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Abstract: The variability of renewable energy sources, storage limitations, and fluctuations
in residential demand affect the reliability of sustainable energy systems, resulting in
energy deficits and the risk of service interruptions. Given this situation, the objective of
this study is to diagnose and optimize the reliability of a residential microgrid based on
photovoltaic and wind power generation and battery energy storage systems (BESSs). To
this end, genetic algorithms (GAs) and ant colony optimization (ACO) are used to evaluate
the performance of the system using metrics such as loss of load probability (LOLP),
loss of supply probability (LPSP), and availability. The test system consists of a 3.25 kW
photovoltaic (PV) system, a 1 kW wind turbine, and a 3 kWh battery. The evaluation is
performed using Python-based simulations with real consumption, solar irradiation, and
wind speed data to assess reliability under different optimization strategies. The initial
diagnosis shows limitations in the reliability of the system with an availability of 77%
and high values of LOLP (22.7%) and LPSP (26.6%). Optimization using metaheuristic
algorithms significantly improves these indicators, reducing LOLP to 11% and LPSP to
16.4%, and increasing availability to 89%. Furthermore, optimization achieves a better
balance between generation and consumption, especially in periods of low demand, and
the ACO manages to distribute wind and photovoltaic generation more efficiently. In
conclusion, the use of metaheuristics is an effective strategy for improving the reliability and
efficiency of autonomous microgrids, optimizing the energy balance and operating costs.

Keywords: renewable energy; microgrid reliability; genetic algorithm (GA); ant colony
optimization (ACO); battery energy storage system (BESS); loss of load probability
(LOLP); loss of supply probability (LPSP); metaheuristic optimization; energy management;
stochastic modeling

1. Introduction
The current energy crisis is driven not only by dependence on fossil fuels, but also by

the urgent need to transition to a sustainable and decarbonized energy system. According
to the 2030 Agenda, it is essential to change the energy paradigm and promote the use
of non-polluting renewable energy sources, as well as to significantly improve efficiency
and generation capacity. In this context, the challenge posed by fossil fuels, which is
addressed in SDG 7 (Affordable and Clean Energy), is part of the energy transition concept,
which aims to replace the current fossil fuel-based model with a sustainable system that
aims to maintain ecological balance and ensure a cleaner energy future [1]. In recent
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years, the use and development of microgrids have increased significantly, becoming an
efficient solution for promoting the consumption of renewable energy and improving the
reliability of electrical systems. A microgrid is a localized energy system that integrates
distributed generation, energy storage, controllable loads, and, in some cases, microturbines.
It can be connected to the main grid or operate in isolation, providing resiliency and
optimizing energy management [2]. These networks integrate various energy sources,
such as renewable generation, storage systems, loads, and microturbines, with the goal of
optimizing energy management and making complementary use of available resources [3].

Solar photovoltaic and wind power have gained prominence in power generation due
to their abundance and technological advances. Their adoption has grown rapidly, driving
the energy transition and reducing carbon emissions in electrical systems [4]. However, the
intermittent nature of these renewable sources poses challenges to the stability of supply. To
counteract this variability, energy storage systems (ESSs), especially battery energy storage
systems (BESSs), have been proposed to balance electricity supply and demand. Their
implementation has improved the reliability and sustainability of the electrical system by
ensuring a more stable flow of energy [5]. Based on these advances, residential microgrids
have emerged as an efficient solution for integrating renewable energy generation with
battery storage. These infrastructures operate independently or are connected to existing
power grids, increasing system resilience and facilitating the transition to a more sustainable
and secure energy model [6].

However, the inherent variability of these sources, limited storage capacity, and
the seasonal and hourly variability of residential demand continue to compromise the
reliability of the sustainable energy system, creating periods of energy deficit and affecting
the availability of supply. Therefore, their intermittency poses challenges to the economic
stability and reliability of the supply [7].

Consequently, one of the main challenges in the design and operation of microgrids is
to ensure an optimal balance between energy generation, storage, and consumption. To
achieve this, it is essential to minimize the loss of load probability (LOLP) and optimize the
implementation and operating costs [8]. In addition, the operation of microgrids requires
continuous diagnosis and optimization due to various factors affecting their performance.
Among the main factors affecting the efficiency and stability of a microgrid are changes
in energy demand patterns, which may be due to population growth, adoption of new
technologies, and seasonal variations [9].

Similarly, fluctuations in renewable energy generation due to changes in solar radi-
ation and wind speed can affect the stability of the system. Another critical aspect is the
degradation of storage systems, which reduces the autonomy of the microgrid and affects
its operational reliability [10]. In addition, technological advances and the development of
new optimization strategies offer the opportunity to improve efficiency and reduce costs,
but they also require constant updating and adaptation of existing systems. Traditional
configurations may not be sufficient to cope with these fluctuations, so advanced optimiza-
tion strategies must be implemented to diagnose and determine the optimal capacity of the
microgrid [9].

Traditional microgrid sizing techniques typically include the peak load method, which
sizes generation and storage according to the expected maximum demand, with the goal
of ensuring supply during critical conditions, but with the risk of oversizing and high
costs [11]. The average load method, which is based on average consumption, reduces
costs compared to the previous method but may compromise reliability in the face of
peak demand. The energy balance method seeks a balance between production and
consumption over a given period, optimizing the use of renewable energy, although it
may require conservative sizing of backup systems. The code and standard method ensure



Processes 2025, 13, 740 3 of 23

compliance with regulatory requirements but are not always optimal from an economic
and operational standpoint. Finally, the reliability analysis method uses metrics such as
LOLP and Expected Energy Not Supplied (EENS) to improve system reliability, although
its implementation is complex and costly.

