grid management,
renewable energy
integration

IoT Integration
Real-time stability
monitoring, enhancing
situational awareness

Real-time fault
detection and location,
enhancing protection
responsiveness

Real-time control based
on sensor data,
optimizing control
actions

Smart grid
operations, asset
management

Big Data Analytics
Analyzing large volumes
of stability data,
identifying stability trends

Analyzing fault data
for protection
improvement,
enhancing fault
detection

Analyzing control data
for optimization,
improving control
decisions based on big
data insights

Customer behavior
analysis, demand
forecasting

Multi-Agent Systems
Coordinated stability
control, enhancing
system-wide stability

Coordinated protection
actions, enhancing
system-wide protection

Distributed control
actions, enhancing
system-wide control
coordination

Smart grid
operations,
distributed energy
resource
management

4.1. Power System Operation

The matching of total generation with load demand and related system losses is
necessary to operate automatic generation control (AGC) efficiently in interconnected
power systems. A power system’s operational point may eventually experience variations
from the nominal system frequency and planned power exchanges to other places, which
could have a negative impact [75]. Older techniques relied on linearized linear models or
approximations of nonlinear processes, neither of which could produce accurate results.
A higher level of precision was achieved with the use of AI technology. Approximately
in the early 1990s, ANN applications began, and they are still in use today. The flight
controller (FC) is primarily utilized in the design of regulators. Genetic algorithms (GAs)
also optimize complex nonlinear AGC problems. In load frequency controllers, fuzzy
membership functions are also tuned using GAs. Alhelou et al. [75] mentioned that the
solution to some AGC issues exhibits FL and ANN hybridization. There is a discussion
of contemporary approaches to AGC issues [76]. In order to combine the robustness of
GA with the simplicity of linear matrix inequalities (LMIs), a GA and LMI are utilized in
the study [77]. The rapid development of AI has extensively developed AGC research by
using different soft computing such as improved stochastic fractal search (ISFS), hybrid
bacteria foraging (HBF), grasshopper optimization algorithm [78], pattern search (PS) [79],
differential evolution (DE) [80], whale optimizer (WO) [81] and bacterial foraging algorithm
(BFA) [82]. Additionally, there are some hybrid approaches such as PSO–BFA [20], hybrid
crow search (hCA) combined with PSO [21], and others [22–24].

4.2. Power System Restoration

Electricity blackouts are uncommon, but their effects on numerous industries must be
dealt with immediately to speed up restoration. This has been the use of AI approaches for
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a long time. A review of ANN applied to this issue is conducted by [83] comparing several
AI methodologies. A few writers proposed other techniques, such as reconfiguring the
distribution system based on evolutionary algorithms (EA). Reference [84] introduced an
heuristic reconfiguration algorithm. Ant colony search (ACS)-based techniques are covered
in [85]. According to fuzzy-heuristic approaches, hybridization and multi-objective FL
are detailed in [86]. Evolutionary algorithms (EA) such as genetic algorithms (GAs), Tabu
search (TS), and simulated annealing (SA) tend to have longer computation times. At the
same time, evolution strategies (ESs) and FL are not primarily optimization algorithms.
Combining these methods is expected to yield better results in the future.

4.3. Power System Security

Power system security refers to a system’s capacity to keep customers’ energy flowing
from generating stations, mainly when chaotic. Authors widely compare reliability and
security. According to the regulations set forth by governing systems, a desirable reliability
level is frequently anticipated to be maintained as the value. A human operator for this
procedure may not always be practical, but constant monitoring can often do this. AI
approaches, which mimic human thought, may be helpful [87]: they mentioned in their
study that recent developments include using ANN to maintain steady-state security and
FL applications for determining the reliability of power systems using the interrupted
energy assessment rate given in [88]. Aside from monitoring voltage profiles, ES has also
been utilized to monitor security simultaneously. More applications are anticipated to
emerge to sustain desirable dependability levels.

4.4. Power System Stability and Stabilizers

A power system is constantly subjected to disruptions, which can be event- or load-
related. Power systems must be adequately planned to resist the occurrence of disruptions
and constantly monitored to minimize the negative impacts. The classification of power
system stability varies based on factors such as the involved variables, the disturbance’s
extent, and duration, as depicted in Figure 6 and more details highlighted in Table 5. AI
approaches have been utilized for all of this almost since their earliest application in electric
power systems. The effects of temperature rise on brake resistors for transient stability
have recently been discussed [89]. An ANN-based approach was recently discussed for a
generalized neuron-based stabilizer [90] and a multilayer perceptron for transient stability
assessment [91]. The second method is not affected by the location or type of failure. SA
can be found in the robust design of stabilizers for multimachine power systems [92]. The
article in [93] discusses hybridization, such as the neuro-fuzzy approach for excitation
control for voltage and dampening control. Because the stability problem needs continual
monitoring, AI techniques suited for it have been widely used, although optimization
algorithms and memory-based gravitational searches such as GA, TS, and ant colony
optimization (ACO), among others, have not found many applications. Higher-stability
limitations can be achieved using more advanced procedures.
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Table 5. Types of control and focus areas for stability in power systems [32,95].

Type of Stability Focus Area Control Types Associated Problems

Angular Stability Rotor angular stability at
small signals

Damping controllers, power system
stabilizers (PSSs)

Oscillations in rotor angle,
loss of synchronism

Voltage Stability Maintaining acceptable
voltage levels

Voltage regulators, static VAR
compensators (SVCs), FACTS devices
(flexible AC transmission systems)

Voltage collapse, voltage
fluctuations

Frequency Stability Maintaining system frequency
Frequency controllers, load frequency
control (LFC), automatic generation
control (AGC)

Frequency deviations,
frequency oscillations

4.5. Voltage Stability

Voltage must be kept within specific limits to preserve system stability and avoid
voltage collapse. Continuous monitoring is critical for this. Recently, ANN-based sys-
tems have been presented [96] for ANN-based coordinated control of the under-load tap
changing (ULTC) transformer and static synchronous compensator (STATCOM). Because
of its complexity and ambiguity, FL can be employed efficiently in reactive power and
voltage regulation. Recently, Jafarian et al. developed a strategy for controlling regional
voltage profiles using a knowledge base [88]. You et al. [97] have proposed ES-based ap-
proaches for supervisory control and data acquisition (SCADA) systems. Heuristic search
and predictive control have recently been applied [98] to achieve a coordination strategy
to prevent voltage collapse. Zhao et al. [99] proposed neuro-fuzzy systems, which rank
several contingencies for voltage stability, while Zhao et al. [99] proposed hybrid systems
employing FL-ES. Because they are relatively slow for continuous monitoring, optimization
techniques such as GA, SA, ACS, and TS have not been widely used for voltage stability
concerns. FL and ES are projected to lead in the coming years, with hybridizations being
possible. Voltage control may benefit from the hybridization of optimization methods and
control approaches.

