
Sustainable Cities and Society 103 (2024) 105247

Available online 2 February 2024
2210-6707/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Smart city solutions: Comparative analysis of waste management models in 
IoT-enabled environments using multiagent simulation 

Dr. Iftikhar Hussain a, Dr. Adel Elomri b,*, Dr. Laoucine Kerbache b, Dr. Abdelfatteh El Omri c 

a School of Social Sciences, Heriot-Watt University, Edinburgh, Scotland, EH12 4AS, UK 
b College of Science and Engineering, Hamad Bin Khalifa University, Doha Qatar 
c Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar   

A R T I C L E  I N F O   

Keywords: 
Sustainable cities 
Waste management 
Wireless sensor networks 
IoT-enabled bins 
Vehicle routing 
Agent-based simulation modeling 

A B S T R A C T   

Effective waste management arises as a crucial challenge for smart city development in the current era of rapid 
urbanization, shifting towards sustainability and public health. Harnessing modern technologies, especially the 
integration of the Internet of Things (IoT) with intelligent waste bins, can revolutionize urban waste collection, 
optimizing efficiency and reducing costs. This paper delves into a multiagent simulation-based framework for 
understanding and assessing the dynamics of an IoT-enabled smart waste management system. Initiating with the 
intricate process of garbage generation, we shift our focus to the real-time monitoring capabilities of IoT- 
connected waste bins. The study further explores protocols to regulate bin status, along with timing mecha-
nisms to trigger garbage collection rounds. Subsequently, a predictive routing system is introduced to determine 
the most efficient garbage collection routes. For the bins’ filled level tracking, the ultrasonic sensors are 
commonly used that send out sound waves and track their echo return time, whereas weight sensors measure the 
garbage load in the bin, providing insights into waste production trends. For data transmission from bins to the 
central system, various communication technologies such as Wi-Fi, cellular networks, and long-distance net-
works are considered. Through a simulation, we contrast the innovative IoT-enabled sensor-based collection 
mechanism against the conventional periodic review strategy. Field experiments at the Al Rayyan locale, 
proximate to Doha, Qatar, facilitate the model demonstration. By leveraging region-specific data, we simulated 
various aspects including economic factors, environmental impact, public satisfaction, and operational effi-
ciencies. The findings indicate that with an average daily garbage generation of 1.3 kg per individual, the sensor- 
driven mechanism remarkably outperforms the periodic review approach by covering fewer distances with fewer 
trucks, while concurrently achieving the key objectives of cost-efficiency, environmental preservation, public 
satisfaction, and reduced employee workload. This research contributes to the developing field of smart city 
technology by providing critical insights for urban planners, policymakers, and technologists attempting to build 
more sustainable, efficient, and livable cities.   

1. Introduction 

Urbanization has been progressing at an unprecedented rate in the 
twenty-first century, resulting in multiple challenges that demand new 
solutions. One of the most important of these issues is waste manage-
ment, which is essential for urban sustainability and public health. 
Various household activities generate a diverse range of domestic waste 
that must be handled, stored, collected, and disposed of properly to 
avoid endangering the environment or public health (Yoada et al., 
2014). Economic growth, industrialization, and improved living condi-
tions have all been linked to increased solid waste creation and 

management issues (Poletto et al., 2016). The World Bank estimates that 
waste generation will rise 70 % by 2050, from 2.01 billion tons to 3.40 
billion (The World Bank, 2022). Solid wastes should be managed in a 
methodical and planned manner; however, investigations have revealed 
widespread ineffective garbage management, particularly in developing 
countries (AlMa’adeed et al., 2012). Furthermore, the collection process 
is time-consuming, complicated, and expensive. Collection expenses 
account for around 80 % of municipal solid waste management budgets, 
according to the World Bank (Hoornweg & Bhada-Tata, 2012). Solid 
garbage collection often consumes 60 to 80 % of a community’s total 
solid waste expenditure, depending on the size of the community 
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(Sulemana et al., 2018). Any enhancement in the collection system has 
the potential to considerably lower overall costs and increase environ-
mental benefits as well as public satisfaction (Singh et al., 2014; Sule-
mana et al., 2018). 

The concept of smart cities, which use technology to improve the 
quality and performance of urban services, has emerged as a promising 
solution to these and other urban challenges (Salman & Hasar, 2023). 
The Internet of Things (IoT) is a network of physical objects—"-
things"—embedded with sensors, software, and other technologies for 
connecting and exchanging data with other devices and systems via the 
internet. In the context of waste management, from sorting to collection, 
distribution, and re-use, IoT has the potential to transform the way cities 
manage waste, particularly through real time data collecting and pro-
cessing capabilities. Since the previous decade, IoT has been increas-
ingly significant in the waste management operations at all levels 
(Yerraboina et al., 2018). The IoT concept is applied to waste manage-
ment in the form of a waste bin monitoring system. Smart bins appear to 
be a standout feature of these new IoT-enabled solutions, which are 
currently being adopted in numerous places worldwide. The sensors 
monitor the fullness levels of the bins and alert the waste collection 
providers when they need to be emptied, allowing personnel to manage 
the collection without having to personally check whether the bins are 
full. Ultrasonic sensors are commonly used to monitor the fill level of 
bins (Karthik et al., 2023). These sensors are highly effective in precisely 
measuring distances with great precision, making them ideal for prox-
imity detection, object ranging, and level sensing in a variety of mate-
rials. A notable advantage is their robust performance in challenging 
conditions such as fog, where optical sensors are less effective. These are 
suitable for sensitive situations and are appreciated for their accuracy 
and reliability across a wide range of applications, making them 
essential in modern technology. Weight sensors, on the other hand, are 
used to determine the amount of waste in the bin. These sensors provide 
significant information on waste production patterns. The data recorded 
through the sensors is transmitted to the cloud, where the intelligent 
system generates route optimization, collection schedules, waste bin 
filling time ratios, and forecasting services, resulting in significant 
operational costs and time savings. To communicate data from the bins 
to the central control system, a variety of communication protocols, 
including Wi-Fi, cellular networks, and long-distance wide area net-
works, can be used. 

