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H I G H L I G H T S

• The effectiveness of PSS in small-signal stability are revealed quantitatively.
• CD-PSO algorithm for PSS parameter optimization is proposed.
• A joint simulation framework for multi-machine systems with RES is presented.
• A probabilistic assessment method of small-signal stability is proposed.
• Sensitivity analysis of RES penetration rates and load levels is implemented.
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A B S T R A C T

Due to the exhaustion of fossil fuel energy and the awareness of environmental protection, the proportion of
renewable energy sources (RES) integrated to the grid is increasing rapidly. However, the uncertainty of RES
poses great challenges to the stability of power systems. To solve this uncertainty problem, power system small-
signal stability analysis is transitioning from deterministic methods to probabilistic methods. Power system
stabilizers (PSS) are important components to suppress low-frequency oscillations and improve system dynamic
response performance. But there is still a lack of systematic simulation analysis regarding the optimization effect
of PSS on probabilistic small-signal stability. In response to this problem, this paper proposes a probabilistic
assessment method of small-signal stability based on quantitative PSS analysis. It constructs modified IEEE-14
and IEEE-39 bus systems with RES penetration and presents a joint simulation framework for multi-machine
PSS parameter optimization based on the clustered difference mean perturbation particle swarm optimization
(CD-PSO) algorithm. Then quantitative analysis is conducted on the impact of PSS integration on small-signal
stability under a typical RES penetration rate (20%). Finally, the influence of different RES penetration rates
and load levels on small-signal stability of power systems under different PSS scenarios is investigated.

1. Introduction

With the proposal of carbon peaking and carbon neutrality goals, the
vigorous development of renewable energy is becoming an important
means to cope with energy resource shortages, environmental degra-
dation, and climate change [1,2]. While large and medium-sized hy-
dropower plants have relatively good regulation capabilities, wind
power and solar power generation have poor controllability. Their
volatility and randomness bring a lot of uncertainty to the power system,
posing great challenges to the safe and stable operation of the grid [3–5].
Small-signal stability in power systems has gradually gained attention.
Power system simulation analysis is the foundation for power system

planning, design, and dispatching operation [6]. In order to adapt to the
development of smart grids, the power system needs to be modeled and
simulated tomake a guarantee for the stable operation of the power grid.
Small-signal stability is an important component of power system sta-
bility assessment, which refers to the ability to maintain synchronization
under small disturbances [7,8]. Since small disturbances in power sys-
tems are often difficult to detect, conducting rotor angle stability studies
through modal analysis to ensure the damping of critical modes within
recommended thresholds is crucial for ensuring the integrity of power
systems with increasing shares of renewable energy sources (RES) [9].

In terms of small-signal stability analysis, reference [10] addressed
the issue of small-signal stability mode analysis by proposing a method
involving algebraic variables in power system mode determination and
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presenting a theorem for handling eigenvalue multiplicity without
considering RES penetration. Based on the characteristics of photovol-
taic systems, reference [11] derived a mathematical model suitable for
distribution systems, conducted an eigenvalue analysis for different
levels of photovoltaic penetration, and compared the results to evaluate
the stability of the system. While various scenarios of RES penetration
were considered in the previous study, the aforementioned studies are
all based on deterministic system operating conditions, often with spe-
cific load scenarios and constant network configurations, without
considering the uncertainty of RES. With the increase of distributed
energy sources and dynamic loads, the evolution of interconnected
power grids may cause underlying oscillations that affect certain key
modes, which may lead to system collapse. Therefore, it is of great sig-
nificance to conduct a probabilistic analysis of small-signal stability
under various levels of RES penetration.

Currently, there are mainly two types of methods for probabilistic
analysis of small-signal stability: the analytical methods and the
simulation-based methods, such as the Monte Carlo simulation (MCS).
Analytic methods are based on results obtained by processing analytic
expressions of random variables without any form of sampling. How-
ever, their performance may degrade in the case of asymmetric distri-
butions. Moreover, their outputs are various order moments, and their
expansion may introduce accuracy issues [12,13]. Reference [14]
studied the impact of wind power fluctuations on the probabilistic small-
signal stability of the system using Gram-Charlier series and system
eigenvalue sensitivity. Although analytical methods can avoid the
computational burden associated with simulation-based methods, they
typically require complex mathematical analysis. In terms of the MCS
method, reference [15] proposed a hybrid method for probabilistic
small-signal stability assessment of power systems based on clustering
method and MCS, which improves the computational speed of MCS.
Reference [16] proposed a probabilistic risk assessment framework for
high-penetration renewable energy power systems, which is imple-
mented through the MCS to generate a database of critical modes and
quantify the stability risk associated with a high PV-integrated power
grid using modal analysis and a risk matrix to capture the behavior of all
critical modes. However, the aforementioned literature on probabilistic

small-signal stability tends to study only a single scenario with or
without PSS, lacking simulation analysis and comparison of the effec-
tiveness of PSS. PSS is an auxiliary control device on synchronous gen-
erators, generally used in conjunction with the excitation system of the
synchronous generator, which serves to provide control signals to
enhance the system damping and to extend the power transfer limits so
as to maintain the reliable operation of the power system [17]. Installing
PSS in the excitation system of generators to provide positive damping is
an effective measure to enhance the small-signal stability of power
systems [18]. This paper focuses on revealing the effectiveness of PSS in
general and conducting comparative analysis on the probabilistic small-
signal stability of power systems with RES under different PSS scenarios.