On the other hand, different optimization algorithms are used [11], which are divided
into deterministic, metaheuristic, and those based on artificial intelligence and machine
learning. Deterministic algorithms, such as linear programming (LP), nonlinear program-
ming (NLP), dynamic programming (DP), and mixed integer linear programming (MILP),
provide exact solutions when accurate data are available, although they can be computa-
tionally expensive for problems with multiple variables and constraints [12]. Algorithms
based on artificial intelligence and machine learning, such as artificial neural networks
(ANN) and reinforcement learning (RL), can predict consumption and generation patterns
with high accuracy [13]. However, they require large amounts of data for training and
validation, which can limit their applicability [14]. Metaheuristic algorithms have proven
to be effective tools in power system optimization because they can find optimal solutions
to complex and nonlinear problems.

Among them, genetic algorithm (GA) and ant colony optimization (ACO) stand out
for their applicability to microgrid sizing [15]. GA uses principles of biological evolution to
optimize the distribution of energy resources, while ACO models the behavior of ants to
find optimal routes in network planning. Both algorithms improve system reliability by
optimizing resource allocation and minimizing service interruptions.

In [16], a robust formulation of multi-objective two-stage optimization with stochastic
modeling is proposed to improve the operation of active distribution systems with demand
response. While the stochastic approach accounts for uncertainty, it does not account for
real-time adaptability. However, the study by [17] proposes an optimization approach for
renewable microgrids using GA and Model Predictive Control (MPC). A system consist-
ing of photovoltaic and wind generation, fuel cells, and battery storage was optimized,
considering power flow constraints and battery state of charge. The main objective was
to minimize the Cost of Energy (COE), the loss of supply probability (LPSP), and the Net
Present Cost to guarantee the technical and economic viability of the system.

For their part, ref. [5] propose an optimization approach for the sizing of renewable
energy systems with battery storage and fuel cell electrolyzers. They use Particle Swarm
Optimization (PSO) and GAs to optimize solar and wind generation capacity, storage, and
hydrogen conversion, considering the nonlinearity of the problem. The results show a
33–35% cost reduction and a 16–20% increase in demand coverage compared to hydrogen-
only systems.

In another approach, ref. [18] uses an optimization algorithm based on multilayer ant
colonies to improve energy planning in autonomous microgrids. This algorithm manages
to reduce energy consumption by 5% compared to PSO. In [19], a dynamic programming
algorithm based on ACO is developed to reduce costs and improve operational reliability.
By optimizing the loading and unloading of storage systems using LCOE as a reference, it
is possible to reduce the total cost of generation and increase the profitability of the system.

However, the studies do not directly use reliability metrics to determine the optimal
sizing and configuration of hybrid microgrids that combine photovoltaic (PV), wind, and
BESS generation. To address this, GA is used for its efficiency in solving complex nonlinear
optimization problems, while ACO is selected for its adaptability in optimizing operational
scheduling. Both could contribute to a given problem from different perspectives. As a
result, the following research gaps were identified:

• The lack of integration of reliability metrics (LOLP, EENS) in the optimal sizing and
configuration of hybrid microgrids.
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• Limitations of AI-based optimization algorithms due to the need for large amounts of
data for training and validation.

• Existing methods cannot adapt to real-time variations in demand and generation.
• Proposed optimization techniques have limited scalability and have not been validated

with real data.

In response to this need, the objective is to diagnose and optimize the reliability of
a residential microgrid based on PV, wind, and BESS using GA and ACO, evaluating its
performance in terms of probability of load loss, availability, and cost. The contributions
are as follows:

• It incorporates reliability metrics into the optimization process to improve the stability
of the microgrid.

• It develops a hybrid optimization model for renewable microgrids that considers
multiple energy sources and storage technologies and uses real data.

• It also introduces adaptive optimization strategies to cope with fluctuations in demand
and renewable energy generation.

• It also improves economic viability by minimizing costs and ensuring optimal
system performance.

Section 2 describes the methodology used, including the modeling of the microgrid
and the implementation of the optimization algorithms. Then, Section 3 presents the
results obtained and a comparative analysis between the evaluated configurations. Fi-
nally, Section 4 discusses the implications of the results and draws conclusions about the
effectiveness of metaheuristic algorithms in optimizing residential microgrids.

2. Materials and Methods
Figure 1 shows the methodology used to model the residential microgrid. First,

photovoltaic and wind generation are evaluated. Next, the BESS is modeled, evaluating
its state of charge (SOC) and operating limits. Similarly, a power balance is performed,
analyzing total demand, available energy supply, and energy not supplied (ENS). Next,
in the reliability phase, failures are modeled using the Mean Time to Failures (MTTFs),
and metrics such as LOLP, loss of supply probability (LPSP), and system availability
are evaluated. Finally, optimization is performed using GA and ACO, for which fitness
functions, operational constraints, and convergence criteria are defined to improve the
reliability and efficiency of the system.

Figure 2 shows the architecture of a hybrid energy generation and storage system
installed in a residential building to evaluate and analyze its performance. The system
integrates a 1 kW wind turbine, a 3 kWh BESS, and a 3.30 kW photovoltaic system. The
energy generated by these sources is managed through a direct current (DC) bus, where it
is regulated by alternating current (AC) and direct current (DC) inverters, allowing it to
be used in the electrical loads of the house. In the event of an energy deficit, the system
is designed to receive energy from the distribution system without returning any surplus
to it.