This study posits that incorporating the IoT can greatly enhance the 
efficiency, effectiveness, and sustainability of urban areas. By analyzing 
existing literature and applying these insights to a multiagent based 
simulation model, the research aims to thoroughly explore the imple-
mentation and advantages of this integration. The investigation extends 
beyond just the technological factors, delving into the social, economic, 
and environmental impacts of integrating IoT into urban settings. As 
part of this research, a multiagent simulation-based modelling frame-
work for the assessment of an IoT-enabled smart waste management is 
designed. The use of IoT in waste management enables real-time 
monitoring, enabling greater precision and timely decision-making. 
Smart bins with sensors, for example, can provide data on fill levels, 
waste types, and disposal patterns. This data can significantly improve 
sustainability by enhancing waste collection efficiency, lowering oper-
ational costs, and minimizing the environmental impact of waste man-
agement practices. The study began with an examination of the waste 
generation process, followed by autonomous monitoring of the status of 
the waste bins. Protocols for changing the status of the bins and initi-
ating garbage collection trips were designed. For garbage collection, 
multiple trucks-based routing system was developed that predicted 
optimal trucks or vehicles routes. The waste collection teams collect 
garbage from collection points (bins) and transport it to either landfills 
or disposal sites. The system has been fully developed to assess the 
performance for both waste collection strategies: wireless sensors-based 
and the current periodic review. The established practice of adhering to 
a predetermined schedule for emptying each bin, irrespective of its 

actual fill status, is both costly and time-intensive within the current 
periodic review collection approach. The introduction of smart and 
intelligent bins, while enhancing efficiency and cutting costs, imposes 
additional demands on the waste collection system and necessitates a 
shift in the traditional methods of waste collection. The synthetic data of 
the Al Rayyan region outside Doha, Qatar, was simulated based on a 
waste generation scenario and various waste collection regimes. To 
compare the effectiveness of collection strategies, the following perfor-
mance indicators were used: economic, environmental, public satisfac-
tion, and employee time savings. In addition, the research work 
addresses the following questions in the sensitivity analysis by consid-
ering different waste collection scenarios as well as varying the number 
of bins: how many trucks were employed to collect waste from the 
simulated bins? What is the distance traveled by trucks or drivers during 
a typical day in each scenario? What is the maximum number of bins 
that trucks’ drivers can visit in a day to empty them? and what is the 
estimated amount of time required by the collection team to gather 
waste from the assigned bins? The Multi-Agent System (MAS) based 
framework known as Janus (Gaud et al., 2009), was used to develop the 
simulation in order to deliver well-structured organization-based 
modeling (OBM) and agent-based modeling (ABM) concepts. 

This paper is structured as follows: Section 2 contains a survey of the 
literature on the agent-based modeling in waste management, and the 
waste collection mechanisms. Following the description, the theoretical 
(problem domain) and behavioral (agent domain) models are discussed 
in Section 3. In Section 4, the experiments and results are discussed 
through the use of a case study. Finally, Section 5 comprises the 
conclusion as well as recommendations for further work. 

2. Literature review 

Existing research has focused on developing new strategies in waste 
management and optimizing waste collection truck routes to reduce 
operational costs, energy consumption, and transportation pollution 
emissions. The following sections discuss the literature review on agent- 
based modeling in waste management and waste collection 
mechanisms. 

2.1. Agent-based modeling in waste management 

The use of agent-based technology to simulate waste management is 
effective for a large area or community; nevertheless, research in waste 
management is still in its early stages. Hussain et al. (2022) used an 
agent-based modelling approach to present a waste management simu-
lation. It contrasts a traditional periodic review method with an 
IoT-enabled strategy in which waste bins are outfitted with smart sen-
sors. The simulation presented was based on waste generation and waste 
management modules. The simulation was validated using economic, 
environmental, and citizen satisfaction performance measures. In Abuga 
and Raghava (2021), the presented approach obtained the real-time 
data of each smart waste bin distributed across the city and helped to 
manage and keep smart cities clean. Fuzzy logic was used to strategically 
place smart waste bins in the smart city. The system was built using 
Net-Logo, a popular multi-agent modelling platform. By downscaling 
the strategy to the region of Norte Pioneiro, the authors focused on 
simulating implementation and evaluating environmental and economic 
gains (de Souza et al., 2021). The plan examined the dynamics of 
garbage generation, collection, and disposal using an agent-based 
model. Targets were designed for waste reduction, collection, source 
separation, and waste fee charging. The authors executed multiple 
simulations runs and analyzed the results. A model for optimizing 
municipal solid waste collection was described in Nguyen-Trong et al. 
(2017). Multiagent-based modeling and simulation were used to estab-
lish a static strategy and incorporate it into a dynamic context. To 
demonstrate the effectiveness of the suggested paradigm, a case study 
from Hagiang City, Vietnam, was provided. Municipal Solid Waste 
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collection costs were reduced by 11.3 % after optimizing the results. 
In Barth et al. (2023), authors described a study that used bin sensor 