The optimization performance of PSS is greatly influenced by its
structure and parameters. Currently, much work has been done in this
area. Some of these studies have focused on optimizing the structure and
control methods of PSS [19,20]. Others have approached the optimi-
zation of PSS as a parameter tuning problem. In reference [21], Prony
algorithm was utilized to identify the electromechanical mode of low-
frequency oscillation of the system, and then the improved bat algo-
rithm was employed to optimize the parameters of PSS. Reference [22]
proposed a novel robust disturbance observer-based sliding mode
controller for PSS and optimized the parameters using a multi-objective
grasshopper optimization algorithm. In addition, beetle swarm algo-
rithms [23], artificial fish swarm algorithms [24], fuzzy gravitational
search algorithms [25], and other optimization algorithms have also
been applied to parameter optimization for PSS. This paper focuses on
the application of the particle swarm optimization (PSO) algorithm. In
reference [26], an indirectly adaptive fuzzy coordinated PSS was
designed and its parameters were optimized using a standard PSO al-
gorithm. Reference [27] set the optimization objective as the system's
ability to track a given value with minimal error in the system output
and used PSO with changed weights for optimization. However, the
aforementioned studies only considered the single-machine PSS sce-
nario. In multi-machine systems, there are multiple electromechanical
oscillation modes, and there exists coupling of damping between them.
Designing the parameter of a PSS to limit a specific electromechanical
oscillation mode may also affect the design of PSS for other oscillation

Nomenclature

Variables
A Coefficient matrix of the state equation system
ΔX Column vector of state variable offsets
p1,p2,…,pn Distinct roots of the characteristic equation
σn The real part of a certain modal eigenvalue
ωn The imaginary part of a certain modal eigenvalue
fn The damping frequency
ζn The damping ratio
pw The output power of the wind farm
vin The cut-in wind speed
vout The cut-out wind speed
vr The rated wind speed
pwr The rated power of the wind farm
Gstd The irradiance required for the photovoltaic module to

reach its rated power under standard conditions
Rc A specific irradiance point (120 W/m2 in this study)
ζth The minimum acceptable damping ratio threshold
ζsys The minimum damping ratio under system oscillation

mode
Tw The washout time constant of the PSS
y lim The output limiting value of the PSS
K The gain parameter of the PSS
T1,T2,T3,T4 The time constant of the PSS

w The inertia weight
w adapt Weights changing with the number of iterations.
c1,c2 The acceleration constants
Xi The position of the particle
Vi The velocity of the particle
pbest The personal best of individual particle.
gbest The global best particle
gbest avg The dimensional mean of the global best particle
normal avgi The dimensional mean of the i-th particle
diff vi→ Scaled disturbance factor

Abbreviations
CD-PSO Clustered difference mean perturbation particle swarm

optimization
DFIG Doubly fed induction generators
DPL DIgSILENT Programming Language
DR Damping ratio
MCS Monte Carlo simulation
PDF Probability density function
PSS Power system stabilizer
PV Photovoltaic
Real Real part of eigenvalues
RES Renewable energy sources
SSSC Static synchronous series compensator
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modes. Reference [28] considered the multi-machine scenario, trans-
formed the PSS parameter tuning problem into a multi-objective func-
tion optimization problem based on eigenvalues and solved it using a
standard PSO algorithm. A multi-objective PSO is also employed in
reference [29]. In reference [30], PSS parameter optimization was
conducted for systems including doubly fed induction generators
(DFIG), and the update formula for particle velocity in the PSO algo-
rithm was optimized to enhance the group's search capability. The
optimization algorithm proposed in this paper, based on the standard
PSO, further incorporates perturbation based on differential mean to
enhance exploratory performance and diversity, making it more suitable
for solving the multi-machine PSS system parameter tuning problems.

From the above literature reviews, we can see that: (1) It is necessary
to conduct probabilistic small-signal stability analysis for different RES
penetration rates. (2) The general effectiveness and necessity of PSS in
small-signal stability simulation analysis of power systems need to be
further explored. (3) Tuning method of multi-machine PSS parameters
based on intelligent algorithms can be improved. This paper proposes a
probabilistic assessment method of small-signal stability in power sys-
tems based on the Monte Carlo method considering the uncertainty of
RES. The uncertainties of wind energy, solar energy, and load are
modeled, and a joint simulation framework for PSS parameter optimi-
zation based on improved particle swarm optimization algorithm is
presented. After verifying the effectiveness of PSS, the stability of the
power system is quantitatively evaluated by analyzing the probability
distribution changes of the real part and the damping ratio of the ei-
genvalues of the power system under different levels of RES penetration.
The main contributions of this paper are as follows:

(1) The general effectiveness and necessity of PSS in small-signal
stability simulation analysis of power systems are revealed.

