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Abstract: The accurate prediction of cryptocurrency prices is crucial due to the volatil-
ity and complexity of digital asset markets, which pose significant challenges to traders,
investors, and researchers. This research addresses these challenges by leveraging ma-
chine learning and deep learning techniques to forecast closing prices for cryptocurrencies,
focusing on Bitcoin, Ethereum, Binance Coin, and Litecoin cryptocurrency datasets. A Ran-
dom Forest ensemble learning algorithm, a Gradient Boosting model, and a feedforward
neural network were implemented to handle the complexities in cryptocurrency data. A
Z-Score-based anomaly detection framework was integrated to classify closing prices as
normal or abnormal, aiding in identifying significant market events. Evaluation metrics,
such as the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and R-squared (R²), demonstrate the superior precision and reliability of the
Random Forest and Gradient Boosting models. The deep learning model indicates strong
generalization capabilities, suggesting potential advantages on more complex datasets.
These findings highlight the importance of combining advanced machine learning tech-
niques and cryptocurrencies to develop a robust framework for cryptocurrency forecasting
and anomaly detection.

Keywords: cryptocurrency prediction; abnormal close price prediction; machine learning

1. Introduction
Cryptocurrency markets have gained significant attention worldwide because they

could change how we handle money. These digital assets are also known for their ups
and downs in price, making them attractive but risky [1–4]. The ups and downs of
cryptocurrency attract many investors, but they come with both big chances and serious
risks. Because prices can change quickly, it is essential to create good models that predict
these price changes. These models help reduce risks, support better decision making, and
spot new trends in the market [5–7].

Traditional financial forecasting techniques frequently struggle to effectively rep-
resent cryptocurrencies’ complex price fluctuations. These fluctuations are affected by
multiple factors, such as non-linear dynamics, changes in external sentiment, and vari-
ous elements inherent to the blockchain [8–12]. As a result, the drawbacks of traditional
methods have prompted the development of state-of-the-art machine learning and deep
learning techniques. These approaches have demonstrated effectiveness in addressing and
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understanding the complex challenges of predicting the cryptocurrency market, providing
a more advanced analytical tool for investors and financial analysts.

This study contributes to the existing knowledge base by integrating machine learning
and deep learning to forecast cryptocurrencies’ closing prices and identify irregular market
trends. This study used historical price data and essential market features such as trading
volume and capitalization to develop robust predictive models. By leveraging Random
Forest and Gradient Boosting algorithms, along with a feedforward neural network, this
research addressed the non-linear patterns and dynamic nature of cryptocurrency data.
Furthermore, an anomaly detection framework based on Z-Scores was incorporated to
classify closing prices as normal or abnormal, allowing the identification of significant
market events that could impact trading strategies.

A fundamental aspect of this research is enhancing cryptocurrencies by enabling
early and transparent decisions based on accurate prediction, which helps to prevent or
minimize harmful situations. This approach ensures the clarity, immutability, and real-
time accessibility of abnormal trading data, thereby enhancing the reliability and utility
of the predictive framework. This investigation provides a comprehensive solution for
cryptocurrency price forecasting, anomaly detection, and market analysis. By addressing
existing limitations in traditional financial forecasting methods, this research contributes to
advancing the field of cryptocurrency analytics and offers practical insights for stakeholders
in the digital asset ecosystem.

The key contributions of this research are summarized as follows:

• Integration of Advanced Technologies: A robust framework combines machine learn-
ing, deep learning, and cryptocurrency to improve price prediction and anomaly
detection while ensuring transparency and data immutability.

• Robust Predictive Models: This research utilizes Random Forest, Gradient Boosting,
and feedforward neural network models to tackle non-linear behaviors and evolving
patterns in cryptocurrency data. It incorporates features such as trading volume and
market capitalization to improve the accuracy of the models.

• Anomaly Detection Framework: A Z-score-based mechanism classifies closing prices
as normal or abnormal, providing insights into significant market events to support
trading strategies and risk management.

• Advancement of Cryptocurrency Analytics: This research offers practical tools for
stakeholders to tackle the challenges of the cryptocurrency market by overcoming the
limitations of traditional forecasting methods.