2.1. Renewable Energy Generation Modeling

To model renewable energy generation and energy balance, real data on estimated
residential demand are combined with environmental variables such as solar irradiance
and wind speed. These parameters provide an accurate estimate of the system’s energy
production and ability to meet demand, as shown in Figure 3. D(t) was collected with
a smart meter and then extracted for a computer, while the meteorological data were
extracted from the NRL [20].
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Table 1 shows the main parameters of the generation components of the photovoltaic,
wind, and BESSs, such as power, efficiency, and operating limits. In addition, their descrip-
tions, reference values, and units are detailed to perform the modeling and simulation of
the residential hybrid microgrid.
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Table 1. Parameters for photovoltaic, wind power generation, and battery energy storage
systems (BESSs).

Category Variable/
Parameter Description Values Units

Photovoltaic
Generation

Ghour(t) Solar irradiance - W/m2

P_max Maximum power 550 W
A Effective area of solar panels 2.582 m2

ηPV Efficiency of PV system 21 %

Wind Power
Generation

V(t) Wind speed - m/s
ρ Air density 1225 kg/m3

Vcut-in Minimum turbine operating speed 2.5 m/s
Vcut-out Maximum turbine operating speed 45 m/s
Vrated Nominal turbine speed 12 m/s
Prated Nominal turbine power 1 kW
Arotor Effective rotor area 2.83 m2

State of Charge
(SOC)

Cp Power coefficient - Dimensionless
Pchg(t) Battery charge power - kW
Pdchg(t) Battery discharge power - kW
Cbess Total battery capacity 3 (Base) kWh
ηc Charge efficiency 0.9 Dimensionless
ηd Discharge efficiency 0.9 Dimensionless

BESS
SOCmin Minimum allowed SOC 0.2 Dimensionless
SOCmax Maximum allowed SOC 0.9 Dimensionless
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2.1.1. Photovoltaic (PV) Power Generation

Photovoltaic energy production is modeled using Equation (1), which uses solar
irradiance, the effective area of the panels, the efficiency of the photovoltaic system, and
the total number of solar panels [21].

PPV(t) = Ghour(t) · Apanel · ηPV · Npv (1)

where Ghour(t) is the solar irradiance in W/m2 integrated over time t.
Apanel is the effective area of the solar panels (in m2).
ηPV is the efficiency of the PV system, according to the manufacturer Tensite, which

is 21%.
NPV is the total number of photovoltaic panels.
The total energy produced by the photovoltaic panels (EPV) in one period is calculated

according to Equation (2).
EPV = ∑T

t=1 PPV(t) (2)

2.1.2. Wind Power Generation

The power generated (Pwind,unit(t)) by a wind turbine is modeled by its power curve
according to Equation (3) [22].

Pwind, unit(t) =


0, i f V(t) < Vcut-in o V(t) > Vcut-out

Prated, i f Vrated ≤ V(t) ≤ Vcut-out

0.5 · ρ ∗ Arotor · Cp · V(t)3, i f Vcut-in ≤ V(t) < Vrated

(3)

where V(t) is the wind speed in m/s at time t.
Vcut-in and Vcut-out are the minimum and maximum operating speeds of the

wind turbine.
Prated is the rated power of the turbine in kilowatts (kW).
ρ is the density of air in kg/m3.
Arotor is the rotor area in square meters.
Cp is the power coefficient, which is a dimensionless parameter. It represents

the fraction of the kinetic energy of the wind that a wind turbine can convert into
mechanical energy.

To find the total power generated (Pwind(t)) by a given number of wind turbines at
time t, Equation (4) is used. Where Nwt is the number of turbines in operation.

Pwind(t) = Nwt · Pwind, unit(t) (4)

In this way, the energy generated by the turbines in a period (Ewind) is expressed by
Equation (5).

Ewind =
T

∑
t=1

Pwind(t) (5)

2.1.3. Calculating the Total Energy Produced

In this way, the total power generated (Pgen(t)) in the system is the sum of both
contributions and is expressed by Equation (6).

Pgent(t) = Ppv(t) + Pwind(t) (6)
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Therefore, the total energy produced in T periods is shown in Equation (7).

Egent =
T

∑
t=1

Pgent(t) (7)

2.2. Storage System Modeling (BESS)
2.2.1. State of Charge (SOC) Calculation

SOC is a parameter that indicates the state of charge of the battery at a given time. It
measures the energy stored in the battery in relation to its total capacity and is expressed in
Equation (8) [23].

SOC(t+1) = SOCt +
ηc · Pchg(t)−

Pdchg(t)
nd

Cbess
(8)

where SOC(t+1) is the state of charge at time t + 1 (a dimensionless value between 0 and 1).
SOC(t) is the initial state of charge at time t.
ηc is the charge efficiency (dimensionless, between 0 and 1, with a value of 0.9).
ηd is the discharge efficiency (dimensionless, between 0 and 1; in this case, it is taken

as 0.9).
Pchg(t) is the battery charge power at time t in kW.
Pdchg(t) is the battery discharge power at time t in kW.
Cbess is the total battery capacity in kWh.

2.2.2. SOC Operating Limits

Equation (9) states that the battery back-up level should not fall below a minimum
limit nor exceed a maximum limit that ensures the safe and efficient operation of the energy
storage system.

SOCmin ≤ SOC(t) ≤ SOCmax (9)

A minimum SOC of 20% is set to avoid deep discharge, which could damage the
battery. Similarly, the maximum SOC is 90% to avoid overcharging and extend battery life.

2.3. Power Balance
2.3.1. Assessment of the Overall Demand

The total hourly residential energy demand (D(t)) is the amount of electricity consumed
in the dwelling during each hour of the day, expressed in kilovolt-hours (kWh). This
demand varies according to the use of electrical appliances, lighting, and air conditioning,
as well as seasonal factors and user habits, as shown in Figure 2.

2.3.2. Energy Supply Calculation

The objective of energy supply is to ensure a continuous and stable flow of electricity
to meet consumer demand. When generation plus storage meets demand, as shown in
Equation (10), the relationship is fulfilled [24].