(2) A PSS parameter optimization method based on the clustered
difference mean perturbation particle swarm optimization (CD-
PSO) algorithm is proposed.

(3) A joint simulation framework for PSS parameters in multi-
machine systems based on the CD-PSO algorithm is proposed.

(4) The impact of different RES penetration rates and load levels on
the probabilistic analysis of small-signal stability of PSS-based
power systems is extended and investigated.

The rest of this paper is organized as follows. Section 2 presents the
process of small-signal stability probabilistic assessment considering the
integration of PSS and the uncertainty of RES. Section 3 describes the
construction of the testing network and the modeling of RES uncer-
tainty. Section 4 introduces the simulation framework for multi-machine
PSS parameter joint optimization based on the proposed CD-PSO algo-
rithm. The results and discussions are presented in Section 5, followed
by a conclusion in Section 6.

2. Probabilistic assessment method for small-signal stability
considering the uncertainty of RES

This section describes the proposed probabilistic assessment method
for small-signal stability. The method utilizes the framework of MCS for
probabilistic assessment of unstable risks related to power system
oscillatory performance. The process of the proposed method is illus-
trated in Fig. 1. This method belongs to the simulation-based method,
where the MCS process involves repeated sampling from the probability
density function (PDF) of uncertain input variables to generate different
scenarios, and then evaluates the system's oscillatory stability through
modal analysis and storage of eigenvalue-related information. Modal
analysis is generally performed using the QR/QZmethod or the Arnoldi/
Lanczos method. The Arnoldi/Lanczos method only computes a subset
of eigenvalues, making it suitable for solving eigenvalues and eigen-
vectors of large sparse matrices [31]. In the proposed framework, the
QR/QZ method is used for modal analysis. The proposed probabilistic
assessment method of small-signal stability is implemented using the
built-in programming language (DIgSILENT Programming Language,
DPL) of DIgSILENT PowerFactory software.

2.1. Theoretical preparation

Small disturbances usually refer to normal load fluctuations, system
operations, small load injections and removals, and system switching,
etc. According to the Lyapunov stability theory, the stability of undis-
turbed motion can be determined by the properties of the roots of the
characteristic equation of the linearized differential equation system
describing the disturbed motion [32]. The linearized differential equa-
tion system can be represented as Eq.1:

dΔX
dt

= AΔX, (1)

where A is the coefficient matrix of the state equation system, and ΔX is
the column vector of state variable offsets.

The characteristic equation is given by

det[A − pI] = 0, (2)

The characteristic polynomial Eq.3 can be obtained by expanding
Eq.2.

α0pn + α1pn− 1 +⋯+ αn− 1p+ αn = 0, (3)

Letp1, p2,…, pn be the n distinct roots of the characteristic equation,
then there is a generalized solution of the following form:

xi(t) = ki1ep1 t + ki2ep2 t +⋯+ kinepnt , (4)

The characteristics of the solution to differential Eq. 1 depend
entirely on the properties of the rootsp1, p2,…, pn of the characteristic
equation.

Fig. 1. Flowchart of probabilistic assessment method of small-signal stability
considering RES uncertainty.
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Fig. 2. Modified IEEE-14 and IEEE-39 system with RES penetration.
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pn = σn + jωn, (5)

fn =
ωn

2π, (6)

ζn = −
σn

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2n + ω2

n

√ , (7)

where σn and ωn represent the real and imaginary parts of a certain
modal eigenvalue, fn denotes the damping frequency, and ζn represents
the damping ratio of the same mode.

When the real parts of the roots of the characteristic polynomial are
negative, the system is stable. The damping ratio is a parameter that
describes the magnitude of damping in an oscillatory system and reflects
the rate of decay of oscillations after disturbances. When the damping
ratio is negative, the system is unstable, and when the damping ratio is
positive, a larger value indicates faster decay of oscillations and better
small-signal stability of the system. The magnitude of the oscillation
frequency reflects the response speed of the system after being
disturbed. A higher frequency indicates a faster response speed. The
higher the frequency, the faster the response speed.

2.2. Identification of critical modes

One of the main issues in small-signal stability analysis of power
systems is to determine the extent of exposure to low-damping low-
frequency oscillations, which typically occur in the range of 0.1 Hz to
1.0 Hz [33]. Small-signal instability in power systems usually occurs due
to insufficient damping torque, which leads to an increase in rotor angle
oscillation amplitude. Insufficient damping can have negative impacts
on the power system. However, detecting such low frequency oscilla-
tions is challenging, and can only be identified through modal analysis
by examining the eigenvalues of the system matrix [34]. In this study,
parameters related to the modes with minimum global damping are
selected from the modal analysis results, filtering out the values of
modes within the frequency range of 0.03 Hz and 4 Hz.

