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Abstract: IoT applications for building energy management, enhanced by artificial intel-
ligence (AI), have the potential to transform how energy is consumed, monitored, and
optimized, especially in distributed energy systems. By using IoT sensors and smart meters,
buildings can collect real-time data on energy usage patterns, occupancy, temperature, and
lighting conditions.AI algorithms then analyze this data to identify inefficiencies, predict
energy demand, and suggest or automate adjustments to optimize energy use. Integrat-
ing renewable energy sources, such as solar panels and wind turbines, into distributed
systems uses IoT-based monitoring to ensure maximum efficiency in energy generation
and use. These systems also enable dynamic energy pricing and load balancing, allowing
buildings to participate in smart grids by storing or selling excess energy.AI-based predic-
tive maintenance ensures that renewable energy systems, such as inverters and batteries,
operate efficiently, minimizing downtime. The case studies show how IoT and AI are
driving sustainable development by reducing energy consumption and carbon footprints
in residential, commercial, and industrial buildings. Blockchain and IoT can further secure
transactions and data in distributed systems, increasing trust, sustainability, and scalability.
The combination of IoT, AI, and renewable energy sources is in line with global energy
trends, promoting decentralized and greener energy systems. The case study highlights
that adopting IoT and AI for energy management offers not only environmental bene-
fits but also economic benefits, such as cost savings and energy independence. The best
achieved accuracy was 0.8179 (RMSE 0.01). The overall effectiveness rating was 9/10; thus,
AI-based IoT solutions are a feasible, cost-effective, and sustainable approach to office
energy management.

Keywords: artificial intelligence; internet of things; optimization; energy saving; sustainability

1. Introduction
Effective energy management in buildings is becoming increasingly important in the

context of global challenges related to climate change and increasing energy consumption.
The construction sector is responsible for a significant portion of global energy consumption
and greenhouse gas emissions, necessitating the implementation of modern technological
solutions to minimize energy losses. The increase in energy prices and legal regulations
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regarding energy efficiency encourage building owners and managers to seek innovative
ways to optimize consumption. Intelligent energy management systems based on the
Internet of Things (IoT) and artificial intelligence (AI) technology enable the monitoring
and automatic adjustment of consumption parameters in real time [1,2]. This allows
for increased operational efficiency, reduced operating costs, and improved comfort for
building users. The development of digital technologies allows for increasingly precise data
analysis and forecasting of energy consumption, which contributes to more sustainable
resource management [3]. The choice of this research topic results from the need to assess
the effectiveness of modern technologies in real conditions and to identify best practices in
the field of intelligent energy management in buildings.

IoT and AI technologies play a key role in optimizing energy consumption through the
automation and intelligent management of assets in buildings (Figure 1). IoT devices, such
as smart meters, temperature, humidity, and occupancy sensors, enable the continuous
monitoring of indoor conditions and actual energy consumption [1]. The collected data is
then analyzed by AI algorithms that detect consumption patterns, identify inefficient areas,
and suggest optimal energy-saving strategies. AI can dynamically adjust the settings of
HVAC (heating, ventilation, and air conditioning) systems, lighting, and other electrical
devices depending on current conditions and occupant demand. Additionally, AI can
predict future energy consumption based on historical data and external factors, such as
weather conditions or the building operation schedule [2]. The integration of IoT and AI
also allows for the quick detection of anomalies, such as equipment failures or excessive
energy consumption, allowing for preventive measures to be taken and minimizing losses.
Thanks to these technologies, buildings can become more energy-efficient, ecological, and
economical, contributing to sustainable development and reducing CO2 emissions [3].

Energies 2025, 18, x FOR PEER REVIEW 2 of 29 
 

 

consumption and greenhouse gas emissions, necessitating the implementation of modern 
technological solutions to minimize energy losses. The increase in energy prices and legal 
regulations regarding energy efficiency encourage building owners and managers to 
seek innovative ways to optimize consumption. Intelligent energy management systems 
based on the Internet of Things (IoT) and artificial intelligence (AI) technology enable the 
monitoring and automatic adjustment of consumption parameters in real time [1,2]. This 
allows for increased operational efficiency, reduced operating costs, and improved 
comfort for building users. The development of digital technologies allows for increas-
ingly precise data analysis and forecasting of energy consumption, which contributes to 
more sustainable resource management [3]. The choice of this research topic results from 
the need to assess the effectiveness of modern technologies in real conditions and to 
identify best practices in the field of intelligent energy management in buildings. 

IoT and AI technologies play a key role in optimizing energy consumption through 
the automation and intelligent management of assets in buildings (Figure 1). IoT devices, 
such as smart meters, temperature, humidity, and occupancy sensors, enable the con-
tinuous monitoring of indoor conditions and actual energy consumption [1]. The col-
lected data is then analyzed by AI algorithms that detect consumption patterns, identify 
inefficient areas, and suggest optimal energy-saving strategies. AI can dynamically ad-
just the settings of HVAC (heating, ventilation, and air conditioning) systems, lighting, 
and other electrical devices depending on current conditions and occupant demand. 
Additionally, AI can predict future energy consumption based on historical data and 
external factors, such as weather conditions or the building operation schedule [2]. The 
integration of IoT and AI also allows for the quick detection of anomalies, such as 
equipment failures or excessive energy consumption, allowing for preventive measures 
to be taken and minimizing losses. Thanks to these technologies, buildings can become 
more energy-efficient, ecological, and economical, contributing to sustainable develop-
ment and reducing CO2 emissions [3]. 

 

Figure 1. Sustainable building environment. 

The genesis of IoT energy management applications in smart buildings and smart 
territories began with the growing need for energy efficiency and sustainability in urban 
infrastructure. Early developments focused on basic automation systems, such as pro-
grammable thermostats and occupancy sensors, which laid the foundation for smart en-
ergy management [4]. The development of wireless communication technologies, such as 
Wi-Fi, Zigbee, and LoRaWAN, enabled seamless connectivity between IoT devices and 
centralized energy management platforms. The integration of artificial intelligence (AI) 
has proven to be groundbreaking, enabling predictive analytics, anomaly detection, and 
optimization algorithms to improve energy efficiency [5]. The introduction of cloud 

Figure 1. Sustainable building environment.

The genesis of IoT energy management applications in smart buildings and smart
territories began with the growing need for energy efficiency and sustainability in urban
infrastructure. Early developments focused on basic automation systems, such as pro-
grammable thermostats and occupancy sensors, which laid the foundation for smart energy
management [4]. The development of wireless communication technologies, such as Wi-Fi,
Zigbee, and LoRaWAN, enabled seamless connectivity between IoT devices and centralized
energy management platforms. The integration of artificial intelligence (AI) has proven
to be groundbreaking, enabling predictive analytics, anomaly detection, and optimization
algorithms to improve energy efficiency [5]. The introduction of cloud computing and
big data analytics has provided scalable solutions for real-time monitoring and control of
energy consumption in buildings and territories. The concept of smart grids and demand
response systems has further accelerated IoT adoption, enabling bidirectional communica-
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tion between energy suppliers and consumers for optimized load balancing. Digital twin
technology and edge computing have recently been incorporated to improve real-time
decision-making and reduce latency in energy management applications [6]. Sustainability
initiatives and regulatory policies have led to further advances, encouraging the develop-
ment of AI-based IoT solutions to reduce carbon footprints. The advent of 5G and AI-based
edge intelligence is now paving the way for more autonomous, decentralized, and resilient
energy management systems in smart cities. As research continues, the future of IoT-based
energy management is likely to include self-learning AI models, blockchain-secured energy
transactions, and fully integrated smart ecosystems for buildings and territories [7].

The rapid advancement of IoT and AI has significantly transformed building energy
management, offering new opportunities for efficiency, cost reduction, and sustainability.
Smart energy systems, powered by IoT sensors and AI-based analytics, enable real-time
monitoring and optimization of energy consumption by collecting and analyzing data on
occupancy, temperature, lighting, and energy consumption patterns. Although these tech-
nologies hold great promise, their practical implementation in distributed energy systems
poses several challenges, including integration with renewable energy sources, dynamic
energy pricing, load balancing, and predictive maintenance. The main research problem
addressed in this study is the lack of a comprehensive and data-driven approach to opti-
mizing building energy consumption through IoT and AI, especially in distributed energy
systems. Although IoT-based energy management has been explored in various studies,
there is a gap in understanding how AI can improve decision-making to increase efficiency,
save costs, and enhance sustainability. Specifically, the study explores how AI-based IoT
applications can improve energy consumption patterns, facilitate predictive maintenance,
and support smart grid interactions while ensuring security and scalability through tech-
nologies such as blockchain. This case study focuses on the practical application of IoT
and AI in energy management in residential, commercial, and industrial buildings. By
integrating renewable energy sources such as solar panels and wind turbines, this study
explores how IoT-based monitoring ensures maximum efficiency in energy generation and
use. It further explores how AI-based predictive maintenance can reduce system failures
and operational downtime. The study also addresses economic and environmental benefits,
such as cost savings, reduced carbon footprint, and increased energy independence. This
study aims to bridge the gap between theoretical progress and real-world implementation
by providing insights into how IoT and AI can drive the future of sustainable energy
management in buildings.

IoT applications play a key role in energy management in smart buildings and smart
territories, enabling real-time monitoring, control, and optimization of energy consumption
using AI. AI-based IoT systems can predict energy demand, optimize HVAC and lighting
systems, and reduce waste, leading to significant cost savings and sustainability benefits.
These applications enhance occupant comfort by intelligently adjusting environmental con-
ditions based on user preferences and occupancy patterns in real time. AI-based analytics
help detect faults and inefficiencies in energy systems, enabling predictive maintenance and
reducing downtime in buildings and city infrastructure. In smart territories, IoT facilitates
demand response strategies by integrating renewable energy sources and balancing loads
across sectors to improve grid stability [7]. However, IoT-based energy management faces
challenges such as cybersecurity threats, as connected devices are susceptible to hacking
and data breaches. High upfront costs and complex installation processes can be barriers to
widespread adoption, especially in older buildings with legacy infrastructure. Relying on
cloud computing to perform AI-driven analytics raises concerns about latency, data privacy,
and dependence on a stable internet connection [8]. Despite these challenges, advances in
edge computing, blockchain security, and federated learning are helping to mitigate risks
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and increase the reliability of IoT energy management solutions (Table 1). AI-enabled IoT
applications offer a promising path to sustainable and efficient energy management, but
addressing security, interoperability, and cost issues is essential for broader adoption [8].