4.6. Protection

Integrating artificial intelligence (AI) into power system protection has revolutionized
how modern power systems operate, offering substantial improvements in reliability, speed,
and precision. AI techniques such as machine learning, neural networks, fuzzy logic, and
expert systems are extensively utilized to enhance power system protection. For instance,
machine learning models, including support vector machines (SVMs) and decision trees,
are employed for fault detection and classification, providing higher accuracy and faster
identification of faults by analyzing vast amounts of historical and real-time data. Neural
networks, including intense learning models like convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), are instrumental in real-time monitoring and
control, enabling the system to learn from data patterns and make informed decisions
quickly [100].

Fuzzy logic systems are used in adaptive relaying, where they adjust relay settings
dynamically to account for uncertainties in power system parameters, ensuring optimal
performance under varying conditions. Expert systems, which incorporate knowledge from
human experts, are pivotal in accurately locating faults within transmission and distribution
networks, significantly reducing the time needed for repairs. Genetic algorithms and other
optimization techniques facilitate the coordination of protection devices by finding the
best settings to minimize outage areas and enhance system reliability. Predictive analytics,
powered by AI, plays a crucial role in predictive maintenance by analyzing sensor data to
forecast potential equipment failures, allowing for proactive interventions and reducing
downtime. Furthermore, AI-driven intrusion detection systems (IDSs) are essential for
cybersecurity, detecting and responding to cyber threats that target power system protection
infrastructure [101]. Table 6 showcases AI’s practical applications in power systems.
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Table 6. Practical applications of AI in power systems [2,27,102].

Application Description Examples

Demand Forecasting Predicts energy demand to optimize power
generation and distribution.

Siemens and General Electric (GE) use AI
algorithms to forecast energy demand accurately.

Grid Management
Real-time monitoring and control of power grids
to detect and predict faults, manage loads, and

optimize electricity flow.

AI techniques are used in smart grid projects for
real-time monitoring and fault detection.

Renewable Energy
Integration

Predicts the generation capacity of renewable
sources based on weather conditions, improving

grid stability and optimizing renewable use.

Google DeepMind collaborates with the UK
National Grid to predict wind energy output.

Energy Storage
Management

Optimizes charging and discharging cycles of
energy storage systems, prolonging battery life

and reducing costs.

AI models manage battery energy storage
systems for efficient use and extended

battery life.

Predictive Maintenance
Analyzes sensor data to predict equipment

failures before they occur, reducing downtime
and maintenance costs.

ABB and Schneider Electric use AI-driven
predictive maintenance solutions to monitor
equipment health in power plants and grids.

Energy Efficiency
AI-driven systems in buildings and industries
optimize energy use by learning consumption

patterns and implementing efficiency measures.

Smart thermostats and building management
systems use AI to reduce energy consumption.

Fault Detection and
Diagnosis

Quickly identifies and diagnoses faults in the
power system, enabling faster responses and

preventing equipment damage.

AI systems are employed in fault detection and
diagnosis in smart grids.

Smart Grid Development
Uses digital technology to monitor and manage
electricity from all generation sources to meet

varying electricity demands.

Smart grid projects globally incorporate AI for
enhanced grid management and efficiency.

Customer Management
and Services

Enhances customer services through chatbots,
predictive analytics for billing, and personalized

energy-saving recommendations.

Utilities use AI for customer support chatbots
and to provide personalized energy-saving tips.

Energy Trading Forecasts prices, optimizes trading strategies and
manages risks in energy trading platforms.

For better financial outcomes and risk
management, AI models are used in energy

trading platforms.

5. Modulation of Intelligent Techniques for Power System Stability, Control
and Protection

Inverters and controlled converters are switched on and operated using modulation
techniques to create output voltages and currents of superior quality for various loads. We
can regulate the switching electronic device by applying these modulation approaches to
obtain the desired amplitude, frequency, and quality. Numerous modulation approaches
have been previously examined. A single-phase matrix converter’s use as a cycloconverter
and cycloinverter was described in [103]. The matrix converter switches were controlled
by sinusoidal pulse width modulation (SPWM) pulses, which produced output. Ismail
et al. [103] described the creation of a microcontroller-based single-phase sinusoidal pulse
width modulator (SPWM) inverter. This configuration’s usage of a microprocessor to
produce sinusoidal pulse width modulation (SPWM) pulses makes it appealing.

Reference [104] used MATLAB-Simulink tools to compare the space vector pulse width
modulation (SVPWM) and sinusoidal pulse width modulation (SPWM) approaches, and
they concluded that the SVPWM method is the most trustworthy one. To address this
gap, it is essential to clarify that Ahmed and Ali utilized MATLAB’s SimPowerSystems
toolbox, which is particularly suited for simulating and modeling power systems in the
time domain. This choice was driven by the toolbox’s robust capabilities in handling
complex calculations required for accurately comparing the performance of SVPWM and
SPWM methods. This toolbox allows for a realistic simulation of electrical circuits and
power system dynamics, providing a trustworthy basis for their conclusion that SVPWM
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is the superior method. The recently constructed buck-boost type Z-source inverter was
controlled by five modified pulse width modulation schemes, which were compared
and evaluated [105]. For uninterruptible power supply (UPS) systems, Ismail et al. [105]
proposed a modified algorithm of pulse width modulation (PWM) inverter deadbeat
control. It was confirmed that the proposed control scheme increased output voltage
amplitude while offering a superior transient response and precise phase positioning for
various load conditions. This technique is appropriate for high-power UPS applications
where fine control of the power flow is needed, and the switching frequency is in the
region of a few kilohertz. Two well-known methods for switching multilevel converters are
phase-shifted pulse width modulation (PS-PWM) and level-shifted pulse width modulation
(LS-PWM). Because it assures equal power distribution and switching frequency on all
of the switches inside a particular module, PSPWM is typically selected for cascaded
multilevel inverters. However, the absence of appropriate switching is a drawback of
this method.