2.3. RES uncertainty handling

In the analysis of RES, effective forecasting algorithms can be utilized
to enhance the prediction accuracy [35–37]. Detailed modeling of wind
turbines and photovoltaic (PV) systems can also be conducted, along
with the application of new control strategies to mitigate the impact of
uncertainties [38]. As the focus of this paper lies in the probability
distribution of small signal stability, a stochastic mathematical model is
adopted for construction.

Wind energy application scenarios can be categorized into static and
dynamic scenarios. Static scenarios are generated based on one or more
independent random variables and are suitable for cases involving long-
term statistical patterns, such as power and load. While dynamic sce-
narios involve multiple and interconnected random variables and are
suitable for large-scale wind power dispatch problems [39]. A large
amount of research has shown that wind speed in wind farms generally
follows certain probability distribution models, including the Gumbel,
Weibull, and Rayleigh distributions. The Rayleigh distribution is a
single-parameter model, while the other two are dual-parameter
models.

Solar photovoltaic (PV) modeling can be approached from two per-
spectives. One approach focuses on the PV component system parame-
ters and uses mathematical equations to model the dynamic behavior of
the PV power source. The other approach considers power system sta-
bility and establishes power output characteristic models, including
Weibull distribution models, Beta distribution models, and clustering
analysis models. Based on the long-term statistical patterns of solar
irradiance distribution, PV power exhibits a bimodal distribution. By
decomposing it into two unimodal distributions, it can be modeled using

a Beta distribution. Both the log-normal distribution and the Beta dis-
tribution can respond well to its volatility.

2.4. Uncertainty analysis

In this paper, MCS is performed to generate a sufficiently large
critical mode database for drawing probability density functions (PDF).
Each iteration of the MCS includes modal analysis to generate the
required eigenvalue data. This iterative process continues until the
desired number of simulations for the MCS is reached. Considering the
impact of uncertainty in power systems, the data of critical modes can be
plotted on PDFs. In this study, the PDF graphs of the real parts of ei-
genvalues and the corresponding damping ratios will be used to illus-
trate the situation of power systems under given conditions. By
comparing the PDF plots before and after small perturbations, changes
in power system behavior and response due to variations in RES pene-
tration or load can be observed.

However, in some cases, certain small perturbations may not lead to
explicit changes in the PDFs. Therefore, this study also utilizes the mean
value of the real part of eigenvalues and the percentage change in
damping ratios for various scenarios as relevant indicators of small
signal stability, as shown in Eq.8:

%Change =
μ1 − μ0

μ0
×100%, (8)

where μ0 and μ1 represent the average values before and after the
disturbance respectively.

3. Testing network construction

In this study, a modified IEEE-14 bus system and IEEE-39 bus system
were constructed on the DigSILENT PowerFactory simulation platform.
The IEEE-14 bus system consists of 14 buses, 5 generators, 11 loads, 16
lines, 5 transformers and one shunt, as shown in Fig. 2(a). The nominal
frequency of the IEEE-14 bus system is 60 Hz. The model has been
completed by assuming the following typical values as nominal voltages
in Table 1. The IEEE-39 bus system consists of 39 buses, 10 generators,
19 loads, 34 lines and 12 transformers, as depicted in Fig. 2(b). The
nominal frequency of the IEEE-39 bus system is 60 Hz, and the mains
voltage level is 345 kV. For nodes at a different voltage level, the
following nominal voltages have been assumed. More detailed infor-
mation can be obtained from references [40, 41].

3.1. Integration of renewable energy sources

For the test network above, the penetration rate of RES is calculated
based on the total capacity of the system. Four different penetration
levels, ranging from 10% to 40%, are simulated by adding additional
renewable energy capacity based on the total generation capacity. In the
IEEE-14 bus system, two photovoltaic plants are connected to buses 3
and 6, while two wind farms are connected to buses 2 and 9. In the IEEE-
39 bus system, four photovoltaic plants are connected to buses 4, 10, 16,

Table 1
Nominal voltages of the IEEE-14 and IEEE-39 bus systems.

IEEE-14 system

Bus 1- Bus 5 132 kV
Bus 6, Bus 9- Bus 14 33 kV
Bus 7 1 kV
Bus 8 11 kV

IEEE-39 system
Bus 12 138 kV
Bus 20 230 kV
Bus 30- Bus 38 16.5 kV
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and 26, and four wind farms are connected to buses 8, 22, 29, and 30, as
shown in Fig. 2.