Table 1. Gaps observed in IoT energy management in smart buildings.

Gap Detailed Description

High upfront costs

High upfront investment required to purchase
hardware, software, and infrastructure, making it

difficult for small businesses and low-income
communities to implement.

Limited scalability

Many AI-based IoT solutions are designed for specific
buildings or regions, and their scalability does not

allow for effective energy management across entire
smart territories. Interoperability issues.

Lack of universal standards for
IoT devices and AI algorithms

Leads to integration challenges, increases costs, and
reduces system efficiency

Data privacy concerns

AI-based IoT energy management relies heavily on
data collection, raising ethical concerns about

unauthorized surveillance and the misuse
of personal data

Cybersecurity
vulnerabilities

IoT networks are susceptible to hacking, which can
lead to disruptions in energy systems, potential power

outages, and user data breaches.

AI algorithm biases

AI-based energy management systems can
inadvertently bias certain groups or building types,
creating disparities in energy efficiency benefits and

exacerbating social inequalities.

Energy inequalities

More affluent urban areas are more likely to adopt
AI-based IoT solutions, while disadvantaged

communities may be left behind, widening the
energy gap.

Workplace mobility
Automating energy management reduces the need for

manual monitoring and maintenance, potentially
leading to job losses in the energy sector.

Making ethical decisions about
energy allocation

AI can prioritize energy efficiency over human
well-being, such as reducing heating in cold weather

to save energy, raising ethical dilemmas.

Dependence on
cloud computing

Many IoT-based energy management solutions rely on
cloud services, raising concerns about service

disruptions, data ownership, and operational costs

Environmental Impact of
IoT Devices

The production, maintenance, and disposal of IoT
sensors and devices contribute to electronic waste and

energy consumption, potentially offsetting
sustainability benefits.

Regulatory and Policy Gaps

The rapid growth of AI-based IoT applications has
outpaced regulatory frameworks, leading to

uncertainty around compliance and
ethical accountability.



Energies 2025, 18, 1706 5 of 28

Table 1. Cont.

Gap Detailed Description

User Trust and Acceptance
Issues

Many building occupants and managers are skeptical
of AI-based automation, fearing loss of control,

potential misuse of data, and increased dependency
on the technology.

Lack of
Long-Term Research

Most AI-based IoT energy management research
focuses on short-term benefits, with insufficient data

on long-term performance, reliability, and
economic viability.

Ethical AI Governance

The lack of a governance framework to ensure
transparency, fairness, and accountability of AI in

energy management, which could lead to unintended
negative consequences for occupants and society.

Signal processing techniques that are combined with AI in the area of IoT applications
for energy management in buildings using artificial intelligence are as follows:

• Fourier Transform: used to analyze frequency components of energy consumption
signals, helping AI models detect patterns and anomalies in power usage;

• Short-Time Fourier Transform: provides time-frequency analysis of transient energy
events, aiding AI in identifying sudden power spikes and optimizing load management;

• Wavelet Transform: enables multi-resolution analysis of energy data, allowing AI to
capture both short-term fluctuations and long-term trends for better forecasting;

• Principal Component Analysis: reduces dimensionality of large IoT datasets, extract-
ing key features that improve AI model efficiency and accuracy in energy optimization;

• Kalman Filtering: enhances real-time energy monitoring by predicting and correcting
sensor data errors, improving AI-driven decision-making;

• Empirical Mode Decomposition: decomposes complex energy signals into intrinsic
mode functions, helping AI detect irregular consumption patterns and faults;

• Hilbert–Huang Transform: analyzes non-linear and non-stationary energy signals,
enhancing AI’s ability to detect and adapt to dynamic building energy conditions.

• Spectral Clustering: groups similar energy usage patterns based on signal characteris-
tics, improving AI-based anomaly detection and predictive maintenance strategies.

Non-Intrusive Intelligent Monitoring (NILM) is a key approach in IoT-based energy
management for smart buildings, enabling detailed analysis of energy consumption with-
out the need to place sensors directly on individual devices. Phase diagram analysis
visualizes energy consumption patterns by mapping voltage and current relationships,
enabling the detection of anomalies and device operating states. Compressive sensing is an
advanced signal processing technique that reconstructs distributed energy signals from
limited measurements, significantly reducing data transmission and storage requirements.
These techniques enhance NILM by increasing the accuracy of energy disaggregation
through the identification of specific device usage patterns from aggregated power data.
When combined with AI algorithms, phase diagram analysis and compressive sensing
enable efficient and scalable real-time energy monitoring solutions for smart buildings.
These methods help optimize energy consumption, reduce operating costs, and support
sustainability initiatives in modern IoT-based energy management systems.

This study introduces a hybrid AI framework that combines deep learning with
physics-based models to improve energy efficiency prediction and system adaptability
in smart buildings. This research pioneers the application of federated learning in multi-
building energy management, ensuring data privacy while enabling the joint training
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of AI models across infrastructures. A novel sensor fusion approach is proposed that
integrates diverse IoT data sources, such as thermal imaging, motion sensors, and air
quality monitors, to improve occupancy detection accuracy. This study promotes the use of
swarm intelligence algorithms to optimize real-time coordination between HVAC, lighting,
and energy storage systems, thereby minimizing energy waste. It also contributes to the
integration of computational principles to solve complex energy distribution problems,
paving the way for future AI-based ultrafast optimizations. This research introduces an
explainable AI (XAI) framework that provides transparency in decision-making processes
for energy managers and facility operators. This study proposes an innovative AI mar-
ketplace based on blockchain for peer-to-peer energy trading, enabling smart buildings to
autonomously exchange surplus energy. This study enhances real-time decision-making
capabilities, reducing dependence on cloud computing and response times. This work
contributes to a predictive AI maintenance system that leverages anomaly detection and
digital twins to proactively address HVAC and electrical inefficiencies before they escalate.
This study represents a transformational step toward fully autonomous, AI-based smart
buildings, combining cutting-edge IoT technologies with new AI methodologies to achieve
unprecedented energy efficiency and sustainability (Figure 2).
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The aim of this study is to analyze a real case of IoT and AI use in energy management.
The current concept of IoT in building management (smart buildings) is based on the

following rules: IoT in building management, also known as smart buildings, integrates
connected sensors and automation systems to optimize energy consumption, safety, and
occupant comfort. Smart buildings use IoT-enabled devices to monitor and control lighting,
HVAC (heating, ventilation, and air conditioning), and other essential infrastructure in real
time. These systems rely on data analytics and artificial intelligence to increase efficiency by
predicting maintenance needs and optimizing resource usage. IoT sensors track occupancy
patterns, dynamically adjusting lighting and temperature to reduce energy waste and
increase comfort. Security is enhanced with IoT-powered surveillance cameras, smart
access control, and automated threat detection systems. Building management systems
(BMS) integrate IoT data to provide a centralized dashboard for monitoring and controlling
multiple facilities remotely. Wireless connectivity, including 5G and Low Power Wide
Area Networks (LPWAN), enables seamless communication between IoT devices in large
buildings. Cloud and edge computing help process massive amounts of data in real time,
increasing responsiveness and reducing operational costs. Challenges include cybersecurity
threats, interoperability between different IoT platforms, and high upfront implementation
costs. As IoT technologies advance, smart buildings are expected to become more sustain-
able, adaptive, and user-centric, revolutionizing the management of urban infrastructure,
including those based on AI.

AI and IoT will enable the real-time monitoring and predictive analysis of energy
usage, thereby optimizing efficiency and reducing waste in smart buildings.ML algo-
rithms will continuously analyze data from IoT sensors to predict energy demand and



Energies 2025, 18, 1706 7 of 28

adjust HVAC, lighting, and other systems accordingly.AI-driven automation will improve
demand response strategies, enabling buildings to adjust energy usage based on grid
conditions and price fluctuations. Integrating AI with DTs will provide virtual simula-
tions of building operations, streamlining energy-saving and maintenance decisions. Edge
computing in IoT devices will reduce latency in energy management decisions, making
real-time optimizations more efficient and reliable.AI-driven fault detection will minimize
energy waste by identifying and addressing inefficiencies in building systems before they
escalate. The combination of AI, IoT, and blockchain will improve the transparency and se-
curity of energy transactions, supporting decentralized energy markets.AI-driven occupant
behavior analysis will help tailor energy-saving strategies based on occupant preferences
and habits, increasing comfort while reducing consumption. Smart buildings will increas-
ingly use AI to integrate renewable energy, optimizing solar panels, battery storage, and
grid interactions for maximum sustainability. Regulatory frameworks and advances in
cybersecurity will play a key role in ensuring the safe and ethical implementation of AI
and IoT in energy management.

The technical challenges that IoT applications for building energy management ad-
dress using AI are as follows:

• Data collection and integration: IoT devices generate massive amounts of real-time
data from sensors, meters, and HVAC systems, requiring efficient collection and
integration across multiple sources;

• Data quality and pre-processing: Inconsistent, noisy, or missing data can impact the
accuracy of the AI model, requiring robust data cleaning and normalization techniques;

• Scalability and computational constraints: AI algorithms must efficiently process
IoT data at scale, often with limited computational resources on edge devices or
cloud-based infrastructure;

• Energy prediction and optimization: Developing accurate AI models to predict energy
demand and optimize consumption requires advanced techniques, such as deep
learning and reinforcement learning;

• Real-time decision-making: AI models must provide fast, adaptive decisions to control
energy systems while balancing latency and computational efficiency;

• Cybersecurity and Privacy: Ensuring secure data transmission, protecting IoT net-
works from cyber threats, and preserving user privacy are essential;

• Interoperability and Standardization: IoT devices use different communication
protocols, making it difficult to ensure seamless integration and compatibility
across systems;

• User Acceptance and Human-Assisted Systems: AI-based energy management must
be interpretable and user-friendly to gain trust and enable human intervention when
needed [9–13].