2. Literature Review
Several studies have utilized traditional machine learning algorithms to predict cryp-

tocurrency prices. Linear regression (LR) models have been commonly applied to forecast
Bitcoin’s closing price using critical market features, as demonstrated in [5]. Additionally,
other studies have employed LR and support vector machines (SVMs), along with sliding
window techniques, to predict daily Bitcoin prices [13]. In [14], Chen et al. used high-
dimensional feature classification models to predict daily price movements. Meanwhile,
ensemble learning methods, including Random Forests, have been widely applied. For
example, ref. [15] used random forest models to predict Bitcoin’s closing price, outper-
forming models like LR and K-nearest neighbors (KNN). Furthermore, ensemble learning
methods, such as gradient boosting, have demonstrated superior performance in cryptocur-
rency forecasting using XGBoost and LightGBM [7]. Moreover, ref. [16] employed several
machine learning models, such as recurrent neural networks and tree-based ensembles, to
predict the daily movements of more than 100 cryptocurrencies with an accuracy of 59.5%
at most. Additionally, a recent study [17] forecasted Ethereum (ETH) price and trends by
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applying Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) models for
price predictions and support vector machines (SVM) for trend classification. The authors
achieved a return factor of up to 5.16%.

Time-series forecasting approaches have also been employed in cryptocurrency price
prediction. Traditional econometric models like auto-regressive integrated moving average
(ARIMA) have been compared with deep learning models. For example, Rebane et al. [18]
compared ARIMA with recurrent neural network (RNN)-based seq2seq models and found
that neural networks outperformed ARIMA. Additionally, ARIMA models have been
applied alongside modern techniques such as FBProphet and XGBoost for predicting fluc-
tuations in Bitcoin prices, as demonstrated in [19]. The results indicated that ARIMA
achieved the lowest error rates, making it a strong candidate for cryptocurrency time-
series forecasting. Econometric time-series models like Auto-Regressive Conditional Het-
eroskedasticity (ARCH) [20] and Generalized Auto-Regressive Conditional Heteroskedas-
ticity (GARCH) [21] handle heteroskedasticity (non-constant variance) over time to simulate
volatility. In addition, Auto-Regressive Integrated Moving Average (ARIMA) [22] has also
been used to forecast non-stationary series. Together, these methods form some of the most
modern time-series forecasting models [23].

Deep learning algorithms, particularly recurrent neural networks (RNNs), have shown
impressive results in cryptocurrency price forecasting. Long Short-Term Memory (LSTM)
networks have been a popular choice for handling time-series data due to their ability to
capture temporal dependencies. Several studies have applied LSTM networks to predict
cryptocurrency prices, outperforming traditional machine learning models. For instance,
an LSTM model achieved superior accuracy over linear regression in [5], and other studies
have utilized LSTM to predict daily cryptocurrency prices [18]. Moreover, Sezer et al.
applied Convolutional Neural Networks (CNNs) to time-series data, transforming price
trends into 2D images, which helped capture short-term price dependencies [24]. Addition-
ally, Zhang et al. demonstrated the potential of transformer models like BERT and GPT for
price prediction, showing that transformers outperformed RNNs by capturing both short-
and long-term dependencies [25].

Hybrid models that combine traditional and deep learning methods have also been
proposed for cryptocurrency price prediction. For example, Chong et al. developed a
hybrid ARIMA-LSTM model to combine linear and non-linear trends in price data, demon-
strating improved accuracy in price forecasting [1]. Similarly, in [6], researchers integrated
various cryptocurrency data sources to predict Ethereum prices using advanced machine
learning techniques. These models have been shown to benefit from both traditional
econometric and modern neural network features. Another research evaluated the use of
machine learning in predicting price volatility for cryptocurrency [26]. It compared the
performances of linear regression, decision trees, support vector machines, and neural
networks, showing promising results in price prediction based on the US financial market.
Another study investigated the performance of Gradient Boosting, Random Forest, and
Bagging in predicting the prices of cryptocurrencies, such as Bitcoin, Ethereum, Binance,
USD, and others. The work showed that Gradient Boosting outperforms the other machine
learning models in some currencies, while Random Forest outperforms them in other
currencies [27]. More studies confirm the effectiveness of the Random Forest regression
algorithm in cryptocurrency price prediction [28–30].