3.2. Uncertainty modeling

In this paper, it is assumed that the loads on different lines follow a
normal distribution. The probability density function of the normal
distribution is given by Eq.9:

f(x) =
1̅̅̅
̅̅̅

2π
√

σ
e−

(x− μ)2
2σ2 , (9)

where the mean μ = 1 and the variance σ2 = 0.042.
The wind speed distribution in the wind farm follows the Weibull

distribution. The probability density function of the two-parameter
Weibull distribution is shown in Eq.10:

f(x; λ, k) =

⎧
⎪⎪⎨

⎪⎪⎩

k
λ

(x
λ

)k− 1
e
−

(
x
λ

)k

, x ≥ 0

0 , x < 0

, (10)

where λ is the scale parameter and k is the shape parameter. In this
paper, the wind farms are set to λ = 9 and k = 2.

The output power of the wind farm pw can be described as a function
of wind speed v, as shown in Eq.11:

pw(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, vout < v < vin

pwr
(
v − vin
vr − vout

)

, vin ≤ v ≤ vr

pwr, vr < v ≤ vout

, (11)

where the cut-in wind speed vin = 3m/s, the cut-out wind speed vout =

25m/s, the rated wind speed vr = 16m/s, and the rated power of the
wind farm pwr = 1MW.

The solar irradiance distribution model adopts a lognormal distri-
bution model. The apparent power of a single generator is 1 kVA, with a
mean μ of 5.5 and a variance σ2 of 0.62. The probability density function
of the lognormal distribution is shown in Eq.12.

f(x, μ, σ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
̅̅̅̅̅̅
2π

√
σx
e−

1
2σ2(lnx − μ)2 , x > 0

0, x ≤ 0
, (12)

The conversion relationship between solar irradiance G (W/m2) and
output power is given by Eq.13.

Ps(G) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Psr
(

G2

GstdRc

)

, 0 < G < Rc

Psr
(

G
Gstd

)

,G ≥ Rc

, (13)

In the equation above, Gstd = 800W/m2, which represents the

Fig. 3. Co-simulation framework for PSS parameter optimization.
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irradiance required for the photovoltaic module to reach its rated power
under standard conditions. Rc is a specific irradiance point, set to 120
W/m2 in this study.

4. Power system stabilizer parameter tuning

The effectiveness of a PSS largely depends on the performance of its
parameter settings. Therefore, it is necessary to configure the parame-
ters of the PSS appropriately to achieve the desired system dynamic
performance. In the aforementioned test networks, each generator is
equipped with a PSS.

4.1. Joint simulation framework for PSS parameter optimization

Applying intelligent algorithms to the coordinated optimization of
PSS parameters can greatly improve efficiency. This section proposes a
joint simulation framework for PSS parameter optimization, as illus-
trated in Fig. 3. The intelligent algorithm is implemented, and the
relevant parameters are set in Python. The evaluation of small-signal
stability indicators is written in the built-in DIgSILENT Programming
Language (DPL) of PowerFactory. The DPL language enables convenient
control of the power system's parameter settings and simulation runs.
During the simulation process, Python and DPL scripts can be called
interchangeably, and data exchange between the two is facilitated
through Excel as a data transfer channel.

In this paper, the objective function for the optimal parameter
configuration of PSS in power systems is set as shown in Eq.14:

f = min
⃒
⃒ζth − ζsys

⃒
⃒

ζsys = min
p=1…nm

(
ζp
) , (14)

where ζth represents the minimum acceptable damping ratio threshold,
which is set to 15% in this paper, and ζsys represents the minimum
damping ratio under system oscillation mode. The calculation of the
objective function and the restrictions on the domain are implemented
in the DPL script. The washout time constant Tw and the output limiting
value y lim are considered as known values, while the remaining pa-
rameters are optimized based on typical parameter restrictions, i.e., the
gain parameter K∈[0,100], the time constant T1, T3∈[0.01, 0.2], and
T1/T2, T3/T4∈ [1,15].

4.2. CD-PSO algorithm

Considering that the parameter setting of PSSs for multi-machine
power systems is a multi-polar problem, this section proposes a Clus-
tered Difference mean perturbation Particle Swarm Optimization (CD-
PSO) algorithm. The flowchart of the CD-PSO algorithm is shown in
Fig. 4. In general, the same velocity update formula Eq.16 is used for all
particles within the particle swarm. This leads to direct information
exchange between all particles and the global best member during each
velocity and position update, which can result in a decrease in the di-
versity of the entire swarm and potentially lead to premature conver-
gence. To address this issue, the population is divided into two parts, np1
and np2, and different velocity update formulas (Eq.15 and Eq.16) are
used. This approach allows the np1 population to update its velocity
without being influenced by the global best particle in order to enhance
the exploratory capacity of the entire population.

Population np1:

Vt+1 = w adapt*Vt + c1*r1*(pbest − Xt), (15)

Population np2:

Fig. 4. Flowchart of CD-PSO algorithm.
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Vt+1 = w adapt*Vt + c1*r1*(pbest − Xt)

+c2*r2*(gbest − Xt)
(16)

In addition, the scaled unit vector is superimposed on the current
particle position to perturb the particle [42], and the steps are as follows:

1) Based on the current global best particle gbest, calculate the dimen-
sional mean using Eq.17; calculate the dimensional mean of the i-th
particle as in Eq.18.

gbest avg =
1
D

∑D

j=1

(
gbestj

)
(17)

normal avgi =
1
D

∑D

j=1

(
Xi,j

)
(18)

where D represents the dimension of the search space, and j represents
the j-th component.