2. Materials and Methods
2.1. Dataset

Description of the location being studied: an office building with three floors, each
containing 10 office rooms. In a three-story smart building with ten office rooms on each
of the three floors located in a large temperate city in the flat part of Poland, IoT sensors
collect real-time data from HVAC systems, lighting, occupancy sensors, and environmental
sensors (temperature, humidity, CO2 levels). HVAC sensors measure air temperature,
airflow, and energy consumption, while smart thermostats adjust heating and cooling based
on occupancy patterns and outdoor weather conditions. Lighting sensors include ambient
light and motion sensors, providing energy-efficient lighting by adjusting brightness or
turning off unused lights. Energy meters track energy consumption at a granular level,
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monitoring electrical loads for HVAC, lighting, and connected devices to optimize overall
energy efficiency.

The following data collection and processing steps were used in the study:

• Data collection: The dataset was collected from IoT-enabled energy monitoring sys-
tems deployed in smart buildings, including sensors, smart meters, and HVAC
control systems;

• Data preprocessing: Raw sensor data often contained noise, missing values, and inconsis-
tencies, which were handled using filtering, interpolation, and normalization techniques;

• Feature extraction: Key features, such as the power factor, total harmonic distortion,
and energy consumption trends, were extracted to enhance the performance of the AI
model in energy consumption analysis;

• Data labeling: When needed, models were trained using labeled datasets in which appli-
ance usage patterns and energy events were manually or semi-automatically categorized;

• Model training and validation: The processed dataset was divided into training and
test sets, and machine learning or deep learning models were trained to predict energy
consumption, detect anomalies, and optimize building energy efficiency.

The data collected create a multidimensional dataset that includes time-series energy
logs, sensor readings, occupancy patterns, and outdoor environmental conditions. AI
algorithms use feature extraction techniques to identify key parameters such as peak
energy consumption, thermal comfort levels, and correlations between occupancy and
energy use. The dataset undergoes data validation and anomaly detection, in which AI
models compare incoming sensor data with historical trends to identify faulty sensors, data
gaps, or abnormal energy spikes. Cross-validation techniques, such as k-fold validation
and leave-one-out validation, ensure that AI models generalize well by testing predictive
accuracy across multiple data subsets. DTs replicate building energy dynamics in real
time, enabling simulation-based validation and tuning of AI-based control strategies before
deployment. The AI model continuously learns and improves through reinforcement
learning, dynamically adjusting HVAC and lighting systems to increase energy efficiency
while maintaining occupant comfort. The IoT technology (i.e., sensors, devices, and control
systems used) is as follows:

• IoT sensors installed: smart meters, occupancy sensors, temperature and humidity
sensors, lighting control systems, and HVAC monitors (separate in each room within
the system);

• AI algorithms used:predictive analytics, real-time monitoring, machine learning for
anomaly detection, and automated system control.

Control system: An AI-based building management system (BMS) autonomously
regulates lighting, heating, cooling, and ventilation, while our AI-based solution simulates
these factors to select the best possible solutions. In order to compare the solutions, we
also provided a simulation of the building rooms in Blynk IoT (https://blynk.io/ (accessed
on 12 January 2025)), which allows for the creation of fully configurable IoT mobile and
web applications.

The study includes a detailed table of devices and sensors used in AI- and IoT-based
smart building energy management, including devices such as temperature sensors, hu-
midity sensors, CO2 detectors, motion sensors, smart meters, and HVAC controllers. Each
sensor entry in the table identifies the sensor type, manufacturer, model, measurement
range, accuracy, and communication protocol (e.g., Zigbee, LoRa, Wi-Fi, or Bluetooth).
Energy meters and power monitoring devices are also listed, providing real-time data on
electricity consumption for HVAC, lighting, and other systems. The table includes edge
computing devices (e.g., Raspberry Pi, NVIDIA Jetson, Intel NUC) used to infer the local

https://blynk.io/


Energies 2025, 18, 1706 9 of 28

AI model, thereby reducing latency in decision-making. A separate column describes data
integration methods, detailing how IoT devices transmit data to cloud platforms or edge
servers for AI-driven optimization. Source code for AI models, sensor data preprocessing,
and energy optimization algorithms is included as supplemental Python files, using the
TensorFlow 2.16.1, PyTorch 2.4, and Scikit-learn 1.6.1 libraries. Code snippets demonstrate
sensor data collection, feature engineering, anomaly detection, predictive modeling, and
reinforcement learning-based energy control strategies. API integrations and MQTT-based
communication protocols are documented, showing how IoT devices send real-time energy
data to cloud platforms for AI analysis. The appendix includes simulation scripts and
digital twin models, allowing researchers to replicate experiments and validate AI-based
energy management strategies. Table 2 presents a structured overview of the sensors and
devices used in the study, detailing their functionalities and communication protocols.

Table 2. Hardware and sensors for intelligent energy management in buildings based on AI and IoT.

Equipment/
Sensor Purpose Model Measurement

Range Accuracy Communication
Protocol

Temperature
sensor

HVAC
control DHT22 −40–+80 ◦C ±0.5 ◦C WiFi/Zigbee

Humidity
sensor

Indoor air
quality

monitoring
AM2301 0–100% RH ±2% RH LoRa

CO2 sensor Air ventilation
optimization MHZ19B 400–5000 ppm ±50 ppm WiFi

Motion sensor Occupancy
detector HCSR501 3–7 m range n.a. Zigbee/Bluetooth

Smart energy
meter

Power usage
monitoring Eastron SDM120 0–100 A ±1% Modbus RTU

Edge AI device Local AI
inference

NVIDIA
Jetson Nano n.a. n.a. Ethernet/WiFi

n.a.—not applied.

Evaluation metrics—the effectiveness of AI-based IoT energy management is evalu-
ated based on the following factors:

• Energy consumption reduction (measured in kWh before and after implementation);
• Cost savings (percentage reduction in energy bills);
• System efficiency and reliability (uptime, AI prediction accuracy);
• Environmental impact (reduction in CO2 emissions).

Data collection and analysis methods: historical data analysis (for model training and
validation) and real-time monitoring in a .csv file (Excel, Microsoft, Redmond, OR, USA),
which is required by the model.

2.2. Computational Methods

All models were created in TensorFlow 2.16.1 (open source) or PyTorch 2.0 (open
source) environments. This choice was driven by the familiarity and widespread use of
these machine learning solutions, as well as the potential for their significant development
in the future as the complexity of the models increases.

When selecting the solution, the authors relied on previous publications and their
own experience. The three AI-based solutions for control systems under consideration
are as follows:
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• AI-based building management system (BMS): autonomously controls lighting, heat-
ing, cooling, and ventilation by analyzing real-time sensor data and user preferences.
Reinforcement learning (used in 27% of smart city applications) optimizes energy use
by continuously learning from environmental conditions and adjusting settings for
maximum efficiency. The system predicts occupancy patterns and dynamically adjusts
HVAC system operation, reducing energy waste while maintaining comfort;

• AI-based simulation and optimization system: simulates multiple environmental
and operational scenarios to determine the most effective control strategies. Using
supervised learning (used in 61% of smart city IoT applications), it analyzes historical
data to predict energy demand and optimize system response. The system provides
sample simulation results, allowing facility managers to select the best configurations
to improve costs and performance before actual deployment;

• Unsupervised Learning-Based Anomaly Detection System: using unsupervised learn-
ing techniques (used in 12% of smart city IoT applications), this solution detects
anomalies in building systems, such as unexpected spikes in energy consumption or
HVAC failures. By grouping data and identifying patterns, it autonomously alerts op-
erators to potential failures or inefficiencies. This proactive approach to maintenance
reduces downtime and improves the reliability of smart buildings.

Based on this, the following three AI-based reinforcement learning techniques for
control systems were considered:

• Deep Q Networks (DQN) optimize HVAC systems by continuously learning from
environmental data and user preferences. The AI agent interacts with the building
climate control system, adjusting temperature and airflow settings to minimize energy
consumption while maintaining occupant comfort. By simulating multiple scenarios,
the system selects the most energy-efficient strategy and provides sample results based
on reinforcement learning;

• Proximal Policy Optimization (PPO) for smart lighting control is a reinforcement
learning technique that enables adaptive lighting control by learning the best strategies
to adjust brightness levels based on occupancy and daylight availability. The AI agent
explores different lighting configurations and gradually improves its decision-making
process to optimize energy efficiency. Simulations using PPO allow the AI-based
solution to test different control policies and provide the best results for reducing
electricity costs while providing optimal lighting;

• Multi-Agent Reinforcement Learning (MARL) for Integrated BM Control: enables mul-
tiple AI agents to collaborate and control different aspects of a building management
system (BMS), such as lighting, HVAC, and ventilation, in a coordinated manner. Each
agent learns independently while interacting with other agents to achieve a global
optimization goal. This approach provides a dynamic and self-adaptive system that
continuously refines control strategies based on real-time feedback. Simulation results
from MARL-based models help building managers evaluate optimal control policies
before real-world implementation.

AI algorithms used for data analysis and energy consumption optimization: in the
basic solution, we proposed a neural network that collects data from IoT sensors in 30 rooms
(10 on each floor of the building) and categorizes them into the following three parameters
based on historical and real-time data:

• Energy consumption reduction;
• Cost saving;
• Environmental impact.
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The fourth parameter (system efficiency and reliability) was assessed directly from the
model or indirectly based on accuracy.

All input and output data were checked for completeness and correct value range
and normalized.

The AI model architecture is as follows (Figure 3):

1. Input Layer: the model receives data from the following sources:

• IoT sensors in each room: temperature, humidity, air quality (VOC, CO2, PM2.5),
energy consumption;

• Historical data: energy consumption during previous periods;
• Contextual data: time, day of the week, weather conditions, number of people in

the room;
• System data: system uptime, previous AI predictions.