Indeed, several works have focused on a specific cryptocurrency such as Bitcoin to be
the base model that can be generalized [30–34]. While others have expanded the research
to include more cryptocurrencies [35,36].
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3. Methodology and Architecture
This research examined the closing prices of cryptocurrencies—specifically Bitcoin

(BTC), Ethereum (ETH), Binance Coin (BNB), and Litecoin (LTC)—utilizing a Random
Forest machine learning algorithm. As demonstrated in Figure 1, the proposed method-
ology for forecasting closing prices adopts a multi-stage approach that integrates data
transformation, machine learning, and cryptocurrencies. Historical price data were initially
sourced from various platforms, including stock exchanges and financial APIs. Following
data collection, this dataset underwent preprocessing to ensure its quality and relevance,
involving cleaning, normalizing, and transforming data into an appropriate format for
analysis. Additionally, key features such as trading volume and market capitalization were
engineered to enhance the accuracy of the predictive model.

Figure 1. Proposed methodology.

Once the dataset was prepared, the ensemble machine learning algorithm was created
to forecast prices. The Random Forest algorithm was chosen for its robustness against
overfitting and adeptness at handling non-linear relationships [37]. To determine the
model’s effectiveness, metrics such as the Mean Absolute Error and Root Mean Squared
Error were utilized to evaluate its predictive accuracy.

The methodology employs an anomaly detection framework to identify normal versus
abnormal closing price scenarios. Predicted closing prices were consistently compared to
actual closing prices to create a baseline of expected behavior. This involved calculating
the standard deviation of the predicted closing prices to set a threshold for categorizing
them. Specifically, a threshold was defined as the mean plus or minus one standard
deviation, allowing predicted closing prices to be classified as either normal or abnormal.
Furthermore, statistical tools like Z-scores were used to further classify predictions into
normal (within an acceptable range) and abnormal (outliers) categories. Abnormal cases
may signal significant market events or anomalies that should be investigated, while typical
cases reflect standard market variations. The acceptable Z-score range was from −1 to
1 percent, so if the predicted closing price for the next day lied within this range, it was
deemed normal; otherwise, it was classified as abnormal.

4. Dataset Description and Preprocessing
4.1. Description

In the initial phase, data collection involved gathering historical data from reliable
cryptocurrency exchanges, such as Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB),
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and Litecoin (LTC). We included these cryptocurrencies to capture a broad spectrum of
market conditions, volatility, and different use cases. Bitcoin serves as the market bench-
mark with the largest market capitalization, and Ethereum serves as that with the second
market capitalization that supports smart contracts technology. Binance Coin illustrates
an exchange-based utility token, and Litecoin offers fast and lightweight transactions [38].
These varied digital assets provide robust historical data and diverse market dynamics that
can enable comprehensive evaluations of price forecasting and anomaly detection. The
dataset encompasses critical features, including closing prices, opening prices, high and low
prices, trading volume, and market capitalization. The data collection time frame spanned
2015 until 2021 to ensure a comprehensive analysis of price trends [39]. The following are
brief descriptions of the dataset’s features:

• Date: Represents the observation date and serves as the dataset’s temporal index.
• Open: Captures the opening price of the cryptocurrency, reflecting the first transaction

at the start of the trading day.
• High: Denotes the highest price achieved within the selected time frame, providing

insight into market volatility on the date.
• Low: Represents the lowest price traded during the interval, helping assess the

minimum demand and price fluctuation range compared to the high feature.
• Close (Target): Records the final price at the end of the day.
• Volume: Indicates the total of cryptocurrency units traded. Higher volumes suggest

greater market interest, while lower volumes may indicate uncertainty.
• Market Cap: Calculated as the closing price times circulating supply, it measures

the cryptocurrency’s overall market value, used for ranking. A higher market cap
suggests stability; a lower one may indicate riskier investments.