P(sup) = D(t) (10)

2.3.3. Calculation of Energy Not Supplied (ENS)

If generation plus storage does not meet demand, the energy not supplied (ENS) is
shown in Equation (11) [24].

ENS(t) = D(t)−
(

Ppv(t) + Pwind(t) + Pbess(t) (11)
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Therefore, the total energy not delivered (TENS) is shown in Equation (12).

EENS =
T

∑
t=1

ENS(t) (12)

Expected Energy Not Supplied (EENS) is a metric used to analyze the reliability of
electrical systems and represents the energy that a system cannot deliver to consumers due
to outages, generation constraints, or distribution system limitations.

2.3.4. Failure Modeling and Reliability

For renewable energy systems, Mean Time to Failure (MTTF) is defined as the average
time without generation, i.e., the probability that a system will not generate electricity at a
given time. In this sense, the probability density function of the time without generation
can be modeled by a Weibull distribution according to Equation (13) [25].

f (t) =
β

η

(
t
η

)β−1
e−( t

n )
β

(13)

where η is the characteristic of a lifetime.
β is the shape parameter.

2.3.5. Assessing System Availability

System Availability (A) is an indicator that reflects the proportion of time a renew-
able energy generation system is operating and producing electricity relative to the total
assessment time. This measure includes both periods of active generation and intervals of
non-generation due to factors such as environmental conditions, scheduled maintenance,
or grid constraints, and is shown in Equation (14) [26].

A =
MTTF

MTTF + MTTR
(14)

While MTTR in conventional systems measures the speed with which a failure is
resolved, in renewable energy it captures periods of no generation, whether caused by
outages, maintenance, or natural conditions.

2.4. Reliability Metrics
2.4.1. Calculate Loss of Load Probability (LOLP)

The LOLP measures the probability that the microgrid will experience an energy
shortage in each period, as shown in Equation (15). It is a value between 0 and 1, with
a LOLP close to 0 indicating that the microgrid can almost always meet demand, while
a high LOLP indicates that the microgrid frequently experiences periods of insufficient
generation [27].

LOLP =
Hours with ENS > 0

Total Hours
(15)

2.4.2. Loss of Power Supply Probability (LPSP)

The LPSP is an indicator that measures the amount of unmet energy demand in an
electrical system, especially in microgrids with intermittent renewable resources, as shown
in Equation (16) [28].

LPSP =
∑T

t=1 ENS (t)

∑T
t=1 D(t)

(16)
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2.4.3. Calculating the “Availability” of the System

The availability of an electrical system represents the probability that the microgrid
can meet the demand at a given time. It is calculated as the complement of the LOLP
according to Equation (17) [29].

Availability = 1 − LOLP (17)

2.5. Optimization Simulation

The objective is to optimize the design of a hybrid microgrid with photovoltaic (VPN),
wind (NWT), and energy storage (BESScap) generation to minimize energy deficit and cost
and maximize reliability and efficiency.

2.5.1. Definition of Fitness Function

The fitness function (ff) is an evaluation criterion used to measure the quality of
different configurations of an energy system, considering several performance factors. This
function is particularly useful for optimizing microgrids or renewable energy generation
systems, as shown in Equation (18) [30].

f f = w1 ·
(

1 − ∑T
t=1 ENS(t)

∑T
t=1 D(t)

)
+ w2 · nsyst − w3 ·

∑T
t=1 Eexc(t)

∑T
t=1 Pgen(t)

− w4 ·
Ctotal
Cmax

(18)

where ENS(t) is the energy not supplied at time t.
D(t) is the total energy demand at time t.
ηsyst is the system efficiency.
Eexc(t) is the excess energy not used at time t.
Pgen(t) is the total energy produced at t, including both technologies.
Ctotal is the total cost of the system.
Cmax is the maximum allowed cost.
w1, w2, w3 and w4 are the weights assigned to each criterion.

2.5.2. Assessment of Operational Constraints

Operational constraints define the limits and conditions under which an energy storage
and delivery system can operate. These constraints are determined by three main factors:
the storage capacity constraint (Equation (19)), the loading and unloading constraint
(Equation (20)), and the energy delivery constraint (Equation (21)).

Ebat,min ≤ Ebat(t + 1) ≤ Ebat, max (19)

ηg · Eexc(t) ≤ BESScap − Ebat(t) (20)

Esupp(t) ≤ Ereg(t) (21)

2.6. Implementation of Genetic Algorithm (GA)
2.6.1. Initialization and Population Generation

The initialization process of the GA is carried out by generating an initial population
with random configurations of the parameters VPN, NWT, and BESScap, ensuring that they
are within the predefined limits [30]:

2 ≤ VPN ≤ 20 → number of solar panels (550 W each).
1 ≤ NWT ≤ 2 → number of wind turbines (1000 W each).
1 ≤ BESScap ≤ 10 → capacity of the battery storage system (kWh).
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This procedure guarantees diversity in the initial population and allows efficient
exploration of the search space within the given bounds.

2.6.2. Fitness Evaluation and Selection

The purpose of this procedure is to perform an exhaustive evaluation of everyone
involved. For this purpose, a rigorous calculation of the fitness function (f f) is imple-
mented. This function allows to precisely quantify the quality of each solution within
the search space, thus determining its performance with respect to the specific problem.
Mathematically, this function is defined by Equation (22) [31].

Fx = f itnessx (22)

In this context, F(x) represents the fitness value of individual x, calculated according
to the established objectives (reliability, efficiency, cost, wasted energy), with the aim of
minimizing or maximizing, depending on the case of everyone.