On the other hand, the LS-PWM technique guarantees the best switching patterns,
but does not evenly distribute power among the switches in the modules. SVPWM,
LSPWM, and PS-PWM are contrasted in this research regarding switching patterns and
power distribution across modules. A proposed modified carrier-based PWM approach
combines the advantages of fair power distribution, equal switch consumption, and the best
switching sequences. Line voltage and switching sequence analyses have been performed
on each one to close the gap between the three approaches and demonstrate their similarity.
Results from simulations are used to support the suggested approach. According to a
proposal by Peyghambari et al. [106], random pulse width modulation (RPWM) can lower
acoustic noise in loads powered by power electronic converters. The switching period in
this method depends on the duty ratio, which is in contrast to standard RPWM systems.
In other words, the switching time in each switching cycle depends on the duty ratio
and the switching periods of the previous switching cycles. The experimental findings
supported the proposed method’s capability to lower noise power at a chosen frequency in
the voltage spectrum.

Zahraoui et al. [107] analyzed a random PWM method for three-phase voltage-
controlled inverters with randomized pulse positions. Experiments were conducted to
generate and validate closed-form equations for the inverter’s line-to-line and line-to-
neutral voltages’ discrete and continuous power spectra. The theory presented makes it
possible to optimize the voltage spectra of randomly modulated inverters numerically.
Chiu et al. [108] suggested a two-stage, three-phase, wavelet-modulated isolated AC-DC
converter for use in electric vehicle (EV) charging systems. A half-bridge resonant CLLC
converter was put forward due to its high efficiency, broad gain range, galvanic isolation,
and bidirectional power flow. The outcomes demonstrated that the suggested bidirectional
converter may be built with wavelet modulation. The performance of the suggested con-
verter results in an output current with less than 10% total harmonic distortion and shallow
output voltage ripple, which is in line with expectations.

6. Control Methods of Intelligent Techniques

It is possible that utilizing a power system stabilizer (PSS) to increase one genera-
tor’s dampening will not be enough to increase the dampening of the other generators in
multi-machine power systems. Following severe faults, post-fault conditions may differ
from pre-fault conditions, leading to inadequately damped swings. Therefore, it may be
necessary to integrate PSS into the turbine governor system to dampen local and inter-area
oscillations [109]. Many control strategies have been used in designing PSSs. The linearized
machine model is the foundation for stabilizers built using traditional and contemporary
control theories. Various disturbances can affect the power system, which is a nonlinear,
complex system. These disturbances can lead to a variety of unresolved problems and
unpredictable outcomes. Given these constraints, it is challenging to stabilize power system
efficiency using these kinds of PSSs. Different contemporary control approaches, such
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as adaptive controllers and H control systems, were employed to attain higher operating
performance than standard stabilizers. Modern control theory-based stabilizer design has
some technical limitations, requiring extensive knowledge of the power system, exten-
sive processing time for online parameter determination, and significant implementation
cost [110,111].

6.1. Fuzzy Control

In 1963, Zadeh developed the idea of fuzzy logic. Fuzzy set theory is where fuzzy
logic comes from. There is no limit to the number of members in a fuzzy set. There is a
number between 0 and 1 that represents the degree of each membership for each element.

A straightforward controller based on a state-feedback control system was presented
by Poongodi et al. [112]. The excitation control signal includes both the output signals from
the fuzzy controller and the traditional PI controller.

A stabilizer in heavy and light circumstances can function more effectively than a
traditional power system stabilizer (PSS) [113]. To account for the situations above, two
linear power system stabilizers (PSSs) based on the traditional frequency domain technique
were constructed. Fuzzy reasoning was developed to select a stable signal that best matched
the operational state.

A fuzzy power system stabilizer that is indirectly adaptive was developed by [114].
Two unsolved nonlinear differential equations served as the power system representation.
The stabilizer was created by two fuzzy logic systems based on these equations. The fuzzy
logic systems were modified using the Lyapunov synthesis method.

A direct adaptive fuzzy logic stabilizer presented in [115] has a smaller rule base than
a typical one. The rule base for single-machine infinite bus (SMIB) and multi-machine
power systems was tweaked online to adjust the stabilizer to various operating scenarios.
Here, the variable-structure approach was used to estimate the controller settings.

Intelligent fuzzy controller implementation in load frequency controllers (LFCs) is
increasing yearly. In [116], two intelligent load frequency controllers (LFCs) were created
to manage system frequency and power output by regulating the generator’s speed using
fuel rack position control. Fuzzy logic (FL) alone creates the first controller, whereas neural
networks, genetic algorithms, and FL are combined to create the second. The suggested
controllers were discovered to have sufficient overall dynamic performance and circumvent
potential limitations related to other competing approaches. On the other hand, Kalyan
et al. [21] proposed a fuzzy controller based on a water cycle algorithm (WCA) for LFCs
in multi-area systems. With the combination of LFC and AVR, Kalyan et al. [22] also
proposed a fuzzy PID controller using the hybridized artificial electric field algorithm
(HAEFA) approach.

A fuzzy power system stabilizer with novel input signals was proposed by [92].
These signals include the speed deviation and the tie line linking two locations. The
method outperformed conventional PSS and fuzzy PSS with typical speed deviation and
acceleration input signals regarding dynamic performance. The approach’s costs and
scanning times were cut because the same signal could be sent to all fuzzy logic PSSs.

A new global tuning method was suggested for fuzzy power system stabilizers to
reduce oscillations in a multi-machine power system [117]. The iterative adaptive, efficient
partition algorithm is the foundation for this method. According to numerical findings, this
method can locate the ideal global solution more quickly than a traditional GA.

The performance of a large-scale power system can be improved by wide-area mea-
suring systems (WAMS). Signal transmission and reception delays have the potential to
impede system performance [118]. The delay-independent robust control problem was
presented to address this shortcoming based on WAMS employing the H fuzzy control
approach. Similar T-S fuzzy models depict this case’s vast, interconnected, nonlinear power
networks. Using a feedback decentralized control technique, the model stabilized.
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6.2. Artificial Neural Networks

Due to the nonlinear mapping characteristics of neural networks, ANNs have been
successfully employed for many years to identify and control complex systems. Neural
networks may be employed as controllers rather than traditional PSSs when suitably trained.
The neural network (NN) must be trained for various operating situations to fine-tune
the traditional PSS parameters and obtain reasonable performance. Interference is created
during learning using a traditional backpropagation network under many circumstances. A
modular NN was proposed by [119] in place of a backpropagation network to address this
flaw. Three local expert networks and one gate network, each having three layers, make
up this model. The ANN was trained directly from a traditional PSS’s input and output.
According to the simulation results, the modular PSS is more efficient at dampening system
oscillations and delivering high-quality outcomes.