2) Calculate the difference between the dimensional mean of the par-
ticle and the dimensional mean of gbest:

differencei = gbest avg − normal avgi (19)

3) Randomly select a vector, normalize it, and scale it with differencei.

diff vi→= differencei
*rand v→

/
‖ v→‖ (20)

4) Add the scaled vector diff vi→ to the i-th particle position Xi to obtain
the perturbed particle position.

Xʹ
i = Xi + diff vi→ (21)

On one hand, random unit vectors bring disturbances to the system,
which can increase the diversity of the population. On the other hand,
the closer a particle is to the global best particle, the smaller the
disturbance it receives. This also preserves the attractiveness of the
global best particle and prevents convergence problems.

5. Case study

This section analyzes the impact of PSS, the penetration rate of RES,
and load increases on the stability of the modified IEEE-14 bus system
and IEEE-39 bus system.

For the IEEE-14 bus system and IEEE-39 bus system, 30 case studies

were conducted: 5 cases without PSS under base load conditions, 5 cases
with PSS under base load conditions, 5 cases with a 5% load increase
without PSS, 5 cases with a 5% load increase with PSS, 5 cases with a
10% load increase without PSS, and 5 cases with a 10% load increase
with PSS. The five cases in each group are consisted of scenarios with
base cases, which refer to scenarios where the penetration rate of RES is
0, and penetration levels range from 10% to 40%. In this section, small-
signal stability analysis based on stochastic RES changes was performed
with 5000 Monte Carlo simulations for each scenario.

5.1. Impact of PSS on small-signal stability

Fig. 5 illustrates the cumulative probability curves of the real parts
and damping ratios for a systemwith a 20% penetration rate of RES in an
IEEE-14 bus system. The three curves represent the cases without PSS,
with PSS parameters obtained using the CD-PSO algorithm, and with
PSS parameters obtained using the standard PSO algorithm. The PSS
parameters were set to the values that yield the minimum damping ratio
closest to the minimum acceptable damping ratio threshold for all
oscillation modes under a 20% RES penetration scenario. A 20% RES
penetration rate is applied in the parameter setting of PSSs because in
our small signal stability analysis, the penetration rate of RES ranges
from 0% to 40%, and 20% is a compromise value. In addition, in 2022,
the proportions of wind and solar power generation in the United States
and the European Union were 14.9% and 22.3%, respectively. As a
result, 20% is considered to be a typical penetration rate.

The parameter setting of the CD-PSO algorithm includes a minimum
value of 0.4 and a maximum value of 0.9 for the inertia weight w, with
both c1 and c2 set to 2. For the IEEE-14 bus system, the search space
dimension is set to 25, while for the IEEE-39 bus system, the search
space dimension is set to 50. The number of particles is 40, and the
number of iterations is 100.The standard PSO algorithm is configured
with w = 1, c1 = 2, c2 = 2, a particle size of 40, and 100 iterations. The
obtained PSS parameters are input into the power system, and five
thousand Monte Carlo simulations are conducted under the condition of
20% RES installation capacity. The curves of Fig. 5 were plotted based
on the results.

According to the Lyapunov stability theory, the closer the real part of
the eigenvalues are to the left side of the x-axis and the closer the
damping ratio curves are to the right side of the x-axis, the better the
small-signal stability of the system. It can be observed that compared to
the blue curve without PSS, the addition of PSS can improve the stability
of the system effectively under a 20% RES penetration scenario.
Furthermore, the optimization performance of PSS is influenced by its

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Comparison of cumulative probabilities of real parts and damping ratio for different scenarios.
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parameters, and the parameters obtained using the CD-PSO algorithm
are superior to those obtained using the standard PSO algorithm in the
small-signal stability probability analysis.

Table 2 and Table 3 show the percentage change of various in-
dicators after the addition of PSS under different conditions. In this case,
let the value with PSS be XPSS, and the value without PSS be X0. The
percentage calculation expression can be written as (XPSS − X0)/X0. In
the case of real parts, if the small signal power system is stable, the real
parts of the eigenvalues should be negative. When the case with PSS is
better, XPSS − X0 is a negative value. Since X0 is also a negative value, the
percentage change obtained by dividing is a positive value. The damping
ratio can be calculated using the same formula. It can be seen that all
values in the table are positive, which means the inclusion of PSS can
effectively optimize the stability of the power system regardless of
changes in RES penetration and load levels. Particularly, the optimiza-
tion effect of PSS is significant at low RES penetration rates. However, as

the penetration rate increases, the optimization effect gradually de-
teriorates, which may be due to the fact that the tuning performance of
the PSS is set based on a single operating point, and the PSS parameters
computed in the case of RES penetration of 20% do not guarantee the
best optimization effect in all penetration rate cases. Therefore, it is
necessary to adjust the PSS parameters promptly when there are sig-
nificant changes in the penetration rate of RES to achieve the best
optimization performance.