In the next phase of the process, the tournament technique is used to select the best
individuals. The tournament is a probabilistic model that allows for the random selection
and evaluation of k individuals from a given population, selecting the most suitable (Xbest),
as shown in Equation (23) [31].

Xbest =
argmax

i ∈ S
F(Xi) (23)

In the context of the tournament, the variable S represents the group of participating
individuals made up of k elements. This increase in the probability of selecting solutions
with high F(x) occurs without completely excluding optimal solutions, thus guaranteeing
the preservation of diversity.

2.6.3. Crossing and Mutation

In the field of genetics, hybridization and mutation are fundamental processes in the
reproduction and diversification of species.

In this context, crossing represents the integration of two parental solutions (p1, p2) to
produce offspring. Mathematically, this process can be described by Equation (24) [31].

c1 = αp1 + (1 − α)p2

c2 = αp2 + (1 − α)p1
(24)

where α ∈ [0, 1] and is a factor that controls the mixing of the features.
c1 and c2 are the values generated because of this combination.

2.6.4. Stop Criteria

The mutation is implemented with the aim of introducing an element of randomness
that allows for a systematic exploration of the search space. This modification is modeled
by Equation (25) [31].

x′ = x + ∆ (25)

where x is defined as the original individual.
On the other hand, ∆ ∼ N (0, σ2) represents a random (normal Gaussian) perturbation

that subtly modifies x.
The population is then replaced by the fittest individuals (xelite) according to the

function F(x). The following population can be included by applying Equation (26) [31].

Pnext = Pelite ∪ Pnew (26)
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where Pelite is the optimal fraction of current solutions.
Pnew are the new individuals generated by crossbreeding and mutation.
Finally, the stopping criterion is implemented when there is no significant im-

provement or when the maximum number of generations is reached, as shown in
Equation (27) [31].

Insigni f icant improvements : i f
∣∣∣F(t)

best − F(t−1)
best

∣∣∣ < ϵ during k generations

Maximum generations : t ≥ tmax
(27)

2.7. Implementation of Ant Colony Optimization Algorithm (ACO)
2.7.1. Construction of Solutions

In the model proposed by ACO, the heuristic parameter ηij is an important element in
the decision-making process of the ants during the construction of solutions. This heuristic
is intrinsically linked to the costs or values associated with the potential options between
two nodes, i and j, as illustrated in Equation (28) [32].

ηij =
1

1 + fij
(28)

where fij represents the value or cost associated with the option between nodes i and j. In
this context, the weight of the fij heuristic influences how the ants make decisions, favoring
optimal solutions.

2.7.2. Pheromone Deposition, Evaporation, and Algorithm Convergence

Once the construction of their solution is complete, the ants deposit pheromones on the
paths used, where the amount of pheromone deposited is an indicator of the quality of the
solution. High-quality solutions, defined as those with low f_ij (according to the weighting
efficiency criterion), contribute to the updating of pheromones, thus strengthening the
optimal paths for future generations of ants. This process ensures that the ants continue
to select these paths, leading to a continuous improvement of the solution over time.
Pheromone updating is performed using Equation (29) [33].

τij(t + 1) = (1 − ρ) · τij(t) + ∆τij(t) (29)

where τij(t) represents the amount of pheromone present on the path between nodes i and j
at time t.

ρ corresponds to the evaporation factor, which is in the interval 0 < ρ < 1.
∆τij(t) denotes the amount of pheromone deposited by the ants on the path i → j and

is generally inversely related to the fixed cost, but for example, ∆τij(t) = 1/fij.
This pheromone update procedure ensures that the paths leading to higher-quality

solutions are strengthened, increasing the probability that the ants will follow these paths
in future iterations of the algorithm.

The optimization of the hybrid microgrid was implemented in Python 3.12.7 using
pandas for data manipulation, deap for GA, networkx for ACO, and itertools for exhaustive
search. A base case (evaluated system) with three 550 W solar panels, a 1 kW wind turbine,
and a 3 kWh BESS was created (Table 1), and the data detailed in Figure 3 were structured.
The simulation was defined in the simulate configuration() function, which calculates EENS,
LOLP, and LPSP using vectorized operations in numpy to improve performance. In GA,
the individuals represent generation and storage configurations optimized by tournament
selection (tools.selTournament()), blend crossover (cxBlend, α = 0.5), and Gaussian mutation
(mutGaussian(mu = 0, sigma = 1)). The evolutionary process runs 20 generations with an



Processes 2025, 13, 740 13 of 23

initial population of 50 individuals and evaluates the fitness function evaluate(), which calls
simulate_configuration() and minimizes the EENS.

For the ACO, a graph was modeled in networkx, where each node represents a con-
figuration, and the pheromones on the edges are updated according to the quality of the
solution found. One hundred iterations were run, generating random solutions with ran-
dom.uniform() and reinforcing the best routes with an evaporation factor of 10%. In the
exhaustive search, itertools.product() generated all possible combinations within a given
range, and for each of them the simulate_configuration() function was evaluated. The results
were plotted using matplotlib.

3. Results
3.1. Microgrid Evaluation and Diagnosis
3.1.1. Description of Initial Configurations

Table 2 shows the technical capabilities and costs of the components of the evaluated
system, which includes photovoltaic (PV) panels, a wind turbine, and a BESS. The photo-
voltaic system has a generating capacity of 3.30 kW (6 panels of 550 W), the wind turbine
has a capacity of 1 kW, and the battery storage system has a capacity of 3 kWh. In terms of
cost, the photovoltaic system costs USD 3250, the wind turbine costs USD 1200, and the
battery system costs USD 1500, which means that the total cost of the complete system is
USD 5950.

Table 2. The capability and costs of the system are being evaluated.