A neural adaptive power system stabilizer was created by [120] using a feedforward
neural network with a single hidden layer. This made use of several methods. The two
subnetworks comprise each stabilizer, an adaptive neuroidentifier (ANI) and an adaptive
neurocontroller (ANC). A backpropagation technique was used to train both subnetworks.
The second strategy was modified online and is based on an indirect adaptive control
scheme instead of the previous approach’s direct adaptive control system.

In order to fine-tune PSS parameters online based on real-time assessment of machine
loading conditions, [120] designed a radial basis function network (RBFN). The suggested
stabilizer was trained for various operating scenarios and changes in system parameters.
The orthogonal least squares learning approach was used to obtain the network parameters
and a collection of significant radial basis functions.

The neural network employed in the approach described by [119] needs significant
training. An ANN-based self-tuning PSS was suggested by [97] to circumvent this issue.
This method included the ANN allowing real-time adjustment of the traditional PSS
parameters. A novel method chose the number of neurons in the hidden layer.

Alanazi et al. [111] suggested a recurrent neural network (RNN) stabilization controller
to enhance the transient stability of power systems under various operating conditions and
parametric uncertainties. The suggested additional RNN controlled the governor and the
automatic voltage reactor (AVR). Online adjustments were made to the controller’s weight.
For excitation control, the signal output of the first RNN was combined with the PSS signal
output. The governor system’s stabilizing signal came from the second RNN’s output. The
suggested method worked with a single-machine infinite bus.

Designing intelligent controllers based on ANNs requires a significant investment
in time and resources due to the complexity of large-scale power systems. These encour-
age [90] employment generalized neurons (GNs) to create an adaptable PSS based on
generalized neurons. Offline training covered a variety of operating situations and distur-
bance types for the stabilizer. After that, I taught it the power system online. The simulation
results of the single-machine infinite bus (SMIB) system show that the proposed stabilizer
works well under solid shocks.

A PSS was created using the gain scheduling technique to improve system perfor-
mance. This stabilizer works better than the traditional PSS. A neural power system
stabilizer that is taught using a set of gain scheduling PSS parameters was proposed by [93].
These characteristics were acquired by utilizing the pole-placement approach for vari-
ous operating situations. They concluded that stabilizers would be more useful when
generators absorb reactive power.

Rana et al. [121] used the single-neuron model to improve resilient PSS parameter
optimization by probabilistic eigenvalue analysis. By constructing a helping PSS gain
from the single-neuron model, the PSS performance was self-adjusted to follow the system
operating state. The method was successfully applied to an eight-machine system with six
PSSs [122]. Adaptive critics and neural networks were employed to build and implement
an optimal wide area control system (WACS) in real time. A real-time digital simulator
is connected to a digital signal processor (DSP) to implement the WACS (RTDS). In this
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method, neural network systems were designed to calculate the dynamics of the power
system and create nonlinear optimal control. According to the simulation results, adding
PSS to the WACS improved the dampening of interarea oscillation under various operating
situations and eventualities.

6.3. Particle Swarm Optimization (PSO) Technique

Le et al. [96] suggested the PSO approach for adjusting a lead–lag power system
stabilizer and brushless exciter parameters. The simulation results showed the stabilizer’s
actions in dampening oscillations in a multi-machine power system.

6.4. Tabu Search (TS) Technique

Syahputra and Soesanti [123] suggested a TS method to determine the ideal parameters
for a traditional lead–lag power system stabilizer. This technique performs well when
tested on SMIB and multi-machine power systems under various operating conditions.

6.5. Hybrid Artificial Intelligent Controller

Combining two or more artificial intelligence algorithms creates a hybrid intelligence
system. Such strategies are used in series or integration through cooperative interactions to
achieve good results. Hybrid systems have been used in engineering applications for the
last 20 years.

To improve the stability of power systems, the studies of [114,124] suggest a gain-
scheduling PID stabilizer. Ref. [99] employed a hybrid conventional PSS, a fuzzy logic-
based PSS, and simple switching criteria. This method dealt with an SMIB experiencing
faults and other transitory disruptions. In [125], the speed error signal and its derivative
were used to tune the parameters of the proposed stabilizer online. This controller was
used in multi-machine power systems and SMIB.

Ekinci and Hekimoglu [125] introduced adaptive fuzzy control based on unsuper-
vised learning neural networks to enhance the producing unit transient of a hydropower
system. Using the proper tools, an ideal state-feedback regulator-design language control
method was changed into a variable control strategy. Fuzzy logic-based controller modules
and a neural network classifier are both included in the proposed controller. The fuzzy
associative matrix stores the relationship between the controller inputs and outputs created
via unsupervised NN learning. The main state-of-the-art methods are given in Table 7.

Table 7. Method presented by researchers.

No. Methods Presented References

1 Presented a straightforward controller based on a state-feedback control system [115]

2 Developed an indirect adaptive fuzzy power system stabilizer [116]

3 Presented a direct adaptive fuzzy logic stabilizer [117]

4 A fuzzy power system stabilizer with novel input signals was proposed [93]

5 Suggested a new global tuning method for fuzzy power system stabilizers to reduce oscillations in a
multi-machine power system [126]

6 Using a feedforward neural network with a single hidden layer, a neural adaptive power system
stabilizer was created [99]

7 Suggested an ANN-based self-tuning PSS [97]

8 Suggested a recurrent neural network (RNN) stabilization controller to enhance the transient stability
of power systems under various operating conditions and parametric uncertainties [90,127]

9 Suggested a PSO approach for adjusting a lead–lag power system stabilizer and brushless exciter
parameters [125]

10 To improve stability of power systems, some authors have suggested a gain-scheduling PID stabilizer [124]
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7. Recently Proposed Intelligent Techniques for Power Systems