modules to analyze the trade-offs between cost savings and service 
quality in waste management. The authors developed a digital process 
twin for decision support, supplementing it with a growing database. A 
field study of 98 sensor-equipped waste bins, analytical modeling of 
cost-service quality trade-offs, and the development of a digital twin 
decision system all contribute to the research. The authors in Suryawan 
and Lee (2023) developed a framework for evaluating adaptive solid 
waste management. It investigates the wide range of citizen preferences 
and their readiness to fund future adaptive waste management initia-
tives. The findings indicate that governments should increase the pub-
lic’s awareness of climate change and the infrastructure needed for 
adaptive waste management. Agent-based modeling was used to simu-
late different plastic waste generation, collecting routes, and sorting and 
recycling scenarios in Kerdlap et al. (2020). For plastic bottles and 
takeaway containers generated in Singapore’s central region, this study 
analyzes the life cycle greenhouse gas emissions of large-scale central-
ized plants and distributed small-scale facilities. Plastic sorting and 
recycling networks and their individual components were assessed in a 
multi-level life cycle assessment based on simulation findings. A 
decision-making tool based on the multiagent simulation model of 
biodegradable waste management in Normandy was described in Xu 
et al. (2019). Several agents were designed for collection, trans-
portation, and treatment. The model could help future waste collection 
management with routing, scheduling, and pricing methods based on 
data acquired from local businesses. 

Mamun et al. (2016) developed a novel paradigm, architecture, and 
intelligent sensing algorithm for a real-time solid waste bin monitoring 
system. In a wireless sensor network, decision algorithms sensed solid 
waste data. The system had three levels: smart bin, gateway, and control 
station. The basic idea was that smart bins would collect their status and 
send it to a server via an intermediary coordinator. Rahman et al. (2020) 
showed a waste management system based on deep learning and IoT. 
Murugesan et al. (2021) presented an IoT-based garbage management 
system for smart cities. Each bin was assigned a new ID and a little 
gadget to help keep track of their condition. The device sent the filling 
level along with a unique ID when it arrived faster. The waste collector 
could quickly clean the waste bins with the help of the Internet and 
produce better results. A multi-agent decision support system for 
handling oil spills and greasy wastewater is presented in Mohammadiun 
et al. (2024). To reduce the volume of weathered oil, response times, and 
costs, the system employs evolutionary optimization and operational 
agents. A hypothetical case study in Canada demonstrates its efficacy in 
resource scheduling, taking waste storage and vessel capacities into 
account. The application of evolutionary optimization significantly im-
proves response efficiency, showcasing the system’s potential to handle 
complicated marine oil spill scenarios. 

2.2. Waste collection mechanisms 

This section outlines the research on the truck route optimization for 
waste collection. The substantial uncertainty associated with the real 
waste bins’ fill-levels is addressed in Ramos et al. (2018) using sensors to 
provide real-time information. In order to maximize garbage collection 
and minimize transportation costs, sensors must be used in conjunction 
with optimization algorithms that identify the most efficient collection 
routes. Ferrer and Alba (2019) provided a free intelligent software sys-
tem named BIN for the CiTy (BIN–CT) that organized waste collection 
routes based on historical and forecast data. The system’s goal was to 
reduce waste collection costs by reducing truck travel distance and, 
thereby, fuel usage. Hannan et al. (2020) sought to enhance garbage 
collection efficiency, save costs, and reduce emissions by combining 
fixed routing optimization and variable routing optimization in a 
mixed-integer linear programming model for optimization. The authors 
of Salehi-Amiri et al. (2022) created two models based on the vehicle 

routing problem concept. The first model uses modern traceability 
IoT-based devices to collect data in real time, while the second model 
considers waste separation as well as transfer to the recovery value 
center. The authors of Tran et al. (2023), presented a mixed-integer 
nonlinear programming model for improving agricultural waste collec-
tion and transportation networks. The purpose was to reduce waste 
burning by reusing agricultural waste for the creation of bio-organic 
fertilizer. The model helps rural planners to locate waste storage facil-
ities and plan ideal routes for a vehicle fleet to carry waste from these 
storages to a bio-organic fertilizer producing facility. In Alsobky et al. 
(2023), authors aim to provide optimized collection systems that can 
accommodate various housing levels. Collection routes in Al-Mostakbal 
City, for example, are optimized by selecting the appropriate location 
and container order. Rahmanifar et al. (2023) presented a two-tier waste 
management system that employs the industry 4.0 concept to reduce 
operational costs and environmental impact. Both models compare 
real-time waste level information in bins using modern traceability 
IoT-based devices. 