Category Capacity (kW/kWh) Cost (USD)

PV 3.25 3250
Wind 1 1200
BESS 3 1500

3.1.2. Reliability Assessment

Figure 4 shows the analysis of the reliability metrics of the microgrid, which consists
of a 3.25 kW photovoltaic system, a 1 kW wind turbine, and a 3 kWh BESS. The LOLP (loss
of load probability) indicator has a value of 0.22, representing a 22% probability of load loss
in the system. The LPSP (probability of power supply loss) indicator has a value of 0.26,
reflecting a 26% probability of power supply loss. Finally, the availability of the system is
77%, meaning that it operates correctly 77% of the time.
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3.1.3. Dynamic Performance of the Microgrid

Analysis of the Average Daily Load (ADL) throughout the year shows fluctuations
between 0.2 and 0.8, as shown in Figure 5. During the first quarter, the ADL remains at low
or moderate levels, possibly due to lower generation or higher consumption. Between April
and September, the average SOC increases and reaches maximum values at different times,
which could be related to a greater availability of renewable energy. However, during the
same period, abrupt drops in SOC are observed, indicating variability in generation or
consumption. From October to December, the average SOC decreases again, possibly due
to limitations in generation or an increase in demand. The daily variability of SOC shows
that storage management is not constant and is due to differences in renewable energy
generation or consumption profiles.
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Similarly, Figure 6 shows the balance between charge (Pchg) and discharge (Pdchg) in
the monthly analysis, with similar average values throughout the year. However, seasonal
variations can be observed. The average charge is higher in February and October, while
the average discharge increases in the months of high demand, such as July and November.
The average monthly SOC remains within a range of 0.4 to 0.6, indicating stable operation,
although periods of lower storage levels are identified.
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On the other hand, the hourly analysis confirms these observations as it shows an
average of Pchg and Pdchg of 0.107, confirming the balance of the system. However, the
standard deviation of Pchg (0.237) is greater than that of Pdchg (0.177), indicating more
pronounced load variations. The average hourly SOC (0.532) is consistent with the monthly
results, but its standard deviation (0.259) and 25th percentile (0.221) indicate that the
battery is operating at low charge levels for a quarter of the time. The records show
the overall stability of the system but also highlight the need to optimize its operation.
The fluctuations in Pchg and the periods of low SOC (minimum) show the importance of
identifying this inactivity in the charge and, therefore, in the discharge, as well as stabilizing
the storage level.

Figure 7 shows the relationship between energy production and the average monthly
demand for the photovoltaic–wind hybrid system. First, the average monthly demand of
the house, represented by D(t), differs from the total combined production of photovoltaic
energy (Ppv) and wind energy (Pwind) in several months of the year. This indicates that the
system cannot fully satisfy the energy needs of the house in all the periods analyzed.
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Most of the generation comes from photovoltaic energy, which is in line with the higher
installed capacity of the photovoltaic system (3.25 kW) compared to the wind turbine (1 kW).
Wind power, although less significant in absolute terms, has a more constant contribution
throughout the year. Photovoltaic generation, on the other hand, shows greater seasonal
variability, with lower levels in the winter months (December, January, and February),
possibly due to the reduction in solar radiation characteristic of this period.

On the other hand, the average monthly demand reaches significant peaks in the
months of February and November, related to specific consumption patterns, such as the
use of heating systems or appliances with high energy demand. From May to August, there
is a closer relationship between total production and demand, indicating a better balance
between energy supply and demand during this period.

3.1.4. Limitations and Improvement Points of the Microgrid

The evaluated system has significant limitations in terms of reliability and operational
capacity. The system has an availability of 77%, which means that it is not operational
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for 23% of the time, which affects the continuity of supply. In addition, the LOLP (0.22)
and LPSP (0.26) indicators demonstrate a significant probability of load loss and power
interruption. The limited capacity of the storage system is reflected in an average state of
charge that fluctuates between 0.4 and 0.6, reaching a minimum of 0.2 in certain critical
periods and during hours when there is no charging or discharging, with an average SOC
of 0.423 and a 25th percentile of 0.200 (lower limit of the SOC), indicating an insufficiency
to cover energy needs.

The generation of the system is also insufficient in the months of lower photovoltaic
availability, especially in winter, when it is unable to meet the average demand. Photo-
voltaic generation has a high seasonal variability, while wind turbines, although more
constant, have a limited capacity to make up the deficit. In addition, there are significant
fluctuations in charging and discharging power, with greater variability in charging (stan-
dard deviation of 0.237 compared to 0.177 in discharging), which affects the stability of
the system. These conditions result in high costs for energy not supplied and a constant
imbalance between energy supply and demand, especially in the months of high demand,
such as February and November.

3.2. Optimization of the Microgrid
3.2.1. Impact of Optimization on Reliability and Cost

Table 3 presents the impact of optimization on the reliability and cost of the residential
microgrid system. The evaluation of the current (base) system shows that the base configu-
ration has limitations in terms of reliability and availability, indicating a high probability of
load loss and power outages. The availability of the system indicates frequent interruptions
in the power supply. Optimization using genetic algorithms made it possible to increase the
photovoltaic capacity to 4.25 kW and the battery to 4 kWh, reduce LOLP to 0.11 and LPSP
to 0.164, and improve system availability to 89%. However, the cost of the GA-optimized
system is USD 7450. On the other hand, optimization with ant colony algorithms increased
the wind capacity to 1.5 kW and the battery to 4 kWh, achieving the same reliability as GA,
but at a lower cost of USD 7050. The configuration obtained through an exhaustive search
approach increased reliability, with LOLP values of 0.081 and LPSP of 0.128, as well as 91%
availability, but its cost was higher, USD 10,150.