In order to solve the optimal power flow (OPF) problem, a unique method based on a
modified sine–cosine technique was proposed [128]. The modified sine–cosine algorithm
(MSCA) seeks to shorten calculation time while improving the practicality and ability to
identify the best answer. The OPF problem is solved for several benchmark test systems
to validate the MSCA. To demonstrate the efficacy and potential of the sine–cosine algo-
rithm (SCA) and MSCA algorithms, the proposed MSCA is contrasted with alternative
optimization techniques. Ref. [128] presented a novel hybrid algorithm that combines atom
search optimization with simulated annealing algorithms. A power system stabilizer used
in a single-machine infinite-bus power system was proposed to be optimized using the
newly created enhanced algorithm, the improved atom search optimization algorithm.
The assessments were initially carried out by comparing the outcomes with those of the
genetic algorithm, the simulated annealing technique, particle swarm optimization, the
gravitational search algorithm, and the original iteration of the atom search optimization
algorithm. The outcomes demonstrated the created hybrid algorithm’s significant poten-
tial in striking a balance between the exploration and exploitation stages. The suggested
approach outperformed other recently reported top-performing power system stabilizer
design algorithms. Deveci et al. [129] introduce a multi-criteria decision-making strategy
based on interval type-2 fuzzy sets for choosing the ideal site for electric charging stations.
Simulated annealing, which combines two separate aggregation operators—linguistic
weighted sum and average—with the interval type-2 membership function parameters,
improves this approach. An actual issue with public transportation faced by the municipal
bus business in Istanbul is addressed using the suggested overall reusable multi-stage
solution strategy. The outcomes show that the method does enhance the model by bet-
ter capturing the associated uncertainties embedded in the interval type-2 membership
functions, creating a fuzzy system with greater efficacy. These findings are supported by
experts who also found that the SA-improved interval type-2 fuzzy approach produces
more trustworthy outcomes when choosing the optimal locations for electric bus charging
stations. Ref. [130] suggested a particle swarm optimization (PSO)-based tuning methodol-
ogy for power system stabilizers (PSSs) that is effective for systems with 10 or even more
units. The commercial simulation program Dig Silent Power Factory’s source language
was used to build our novel methodology. The methodology was used on various test
systems, demonstrating the efficacy and potential of the suggested method. In order to
ensure the safe and reliable operation of a power system, Ref. [131] attempted to resolve
the problem of anomaly detection. The one-class support vector machine (OCSVM), which
is appropriate for classifying imbalanced data, is used, since the fraction of aberrant data in
the operation of the power system is relatively low. OCSVM’s performance depends on
the given parameters, so making the wrong decision will reduce its classification precision
and generalizability. The author optimized the parameters of the OCSVM using PSO.
The original PSO method readily reaches the local optimum and converges slowly. This
problem is addressed by the author’s modified PSO method for parameter optimization,
which introduces adaptive population splitting and adaptive speed weighting to speed up
convergence and aid in algorithmic escape from the local optimal location. The efficiency of
the suggested approach is demonstrated in tests using natural power system experimental
data sets and standard benchmarks. One more technique is ant colony algorithms, which
are inspired by the actions of natural ant colonies in working together to solve problems by
changing the environment and utilizing indirect communication. Each ant wants to pursue
a pheromone-rich direction because natural or genuine ants release a specific quantity
of pheromone while moving. This straightforward game shows how ants can adapt to
environmental changes, such as new barriers obstructing the previously shortest path. The
fundamental concept is to create fresh solutions to optimization issues by repeatedly and
frequently simulating artificial ants. The ants use experience to guide their search, and the
environment makes this knowledge available and modifies it. Positive reinforcement for
excellent solutions, distributed computation, beneficial heuristics, and many more features
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are characteristics of ACO. However, its lack of computability is a drawback that may not
be considered for some issues with electric power systems for which it has been employed,
such as in unit commitment, economic dispatch, planning, and many more issues still
to come.

A multi-machine power system’s low-frequency oscillations and voltage deviations
are dampened utilizing an innovative control strategy described by [132] using an ant
colony optimization-based static synchronous compensator. The control system uses two
proportional–integral controllers to control the gate signal in the static synchronous com-
pensator. This uses the ant colony optimization metaheuristic swarm-based optimization
technique to modify the gain parameters. Without a controller, with a static synchronized
compensator, and with the proposed ant colony optimization-based static synchronous
compensator, the time-domain results of the rotor dynamics and deviation in generator volt-
age demonstrate the potential of the proposed controller in reducing the overall oscillations
in the power system.

Moreover, when the issue is about power system protection, most researchers have
implemented different techniques for protecting it in their studies. Since they serve as the
primary conduit between energy generation and its use, this study considers an example
of transmission lines, an essential component of the power system network. However,
these have the most significant fault occurrence rate because they are immediately exposed
to the environment. Transmission line faults are primarily divided into symmetrical and
unsymmetrical faults. As the reliance on energy grows steadily, customers are becoming
increasingly aware of the issue, since they need a reliable, nearly interruption-free power
supply. In order to facilitate speedy repair and restoration of the defective line, increase
dependability, and bring the line back into operation as soon as possible, it is crucial to
identify and precisely pinpoint a transmission line’s defects. Transmission line protective
relays typically employ current and voltage input signals to identify, categorize, and locate
problems on a protected line segment. The relay will transmit a trip signal to a circuit
breaker in cases of faults in the transmission line’s protected segment, so the system’s
damaged portion may be quickly disconnected. Widely utilized as primary and secondary
transmission line protection, distance relays are based on the electrical distance along
a transmission line to a defect. Their operation is based on the voltage-to-current ratio,
which the relay perceives as impedance [133]. Early techniques for fault classification relied
on variations in voltages, currents, and impedances concerning predetermined values to
classify different fault types. However, these techniques had shortcomings in not covering
faults caused by changes in fault resistance, angles at which faults originate, mutual cou-
pling from adjacent lines, the magnitude of the DC offset, and the presence of harmonics
in the transient signal of the damaged transmission line. Earlier, the traveling wave ap-
proach was employed to locate faults in transmission lines. The idea rested on recognizing
when forward and backward waves arrived at terminals. For transmission line protection,
Refs. [134,135] used a traveling wave-based fault classification approach. However, this
has certain drawbacks, including the need for a high sampling rate, difficulties separating
traveling waves reflected from the fault spot from the far end of the line, and noise in
the input signals [136]. To address these issues, various intelligent strategies have been
developed over the past two decades, including artificial neural networks (ANNs), fuzzy
methods, a neuro-fuzzy approach, support vector machine (SVM)-based techniques, and a
combined wavelet–ANN approach.