To optimize waste collection operations, Shah et al. (2018) devel-
oped a stochastic optimization model using chance-constrained pro-
gramming. The optimization model’s goal was to reduce total 
transportation costs while maximizing value recovered from waste bins. 
Given the varying conditions and quality of waste, the value of collected 
waste was modeled as an unpredictable parameter. Lu et al. (2020) 
described an ICT-based smart waste categorization and collection sys-
tem (SWCCS) that optimizes garbage collection. An enhanced 
multi-objective hybrid algorithm based on whale optimization and ge-
netic algorithms with a fast, non-dominated sorting approach was 
designed to implement the suggested SWCCS. This article explained how 
the ICT-based SWCCS works and how it may assist sanitation firms in 
collecting waste more efficiently and sustainably. Sarmah et al. (2019) 
identified waste collection routes in Bilaspur, India. The daily waste 
generation from many sources was measured and vehicles were routed 
considering different constraints: vehicle numbers, routes, and capacity. 
The Clark and Wright method was used to find the vehicle’s optimal 
route. The ArcGIS network analyzer tool set was used to discover the 
optimal path for solid waste collection. The authors of Roy et al. (2022) 
developed an integrated IoT-based smart bin allocation system with a 
central monitoring system and a better vehicle routing algorithm for 
solid waste management. The authors proposed a time-based penalty 
concept to waste management authorities if these waste bins are not 
emptied within a reasonable amount of time after becoming full. 

Delgado-Antequera et al. (2020) used multi-objective approaches to 
model and solve the waste collection problem in less computation time. 
Travel cost, route length balance, route time balance, and route number 
were used to model the waste collection problem. An iterated greedy 
algorithm and variable neighborhood search were used to approximate 
the Pareto front. Shang et al. (2022) extended a novel waste manage-
ment transportation model, the capacitated location routing problem 
with queuing time, and designed a cross-entropy and 
simulated-annealing hyper-heuristic algorithm. The presented system 
includes a character encoding scheme, decoding procedure, and local 
search strategy. To solve the combinatorial optimization problem, 
simulated annealing and cross-entropy-based hyper-heuristic algorithms 
are combined. Lavigne et al. (2021) presented a routing optimization 
model for waste collection that allows multiple depots with homoge-
neous, capacitated vehicles, intermediate stops at multiple processing 
facilities, and multiple pick-ups per waste collection location. A hybrid 
metaheuristic was created by Jorge et al. (2022) to handle the smart 
garbage collecting problem. The metaheuristic comprised (i) a 
look-ahead heuristic to determine collection days and waste to collect 
(must-go) based on current and predicted bin fill levels; and (ii) a 
simulated annealing/neighborhood search method to determine profit-
able bins to collect and the optimal route(s) to visit the bins. In Lella et 
al. (2017), the authors investigated effective solid waste collecting 
methods. It explains how to use GIS-based network analysis to optimize 
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waste collection and transportation. The statistics reveal that the 
established collecting routes reduce travel distance by 59.12 %. The 
report also offers potential transfer station locations, considering aspects 
such as accessible open area, accessibility from composting units or 
dustbin locations, tractor trailer transportation, and sanitation and 
environmental standards. 

Only a few works of research, with limited scope, have employed an 
agent-based strategy to model the waste management process. Aca-
demics are currently unable to model a holistic framework for garbage 
generation and waste collection processes using IoT containers. Simi-
larly, in the current periodic review waste collection approach, the 
driver must visit each bin location on a fixed schedule (i.e., daily, 
weekly, or biweekly) to collect the garbage. Because of smart bin 
innovation, the driver will only visit bins whose status is filled and will 
begin their trip based on the requirements. This could save the driver a 
significant amount of time as well as fuel and emission costs. 

3. Multiagent simulation-based modelling and assessment 
framework 

In this study, we developed a waste management model that in-
tegrates IoT-enabled bins, utilizing a multiagent simulation framework. 
This model simulates the entire waste management lifecycle, from its 
generation to final disposal, employing the OBM and ABM approaches. 
ABM is particularly effective in capturing the individual characteristics 
and behaviors of agents in the management systems. It is distributed as 
well as individual-centric and is suitable for complex, multiple faceted 
systems. Previous research by Ferber et al. (2004) and Jennings (2000) 
indicates that ABM is suitable for handling scenarios where the agents 
frequently alter their roles. In the context of waste management, agents 
are dynamic and focused on individual behaviors. By implementing 
these concepts, agents can adapt their actions in response to changing 
conditions without altering their inner structure. 

This section outlines the scope of the waste management model and 
presents a system model addressing the issue at hand. It emphasizes the 
use of IoT-enabled waste bins distributed across various geographical 
locations. The system, which is housed on a cloud platform, is respon-
sible for initiating collection trips or rounds and designing truck routes 
based on the status of the bins (full or overfilled). Following that, the 
waste management model is described, comprising numerous activities 
and decision-making models required for the model’s functionality. 
Finally, using OBM and ABM approaches, the problem domain is 

transformed into a multiagent simulation within the agent domain 
section. 