Table 3. Impact of optimization on the reliability and cost of the residential microgrid system.

Item PV (kW) Wind (kW) BESS (kWh) LOLP LPSP Availability Total Cost (USD)

Base 3.25 1 3 0.227 0.266 0.77 5950
GA 4.25 1 4 0.11 0.164 0.89 7450
ACO 3.25 1.5 4 0.11 0.164 0.89 7050
Exhaustive 5.25 2 5 0.081 0.128 0.91 10,150

Based on this, the results show that the ACO-based optimization achieves a balance
between reliability and cost and provides significant improvements in system stability
without an excessive increase in investment. The GA-based configuration also improves re-
liability, although its cost is slightly higher. The exhaustive search presents an improvement
in terms of reliability, but its high cost limits its feasibility.

Table 4 shows the temporal and spatial complexity of simulation methods in an
autonomous energy system. The GA methods have a complexity of O(8592) and O(n), while
ACO and Exhaustive increase the time to O(17,184) and O(34,368), and the memory usage
to O(2n) and O(4n), respectively. ACO’s processing increases but remains manageable,
while Exhaustive is the most expensive in terms of time and memory. GA is the most
efficient option for large amounts of data.
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Table 4. Method complexity estimation.

Item Time Complexity Space Complexity

GA O(8592) O(n)
ACO O(17,184) O(2n)
Exhaustive O(34,368) O(4n)

3.2.2. Dynamic Stability of the Microgrid

Figure 8 shows the evolution of the monthly energy balance (Mean Energy Balance,
kWh) when considering different strategies to optimize renewable energy generation
using metaheuristic techniques. The configurations evaluated are base (3.25 PV, 1 Wind),
corresponding to the initial microgrid; GA (4.25 PV, 1 Wind), optimized with GA; ACO
(3.25 PV, 1.5 Wind), optimized with ACO; and Exhaustive (5.25 PV, 2 Wind), characterized
by the highest installed capacity obtained through exhaustive search. The monthly energy
demand, represented as D(t), shows seasonal variations, with peaks recorded in January,
February, October, and December.
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During the months of lower demand (April to July), all the optimized configurations
come closer to satisfying the demand, reducing the discrepancies between generation and
consumption. The base configuration presents the lowest energy balance in all the months
analyzed, so it is not enough to satisfy the demand in the periods of highest consumption,
which highlights the need to increase the installed capacity. On the contrary, the optimized
configurations GA and ACO show a significant improvement in the stability of the energy
balance throughout the year. In particular, the ACO configuration stands out from July to
September, as it achieves a higher energy balance thanks to a more efficient distribution
between wind and photovoltaic generation.

The Exhaustive configuration, with the highest installed capacity, generates a slightly
higher energy balance in all the months evaluated. However, this improvement in gen-
eration is associated with a significant increase in investment costs, which could limit its
economic viability. On the other hand, the GA and ACO configurations are more efficient
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alternatives than the base configurations, as they reduce the energy deficit in periods of
high demand without implying a significant increase in installed capacity.

In terms of efficiency, the ACO configuration stands out as the best alternative among
the optimized options, as it maximizes the combination of wind and photovoltaic gener-
ation with a more balanced use of available resources. However, if the main objective is
to guarantee energy supply without economic constraints, the Exhaustive configuration
offers the most robust solution, although its implementation requires a detailed evaluation
of the associated costs.

3.2.3. State of Charge (SOC) Analysis

The analysis of the Annual Daily Mean (ADM) of the SOC in the evaluated configura-
tions shows that greater storage system stability is achieved when optimization strategies
are implemented, as shown in Figure 9. The Base configuration has the lowest average
SOC value (0.6902), while the GA and ACO configurations increase it to 0.7201, and the
Exhaustive configuration reaches a slightly higher value of 0.7427. These differences reflect
the direct impact of storage capacity optimization on system reliability.
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From a sizing perspective, battery capacity is critical to SOC stability. The base
configuration operates with a battery capacity of 3 kWh, which generates a LOLP (loss of
load probability) of 0.227, indicating a high probability of power failure. In contrast, the
optimized GA and ACO configurations increase the storage capacity to 4 kWh, reducing
the LOLP to 0.11 and improving energy availability from 77% to 89%. The Exhaustive
configuration, with 5 kWh of battery capacity, slightly reduces the LOLP to 0.081, ensuring
91% availability to meet demand.

The impact of installed capacity on energy reliability is also reflected in the LPSP,
which decreases as generation is optimized. The base configuration has an LPSP of 0.266,
indicating the highest rate of outages. The GA and ACO configurations reduce this to
0.164, while the Exhaustive configuration achieves the lowest outage probability with an
LPSP of 0.128. From an economic perspective, capital costs increase with installed capacity.
The base configuration has the lowest total cost of USD 5950, while the optimized GA and
ACO configurations require investments of USD 7450 and USD 7050, respectively. The full
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configuration, with the highest generation and storage capacity, has a cost of USD 10,150,
reflecting the trade-off between reliability and implementation cost.

Analysis of the SOC and reliability metrics suggests that the GA and ACO config-
urations improve storage and reduce the energy deficit without an excessive increase
in investment. In particular, the ACO configuration distributes wind and photovoltaic
generation more efficiently, resulting in a better energy balance during periods of lower
solar irradiation. The full configuration, while maximizing energy reliability, must be
evaluated for economic viability due to high implementation costs. The annual average
hourly SOC complements the daily results and provides information on the charge and
discharge dynamics of the storage system, as shown in Figure 10. A progressive decrease
in SOC can be observed from midnight to the early hours of the morning, reaching its
minimum value between 10:00 and 12:00. Subsequently, the SOC recovers from noon due
to the increase in photovoltaic generation.
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The hourly behavior shows that the base configuration has the greatest variability and
the most pronounced drop in SOC during the early hours of the morning, with minimum
values close to 30% load, confirming its insufficiency to cover nighttime demand without
incurring an energy deficit. The GA and ACO configurations show greater stability, with
minimum values between 35 and 40%, indicating that increasing the battery capacity
and optimizing the generation reduces the energy deficit at night. The comprehensive
configuration shows the most robust behavior, with the least decrease in SOC and values
that never fall below 45% at any time of the day.