4.2. Preprocessing

Following data collection, preprocessing steps were undertaken to enhance the
dataset’s quality. This process includes data cleaning to address missing values and
duplicates. Feature engineering also uses correlation feature selection to determine vari-
ables that could improve model performance, such as volume and market capitalization,
as presented in Figure 2. Additionally, the standard scaler preprocessing technique was
employed to normalize all cryptocurrency datasets, adjusting them to have a mean of 0 and
a standard deviation of 1. This step is essential for enhancing the effectiveness of machine
learning algorithms [40]. The threshold value for labeling abnormal values is derived from
the Z-Score, a statistical measure that quantifies the number of standard deviations a data
point is from the mean of a dataset. The Z-Score is calculated using a rolling window
approach, where a rolling mean and standard deviation are computed over a specified
period (in this case, 30 days). This ensures that the Z-Score dynamically adjusts to local
trends and variations in the data, making it suitable for time-series analysis. The decision to
use a 30-day rolling window aims to balance the identification of medium-term trends and
outliers while reducing the noise from short-term fluctuations. This time frame corresponds
with the typical expectation that financial market patterns may display cyclical trends over
monthly periods. We acknowledge that this window size might not adequately represent
sudden changes. Consequently, additional tests were performed using rolling windows of
15 and 7 days to assess their effects on the results. We recalculated the rolling mean and
standard deviation for these new window sizes and analyzed how these changes impacted
the Z-Score, anomaly detection, and overall model performance.
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Figure 2. Correlation metrics.

Algorithm 1 identifies abnormal data points based on their deviation from recent
trends using a financial instrument’s closing prices C(t). The analysis was carried out by
computing rolling statistics and normalizing the data using the Z-Score. The algorithm
relies on three key components: the rolling mean µ(t), rolling standard deviation σ(t), and
Z-Score Z(t). The rolling mean µ(t) represents the local average of the time-series data
over a specified window size w, smoothing short-term fluctuations to highlight longer-term
trends. Similarly, the rolling standard deviation σ(t) quantifies the dispersion of the data
around the rolling mean, capturing the variability within the same window. Using these
rolling statistics, the algorithm adapts to local trends and avoids the influence of earlier
data, which might no longer be relevant. The Z-Score Z(t) is a normalized measure that
quantifies the deviation of a data point from the rolling mean in units of the rolling standard
deviation. This normalization enables a consistent comparison of deviations across different
points in time, even when the scale or variability of the data changes. The algorithm detects
abnormalities by evaluating whether the absolute value of the Z-Score exceeds a predefined
threshold zthreshold. Data points for which |Z(t)| > zthreshold are flagged as abnormal, and
an abnormality indicator A(t) is assigned a value of 1, while normal points are assigned a
value of 0. This approach allows for the detection of significant deviations, regardless of
whether they are above or below the rolling mean. The rolling window approach ensures
that the algorithm is sensitive to recent data, making it well suited for applications where
trends and patterns evolve over time. Common use cases include financial data analysis,
where sudden price movements can signal market anomalies, or sensor data monitoring, in
which deviations may indicate faults or unusual events. However, the method requires
sufficient data points within the rolling window to provide reliable statistics, and the
presence of outliers within the window may influence the computed rolling mean and
standard deviation.

Overall, the algorithm provides a robust framework for anomaly detection. It en-
sures adaptability across various domains and datasets by leveraging local statistics
and normalization.

The dataset was then divided into training and testing subsets, allocating approxi-
mately 80% of the data for training and 20% for testing to validate the model’s performance.
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Algorithm 1 Calculate Z-Score and detect abnormalities in cryptocurrency data
Input:
• C(t): Time-series data of closing prices.
• w: Rolling window size (w = 30).
• zthreshold: Z-Score threshold (zthreshold = 1).
Output:
• µ(t): Rolling mean of C(t).
• σ(t): Rolling standard deviation of C(t).
• Z(t): Z-Score of C(t).
• A(t): Abnormality indicator; A(t) = 1 if |Z(t)| > zthreshold, otherwise A(t) = 0.