7.1. Wavelet Transformation

Fourier transform (FT) was employed to analyze faults in transmission lines, although
it has drawbacks such as fixed resolution and frequency localization. Wavelet transform
has lately become a potent technique for removing crucial information from voltage and
current signals for transmission line relaying. It can get over the restrictions of FT. Wavelets
are mathematical operations used to create a model for a nonstationary signal with several
tiny wavelike components.
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Wavelet transform and its use in the power system are discussed in [121]. Wavelets are
time- and frequency-localized by dilation (through translation). Wavelet transform offers a
quick and efficient method for examining nonstationary voltage and current waveforms.
It is also ideally suited for irregular wideband signals and may contain both sinusoidal
and impulsive transients. It may be used to quickly and precisely find defects in parallel
transmission lines. Zhang et al. [136] compare the discrete wavelet transform (DWT) and
discrete Fourier transform (DFT) for locating and categorizing transmission line problems.
The authors utilized Matlab simulation to compare DFT with DWT, and the findings reveal
that the DWT approach performs better for fault classification and for determining the
location of faults when more than one phase is involved in the fault, while in the instance
of a line-to-ground fault, the DFT technique performs better at predicting the location of
faults. In order to locate faults in transmission lines, ref. [137] presented an approach based
on wavelet transform. For this aim, wavelet transform analyzes fault-generated traveling
waves to expose their journey periods between the fault and the relay sites. Wavelet
transform was introduced by [138], and an online application for power system relaying
was suggested. It can use a tiny data window to isolate the impulse and high-frequency
components and extract the fundamental frequency component. Ref. [139] suggested a
method based on wavelet transform for transmission line distance protection. In order to
identify flaws, the observed current signals were first decomposed using a db1 wavelet,
and the norm of the detail coefficients (D1) for each current was determined. When a norm
value exceeds a predetermined threshold, there is a disturbance in that phase. Wavelet
transform-based digital transmission system protection and wavelet MRA-based fault
diagnostics have been proposed by [140,141]. Wavelet transforms and first-level high-
frequency information of currents and voltages were employed to extract features from
the fault transients. Single faulty phase current information from both ends was utilized
to locate faults, and local terminal information was used for categorization. To protect
transmission lines using series compensation, wavelet transform was proposed by [127].
To identify fault zones, the scientists employed db4 (Daubechies) mother wavelets, and
to classify faults, they used Harr. The simulation results demonstrate that the suggested
approach has a very high accuracy in fault detection, zone identification, and faulty phase
identification. Faults of various sorts, conditions, and locations have been tested. Di Giorgio
et al. [142] suggested a wavelet-based method for locating, classifying, and detecting faults
in transmission lines. The scientists sampled a line’s three-phase voltage and current data
using a global positioning system with synchronizing clocks at both ends. The three-phase
voltages and currents of the local terminal are decomposed with the help of the Bior4.4
mother wavelet for location ANN, which is utilized for defect detection, classification,
and estimate. To detect high impedance problems in an EHV transmission line, Ref. [143]
presented a discrete wavelet-transformed approach. The authors tested the suggested
approach to display voltage signals of one pre-fault cycle and another cycle after the
fault occurred using ATP-EMTP simulation, and the findings had several benefits over
conventional HIF (high-impedance fault) detection techniques. The suggested method is
straightforward, precise, and quick, independent of load change and imbalanced situations.
Wavelet transformations are used in [144] categorization techniques for faults in double-
circuit lines. The six current signals were preprocessed using wavelet transform Daubechies,
which isolates distinguishing characteristics for feeding an artificial neural network. PSCAD
was utilized for the simulation. The wavelet transform based on preprocessors helped to
increase the algorithm’s dependability and effectiveness. A novel method for locating faults
in transmission networks was suggested by [40]. It is based on wavelet multi-resolution
analysis combined with a cubical interpolation technique. The suggested method could
be used at any voltage level and was unaffected by fault impedance, inception angle, or
fault distance. However, the categorization of distinct line faults has not been considered.
Wavelet MRA analysis was used by [145] to demonstrate how to identify and categorize
defects in transmission networks. The peak absolute value, its mean, and the total of the
third-level output of MRA signals of the currents in each phase were utilized as the decision
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criteria for identification and classification of the three-phase line currents provided from
both ends using Daubechies eight (Db-8) wavelet transforms. Identifying and categorizing
transmission line faults utilizing a wavelet multi-resolution analysis technique is also
covered by [146].

7.2. Wavelets with Fuzzy Logic

A novel method for locating and categorizing faults in transmission lines has been
presented by [147] and is based on a mix of wavelet and fuzzy approaches. Fuzzy logic
was used to extract significant features from wavelet MRA coefficients to determine the
fault’s precise position in the lines. Dynamic properties of fault signals (line current) are
retrieved using wavelet MRA coefficients. Wavelet and neuro-fuzzy-based fault-finding
techniques have been addressed by [148] for an integrated transmission system. The neuro-
fuzzy system for fault localization was divided into two sections: one to determine the
location of faults in overhead power lines and the other for subterranean cables. Wavelet
transform approximates the coefficients of current and voltage signals, and two FIR filters
remove the DC offset components of current signals. The fault was located by comparing a
predetermined value with the summation of the D1 coefficient of current over half a cycle.
A novel method for classifying problems in power transmission systems utilizing a mixed
fuzzy logic and wavelet approach has been developed [149]. The approach’s inherent
benefit was the capacity to deal with uncertainty caused by continually changing power
system factors.

7.3. Wavelet with Artificial Neural Network

Khavari et al. [149] suggested a wavelet-based ANN technique for safety in transmis-
sion systems. In the suggested method, the relaying point’s input signals were fed into
a DWT to extract distinguishing characteristics, which were then supplied to an ANN
system for fault classification. Manarikkal et al. [150] have suggested a method for wavelet
and probabilistic neural network (PNN)-based online fault detection in a power system.
Multi-resolution analysis (MRA) wavelet transform divides the signal into several res-
olutions, which the authors utilized to analyze the signal behavior in various spectral
bands. PNN is used to classify and locate faults using the characteristics from wavelet
analysis. A wavelet-assisted neural network-based distance relaying system has been
suggested [151,152]. The suggested plan uses a discrete wavelet transform (DWT) and
neural network in Matlab, as well as an electromagnetic transient software to simulate a
transmission line model. The authors employ DWT to extract fault signal characteristics
and a backpropagation neural network classifier to determine the kind and location of
the problem. Wavelet transforms and neural networks were proposed by Reda et al. [153],
who suggested a system for faulty phase selection on double-circuit transmission lines.
For the goal of training a neural network, the authors utilized the Levenberg–Marquardt
method. The suggested technique employs wavelet transform to extract distinguishing
characteristics from the input signal and feed them to the neural network for classification.
Torres et al. [143] suggested using a DWT with a backpropagation neural network (BPNN)
method for fault detection on single-circuit transmission lines. The authors extracted the
fault current’s high-frequency component using DWT, and the high-frequency component
of signals was divided up using the Daubechies 4 (db4) mother wavelet. After a DWT
investigation of the defect, a decision-making algorithm called BPNN was created. Wavelet
entropy and neural networks were used in a novel method by [154] for classifying and
locating transmission line failures. The entropies of the wavelet decompositions were sup-
plied to a neural network for fault classification and placement, and the authors employed
the Db4 mother wavelet to analyze defective voltage signals. The suggested approach uses
an Elman backpropagation architecture for fault identification and a probabilistic neural
network (PNN) architecture for fault classification.
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8. AI Applications in Smart Grids