3.1. Problem description and system model 

The waste collector company’s location is specified by l1 whereas the 
waste landfill location is indicated by ln. For a set of bins B, b1,2,3,…,n ∈ B 
is given. Each bi is assigned a location li, where l2,3…,n− 1 ∈ L. A group of 
households hm is formed from a set of households H and associated with 
each bi to dispose of their daily waste. Here, m is the maximum number 
of households associated with each bin. Each bin is equipped with 
sensors that measure the density ρ (mass / volume) and can autono-
mously transmit the recorded data to the cloud. Collection schedules and 
routes for multiple waste collection trucks, as well as the time ratio of 
waste bins to fill up and other forecasting services, are generated by the 
system on the cloud. Based on the information provided by the system, 
the planner or manager located at l1 will assign drivers to collect waste 
from the specified bin locations and dispose of it at allocated ln. Trucks’ 
drivers will begin the trips from the l1, pick up the garbage from the 
specified bin locations, dispose of it at ln, and return to the l1 at the end 
of trip. The truck driver is responsible for emptying the bins whose ul-
timate state is filled and overfilled, determined by the value of parameter 
ρ. Fig. 1 depicts the waste management process system model, which has 
economic and environmental impacts, increases citizen satisfaction, and 
saves employees’ time. 

A few distinct activities, as depicted in Fig. 2, occur during the waste 
management process. These activities are carried out by various actors 
or agents including households, the manager or planner, and the truck 
drivers. Each of these activities is discussed in detail in the following 
subsection. 

3.2. Problem domain – waste management process 

3.2.1. Waste disposal and filling bins 
At any moment during the day, the inhabitants from the group of 

households hm can dispose of their daily waste gj in the bin bi assigned to 
them. In this model, we assumed that approximately 50 % of the in-
habitants disposed of their daily waste in the evening [between 17:00 
and 20:00 h], 25 % in the morning [between 6:00 and 9:00 h], and the 
remaining 25 % at other times. To handle the weekly events, a random 
sample of households that could dispose of numerous garbage bags of 
the same size, or a larger bag, in a single day was selected. Additionally, 

Fig. 1. The waste management process is represented as a system model.  
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because most people leave their homes on weekends (for outings), the 
garbage disposal ratio may be lower on weekends. However, the extent 
to which this occurs varies from region to region; for this model, we 
assumed that only 10 % of households did not produce their daily 
amount of garbage on the weekend. 

As mentioned previously, the bins are enabled by sensors that can 
determine the bin’s current status. Every bi has a maximum weight and 
volume capacity (wmax

b and vmax
b , respectively). In this model, the 

maximum weight and volume capacity is modeled by the volumetric 
mass density ρ. The maximum density for a bin is denoted by ρmax

b =
wmax

b
vmax

b 

(Table 1 shows symbol meanings). The current status of the bin is 
determined by the amount of waste disposed of by the households in bi. 
Every household disposed of their gj on a daily basis. The weight wgj , and 
volume vgj are properties of gj, and the types of waste significantly 
impact the values of these attributes. In this study, we assumed that each 
household’s garbage gj included a mixture of different garbage cate-
gories, since gj comprises a household’s garbage and a household can 
have multiple family members. The volumetric mass density ρ of the 
waste varies from region to region and across waste types; as a result, the 
weight and volume of the bag are largely reliant on the density of the 
garbage. It should be noted that the seasonal variation in waste gener-
ation was not investigated in this study. The average waste disposed of 
per capita in the specific region was considered as the minimum density 
(on average) of gj (i.e., 1.3Kg/m3 for only one family member). As 
multiple households are associated with one bin, the number of house-
holds can fall between minimum and maximum ranges, e.g. 1 and 5. In 
this model, the average density ρgj 

for a gj is calculated by Eq. (1). 

ρgj
= ▵

wgj

vgj

(1) 

The current status of the bin is determined by adding the density of 
all the waste bags in the bin. Eq. (2) specifies the status of the bin in 
terms of ρ. 

ρ curr
bi

=
∑m

j=1

(
ρgj

)
(2) 

The sensors broadcast the ρ curr
bi 

information with its current location 
to the cloud to monitor and analyze the bin’s present status. The 
transmitted information is monitored on the cloud and is visible to the 
planner or manager, allowing them to make decisions based on the data 
received. This is also regarded as a density waste collection demand at 
the particular location. 

3.2.2. Monitoring bins and planning waste collection trips 
In this study, the current status of each bin was accessible to the 

waste collection planner based on the information transmitted by the 
sensors. The system automatically declared the status of the bins as filled 
or overfilled: (1) when ρ curr

bi 
parameter exceeds the threshold value (i.e., 

80 %) of ρ max
bi

, the bin status is considered as filled, and (2) when ρ curr
bi 

parameter exceeds ρ max
bi

, the status is deemed overfilled. Eq. (3) depicts 
the conditions: 

bfilled
i =

(
ρ curr

bi
≥ threshold × ρ max

bi

)
∧
(

ρ curr
bi

≤ ρ max
bi

)

boverfilled
i =

(
ρ curr

bi
> ρ max

bi

)
(3) 

Individual dissatisfaction may develop if overfilled bins are not 
emptied in a timely manner. The planner can explicitly specify the 
threshold value, i.e., 0.7 or 0.8, depending on the situation. The other 
two states of the bin can be partially filled and empty. 