5.2. Impact of different RES penetration rates on small-signal stability

The nonlinear characteristics of power systems pose certain chal-
lenges to system analysis. The sensitivity analysis method can show the
extent of changes in selected dependent variables caused by certain in-
dependent variables. This subsection's sensitivity matrix reflects the
degree of change in each indicator from the base case to the case with a
40% penetration rate. The horizontal percentages represent the pre-
change conditions, while the vertical percentages represent the post-
change conditions.

As mentioned in Section 5.1, all indicators are better with PSS
compared to without PSS. Therefore, this section only presents the PDF
graphs of the real parts of eigenvalues and damping ratios for the IEEE-
14 and IEEE-39 bus systems with PSS under the base load condition, as
well as the sensitivity matrix. The parameters of PSS in the IEEE-14 bus
system are shown in Table 4. The parameters of PSS in the IEEE-39 bus
system are omitted here due to the space limitation.

Table 2
The percentage change of the indicators after the addition of PSS in IEEE-14 system.

(a) Average real parts (b) Average damping ratio

Base 10% 20% 30% 40% Base 10% 20% 30% 40%

Base Load 73.18% 61.57% 46.68% 31.71% 16.70% 58.51% 52.58% 43.50% 30.93% 16.40%
Load +5% 76.90% 65.54% 51.04% 35.11% 19.77% 60.52% 54.71% 46.32% 33.71% 19.32%
Load +10% 80.57% 72.93% 59.11% 49.57% 22.84% 62.75% 59.14% 51.95% 45.46% 22.15%

Table 3
The percentage change of the indicators after the addition of PSS in IEEE-39 system.

(a) Average real parts (b) Average damping ratio

Base 10% 20% 30% 40% Base 10% 20% 30% 40%

Base Load 67.89% 68.46% 56.23% 33.67% 11.43% 47.08% 47.71% 40.25% 24.14% 5.35%
Load +5% 68.70% 67.67% 65.12% 51.63% 30.99% 47.20% 46.68% 45.56% 38.14% 20.90%
Load +10% 68.19% 72.20% 67.06% 65.51% 35.78% 46.70% 49.54% 45.87% 46.78% 25.76%

Table 4
PSS parameters of IEEE-14 system obtained by CD-PSO tuning.

Generator1 Generator2 Generator3 Generator4 Generator5

Kw 99.82027 98.6003 99.68134 99.31537 7.30909
T1 0.199695 0.116418 0.133432 0.160447 0.092672
T2 0.013462 0.008016 0.008924 0.015505 0.010713
T3 0.199957 0.110057 0.138729 0.10324 0.102854
T4 0.013434 0.007475 0.079249 0.007195 0.007568

Fig. 6. PDF of different RES penetration rates in IEEE-14 system with PSS.
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Fig. 6 shows the PDFs of the real part of the eigenvalues and the
damping ratio of different RES penetration rates in the IEEE-14 bus
system with PSS. Comparing Fig. 6, it can be seen that as the RES
penetration increases, the curves in the real part show an overall
rightward shifting trend, while the curves in the damping ratio show an
overall leftward shifting trend, which represents a gradual decrease in
the stability of the system. As the penetration rate of RES increases from
0 to 10%, the worst-case real part of the eigenvalues gradually shifts
from the left of − 0.6 to the right. This change becomes more prominent
when the RES penetration rate of the test grid reaches 40%, with the real
part of the most unstable condition being approximately − 0.3. Such
changes can be more intuitively observed in the curve of the damping
ratio. This can also be observed through the sensitivity matrix as shown
in Table 5, in which a negative number means that the situation is

getting worse, and the negative values for all the above cases mean that
the stability of the system decreases as the penetration rate of RES in-
creases. The impact on system stability at 40% penetration levels shows
a 34.39% and 28.82% shift in the mean values of the real parts and
damping ratios, respectively, the greatest deviation between the cases.
Due to the volatility and uncertainty of RESs, as the penetration rate of
renewable energy increases, the system's unreliable volatility may lead
to frequency instability and voltage fluctuations, thereby affecting the
system's stability.

In addition, by examining the sensitivity matrix, it can be observed
that the percentage change in the average value of the power system is
directly proportional to the penetration rate of RES. The penetration rate
of RES increased from 0% to 10%, resulting in a deterioration of the
average real part of eigenvalues by 6.92%.With an increase from 30% to

Table 5
Sensitivity matrix of IEEE-14 system with PSS under different RES penetration rates.