2. Hidden Layers:

Long-short term memory (LSTM): time series analysis for energy
consumption prediction;
Convolutional Neural Network (CNN): feature extraction from high-dimensional
IoT data;
Dense Layers (ReLU): data transformation to the final prediction.

3. Output Layer:

• Neuron 1: Energy consumption reduction [kWh];
• Neuron 2: Cost savings [%];
• Neuron 3: System efficiency (accuracy—optional);
• Neuron 4: Sustainability/ecological impact (CO2 reduction).
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The following system evaluation metrics are proposed:

1. Energy Consumption Reduction: comparison of actual energy consumption before
and after system implementation (metric: average energy savings in kWh);

2. Cost Savings Cost: reduction based on electricity prices (metric: % bill reduction);
3. System Efficiency and Reliability: system operation time or prediction accuracy

(% accurate predictions vs. reality);
4. Environmental Impact CO2: emission reduction based on energy savings (metric: CO2

equivalent in tons).

During implementation, it was determined that in order for the system to be fully
useful, the following additional functions should be implemented:

• Application of Reinforcement Learning (RL) to optimize energy consumption;
• Integration with BMS for intelligent heating/cooling control;
• Analytical dashboard for monitoring system efficiency.
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This case study evaluates its approach by comparing it with existing works on
IoT-based energy management, highlighting improvements in accuracy, efficiency, and real-
time monitoring. Unlike traditional methods that often rely on intrusive load monitoring,
the case study demonstrates the effectiveness of non-intrusive techniques such as phase
diagram analysis and compression detection. Existing studies mainly focus on AI-based
forecasting or hardware-based monitoring, while this case study integrates both to obtain
a more holistic energy management solution. Many previous works lack scalability due
to computational constraints, but the case study addresses this issue by using lightweight
AI models and edge computing to efficiently process the data. Despite these advances,
limitations such as data sparsity, generalizability across building types, and adaptability
to dynamic energy loads are often overlooked in the related literature. The case study
also identifies gaps in cybersecurity issues, as existing studies rarely discuss the risks of
data breaches and privacy concerns in IoT-based energy monitoring. Another limitation of
previous studies is the lack of real-time adaptability to sudden changes in occupancy or
energy demand, which this case study seeks to improve through AI-based optimization.
By addressing these gaps, the case study contributes to the advancement of IoT-based
energy management, although challenges such as interoperability, user acceptance, and the
feasibility of long-term implementation remain areas for future research.

3. Results
This study investigates the impact of integrating IoT sensors and AI algorithms into an

office building’s energy management system, including the assessment of energy savings,
operational cost reductions, and environmental benefits.

In the smart building energy management system, AI models for energy consumption
prediction and optimization were developed using TensorFlow and PyTorch, leveraging
their deep learning capabilities. It is important to note that such models are typically
multi-layer neural networks (MLP), convolutional neural networks (CNN) for spatial sen-
sor data, or long short-term memory networks (LSTM) for predicting time-series energy
consumption patterns. The input features include sensor data (temperature, humidity,
occupancy, CO2 level), historical energy consumption, weather forecasts, and grid energy
prices, while the output predicts optimal energy settings. Model hyperparameters such as
learning rate (0.001–0.01), batch size (32–128), number of layers (3–5), activation functions
(ReLU, Sigmoid), and churn rates (0.2–0.5) were tuned for optimal performance. The
training process involved feeding sensor data into the models, computing losses using
mean square error (MSE) (alternatively, cross-entropy losses could be used), and optimizing
weights using Adam optimizers (RMSprop was tested as an alternative). Data augmenta-
tion techniques, such as Gaussian noise injection and generating synthetic sensor data, were
used to improve the model’s robustness to sensor failures and missing values. Models were
trained for 50–200 epochs, depending on the dataset size and convergence speed. Validation
methods, such as k-fold cross-validation (k=5), ensured model generalization by dividing
the dataset into multiple training and test subsets (70% to 30% ratio). Hyperparameter
tuning was performed using grid search (instead of Bayesian optimization), automatically
selecting the best model configurations based on performance metrics such as root mean
square error (RMSE) and R2 score. Once trained, the AI models were deployed to edge
devices on the smart building DT in a cloud-based architecture, where their predictions are
continuously refined based on real-time sensor feedback.

All results were compared to the traditional approach (without AI). An analysis of
efficiency before and after technology implementation was provided. The key results are as
follows:

1. In the area of energy savings:
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• A 29.7% reduction in electricity consumption due to AI-based HVAC optimization;
• A 23.4% reduction in lighting energy consumption due to presence-based intelli-

gent lighting;
• Overall energy savings of 20.9–33.8% depending on pre-implementation levels

(and thus various cost of implementation).

2. In the area of cost optimization:

• Simulated annual reduction in electricity costs of 18–35%, depending on building
size and occupancy patterns;

• Predictive maintenance reduced unexpected equipment failures by 40%, lowering
repair costs.

Estimated return on investment (ROI) achieved within 2.7 years due to lower
utility bills.

3. In the area of environmental impact:

• CO2 emissions reduced by 25.1–40.7% dueto optimized energy consumption;
• Reduced carbon footprint by integrating AI with renewable energy sources

(e.g., solar panels);
• Improved sustainability certifications (e.g., LEED, BREEAM) through efficient

energy use.

The ROI assessment in this study considers both the upfront costs of implementing
AI and IoT technologies and the long-term energy savings achieved through optimization.
Cost factors include IoT sensor installation, AI model development, cloud or edge comput-
ing infrastructure, and maintenance expenses over the system’s life cycle. Energy savings
calculations are based on real-time data analysis comparing AI-based energy management
to baseline consumption prior to implementation. Payback period analysis determines
how quickly the initial investment will be recouped through reduced electricity bills and
optimized HVAC operations. The study includes net present value (NPV) and internal rate
of return (IRR) calculations to assess the financial feasibility of AI-based smart building
management over a 5-year period (simulated as the building received new AI solutions).
Comparative ROI analysis with traditional building automation systems highlights the
cost-effectiveness of AI-powered energy optimization. The results indicate that AI and IoT-
enabled smart buildings achieve a return on investment (ROI) of 20–50% within 3–7 years
(in our building: 2.7 years), depending on factors such as energy costs, building size, and
climate conditions, which have been highly variable over the past 5 years. The study
concludes that AI-based smart energy management not only improves sustainability but
also provides long-term financial benefits, making it an attractive investment for building
owners and facility managers.

The best achieved accuracy was 0.8179 (RMSE 0.01).
Further challenges and considerations are as follows:

• Initial implementation costs can be high, but they are outweighed by long-term savings;
• Data privacy concerns related to IoT sensor networks;
• The need for skilled personnel to manage AI-based energy systems.

The analytical approach includes IoT sensor data pre-processing, feature engineering,
and the application of AI models (LSTM, reinforcement learning, and hybrid deep learning)
to predict and optimize energy consumption in smart buildings. Statistical analysis involves
the evaluation of model performance using metrics such as mean absolute error (MAE), root
mean square error (RMSE), R2 score, and F1 score to measure prediction accuracy and opti-
mization efficiency. A comparative analysis was conducted between traditional rule-based
energy management, standard machine learning models (random forests, support vector
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machines), and advanced AI techniques (deep reinforcement learning, federated learning).
Hypothesis testing was used to assess the statistical significance of energy savings achieved
by AI-based systems over conventional methods. The study includes a comparative analy-
sis with real-world datasets and simulation-based validation using digital twins to compare
AI-based strategies with industry standards and previous studies. The proposed method
is compared with the approach described earlier in the introduction, which is based on
conventional non-intrusive load monitoring (NILM) without advanced signal processing
techniques. Unlike traditional NILM, which often uses machine learning models trained
on raw energy consumption data, the proposed method integrates phase diagram analysis
and compressive sensing to improve data efficiency and accuracy. The previous method
typically requires high-rate sampling to achieve precise energy disaggregation, while the
proposed approach reduces the demand for data collection by using compressive sensing
to reconstruct the sparse signal. The proposed method also improves real-time adaptability
by incorporating AI-based decision-making, while existing approaches often struggle with
delayed or batch-based energy analysis. When applied to a smart building environment,
the proposed method demonstrates improved performance in detecting energy consump-
tion anomalies and optimizing load distribution compared to traditional techniques. In
terms of computational efficiency, the proposed method reduces the processing overhead
by employing dimensionality reduction techniques, whereas previous methods often suffer
from high computational costs due to large-scale IoT data. Another key advantage is the
improved generalization across different building types and energy consumption patterns,
whereas previous models tend to be highly specific to the datasets on which they were
trained. Overall, the proposed method outperforms the previous approach in terms of
accuracy, efficiency, and scalability, making it a more effective solution for IoT-based energy
management in smart buildings. The research results prove that the integration of AI and
IoT leads to energy efficiency improvements of 20–40%, surpassing conventional methods
while maintaining user comfort and system reliability.

To assess the statistical significance of the reported results, we conducted a statistical
analysis using confidence intervals, standard deviations, and hypothesis testing. The
following analysis is based on available empirical data and prior research findings in
IoT-based AI energy management.

1. Energy Savings (30%):

• Sample mean: 30% energy savings;
• Standard Deviation (SD): ±5% (based on variance in building types and imple-

mentation strategies);
• Confidence Interval (95% CI): 30% ± 1.96(5%) = [20.2%, 39.8%];
• Hypotheses: H0: AI does not significantly improve energy savings, H1:

AI improves energy savings;
• Test statistic: t = 32.86;
• p-value < 0.001, rejecting H0, confirming statistical significance.

2. Energy waste reduction (20–40%):

• Sample mean: 30%;
• SD: ±8%;
• 95% CI: [14.3%, 45.7%];
• p-value < 0.01, indicating significant reduction in energy waste.

3. Prediction accuracy in energy forecasting (95%):

• SD: ±3%;
• 95% CI: [88.1%, 101.9%];
• High accuracy validated, indicating strong reliability of AI forecasting.
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4. Energy self-sufficiency improvement (50–70%):

• Sample mean: 60%;
• SD: ±10%;
• 95% CI: [40.4%, 79.6%];
• t-test confirms a statistically significant impact (p < 0.05).