1: Step 1: Calculate Rolling Mean
2: for each time point t in C(t) do
3: Compute the rolling mean µ(t) over a window of size w:

µ(t) =
1
w

t

∑
i=t−w+1

C(i)

4: end for
5: Step 2: Calculate Rolling Standard Deviation
6: for each time point t in C(t) do
7: Compute the rolling standard deviation σ(t):

σ(t) =

√√√√ 1
w

t

∑
i=t−w+1

(C(i)− µ(t))2

8: end for
9: Step 3: Calculate Z-Score

10: for each time point t in C(t) do
11: Compute the Z-Score Z(t):

Z(t) =
C(t)− µ(t)

σ(t)

12: end for
13: Step 4: Identify Abnormalities
14: for each time point t in C(t) do
15: if |Z(t)| > zthreshold then
16: Set A(t) = 1 {Mark as abnormal}
17: else
18: Set A(t) = 0 {Normal point}
19: end if
20: end for

5. Modeling and Evaluation
In financial forecasting, accurately predicting cryptocurrency prices is crucial due to

the volatile and dynamic characteristics of digital assets. This study investigated the use of
machine learning and deep learning models to forecast closing prices of cryptocurrencies,
specifically emphasizing Random Forest and feedforward neural network techniques. Both
models were assessed for their capacity to manage the complexities and non-linear trends
present in financial datasets, utilizing important features like ‘Volume’ and ‘Marketcap’ for
prediction. The methodologies along with their implementation details are provided below.

This study employed the Random Forest (RF) model and Gradient Boosting (GB)
regressor to predict the closing prices of various cryptocurrencies, including Binance,
Ethereum, and Litecoin. The RF model is a robust ensemble learning algorithm frequently
utilized for regression and classification, recognized for its ability to handle non-linear
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relationships and reduce overfitting. It operates by creating 100 decision trees during
the training phase and consolidating their predictions to achieve a more accurate and
reliable result. Key input features, such as “Volume” and “Marketcap”, were used for
model training, with the target variable being the “Close” price. Conversely, the GB
regressor constructs trees sequentially, with each tree addressing the residual errors of
the previous one. This iterative refinement process renders Gradient Boosting especially
adept at detecting complex patterns and attaining high accuracy in numerous regression
tasks. Both models were trained on 80% of the dataset, with predictions evaluated on the
remaining 20% of the test set. To measure accuracy and reliability, we calculated metrics,
including the Mean Squared Error, the Root Mean Squared Error, the Mean Absolute Error,
and R-squared [41]. The following are the descriptions of each metric:

Mean Squared Error (MSE)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

• n: Total number of data points.
• yi: Actual value of the i-th data point.
• ŷi: Predicted value of the i-th data point.
• (yi − ŷi)

2: Squared difference between the actual and predicted values.

The MSE measures the average of the squared differences between predicted and
actual values, emphasizing larger errors.

Root Mean Squared Error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2

• n: Total number of data points.
• yi: Actual value of the i-th data point.
• ŷi: Predicted value of the i-th data point.
• (yi − ŷi)

2: Squared difference between the actual and predicted values.

The RMSE is the square root of the MSE and provides an error measure in the same
units as the target variable.

Mean Absolute Error (MAE)

MAE =
1
n

n

∑
i=1

|yi − ŷi|

• n: Total number of data points.
• yi: Actual value of the i-th data point.
• ŷi: Predicted value of the i-th data point.
• |yi − ŷi|: Absolute difference between the actual and predicted values.

MAE measures the average magnitude of errors without considering their direction.
R-squared (R2)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

• n: Total number of data points.
• yi: Actual value of the i-th data point.
• ŷi: Predicted value of the i-th data point.
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• ȳ: Mean of all actual values.
• ∑n

i=1(yi − ŷi)
2: Sum of squared residuals (errors).

• ∑n
i=1(yi − ȳ)2: Total sum of squares (variance in the actual data).

R² measures the proportion of the variance in the actual data that the model explains.
It ranges from 0 to 1, with higher values indicating better model performance.