(a) Real parts (b) Damping Ratio

Base 10% 20% 30% 40% Base 10% 20% 30% 40%

Base 0.00% Base 0.00%

10% -6.92% 0.00% 10% -4.17% 0.00%

20% -15.91% -9.66% 0.00% 20% -10.43% -6.53% 0.00%

30% -25.20% -19.65% -11.05% 0.00% 30% -19.11% -15.59% -9.69% 0.00%

40% -34.39% -29.52% -21.98% -12.29% 0.00% 40% -28.82% -25.72% -20.53% -12.01% 0.00%

Fig. 7. PDF of different RES penetration rates in IEEE-39 system with PSS.

Table 6
Sensitivity matrix of IEEE-39 system with PSS under different RES penetration rates.

(a) Real parts (b) Damping Ratio

Base 10% 20% 30% 40% Base 10% 20% 30% 40%

Base 0.00% Base 0.00%

10% -6.30% 0.00% 10% -5.03% 0.00%

20% -21.88% -16.63% 0.00% 20% -17.16% -12.77% 0.00%

30% -40.78% -36.80% -24.19% 0.00% 30% -32.43% -28.85% -18.44% 0.00%

40% -54.19% -51.11% -41.36% -22.65% 0.00% 40% -44.33% -41.38% -32.80% -17.60% 0.00%
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40%, the deterioration reached 12.29%, which is nearly twice as much
as the former case. The same situation can also be identified by
observing the average value of the damping ratio. This means that when
the penetration rate is high, increasing the penetration rate by the same
percentage will pose greater challenges to the stability of the power
system. With the increase in the penetration rate of RES, the dynamic
characteristics of the systemwill undergo significant changes. In cases of
lower penetration rates, the system can adapt well to the volatility of
RES. However, with higher penetration rates of renewable energy, the
impacts brought about will gradually exceed the stability boundaries of
the system. The above conclusions can be verified in the IEEE-39 bus
system in Fig. 7 and Table 6.

5.3. Impact of different load levels on small-signal stability

The rates of change of relevant indicators at different load levels are
displayed in Table 7 and Table 8. Real represents the real part of ei-
genvalues, and DR represents the damping ratio. In Tables 7 and 8, the
percentage calculation compares the indicator values obtained by
increasing the load level with the values obtained at the base load level
under the same RES penetration rate. Positive values indicate that the
parameter values are better after the load increases compared to the
base load condition. Overall, it can be seen that the small-signal stability
improves as the load increases. It is worth noting that when the pene-
tration rate of RES reaches 30%, the average values of the real part of
eigenvalues and damping ratio undergo significant changes after load
increase.

However, under low penetration rates of RES, an increase in power
system instability may occur when the load increases. One possible
reason for this is that when the load increases, the generators and
transmission lines in the power system will bear a greater load, poten-
tially approaching or exceeding their rated capacity. This can result in a
slower dynamic response of the equipment, making it unable to adjust
timely to adapt to load changes, thereby reducing the system's response
capability and stability. If the increase in load leads to insufficient

generation capacity in the power system, it may also result in power
imbalance, causing voltage and frequency fluctuations, which have a
negative impact on stability. With the integration of RES, this shortfall in
generation capacity is compensated, leading to an improvement in
system stability.

6. Conclusions

In this paper, a probabilistic analysis method for small-signal sta-
bility in power systems based on quantitative PSS analysis is proposed
for power systems with different penetration levels of RES. For systems
with PSS under typical RES penetration ratios, a joint simulation
framework and CD-PSO algorithm are proposed for PSS parameter
tuning in power systems. After verifying the effectiveness of PSS, the
impact of different levels of RES integration on small-signal stability in
the system is investigated. The strategies proposed in this paper are
applied to the IEEE-14 and IEEE-39 bus systems, respectively. In the
testing systems, the probabilistic distributions of the real part of eigen-
values and damping ratio are used as indicators to quantitatively eval-
uate the impact of changes in RES penetration rate and load level.

Based on the results of two testing systems, the following conclusions
can be drawn:

1) The addition of PSS significantly improves the stability of the power
system, especially at lower levels of RES penetration.

2) Regardless of PSS inclusion, higher levels of RES penetration
generally lead to poorer system stability.

3) With sufficient RES supply, an increase in load generally benefits the
stability of the power system, regardless of PSS inclusion.

4) The optimization effect of PSS decreases as the penetration rate of
RES increases, which may pose instability risks to the grid. There-
fore, it is necessary to recalibrate the parameters of PSS when there is
a significant change in RES penetration rate.

It is worth noting that the modeling of wind and solar energy in the

Table 7
Impact of load increases for different RES penetration rates in IEEE-14 systems.

Table 8
Impact of load increases for different RES penetration rates in IEEE-39 systems.
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article adopts stochastic mathematical models, ignoring the spatiotem-
poral correlation of wind and solar power generation scenarios, which
may affect the validation of the experimental results. In addition, energy
storage systems, as an important component of modern power systems,
will be taken into account with RES together for their impacts on the
grid stability in the future work.
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