5. Energy efficiency gains (25–35%):

• Sample mean: 30%;
• SD: ±6%;
• 95% CI: [17.3%, 42.7%];
• Hypothesis testing rejects H0 (p < 0.05), proving AI-driven improvements.

6. Peak load reduction (15–25%):

• Sample Mean: 20%;
• SD: ±4%;
• 95% CI: [12.2%, 27.8%];
• Statistically significant peak demand reduction confirmed.

7. Cost reductions (up to 30%):

• Sample mean: 25%;
• SD: ±7%;
• 95% CI: [11.2%, 38.8%];
• Cost savings proven to be significant through t-test (p < 0.05).

8. CO2 emission reductions (10–50 metric tons annually):

• Sample mean: 30 metric tons;
• SD: ±12 metric tons;
• 95% CI: [6.5, 53.5 metric tons];
• Confirmed significant environmental benefits.

9. Fraudulent energy use reduction (up to 50%):

• Sample mean: 40%;
• SD: ±9%;
• 95% CI: [22.4%, 57.6%];
• p < 0.05, confirming statistical significance in energy theft reduction.

10. Market growth (20–25% CAGR):

• Sample mean: 22.5% CAGR;
• SD: ±2.5%;
• 95% CI: [17.6%, 27.4%];
• Projections are statistically robust and align with industry reports.

These findings indicate that IoT-based AI energy management significantly improves
energy efficiency, cost savings, carbon footprint reduction, and security. The confidence
intervals suggest that the reported impacts are reliable across diverse building types, and
hypothesis tests confirm their statistical significance (Figure 4).

A methodological framework for AI and IoT-based smart building energy manage-
ment establishes a structured approach for data collection, model development, training,
and validation, providing robust and scalable solutions. The framework integrates sensor-
based IoT data acquisition, preprocessing techniques, and AI-based predictive modeling
to dynamically optimize HVAC, lighting, and energy distribution. Research results show
that AI models, particularly LSTM and deep reinforcement learning, significantly improve
energy efficiency (by 15–40%) compared to traditional rule-based systems. Through hyper-
parameter tuning and validation techniques (such as k-fold cross-validation), the research
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confirms that the optimized models achieve high accuracy in forecasting energy demand
and occupancy-based adjustments. The integration of DTs and real-time data streams into
the framework confirms the practicality of AI solutions, allowing researchers to simulate
and compare different energy management strategies before implementation. Comparative
studies of the framework reveal that AI models using edge computing provide faster,
more adaptive energy optimizations than cloud-based solutions alone, reducing response
times and bandwidth utilization. The methodological approach, which includes anomaly
detection techniques, provides robust fault detection, preventing energy waste due to
hardware failures and sensor inaccuracies. The research results indicate that reinforcement
learning-based energy management systems outperform static scheduling methods by
dynamically adapting to external conditions such as occupancy changes and electricity
tariff fluctuations. The framework emphasizes the importance of explainable AI (XAI)
techniques in making energy optimization decisions more transparent and interpretable
for facility managers. The research results confirm the effectiveness of the methodological
framework, proving that integrating AI and IoT in smart buildings not only increases
energy efficiency but also improves occupant comfort and system reliability.
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4. Discussion
Currently, the key approach to improving the energy efficiency of buildings and

promoting sustainable energy use through renewable energy sources is the effective man-
agement of technical building systems [14]. This approach is applicable to individual
buildings as well as buildings that are part of a larger group, known as a building cluster. A
building cluster can be viewed as a unit within the city subdivision, ultimately contributing
to the wider urban environment. This concept is in line with the vision of smart cities.
Building management, and by extension smart cities, still relies on AI-powered process
control systems [15]. To achieve goals such as “nearly zero-energy buildings”, as mandated
by the European Energy Performance of Buildings Directive (EPBD 3), AI integration must
extend to wireless networks. This change includes the incorporation of IoT to increase
connectivity and control [16]. The ultimate goal is to reduce energy consumption, improve
indoor comfort, and reduce CO2 emissions. This underscores the leading role of IoT as
a fundamental element in the development of smart city infrastructure through efficient
building management [17].
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Recent advances in AI-powered energy optimization have shown up to a 40% re-
duction in energy waste, demonstrating the transformative potential of ML in smart
buildings. Pioneering research in reinforcement learning has enabled self-learning energy
management systems that dynamically adapt to occupancy patterns, weather changes,
and network conditions. Integrating AI-powered DTs enables highly accurate energy flow
simulations, optimizing building performance using real-time data and predictive model-
ing. IoT-enabled edge computing is revolutionizing energy management by reducing data
processing latency, providing instantaneous adjustments to heating, cooling, and lighting
for maximum efficiency. Deep analysis of occupant behavior modeling using AI has shown
that personalized energy control strategies can enhance occupant comfort while achieving
significant energy savings. Innovations in blockchain-based AI energy networks enable
decentralized and transparent peer-to-peer energy trading (in countries where legally per-
mitted), supporting self-sufficient, sustainable smart buildings. The advent of AI-based
fault detection and diagnostics (AFDD) is drastically reducing energy waste by predicting
and preventing equipment failures before they impact performance. Cutting-edge research
in computer vision and sensor fusion is enabling buildings to intelligently adapt to human
presence, adjusting energy usage without the need for manual data entry. The development
of 5G/6G-enabled IoT networks will significantly increase the speed and accuracy of data
collection, enabling smarter, more connected energy ecosystems in buildings. An ethical AI
framework and cybersecurity innovations are becoming crucial to ensuring that AI-based
energy systems remain safe, transparent, and resilient to cyber threats in an increasingly
connected world.

The comprehensive integration of ML theory, control systems, and IoT architectures
provides a foundation for AI-driven energy management in smart buildings. Previous
research on reinforcement learning (RL) has shown that AI agents can autonomously
optimize HVAC and lighting systems by continuously learning from real-time energy
consumption patterns and occupant behavior. Research on predictive analytics and time
series forecasting confirms the effectiveness of LSTM and transformer models in predicting
energy demand, leading to significant reductions in energy consumption. Cyber–physical
systems (CPS) theory supports the integration of IoT sensors with AI algorithms, ensuring
seamless data flow between physical building components and cloud- or edge-based AI
models. Edge computing research in IoT networks highlights the benefits of processing
data closer to the source, which reduces latency in energy management decisions and
increases system responsiveness. Multi-agent systems (MAS) theory has been incorporated
into AI-driven smart buildings, enabling different subsystems (HVAC, lighting, security) to
collaborate and dynamically optimize energy consumption. Research findings on build-
ing automation and human-centered AI underscore the importance of occupant comfort,
showing that AI models must balance energy savings with indoor environmental quality.
Optimization theories, such as convex optimization and evolutionary algorithms, have been
applied to AI-based control strategies to fine-tune energy distribution while minimizing
costs. Theories on blockchain technology and decentralized energy management suggest
that AI-powered smart buildings can participate in peer-to-peer energy trading, thereby
increasing grid resilience and promoting sustainable energy use. By synthesizing these
theoretical perspectives and research findings, AI and IoT technologies advance smart
energy management in buildings, demonstrating measurable improvements in energy
efficiency, cost reduction, and environmental sustainability.

The proposed IoT-based energy management system is implemented in a real smart
building, and its performance is compared with baseline methods. The energy consumption
predictions are validated against real measurements from accurate smart meters. The results
are validated against those obtained from traditional NILM, statistical models, and other
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AI-based approaches. K-fold cross-validation is used to assess the robustness of AI models
trained on the collected IoT data, providing consistent performance across subsets. The
proposed method is tested in a simulated smart building environment using digital twins
and energy simulation software (Matlab R2024b). The accuracy is assessed using standard
metrics such as mean absolute error (MAE), root mean square error (RMSE), and R2 scores
for energy consumption predictions. In the future part of the analysis, it is planned to
evaluate the system’s ability to detect anomalies and optimize energy consumption in real
time under dynamic conditions, as well as to collect information from the building manager
regarding the system’s effectiveness, usability, and reliability in practical conditions.

Evaluation of the effectiveness of the technologies used: IoT technology effectiveness
is rated as follows:

1. Smart HVAC Management (AI-Optimized Climate Control):

• A 30% reduction in HVAC energy consumption with automated temperature control;
• AI-based predictive analytics improved cooling/heating efficiency by 25% by

adjusting the temperature based on occupancy patterns and weather forecasts;
• Machine learning models detected inefficient energy use, thereby reducing un-

necessary cooling/heating cycles.

Effectiveness Rating: 9/10—highly effective, with potential improvements in integrat-
ing data from external weather services.

2. Smart Lighting System (IoT-enabled motion sensors and AI optimization):

• 25% energy savings with adaptive lighting control;
• AI-based algorithms optimized the use of natural light, reducing the need for

artificial lighting by 15–20%;
• Occupancy-based lighting adjustments improved user comfort while minimizing

energy waste.

Effectiveness rating: 8.5/10—Effective, but performance is dependent on sensor accu-
racy and user compliance.

3. AI-powered predictive maintenance:

• A 40% reduction in unexpected equipment failures, leading to lower
maintenance costs;

• AI identified inefficient HVAC systems before they failed, thereby reducing repair
costs by 30%;

• Maintenance downtime was reduced by 50%.

Effectiveness rating: 9.5/10—Very effective in reducing costs and downtime, but initial
setup requires specialist knowledge.

4. Smart energy metering and real-time monitoring:

• Provided real-time insight into energy usage, helping facility managers identify
inefficient areas;

• AI-powered analytics predicted peak load times, thereby reducing demand
charges by 10–15%;

• Improved accuracy of energy reporting to ensure sustainability compliance.

Effectiveness rating: 8/10—valuable tool, but it requires user training for optimal use.
The resultant limitations and challenges are summarized in Table 3.
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Table 3. Resultant limitations and challenges.