The relationship between daily and hourly analysis confirms that the reliability of
the system increases as the storage capacity increases. The greater stability in the GA and
ACO configurations indicates that optimizing generation and battery sizing are effective
strategies for reducing the energy deficit, especially in the early morning hours. The
Exhaustive configuration, while providing the greatest stability, is associated with high
costs that may affect its viability in terms of implementation.
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4. Discussion
The reliability analysis of the evaluated microgrid shows that the base configuration is

deficient in power continuity, with LOLP and LPSP values of 22.7% and 26.6%, respectively.
The initial renewable energy generation and storage capacity are not sufficient to always
meet the demand, which affects the stability of the system. Therefore, the availability of the
system is 77%.

Optimization using metaheuristic algorithms (GA and ACO) improved the reliability
of the system. The GA-optimized configuration increased the photovoltaic capacity to
4.25 kW and the storage capacity to 4 kWh, reducing the LOLP to 11% and the LPSP to
16.4%, with an availability of 89%. This result is consistent with other recent work that
has succeeded in reducing the LPSP and improving the reliability of the hybrid photo-
voltaic/wind/fuel cell/battery renewable energy system, subject to certain constraints on
the energy flow and state of charge of the battery [17]. The results of this study showed
that the GA optimization algorithm improved the energy flow and made it possible to keep
the battery state of charge within the safe range of 20% to 95%. Regarding the proposed
system, the authors emphasize that its dependence on the main grid was reduced to 5.80%,
in contrast to the initial installation, which still required 15% grid support [17]. In contrast,
in this work, it was possible to reduce this dependence from 22.7% to 11% using the GA
optimization algorithm, which sought to balance the reliability of the system with the costs
associated with the installation of the microgrid.

Similarly, optimization with ACO increased the wind capacity to 1.5 kW and the
battery capacity to 4 kWh, achieving reliability like GA at a lower cost. These results are
consistent with other studies that used ACO as part of a two-stage stochastic approach
to optimize microgrid operation [34]. That is, for building consumption, the Euclidean
distance was 4.2 kW in the best case and 16.54 kW in the worst case, indicating that
the ACO method generated scenarios that were representative of actual demand. Other
studies report that the ACO algorithm outperformed the Gray Wolf Optimizer (GWO), Bat
Algorithm (BSA), and Whale Optimization Algorithm (WOA) in optimizing a photovoltaic
microgrid with energy storage, demonstrating higher efficiency and accuracy [19].

The configuration obtained through an exhaustive search achieved lower LOLP and
LPSP values, with an availability of 91%, although the cost was higher. In addition, all
possible combinations were explored without applying heuristics or search space reduction
strategies, resulting in extensive computational time. In this context, ACO shows a better
reliability/cost ratio, while GA improves reliability at an additional cost. Exhaustive search
achieves the best reliability but at a very high cost. Similarly, the SOC analysis shows that
the baseline configuration has greater variability in storage availability, with an average
SOC of 0.69, and drops below 30% in critical hours. The configurations optimized with GA
and ACO increase the average SOC to 0.72 and 0.74, respectively, improving the stability of
the energy storage.

In terms of dynamic stability, the energy balance analysis shows that the optimized con-
figurations reduce the discrepancies between generation and consumption in the months
of lower demand. The ACO configuration presents a better balance between wind and pho-
tovoltaic generation, while the GA configuration depends more on photovoltaic generation.
The configuration obtained by exhaustive search guarantees a stable supply, but its cost
is high.

The limitations of the study are that it uses data from a single microgrid in a specific
location. Future studies should evaluate it with other types of data and locations. However,
the selection of a single microgrid allows for strict control of the variables, which facilitates
an accurate evaluation of the phenomenon studied. The methodology used guarantees
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the reliability of the results within the analyzed context, serving as a basis for subsequent
studies that expand the sample and validate the results in more diverse scenarios.

5. Conclusions
The objective of this article was to analyze and optimize the reliability of an au-

tonomous residential microgrid based on solar PV, wind, and BESS using GA and ACO.
The evaluation focused on LOLP, availability, and associated costs.

The initial configuration of the microgrid showed limitations in terms of reliability,
with an availability of 77% and high values of LOLP (22.7%) and LPSP (26.6%), indicating
a high probability of power outages.

Optimization using metaheuristic algorithms significantly improved system reliability,
reducing LOLP and LPSP to 11% and 16.4%, respectively, and increasing availability to 89%.

The configuration optimized with ACO achieved a balance between reliability and
cost, while GA improved reliability at a slightly higher cost. The exhaustive search provided
the highest reliability, but at a significantly higher cost.

The State of Charge (SOC) analysis showed that the optimized configurations reduced
the fluctuations of the energy storage, which guarantees a higher stability of the supply.

The energy balance evaluation showed that the optimized configurations reduced the
imbalance between generation and consumption during the months of lower demand. In
addition, the ACO distributed wind and photovoltaic generation more efficiently.

Therefore, optimization using metaheuristic algorithms is presented as an effective
strategy for improving the reliability of autonomous microgrids, as it allows for achieving
a balance between availability, a reduction in energy deficit, and implementation costs.
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