Initiating a garbage collection trip is considered as a challenging 
task since it varies with situation and region. Normally, the waste 
collection trip is carried out on a daily basis, after every two or three 
days, or on a weekly basis. In this study, to collect garbage from filled or 
overfilled bins, multiple cases were tried and analyzed; these have been 
presented in the Experiments and Results section. In addition to the 
regular-basis case, a waste collection trip can be made when there are 
enough filled or overfilled bins (i.e., 50 % of the total bins). Another 
strategy could be dependent on waste density: when the waste density in 
the bins (both filled and overfilled) to be collected reaches the available 
trucks’ maximum capacities as shown in Eq. (4), then the trips can be 

Fig. 2. The activities carried out by the households, as well as the planner and driver, in the waste management process.  

Table 1 
Symbols used and their definitions.  

Symbols Meanings and definitions 

B Set of bins b1,2,3,…,n ∈ B 
hm The inhabitants from the group of households 
gj Waste disposed by a household j 
bi The waste bin associated to hm 

wmax
b and vmax

b Maximum weight and maximum volume capacity of bi 

ρmax
b Maximum density capacity of bi 

ρgj 
The average density of gj 

ρ curr
bi 

The current status of bi, The density of garbage collection demand at 
a certain location. 

truck mCapacity
k 

Maximum density capacity of a truck k. 

l2,3…,n− 1 Each bi is assigned a location li 
l1 Waste collector company’s – the origin location 
ln The landfill location  
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triggered automatically: 

tinitiating
i =

∑n

i=1

(
ρ curr

bi,filled ∨ overfilled

)
≥
∑m

k=1

(
truck mCapacity

k

)
(4) 

The minimum number of trucks (m is this case) required to collect 
waste from all of the bins that must be emptied. 

The density of waste has a considerable impact on the efficiency of 
waste collection routes and schedules. High-density locations frequently 
generate more waste, necessitating more frequent collection and 
sometimes larger or more vehicles to avoid overflow and environmental 
problems. This increased activity may result in greater emissions and 
operational costs. Lower density, on the other hand, may result in un-
used resources. Efficient waste management systems that take advan-
tage of data analysis, IoT devices, and route optimization software are 
critical for adjusting to these variations and maintaining cost-effective 
and environmentally friendly operations. 

Collection schedules and determining routes for multiple waste 
collection trucks are considered difficult tasks because they vary 
depending on constraints i.e. number of trucks, trucks’ maximum ca-
pacity, drivers’ availability and so on. The optimized routes are 
extracted using graph theory concepts. A directed graph G = (V,E)
consisting of n vertices (locations) is created. The first node is the waste 
collector’s location, and the final node is the landfill location. All the 
locations between waste collector and landfill are the bins’ locations. A 
function c : E→R) associates a travel distance to each edge. The problem 
defined with directed graph is an asymmetric travel salesman problem, 
which means that the distance of onward journey from a location to 
another may be different from the distance of return journey. The truck 
driver will visit each location exactly once and minimize the total dis-
tance (i.e., the length of the waste collection trip). In the wireless 
sensors-based waste collection approach, only locations with bin status 
as filled or overfilled are visited, whereas in the periodic review, all the 
bin locations must be visited to collect the waste. 

In this model, to achieve the Multiple Vehicle Routing (MVR), the 
Travel Salesman Problem (TSP) is extended to create the wireless 
sensors-based waste collection mechanism to collect waste from the 
(filled or overfilled) bins and dump the collected waste at the landfill 
location. The TSP is a classic optimization problem that seeks the 
shortest possible route that visits a set of given locations exactly once 
before returning to the starting location. The problem becomes more 
complex when multiple trucks are involved, because each truck has a 
limited capacity and must visit only a subset of the cities. This is referred 
to as the Multiple TSP (MTSP). 

For the wireless sensors-based waste collection strategy, first, all the 
locations (including those of waste collector company, bins, and landfill) 
are labeled with the numbers l1, …, ln. Note that the l1 location is the 
location of the waste collector company, from where the trip will start, 
and ln is the landfill location where the collected waste will be dumped. 
l2,…, ln− 1 are the bin locations. The waste collection trip always starts 
from l1, and ln (landfill location) will be visited at the end before return 
to l1. 

Given (i) a set of L locations ranging from l1 to ln, (ii) a set of vehicles 
k = {1,…,m} with varying capacity, (ii) a distance matrix d[li, lj] con-
tains distances between li and lj. The variable xlilj ,k determines whether 
vehicle k uses the edge between locations li and lj. The cost of travelling 
between li and lj is given by parameter clilj . The goal is to develop a set of 
m routes that visits all locations exactly once while reducing the distance 
travelled by all waste collection trucks and not exceeding the capacity of 
each vehicle. objective function for MTSP can be expressed as an integer 
linear programming (ILP) as described in Eq. (5): 

min
∑m

k=1

∑n

i=1

∑n

j=1
cli lj xli lj ,k (5) 

Subject to (6), (7), (8), (9), and (10). 
In (6), xlilj,k represent a binary variable that equals 1 if location lj is 

visited by vehicle k after location li, and 0 otherwise. 

xlilj,k =

{
1if lj visited by vehicle kafter li

0 otherwise (6) 

The edge between li and lj with a cost greater than 0 will be 
considered, as demonstrated by (7). 

clilj > 0, li ∕= lj (7) 

Each location li is only visited by one vehicle; a vehicle from k =

{1,…,m} can enter and leave a location precisely once, as shown by (8). 