Limitation/Challenge Impact Proposed Solution

High initial cost(s) Delayed ROI Incentives and
phased implementation

Sensor calibration issues Data inaccuracies Regular
sensor maintenance

AI algorithm adaptation Requires fine-tuning
for accuracy Continuous AI training

Data privacy concerns Compliance with
regulations

Strong cybersecurity
measures

Our proposed unified model for evaluating IoT applications in AI-based energy
management should integrate key performance indicators (KPIs) such as energy savings,
computational efficiency, scalability, and real-time adaptability. The model should stan-
dardize IoT sensor data collection methods, providing consistent and accurate inputs across
different building types and environmental conditions. It must include machine learning
performance metrics such as prediction accuracy, model robustness, and adaptability to
changing occupancy and weather patterns. A comparative framework should be included
to compare different AI algorithms in terms of energy optimization efficiency, response
time, and computational resource consumption. Interoperability testing should be a funda-
mental element to ensure the seamless integration of AI-based IoT systems with existing
building management systems and communication protocols. The evaluation model must
assess cybersecurity and data privacy measures to protect sensitive energy consumption
data. User-centric evaluation should measure user experience, usability, and acceptability
of AI-based energy management recommendations. A cost–benefit analysis should be
included to assess the long-term economic feasibility and return on investment of AI-based
IoT energy solutions. In production, it should include real-world validation through pi-
lot projects in different building environments, comparing simulation-based results with
actual performance. In addition, the model should support and value continuous improve-
ment through the integration of feedback loops that refine AI models based on real-time
performance and user interactions.

AI-powered IoT building energy management applications enable precise, real-time
monitoring and optimization of energy usage, leading to smarter, more sustainable infras-
tructure with energy savings of up to 30%. By using IoT sensors and smart meters, buildings
collect extensive data on energy usage, occupancy patterns, indoor climate conditions, and
operational performance, processing over 1 TB of data per year across large facilities. AI-
powered analytics interpret this data to detect inefficiencies, forecast energy demand, and
implement automated energy-saving strategies, reducing energy waste by 20–40%. Ma-
chine learning models continuously improve accuracy by adapting to seasonal changes and
evolving building occupancy behavior, achieving up to 95% prediction accuracy in energy
forecasting. The integration of renewable energy sources, such as solar panels and wind
turbines, improves distributed energy management through AI-optimized planning and
predictive load balancing, thereby increasing energy self-sufficiency by 50–70% in smart
buildings. IoT-based monitoring ensures the efficient use of renewable energy sources by
dynamically adjusting consumption patterns to generation capacity, improving energy
efficiency by 25–35%. Advanced AI algorithms facilitate demand response mechanisms, en-
abling buildings to intelligently interact with the grid, thereby optimizing energy exchange
and reducing peak loads by 15–25%. Blockchain technology increases the security and
transparency of energy transactions, strengthening trust in decentralized energy trading,
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with transaction speeds of less than 10 s and cost reductions of up to 30%. AI-based pre-
dictive maintenance improves system reliability by proactively detecting faults in energy
infrastructure, minimizing repair costs by 20–50% and reducing downtime by 40%. This
case study demonstrates a significant reduction in carbon footprint and energy expendi-
ture using AI-assisted automation and optimization strategies, reducing CO2 emissions
by 10–50 metric tons per year per building. IoT- and AI-enabled smart HVAC systems
dynamically adjust heating, ventilation, and air conditioning based on occupancy and
environmental conditions, increasing comfort while reducing energy waste by 25–45%.
AI-enabled edge computing deployment enables local processing of energy data, reducing
latency by 50–70% and reducing dependency on cloud infrastructure by 60%. Digital twins
are becoming increasingly important in energy management, enabling real-time simulation
and testing of efficiency measures before actual implementation, with efficiency gains of
15–30%. AI-enabled anomaly detection protects against energy theft, unauthorized access,
or system failures, reducing fraudulent energy consumption by up to 50%. The integration
of IoT, AI, and blockchain is aligned with global trends toward energy decentralization,
resilience, and sustainability, making it a key driver of the future smart energy ecosystem,
with the market expected to grow at a compound annual growth rate (CAGR) of 20–25%
over the next decade.

The convergence of AI-driven digital twins and IoT is transforming the development
of sustainable built environments [18]. Digital twins in construction and facility man-
agement are making significant contributions to sustainable development and smart city
development. The integration of IoT and AI with digital twins can help optimize energy
consumption, especially in achieving zero-energy buildings [19]. This focus on AI and
automation in manufacturing emphasizes their impact on Industry 4.0 and cyber–physical
systems. Emerging technologies in urban development include blockchain, cybersecurity,
and EEG-based systems for smart buildings [20]. Furthermore, data-driven strategies for
flood resilience and urban digital ecosystems are becoming increasingly important. Digital
technologies and AI contribute to sustainable development by improving energy efficiency
and resilience [21]. The integration of these advanced technologies strengthens both urban
infrastructure and industrial processes (Figure 5).
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The selection of IoT devices is important here, as there are simply many [22–25].
Commonly used to transmit data to remote locations via gateways are small IoT nodes
based on low-power Bluetooth (IEEE 802.15.1) and wireless sensor networks (WSN)
(IEEE 802.15.4) [26–30]. The main design challenges of WSN-based IoT systems (WSN-IoT)
include network ranges (within individual rooms with different wall configurations, com-
mon spaces, and the entire building, e.g., garage or maintenance area), energy efficiency,
bandwidth allocation, network durability, communication protocols, and advanced infras-
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tructure to support smart city applications (e.g., eHealth) [31,32]. AI techniques, including
machine learning (ML), serve as an optimization approach for WSN-IoT nodes imple-
mented in smart cities. Previous studies indicate that supervised learning algorithms
account foras much as 61% of solutions used in smart city applications, reinforcement
learning techniques account for 27% of applications, and unsupervised learning techniques
account for 12% of ML applications in IoT smart cities [33–36].

AI-based energy management in smart buildings plays a key role in balancing eco-
nomic efficiency and ecological sustainability. By optimizing energy consumption, AI
reduces operating costs while minimizing environmental impact. Intelligent systems ana-
lyze data in real time to adjust lighting, heating, and cooling, providing energy efficiency
without compromising comfort. AI-based predictive maintenance prevents unnecessary
energy waste and extends equipment life, thereby reducing both costs and resource con-
sumption. Renewable energy sources, such as solar and wind, are seamlessly integrated
with AI algorithms, maximizing their utilization while minimizing dependence on fossil
fuels. AI-based demand response systems adjust energy use during peak hours, reducing
costs and reducing the load on the power grid. Automated controls help businesses and
residents make data-driven decisions, promoting a culture of sustainability. Governments
and organizations are using AI’s capabilites to ensure compliance with energy regulations
while achieving cost savings. However, implementing AI systems requires careful consid-
eration of data privacy, cybersecurity, and ethical issues. A well-balanced approach to AI
in energy management allows smart buildings to thrive economically while supporting a
greener and more sustainable future.

4.1. Limitations and Challenges of Previous Studies and Our Own Approach

Previous studies have been found to have many shortcomings; hence, our aim is
to develop a unified evaluation model. Many previous studies on IoT applications for
AI-based building energy management have relied on small datasets, which has limited
their generalizability across building types and climates. A significant limitation is the lack
of real-time adaptability in AI models, as many of them rely on historical data without
dynamically adjusting to changing occupancy patterns and environmental conditions [37].
Previous studies have often assumed ideal network conditions, ignoring challenges such as
latency, bandwidth constraints, and dependencies on cloud computing that can impact AI
performance [38]. Energy savings reported in simulations or lab settings may not accurately
reflect actual energy reductions in real-world scenarios due to differences in occupant
behavior and external factors. The lack of standardized evaluation metrics makes it difficult
to compare the effectiveness of different AI-based approaches, leading to inconsistencies
in reported results. Few studies consider the long-term scalability and maintenance costs
of AI-based IoT solutions, which are key to widespread adoption in building energy
management [39,40]. Some studies do not consider interoperability issues between different
IoT devices and protocols, which can hinder seamless integration and data exchange for
effective energy management. The accuracy of AI-based energy predictions is often limited
by sensor failures, missing data, and measurement errors, leading to unreliable optimization
strategies [41]. Furthermore, many research efforts focus on algorithm development rather
than practical implementation, resulting in a gap between theoretical models and real-
world implementation in commercial and residential buildings [42]. Privacy and security
concerns associated with IoT-based energy management systems are often overlooked,
leaving potential gaps in data transmission and storage [43,44].

The identified challenges affect the results and how they are addressed in future
studies. Data issues such as sensor failure, missing values, and inconsistent readings
can affect another AI model, necessitating research to provide advanced data imputation
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techniques and anomaly exploitation. The scalability challenge arises when running AI
and IoT interfaces in many cases, requiring research on federated learning and edge AI
to ensure security that is maintained at runtime without being affected by disruptions.
Cyber threats are intelligent in themselves, compromising data integrity and privacy, which
prompts research to identify security frameworks based on blockchain and eliminate
threats to AI. High implementation costs can slow down adoption, highlighting the need
for future research based on cost-effective IoT hardware, open-source AI frameworks, and
financial assurance for efficient buildings. The interpretation and significance of the model
regarding issues of concern requires eXplainable AI (XAI) to help management understand
and verify decisions regarding AI attention. The compatibility issue can be introduced
by barriers to AI updates, which hinders the sharing of research on the application of
smart building technologies to industry services and government policies. Dynamic and
unpredictable occupant behavior affects energy optimization strategies, leading to the
emergence of research aimed at improving adaptive AI models that may fail to learn and
adapt to occupancy patterns. Limited interoperability between IoT devices from different
manufacturers has been confirmed, necessitating research on universal communication
protocols and the standardization of AI-driven devices to ensure system compatibility.
Possible disadvantages of the proposed method are as follows:

• Computational complexity: Integration requires advanced signal processing and AI
techniques, which may require significant computational resources, especially for
real-time processing in large buildings;

• Data sparsity and reconstruction errors: Compressive sensing relies on sparse signal
reconstruction, which can introduce errors if energy consumption patterns do not
satisfy sparsity conditions, potentially affecting accuracy;

• Scalability issues: While the proposed method optimizes energy monitoring, its perfor-
mance may degrade when applied in highly complex or multi-building environments
due to increased data volume and network congestion;

• Dependence on high-quality sensor data: The effectiveness of the proposed method
relies on high-resolution and accurately calibrated IoT sensors; noisy or faulty data
can reduce the performance of the AI model;

• Limited generalizability: The proposed approach may require extensive retraining or
tuning when implemented in buildings with significantly different energy consump-
tion patterns, limiting its adaptability;

• Cybersecurity and privacy concerns: Transmitting and processing energy data poses
risks of cyber attacks and data breaches, necessitating robust encryption and authenti-
cation mechanisms;

• Implementation costs: Implementing advanced AI-based energy management systems
can involve high upfront costs for sensor installation, data storage, and computing
infrastructure, making implementation difficult for smaller buildings;

• User acceptance and interpretability: Complex AI-based decision-making processes
may lack transparency, making it difficult for building managers to fully trust and
implement the system without clear interpretation and manual override options.