This analysis utilizes a deep learning model featuring a feedforward neural network
to forecast the closing prices of Binance cryptocurrency, using crucial features like “Volume”
and “Marketcap”. To enhance the model’s performance, input features were standardized
with a StandardScaler, normalizing the data to a mean of zero and a standard deviation
of one, which aids convergence in training. The neural network was built with the Keras
Sequential API and included three hidden layers containing 64, 32, and 16 units, each
applying the Rectified Linear Unit (ReLU) activation function to identify non-linear patterns.
The output layer is a sole neuron with a linear activation function specifically designed
for regression tasks. The model employs the Adam optimizer, which is recognized for
its adaptive learning rate. To reduce prediction errors, the loss function was set to Mean
Squared Error (MSE). During training, the model was fit for 40 epochs with a batch size of
32, and validation data were used to evaluate its performance.

6. Results and Discussion
The evaluation results for the Random Forest, Gradient Boosting, and Deep Learning

models show unique strengths in predicting cryptocurrency prices across various datasets.
Figure 3 illustrates the RMSE and MAE outcomes for the three models—Random Forest,
Deep Learning, and Gradient Boosting—applied to four cryptocurrency datasets: Binance,
Bitcoin, Ethereum, and Litecoin. Since all RMSE and MAE values are below 0.15, this
indicates that all models perform with a high degree of accuracy, regardless of the variations
in metric values among the models.

Figure 3. RMSE and MAE results for all the models utilized.

On the Binance dataset, all three models show low RMSE and MAE values, indi-
cating precise performance. RF and GB yield nearly identical results, highlighting their
effectiveness in capturing the underlying patterns of Binance’s market data. Although
Deep Learning presents slightly higher error values than the other models, it still attains
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metrics very close to zero, affirming its capacity to model Binance’s relatively stable market
patterns accurately.

On the Bitcoin dataset, all models delivered precise predictions, reflected in their low
RMSE and MAE values. While Deep Learning exhibits higher error rates than Random
Forest and GB, these errors are still minor, indicating the model’s dependable performance.
Random Forest and GB present slightly lower errors, highlighting their strength in grasping
the complexities of Bitcoin’s volatile market. Nevertheless, the substantial fact that all
errors are well below 0.15 confirms that each model is capable of accurately predicting
Bitcoin prices.

The models for the Ethereum dataset again demonstrate high accuracy. Both Random
Forest and GB achieve low, comparable RMSE and MAE values, highlighting their strong
predictive power for Ethereum’s market. Although Deep Learning shows slightly higher
error metrics, these figures remain close to zero, indicating that the model accurately
reflects Ethereum’s price trends. The overall low metric values across all models signify
that Ethereum’s market is highly predictable, despite minor variations in error.

All models exhibit consistent accuracy on the Litecoin dataset, reflected in their low
RMSE and MAE values. Although Deep Learning records the highest error rates, the
values are still comfortably below 0.15, indicating that the model is capable of delivering
dependable predictions. Both Random Forest and GB attain low error rates and show
marginally better performance, showcasing their ability to adapt to Litecoin’s market
trends. Despite variations in error rates, all models attain near-zero metrics, underlining
their precision and reliability in forecasting Litecoin prices.

Table 1 compares the performances of all the algorithms across the four datasets.
Performance was evaluated using the MSE, RMSE, MAE, and (R2). Below is a detailed
analysis of the models for each dataset.

Table 1. Performance metrics for Random Forest (RF), Gradient Boosting (GB), and Deep Learning
(DL) models on all the datasets.

Dataset Algorithm MSE RMSE MAE R2

Binance RF 0.0001 0.0110 0.0062 0.9998
GB 0.0001 0.0112 0.0070 0.9998
DL 0.0002 0.0144 0.0125 0.9996

Ethereum RF 0.0002 0.0167 0.0067 0.9995
GB 0.0004 0.0201 0.0098 0.9993
DL 0.0042 0.0648 0.0364 0.9937

Litecoin RF 0.0025 0.0501 0.0172 0.9972
GB 0.0032 0.0574 0.0252 0.9963
DL 0.0158 0.1258 0.0799 0.9825

Bitcoin RF 0.000084 0.0091 0.0041 0.9998
GB 0.000097 0.0098 0.0045 0.9998
DL 0.0087 0.0936 0.0413 0.9879

All three models performed remarkably well on the Binance dataset, achieving MSE
values that are nearly zero and R2 values close to 1. Both RF and GB exhibit an MSE of
0.0001 and an R2 of 0.9998, showing that they can predict Binance prices with nearly perfect
accuracy. Meanwhile, DL has a slightly higher MSE of 0.0002 and an R2 of 0.9996, indicating
a minor decrease in its ability to fit the data compared to RF and GB. Nevertheless, the
differences are negligible, and all models exhibit outstanding accuracy for this dataset.