∑m

k=1

∑n

i=1,li∕=lj

xli lj ,k =
∑m

k=1

∑n

j=1,lj∕=li

xli lj ,k = 1 (8) 

The number of vehicles (i) leaving the planner’s location l1 (to collect 
waste), (ii) visiting the dumping location ln (for waste disposal) and (iii) 
entering back to l1from ln must be equal, as shown by (9). m is the 
number of vehicles used for collecting waste. 

∑m

k=1

∑n− 1

i=2
xl1 li ,k =

∑m

k=1

∑n− 1

i=2
xli ln ,k =

∑m

k=1
xlnl1 ,k = m (9) 

Each truck has a maximum density capacity of loading truckmCapacity. 
The ρ curr

bi,filled ∨ overfilled 
is the density demand at the specific location where the 

bin is installed. For wireless sensors-based collection strategy, the bins 
are considered either filled or overfilled. For periodic review collection 
strategy, bins are considered to be of any status. The Eq. (10) ensures 
that no route exceeds the vehicle capacity. 

∑m

k=1

∑n

i=1
ρ curr

bi,filled ∨ overfilled
≤ truck mCapacity

k (10) 

Solving this ILP will result in best routes for each vehicle that reduce 
overall distance travelled while meeting capacity limitations. The sys-
tem will recommend optimized schedules and routes between the lo-
cations that each capacitated truck must visit after determining the 
waste collection trips for multiple trucks. The planner agent will assign 
resources to waste collection trips, such as drivers and trucks, and the 
planner agent will assign recommended routes to the drivers, who will 
then follow the specified routes to empty the assigned bins (both full and 
overfilled) and dispose of the waste at the designated disposal site. 

3.2.3. Waste collection and dumping 
The number of vehicles or trucks used, as well as their maximum 

loading capacity, are considered important factors in waste collection. 
Since the drivers and waste collection teams are required to work for 
eight-to-ten hours per day, they can collect waste from a large number of 
bins. Each truck driver will begin the trip at the origin location l1 and 
then visit all of the assigned bins in order to empty them and dispose the 
loaded waste at the dumping location ln. The driver will load the waste 
on the truck by emptying the bins and then move on to the next assigned 
bin and repeat the process until they reach the last fully loaded bin. After 
visiting each bin, the driver will follow the route to the landfill location, 
where the driver will unload the waste and then return to the origin or 
planner’s location. If only one truck is available and the waste volume in 
the (filled or overfilled) bins exceeds the truck’s maximum capacity, the 
driver will collect waste in multiple rounds. Each round involves waste 
collection from the designated bins and disposal at the landfill. After 
unloading the truck at the landfill in the last round, the driver will return 
to the planner’s location and may complete their day’s work. 

Whenever drivers adopt the periodic review method to complete a 
waste collection trip, they will iterate to each assigned bin in accordance 
with the established timetable, resulting in an increase in both time and 
travel expenses. 
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3.3. Agent domain: multiagent-based simulation modelling 

The agent domain is devoted to the development of a multiagent- 
based simulation that serves as a solution for the model described in 
Section 3.2. Agents are people whose personal features and social con-
nections have been discretely implanted. A group is an organizational 
unit in which all members must follow predefined definitions and pro-
tocols. Groups are used to refer to an entire set of roles and to define 
shared norms for those roles. The environment for the agents is estab-
lished, which contains non-agent materials and provides the necessary 
environmental circumstances. The environment comprises the bins and 
their locations as well as the planner’s location and the dumping site. 
Moreover, the environment includes the road network of the study area. 

The multiagent-based waste management simulation involves three 
major types of agents: household, planner, and driver agent. The simu-
lation begins by launching each agent with the dataset that it has been 
assigned. The behavior of each agent is described using a finite state 
machine (FSM). The following sections provide in-depth descriptions of 
these agent types. 

3.3.1. Household agent 
Household agent is the most common form of agent in the simula-

tion. The number of household agents associated with the bins can vary, 
but they must all be of the same agent type. Each household agent 
handles waste generation and disposal of their assigned bin. The oper-
ations executed by each household agent in the waste management 
simulation are depicted in Fig. 3(a). In this simulation, the bins are 
represented by organizational concepts, which are used to model them. 
The WasteDisposalOrganization.class is responsible for grouping the 
household agents and creating separate groups for each bin. Each 
household agent, within the associated group, plays the role of waste-
DisposingRole.class to dispose the garbage. The household agent oper-
ates in two states: idling and disposing. 

Idling: The household agent will remain idle while in this state, and it 
is presumed that the persons in the household are responsible for waste 
generation. 

Disposing: In the disposing state, the household agent will dispose of 
its daily waste and transit back to the idling state. This means, when the 
garbage bag is ready, the household agent will change its state and 
transit to the disposing state, where it will dispose of the garbage bag in 
the corresponding bin. 

All garbage-bag-related parameters are set in accordance with the 
details described in Section 3.2.1. During garbage bag disposal, bin- 
related information is updated. 

For waste management, the “WasteManagementOrganization.class” 
organization is used for grouping the planner agent and the driver agent. 
The planner agent, within the associated group, plays the role of facil-
itatingRole.class to monitor bins, plan trip and assign resources to the 
planned trip. The driver agent plays the role of executingTripRole.class 
to execute the trip by emptying the bins and dumping waste at the 
landfill. The behavior of the respective agents is modeled using the FSM 
in their respective roles. 