Implementing intelligent grid technologies has led to the integration of AI methods in
power systems, as illustrated in Figure 7 [155]. Voluminous, fast-paced, and diverse data
characterize these systems. For instance, devices like phasor measurement units (PMUs)
capture data with millisecond precision.
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8.1. Stability Control in Smart Grids

AI is essential for stability control in smart grids. AI can utilize sophisticated algo-
rithms to predict and react to power supply and demand fluctuations, ensuring equilibrium
for grid stability. It leverages extensive datasets from sensors, Internet of Things (IoT)
devices, and historical patterns to anticipate potential stability concerns. The ability to
predict is crucial in anticipating fluctuations that have the potential to disrupt the grid.
In addition, AI facilitates the mechanization of decision-making processes in real time. It
regulates control parameters, oversees the allocation of energy resources, and mitigates
system overloads, guaranteeing consistent and uninterrupted power provision. The proac-
tive implementation of stability control is essential for optimizing the operational efficiency
of smart grids [156]. There are various controllers to mitigate stability issues that are
highlighted in Table 5. The challenges will be discussed in Section 9.

8.2. Load Forecasting in Smart Grids

Artificial intelligence dramatically improves load forecasting in smart grids. The
system uses advanced machine learning algorithms to examine past electricity usage
data, weather trends, economic factors, and consumer habits to forecast future electricity
demand. The precision of these forecasts is essential for maximizing the efficiency of
electricity generation and distribution. AI aids in effectively allocating resources, reducing
wastage, and preparing for situations of high demand. In addition, AI-driven forecasting
tools such as neural networks excel at adjusting to evolving consumption patterns and
seasonal fluctuations. Adaptability ensures that the forecasts remain dependable and
precise, assisting in smart grids’ strategic planning and operational effectiveness [128].
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8.3. Protection in Smart Grids

AI greatly enhances the defensive capabilities of smart grids in security applications.
It quickly detects and diagnoses malfunctions, isolates impacted regions, and expedites
restoration procedures. Artificial intelligence algorithms can identify irregularities in the
flow of power, voltage levels, and other crucial factors, indicating possible problems before
they escalate into significant issues. Early detection is crucial for preventing power outages
and ensuring the integrity of the grid. Furthermore, AI can examine patterns in past power
outages to improve future strategies for safeguarding the grid, thereby increasing its ability
to withstand faults and external disruptions. Incorporating artificial intelligence (AI) into
intelligent grid protection not only enhances the dependability of the power supply but
also augments the overall safety and sustainability of the energy system.

AI has the potential to resolve many problems that have resisted the best attempts of
conventional mechanism-based approaches, with favorable performance, as indicated in
Table 8. Most papers reviewed in this current study mentioned a few common challenges.
We will talk about the challenges in the following paragraphs. In order to overcome the
difficulties and close the gap between research and practice, we also offer recommendations
for possibly significant future research directions. Numerous AI applications are data-
driven and primarily rely on the quantity and quality of data, especially machine learning
(ML) and deep learning (DL), and thus using AI on electrical grids may present problems.
Many AI algorithms need data before producing accurate and helpful results. The current
power system applications typically require thousands of instances. Additionally, the more
instances are required, the more complicated the AI agent. Simulation can fill the gaps
left by traditional modeling methods, providing a more dynamic and flexible approach to
understanding complex system behaviors under varied conditions.

Table 8. Methods presented by researchers.

No. Aim of the Study Algorithm Used Achievements Reference

1
Mentioned a unique method

based on a modified sine–cosine
technique

MSCA
Declared the solutions to OPF problems
effectively after comparing them with

other techniques.
[127]

2

Proposed a power system
stabilizer used in a

single-machine infinite-bus
power system

Improved atom search
optimization algorithm

The suggested approach outperformed
other recently reported top-performing

power system stabilizer design
algorithms.

[128]

3

Introduces a multi-criteria
decision-making strategy based
on interval type-2 fuzzy sets for

choosing the ideal site for
electric charging stations

Simulated annealing

The outcomes show that the method
does enhance the model by better

capturing the associated uncertainties
embedded in the interval type-2

membership functions, creating a fuzzy
system with greater efficacy.

[129]

4

Suggested a particle swarm
optimization (PSO)-based tuning
methodology for power system
stabilizers (PSSs) that is effective

for systems with ten or even
more units.

Particle swarm
optimization

The suggested method showed effective
and potential results over others. [130]

5
Attempted to resolve the

problem of anomaly detection by
OCSVM.

Particle swarm
optimization

The suggested strategy outperformed
others in terms of effectiveness and

potential results.
[131]
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Table 8. Cont.

No. Aim of the Study Algorithm Used Achievements Reference

6

Described an innovative control
strategy to dampen a

multi-machine power system’s
low-frequency oscillations and

voltage deviations.

Ant colony algorithms

Without a controller, with a static
synchronized compensator, and with

the proposed ant colony
optimization-based static synchronous

compensator, the time-domain results of
the rotor dynamics and deviation in
generator voltage demonstrate the

potential of the proposed controller in
reducing the overall oscillations in a

power system.

[132]

There is a lack of data, although gathering data is typically time-consuming. Addi-
tionally, whether simulations can accurately reflect real-world operating conditions must
be carefully considered. AI agents’ accuracy is expected to decrease if they encounter
real-world data that differ significantly from the data they used for training. To overcome
these challenges, further advanced studies on these topics should be undertaken so that
the challenges are met with relevant solutions, such as using the relevant tools to measure
the power system applications and their associated aspects following stability and control.
Challenges and future work recommendations for improving traditional and smart grids’
stability, control, and security through intelligent techniques can be categorized into several
essential domains (Table 9).

Table 9. Challenges and recommendations for traditional and smart grids.