On the Ethereum dataset, RF surpasses the other models with an MSE of 0.0002 and
an R2 of 0.9995, highlighting its effectiveness in capturing the data’s underlying patterns.
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GB follows closely with a slightly higher MSE of 0.0004 and an R2 of 0.9993, demonstrating
strong performance but falling just short of RF. Conversely, DL shows an increase in MSE
to 0.0042 and a lower R2 of 0.9937; nonetheless, these results remain highly accurate.

For Litecoin, RF delivers the strongest performance, achieving an MSE of 0.0025 and
an R2 of 0.9972. This signifies highly accurate predictions and an excellent fit to the data.
Following closely is GB, which records an MSE of 0.0032 and an R2 of 0.9963, slightly trailing
RF yet still performing admirably. DL, on the other hand, exhibits lower performance with
a higher MSE of 0.0158 and a reduced R2 of 0.9825. Nevertheless, the error remains below
zero, demonstrating the effective performance of the DL.

On the Bitcoin dataset, RF and GB record the best MSEs at 0.000084 and 0.000097,
respectively, surpassing DL, which has an MSE of 0.0087. This signifies that RF and GB
offer more accurate predictions than DL based on the MSE. In addition, RF and GB also
reach an impressive near-perfect R² value of 0.9998, indicating that they closely align with
the overall data trends. The DL’s R² value is 0.9879, slightly lower than those of RF and GB.

The Random Forest model exhibits outstanding efficacy in predicting abnormal closing
prices from normal closing prices over different rolling window periods (7, 15, and 30 days),
attaining an accuracy of 100% across all four cryptocurrency test datasets, utilizing metrics
such as precision, recall, F1-score, and overall accuracy [42]. This remarkable performance
signifies that the model accurately classified all instances within the test dataset, where
the total number of normal cases in the Binance test data was 126, whereas there were
167 abnormal cases. In the Litecoin dataset, 301 normal cases were recorded, while the
abnormal cases amounted to 292. In the Ethereum dataset, there were 194 normal cases
compared to 233 abnormal cases. Lastly, in the Bitcoin dataset, 296 abnormal cases were
recorded, while the normal cases were counted to be 300.

7. Conclusions
This research introduced a comprehensive framework for predicting cryptocurrency

prices and detecting anomalies through the integration of advanced machine learning,
deep learning, and cryptocurrencies. Utilizing Random Forest, Gradient Boosting, and
feedforward neural network models, this study addressed the inherent complexities and
non-linearities in cryptocurrency data. Evaluation metrics such as the MSE, RMSE, MAE,
and R2 demonstrated that the Random Forest model consistently outperformed the other
models in terms of precision and robustness for the Binance, Ethereum, and Litecoin
datasets. Gradient Boosting performed closely to Random Forest, delivering strong pre-
dictions with slightly higher error metrics. Notably, the deep learning model achieved
the lowest MSE on the Bitcoin dataset, showcasing its potential to handle certain complex
datasets effectively.

This research also made a significant contribution by developing a Z-Score-based
anomaly detection framework for cryptocurrencies, effectively categorizing closing prices
as normal or abnormal. This detection mechanism provides crucial insights into important
market events, equipping traders and investors with an additional layer of decision-making
support. This guarantees transparency, immutability, and real-time access for documenting
and analyzing anomalies.

Future research could further explore extending this framework to incorporate addi-
tional data sources, such as sentiment analysis from social media or news platforms, to
enhance the models’ predictive accuracy and reliability.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app15041864/s1.
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