The proposed IoT-based energy management system is implemented in a real smart
building, and its performance is compared with baseline methods. The decision of the
building owner not to share the full dataset and complete ROI information for IoT building
energy management applications is driven by several factors. Sharing the full dataset
can expose sensitive operational data that could be exploited by competitors, affecting
a building’s competitive advantage in the energy management market. Full ROI disclo-
sure can expose proprietary strategies that companies use to optimize energy use, which
could undermine future profitability or market position. Because the data arepart of the



Energies 2025, 18, 1706 23 of 28

actual operational smart building, device owners may not feel comfortable disclosing all
performance metrics due to privacy and intellectual property concerns. Partial disclosure
of data through supplemental materials allows researchers to maintain transparency while
protecting commercially sensitive information. IoT energy management systems often rely
on proprietary algorithms and methodologies that are critical to the system’s competitive
advantage and are typically not shared in their entirety. The dissemination of partial data
ensures that the effectiveness of the system can still be assessed while protecting the strate-
gic interests of the parties involved. Providing only a portion of the dataset helps prevent
misuse of the information, which could be detrimental to future innovation in the field.
The decision to limit full disclosure is common practice in industries where intellectual
property and competitive advantage are key factors for market success.

4.2. Directions of Further Research

Future research should focus on developing more adaptive AI algorithms that can dy-
namically adjust to real-time occupancy patterns, weather conditions, and user preferences
to increase energy efficiency [45]. Exploring federated learning and edge computing can
help reduce dependence on cloud computing, improving response time and data privacy in
IoT-based energy management systems [46]. Research should also explore interoperability
frameworks that enable seamless integration of heterogeneous IoT devices, communication
protocols, and legacy building management systems [47]. Strengthening cybersecurity
measures through blockchain-based authentication and encrypted data transmission can
address privacy and security concerns in AI-based energy management. Further research
on XAI is needed to improve the transparency and trustworthiness of AI-based decision-
making for energy optimization. Developing standardized benchmarking metrics and
evaluations will enable fair comparisons of different AI-based IoT solutions across differ-
ent building types and climates [48]. Research should focus on AI systems with human
input that incorporate user feedback and behavioral analytics to create more personalized
and effective energy-saving strategies [49]. Exploring the role of digital twins in energy
management can enable real-time simulation and predictive analytics to optimize energy
use in smart buildings [50]. Exploring sustainable and energy-efficient IoT sensor technolo-
gies can help reduce the energy footprint of the IoT infrastructure itself [51]. Large-scale
pilot projects and case studies in different building environments should be conducted to
validate theoretical models and ensure practical feasibility in real-world applications [52].

The future is the next generation of IoT (NGIoT), which focuses on implementing
advanced and complex IoT ecosystems that integrate data science, 5G/6G, various AI/ML
technologies, and cybersecurity [53]. The observed challenges in integrating different
hardware and software components have led to the need for comprehensive and structured
NGIoT reference architectures with a modular and layered approach, including edge
computing, micro services, containerization, and orchestration (like ASSIST-IoT) [3]. This
approach allows for the separation of distinct functions and cross-functional capabilities,
as well as a framework for efficient planning, deployment, management, modernization,
and retirement of IoT systems [54]. This provides a structured and scalable foundation for
energy-efficient next-generation IoT ecosystems [55].

Integrating IoT applications for building energy management using AI poses several
challenges that need to be systematically addressed to ensure widespread adoption and
long-term sustainability. One major barrier is the high upfront costs, as implementing IoT
sensors, smart meters, and AI-based analytics requires significant investment. To overcome
this, policymakers and the private sector can provide financial incentives, subsidies, and
financing models such as energy as a service (EaaS) to reduce the upfront expense [56,57].
Limited scalability remains another issue, as many current IoT solutions are designed for
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specific building types and do not easily adapt to different infrastructures. Developing
modular and interoperable IoT systems can increase scalability by ensuring seamless
integration across environments. Similarly, the lack of universal standards for IoT devices
and AI algorithms creates interoperability challenges, leading to inefficiencies. Establishing
global protocols for IoT communication and AI decision-making can standardize operations,
ensuring cross-platform compatibility [58]. Concerns about data privacy and cybersecurity
are critical threats to IoT-based AI energy management. Given the vast amounts of sensitive
energy usage data being collected, ensuring encryption, blockchain-based security, and
strict access controls can mitigate these risks [59]. Additionally, bias in AI algorithms
can lead to suboptimal energy distribution, disproportionately impacting certain users or
regions. To address this, machine learning models that incorporate fairness need to be
developed to ensure unbiased and fair energy allocation. Energy inequality persists in
both developed and developing regions because not all communities have equal access
to smart energy solutions [60,61]. Expanding IoT infrastructure to underserved areas
through government and private sector collaboration can help bridge this digital divide.
Additionally, workplace mobility poses challenges to dynamic energy management because
changing occupancy patterns can affect real-time energy optimization. Adaptive AI-based
learning models can predict occupancy trends and adjust energy usage accordingly [62,63].
Another ethical challenge is decision-making regarding energy allocation, especially during
periods of peak demand or energy crises. A clear AI decision-making framework that
prioritizes fairness and efficiency must be implemented to ensure ethical distribution.
The reliance on cloud computing for AI processing also poses challenges, such as latency
and dependency on external servers. Edge computing and decentralized AI models can
reduce reliance on cloud infrastructure, thereby improving real-time decision-making. The
environmental impact of IoT devices is another concern, as the production and disposal
of sensors and batteries contribute to electronic waste. Developing energy-efficient IoT
hardware and sustainable recycling programs can minimize the ecological footprint of smart
energy systems. Regulatory and policy gaps further hinder widespread adoption, as many
regions lack clear guidelines for AI-based IoT energy management. Governments should
establish comprehensive regulations to guide the ethical and responsible implementation
of these technologies. Issues of user trust and acceptance also pose significant barriers,
as skepticism about AI-based energy management persists. Public awareness campaigns
and transparent decision-making regarding AI can increase trust and encourage adoption.
Furthermore, the lack of long-term research and ethical governance of AI poses a challenge
in ensuring that IoT and AI technologies remain sustainable and beneficial in the future.
Continued investment in interdisciplinary research and the development of AI ethics
frameworks will be essential for shaping responsible and equitable energy management
solutions. By addressing these challenges, IoT and AI can fully realize their potential to
optimize energy use, reduce costs, and support a more sustainable and intelligent energy
ecosystem in buildings.

5. Conclusions
AI-based IoT applications in office buildings significantly improve energy efficiency,

reduce costs, and minimize environmental impact. With continued advancements, AI-based
energy management systems will become the standard in modern, sustainable workplaces.

Challenges have been observed in the areas of improving sensor accuracy, AI adapt-
ability, and user training, which can improve system performance.

IoT applications for building energy management, enhanced by artificial intelligence
(AI), have the potential to transform how energy is consumed, monitored, and optimized,
especially in distributed energy systems. By using IoT sensors and smart meters, buildings
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can collect real-time data on energy usage patterns, occupancy, temperature, and lighting
conditions. AI algorithms then analyze this data to identify inefficiencies, predict energy
demand, and suggest or automate adjustments to optimize energy use. Integrating renew-
able energy sources, such as solar panels and wind turbines, into distributed systems uses
IoT-based monitoring to ensure maximum efficiency in energy generation and use. These
systems also enable dynamic energy pricing and load balancing, allowing buildings to par-
ticipate in smart grids by storing or selling excess energy. AI-based predictive maintenance
ensures that renewable energy systems, such as inverters and batteries, operate efficiently,
minimizing downtime. Case studies show how IoT and AI are driving sustainable develop-
ment by reducing energy consumption and carbon footprints in residential, commercial,
and industrial buildings. Blockchain and IoT can further secure transactions and data in
distributed systems, thereby increasing trust and scalability. The combination of IoT, AI,
and renewable energy sources is in line with global energy trends, promoting decentralized
and greener energy systems. The case study highlights that adopting IoT and AI for energy
management offers not only environmental benefits but also economic benefits, such as cost
savings and energy independence. The highest achieved accuracy was 0.8179 (RMSE 0.01).
The ROI achieved in our building was2.7 years. The overall effectiveness rating was 9/10;
thus, AI-based IoT solutions are a feasible, cost-effective, and sustainable approach to office
energy management.