No. Challenge AI-Based Future Work Recommendations Reference

1 Integration of Renewable
Energy

Develop AI-driven forecasting models and control strategies for
accurate prediction and seamless integration of renewable sources. [157]

2 Grid Stability and Reliability Implement AI and machine learning-based grid management systems
for real-time adaptation to load and generation changes. [158]

3 Cybersecurity
Employ AI for advanced threat detection and response, including
predictive analytics for intrusion detection and adaptive encryption
strategies.

[159]

4 Aging Infrastructure Use AI for predictive maintenance and to optimize the retrofitting
process of existing infrastructure based on data-driven insights. [160]

5 Regulatory and Policy Issues Leverage AI for regulatory compliance monitoring and to simulate the
impacts of policy changes on grid performance and stability. [125]

6 Data Management and
Analytics

Develop AI-powered data analytics tools for processing and utilizing
the vast data generated by smart grids, improving operational
efficiency and decision-making.

[161]

7 Consumer Participation and
Demand Response

Create AI-enabled demand response systems with intelligent
algorithms to predict consumer behavior and adjust energy
distribution accordingly. Incentive schemes could also be optimized
using AI analytics to encourage consumer participation.

[162]

8 Interoperability and
Standardization

Apply AI to analyze and manage the interoperability issues between
smart grid technologies and systems, ensuring seamless
communication and integration.

[163]

9. Challenges and Future Directions for AI in Power Systems

AI and ML are essential in power systems for advanced monitoring, control, operation,
and integrating renewable energy. They manage uncertainty, adapt to changing condi-
tions, and address new smart grid aspects. Incorporating these approaches into legacy
infrastructure is crucial for optimization. Therefore, AI challenges and future directions for
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power systems can be categorized into four groups, as shown in Figure 8 and Table 10. In
considering these challenges, it is possible to identify key issues and prioritize solutions,
enabling more effective AI integration in energy systems [164,165].
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Table 10. Main AI challenges and future directions for some important application areas in power
systems.

Application Area Achievements Challenges Future Directions

Predictive Maintenance

AI algorithms analyze sensor
data to predict equipment
failures, reducing downtime
and maintenance costs.

Data quality and availability. Improving data collection and
preprocessing techniques.

Load Forecasting

Machine learning models
provide accurate load
forecasts, helping better grid
management and reducing the
risk of blackouts.

Scalability of AI solutions to
large power systems.

Developing scalable AI
models for large power
systems.

Grid Optimization

AI optimizes the operation of
power grids, improving
energy distribution and
reducing losses.

Interpretability of AI models. Enhancing the interpretability
of AI models.

Fault Detection

Neural networks and expert
systems detect and diagnose
faults in the grid, enhancing
reliability.

Cybersecurity vulnerabilities
introduced by AI integration.

Integrating robust
cybersecurity measures with
AI solutions.

Renewable Energy Integration

AI helps manage the
variability and uncertainty of
renewable energy sources,
improving their integration
into the grid.

Regulatory and ethical issues
related to data privacy and AI
decision-making.

Developing regulatory
frameworks and addressing
ethical concerns in AI
deployment.

The integration of AI into power systems relies on several factors, including data
accuracy, algorithm selection, project management, integration with existing systems,
monitoring and evaluation, budget and resources, realistic expectations, and ethical and
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social considerations. Key aspects for successful AI implementation in power systems
include high data availability and quality, privacy, security, and seamless integration with
both new and existing setups. High costs and investment requirements can pose barriers,
making scalability a significant concern [166].

While factors such as human–AI collaboration, explainability, human involvement,
and performance evaluations are given medium to low priority, they still contribute to the
overall success of AI strategies. High priority is given to privacy and security, explainability,
reliability, regulation, and scalability to ensure that AI approaches are technically sound and
adhere to ethical and legal standards. Medium-priority factors like human involvement,
ethical concerns, cybersecurity, and transparency help build trust and confidence in AI
systems. Although factors like human–AI collaboration, data availability and quality,
integration with existing systems, cost and investment, and performance evaluation are
considered lower priorities, they still play a role in the overall impact of AI on optimal
power system operations. Table 10 summarizes the main AI challenges and future directions
for some important application areas in power systems [27,158,167,168].

10. Conclusions

This review underscores the significant strides made in artificial intelligence (AI)
towards enhancing power systems’ stability, control, and protection. The growing complex-
ities in power system operations, compounded by the increasing integration of renewable
energy sources and the push for sustainable, efficient energy practices, have driven the need
for advanced AI solutions. These technologies are improving the predictive capabilities of
power systems and developing innovative methods for managing and mitigating opera-
tional risks. Particularly effective in this realm are artificial neural networks (ANNs), fuzzy
logic systems, metaheuristic optimization techniques, and other emerging technologies like
reinforcement learning and big data analytics.

ANNs excel in handling nonlinear issues and analyzing vast datasets, providing a
solid basis for predicting and averting potential system faults and instabilities. Fuzzy
logic systems, adept at managing the intrinsic uncertainties within power systems, offer a
flexible, human-like approach to decision-making. Additionally, metaheuristic algorithms
bring new efficiencies in optimizing power system operations, enhancing adaptability and
operational efficiency. Reinforcement learning contributes to dynamic stability control,
while big data analytics play a crucial role in real-time monitoring and optimization of grid
performance.

Integrating these AI techniques has also propelled grid operation and energy efficiency
advancements. AI algorithms are crucial in optimizing grid functionality by analyzing
data from sensors and other infrastructure, identifying opportunities for energy savings,
and improving grid performance. These improvements are vital for environmental sus-
tainability and the economic performance of power grids. However, AI technologies also
bring new challenges and complexities. The dependency on high-quality, extensive data
for practical AI applications means that any shortfall in data quality or availability can
impair the performance of AI systems.

Furthermore, integrating AI into essential infrastructure like power grids raises sig-
nificant cybersecurity concerns, as these systems become more susceptible to novel cyber
threats. This review highlights the critical need for continued research in AI to navigate
these challenges. Future research should aim to develop more sophisticated AI models
that can function effectively with limited or imperfect data and bolster the cybersecurity
of AI-integrated power systems. As the power industry evolves, there is a growing re-
quirement for AI systems that can dynamically adjust to changes in grid conditions and
energy demands. Looking ahead, the field should also explore the potential of hybrid AI
systems that combine various AI methodologies to capitalize on their unique strengths. For
example, merging ANNs with fuzzy logic systems could yield more resilient power system
operations, while hybrid metaheuristic algorithms could further enhance system efficiency
and reliability.
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