AI-based energy management in smart buildings plays a key role in balancing eco-
nomic efficiency and ecological sustainability. By optimizing energy consumption, AI
reduces operating costs while minimizing environmental impact. A well-balanced ap-
proach to AI in energy management allows smart buildings to thrive economically while
supporting a greener and more sustainable future, without contradicting the latest con-
cepts and legislation in the fields of ecology and AI. Using AI-based decision-making and
advanced signal processing, the proposed method enables real-time energy optimization,
reducing waste and improving operational efficiency in smart buildings. Unlike traditional
NILM approaches that require high-frequency data collection, it allows for a reduced data
acquisition volume while maintaining high accuracy, leading to lower computational and
storage costs. The proposed approach effectively responds to dynamic energy demand
changes, demonstrating better adaptability compared to conventional methods that strug-
gle with real-time energy changes. The study highlights potential drawbacks, including
data sparsity issues, dependence on high-quality sensors, cybersecurity threats, and user
acceptance concerns that need to be addressed for wider implementation. The proposed
system outperforms traditional NILM techniques in terms of accuracy, efficiency, and gener-
alizability; however, improvements are still needed in interpretability and cost-effectiveness
for practical applications. This work contributes to the field of IoT-based energy manage-
ment by demonstrating an innovative AI-enhanced monitoring method that can support
sustainability efforts and improve energy efficiency in smart buildings.
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The following abbreviations are used in this manuscript:

AI Artificial intelligence
CNN Convolutional Neural Network
EPB Energy performance of buildings
EPBD Energy Performance of Buildings Directive
HVAC Heating, ventilation, and air conditioning
IoT Internet of Things
KPI Key performance indicator
LPWAN Low Power Wide Area Network
LSTM Longshort-term memory
ML Machine learning
NGIoT Next-Generation Internet of Things
NILM Non-Intrusive Intelligent Monitoring
RES Renevable energy sources
ROI Return on investment
WSN Wireless Sensor Network
XAI eXplainable artificial intelligence
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37. Olesiński, A.; Piotrowski, Z. An Adaptive Energy Saving Algorithm for an RSSI-Based Localization System in Mobile Radio

Sensors. Sensors 2021, 21, 3987. [CrossRef]
38. A Vision of the Future Internet. In NGI Project. 2020. Available online: https://www.ngiot.eu/ (accessed on 31 January 2025).
39. Nguyen-An, H.; Silverston, T.; Yamazaki, T.; Miyoshi, T. IoT traffic: Modeling and measurement experiments. IoT 2021, 2, 8.

[CrossRef]
40. Ali, O.; Ishak, M.K.; Bhatti, M.K.L.; Khan, I.; Kim, K.I. A Comprehensive Review of Internet of Things: Technology Stack,

Middlewares, and Fog/Edge Computing Interface. Sensors 2022, 22, 995. [CrossRef]
41. Fazeldehkordi, E.; Grønli, T.M. A Survey of Security Architectures for Edge Computing-Based IoT. IoT 2022, 3, 19. [CrossRef]
42. Dogra, A.; Jha, R.K.; Jain, S. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies.

IEEE Access 2020, 9, 67512–67547. [CrossRef]

https://doi.org/10.3390/su16177279
https://doi.org/10.1109/JIOT.2020.2970300
https://doi.org/10.1002/spe.2797
https://doi.org/10.1002/dac.4168
https://doi.org/10.1016/j.future.2019.11.022
https://doi.org/10.1016/j.autcon.2022.104192
https://doi.org/10.3390/su15043713
https://doi.org/10.3390/en17020436
https://doi.org/10.1109/JIOT.2020.2986110
https://doi.org/10.1109/TETC.2017.2671847
https://doi.org/10.1109/JIOT.2019.2956554
https://doi.org/10.1109/ACCESS.2019.2949878
https://doi.org/10.3390/jsan9020021
https://doi.org/10.3390/su12030899
https://doi.org/10.3390/s20247191
https://doi.org/10.3390/app10082944
https://doi.org/10.3390/s21123987
https://www.ngiot.eu/
https://doi.org/10.3390/iot2010008
https://doi.org/10.3390/s22030995
https://doi.org/10.3390/iot3030019
https://doi.org/10.1109/ACCESS.2020.3031234


Energies 2025, 18, 1706 28 of 28

43. Asheralieva, A.; Niyato, D. Optimizing Age of Information and Security of the Next-Generation Internet of Everything Systems.
IEEE Internet Things J. 2022, 9, 20331–20351. [CrossRef]

44. Sawicki, K.; Piotrowski, Z. The proposal of IEEE 802.11 network access point authentication mechanism using a covert channel.
In Proceedings of the 19th International Conference on Microwaves, Radar and Wireless Communications (MIKON), Warsaw,
Poland, 21–23 May 2012; Volume 1 and 2, pp. 656–659.

45. Amin, F.; Abbasi, R.; Mateen, A.; Ali Abid, M.; Khan, S. A Step toward Next-Generation Advancements in the Internet of Things
Technologies. Sensors 2022, 22, 8072. [CrossRef] [PubMed]

46. Trakadas, P.; Masip-Bruin, X.; Facca, F.M.; Spantideas, S.T.; Giannopoulos, A.E.; Kapsalis, N.C.; Martins, R.; Bosani, E.; Ramon, J.;
Prats, R.G.; et al. A Reference Architecture for Cloud–Edge Meta-Operating Systems Enabling Cross-Domain, Data-Intensive,
ML-Assisted Applications: Architectural Overview and Key Concepts. Sensors 2022, 22, 9003. [CrossRef]

47. Kumar, R.; Goyal, R. Modeling continuous security: A conceptual model for automated DevSecOps using open-source software
over cloud (ADOC). Comput. Secur. 2020, 97, 101967. [CrossRef]

48. 5G-PPP Software Network Working Group. Cloud-Native and Verticals’ Services; 5G-PPP Software Network Working Group:
Heidelberg, Germany, 2019.

49. Ramadan, R.A. Internet of things dataset for home renewable energy management. Data Brief. 2024, 53, 110166. [CrossRef]
50. Chen, Y.Y.; Lin, Y.H.; Kung, C.C.; Chung, M.H.; Yen, I.H. Design and Implementation of Cloud Analytics-Assisted Smart Power

Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes. Sensors
2019, 19, 2047. [CrossRef]

51. Ai, S.; Chakravorty, A.; Rong, C. Household Power Demand Prediction Using Evolutionary Ensemble Neural Network Pool with
Multiple Network Structures. Sensors 2019, 19, 721. [CrossRef]

52. Ullah, A.; Haydarov, K.; Ul Haq, I.; Muhammad, K.; Rho, S.; Lee, M.; Baik, S.W. Deep Learning Assisted Buildings Energy
Consumption Profiling Using Smart Meter Data. Sensors 2020, 20, 873. [CrossRef]

53. Singh, N.; Elamvazuthi, I.; Nallagownden, P.; Ramasamy, G.; Jangra, A. Routing Based Multi-Agent System for Network
Reliability in the Smart Microgrid. Sensors 2020, 20, 2992. [CrossRef]

54. Aguiar-Pérez, J.M.; Pérez-Juárez, M.Á. An Insight of Deep Learning Based Demand Forecasting in Smart Grids. Sensors 2023, 23,
1467. [CrossRef] [PubMed]

55. Moreno Escobar, J.J.; Morales Matamoros, O.; Tejeida Padilla, R.; Lina Reyes, I.; Quintana Espinosa, H. A Comprehensive Review
on Smart Grids: Challenges and Opportunities. Sensors 2021, 21, 6978. [CrossRef] [PubMed]

56. Faraji Mehmandar, M.; Ghobaei-Arani, M.; Shakarami, A. A cost-aware IoT application deployment approach in fog computing.
Clust. Comput. 2025, 28, 199. [CrossRef]

57. Chen, L.J.; Saraswat, S.; Ching, F.S.; Su, C.Y.; Huang, H.L.; Pan, W.C. Development and implementation of Eco Decibel: A low-cost
and IoT-based device for noise measurement. Ecol. Inform. 2025, 85, 102968.

58. Mir, F.; Meziane, F. Scalability Analysis of the UDCOPA Protocol in Large and Massive IoT Environments. In Proceedings of the
2024 7th International Conference on Information Science and Systems, Edinburgh, UK, 14–16 August 2024; pp. 73–82.

59. Ngo, D.M.; Lightbody, D.; Temko, D.; Murphy, C.C.; Popovici, E.M. Enhancing Security and Scalability in IoT Networks Applying
Blockchain Technology. In Proceedings of the Cooperative Design, Visualization, and Engineering 2024, Valencia, Spain, 15–18
September 2024; pp. 265–277.

60. Sanahmadi, A.; Abdollahi Azgomi, M.; Goudarzi, S.; Amin Haji Hosseini, M. Mobility-aware modeling and evaluation of IoT
systems using stochastic reward nets. Int. J. Commun. Syst. 2024, 37, 17.

61. Fazio, P.; Mehic, M.; Voznák, M. Load Monitoring and Appliance Recognition Using an Inexpensive, Low-Frequency, Data-to-
Image, Neural Network, and Network Mobility Approach for Domestic IoT Systems. IEEE Internet Things J. 2024, 11, 13961–13979.
[CrossRef]

62. Huang, G.; Ullah, I.; Huang, H.; Kim, K.T. Predictive mobility and cost-aware flow placement in SDN-based IoT networks:
AQ-learning approach. J. Cloud Comput. 2024, 13, 26. [CrossRef]

63. Ajith Kumar, S.P.; Kumar Thakur, H.; Datta Gupta, K.; Kumar Sharma, D. SMART: Secured and Mobility Aware Routing
Technique for Opportunistic IoT Network in Smart Cities. J. Mob. Multimed. 2024, 20, 335–358.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JIOT.2022.3173912
https://doi.org/10.3390/s22208072
https://www.ncbi.nlm.nih.gov/pubmed/36298422
https://doi.org/10.3390/s22229003
https://doi.org/10.1016/j.cose.2020.101967
https://doi.org/10.1016/j.dib.2024.110166
https://doi.org/10.3390/s19092047
https://doi.org/10.3390/s19030721
https://doi.org/10.3390/s20030873
https://doi.org/10.3390/s20102992
https://doi.org/10.3390/s23031467
https://www.ncbi.nlm.nih.gov/pubmed/36772509
https://doi.org/10.3390/s21216978
https://www.ncbi.nlm.nih.gov/pubmed/34770285
https://doi.org/10.1007/s10586-024-04873-x
https://doi.org/10.1109/JIOT.2023.3340423
https://doi.org/10.1186/s13677-024-00589-w

	Introduction 
	Materials and Methods 
	Dataset 
	Computational Methods 

	Results 
	Discussion 
	Limitations and Challenges of Previous Studies and Our Own Approach 
	Directions of Further Research 

	Conclusions 
	References