3.3.2. Planner agent 
The planner agent is responsible (1) for monitoring the current status 

of the bins and initiating waste collection trips and, (2) for determining 
the most efficient route for waste collection and disposal. The mecha-
nism for determining the best waste collection route for each vehicle is 
described in Section 3.2.2. This agent employs the monitoring and plan-
ning states (Fig. 3(b)), which are described as follows: 

Monitoring: In this state, the planner agent keeps track of all of the 
bins based on the values explicitly assigned by the planner agent. All of 
the groups that represent the bins are visible to the planner at all times. 
The automated script is also employed in this state to show and alter 
different states of the bins in order to handle the bins. Consequently, the 
planner agent can decide whether or not to initiate a waste collection 
trip. When sufficient bins with filled and overfilled statuses are found, or 
based on explicit parameters, the planner agent will initiate the waste 
collection trip and change its state to planning. 

Planning: In the planning state, the planner agent assigns all re-
sources to the waste collection trips, including vehicles and drivers. The 
proposed ideal route is also assigned to each driver, along with the 
sequence of locations to visit for waste collection (emptying the bins) 
and disposal. When this agent has assigned all of the resources and 
initiated the trip, they will transit back to the monitoring state and 
continue monitoring bins for the next trip. 

3.3.3. Driver agent 
Once the planner agent assigns a specific trip with the optimal route 

and truck, the driver agent will begin their trip from the planner’s 
location and visit each bin to collect waste and empty the bins. The 
driver agent will then drive to the dumping site to dump the collected 
garbage and return to the planner’s location at the end. The idling, 
emptying, and dumping states (Fig. 3(b)) are used to model the behavior 
of this agent. 

Idling: The truck driver agent remains idle in this state until they 
receive the signal from the planner agent to begin their waste collection 
trip. Once they receive the signal to begin the journey, they will depart 

Fig. 3. (a) The household agent playing the waste disposing role in the waste disposal organization. (b) The planner agent playing facilitating role and the driver 
agent is playing executing-trip role in the waste management organization. Both planner and driver agents coordinate for the execution of the waste collection trips 
successfully. 
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from the planner’s location and change their state to the emptying state. 
Emptying: In this state, the driver collects garbage from the bin lo-

cations by emptying them and remains in this state until all waste has 
been collected from all bin locations. The driver follows the route that 
was provided by the planner agent and empties the bins in the pre-
scribed order. After collecting waste from each bin, the driver moves to 
the dumping state. 

Dumping: In this state, the driver agent unloads the truck and dumps 
the waste at the designated disposal site. After unloading the vehicle, the 
driver enters the idling state and remains there until the next trip is 
scheduled. 

All the above-described agents are executed autonomously and 
constantly throughout the simulation period. 

4. Case study, experiments and results 

The partial dataset of Al Rayyan, located just outside the Doha (Qatar 
region) is used as a case study. Fig. 4 showcases the study area, in which 
the study area is distinctly highlighted. The Qatari government has 
identified waste management as a major environmental issue (Symms & 
Singh Kler, 2021). Population growth, development measures under-
taken for the FIFA World Cup 2022, and overall industrial growth have 
all contributed to increased waste generation in Qatar. In addition, 
Qatar has a high average income, which results in generation of a large 
amount of domestic waste. According to Symms and Singh Kler (2021), 
Qatar generates almost 2.5 million tons of municipal solid waste annu-
ally, or about 2.5 kilogram per capita. Municipalities with a large pop-
ulation and industrial concentration (e.g. Doha, Al Rayyan, and Umm 
Salal) contribute to a higher waste generation Symms and Singh Kler 
(2021). In Qatar, municipalities are responsible for solid waste collec-
tion, both directly, through their own logistics, and indirectly, through 
private sector contract. The collection and transportation of waste is 
handled by a massive fleet of trucks that pick-up waste from thousands 
of locations scattered across the country. This collected solid domestic 
waste is then disposed of in landfills, with only a small percentage of the 
total waste being recycled. It is worth noting that Qatar has three landfill 

sites dedicated to waste disposal. Only one landfill site (named as Umm 
Al-Afai) is designated for bulky and domestic waste disposal, while the 
other two are designated for construction waste and sewage water. 

The experiments focused on periodic review and wireless sensors- 
based garbage collection strategies to demonstrate the anticipated out-
comes of the multiagent simulation. For the experiments, in alignment 
with Qatar’s practice of designating a single landfill site for bulky and 
domestic waste, we assumed that Al Rayyan has one waste collection 
facility and one landfill site located in the Umm Al-Afai area specifically 
for domestic waste disposal. Different numbers (ranges between 200 and 
500 bins) of bin locations (spread over the northern area of the Al 
Rayyan) are used for various investigations. The size of each bin was 
considered to be 1 m3, and the maximum capacity to be 312 kg per cubic 
meter. The value is based on Palanivel and Sulaima’s (2014) study on 
the Oman region where the waste was generated at an average density of 
311.73 kg per cubic meter per day. The authors collected samples from 
the landfill during two distinct seasons—summer and winter. A com-
parable study (Katiyar et al., 2013) conducted in Bhopal, India, 
discovered a nearly same density of 314.9 Kg/m3. 

In the waste generation process, the number of agents assigned to 
each household was determined based on the current practice in Al 
Rayyan. It was found that both types of residences (individual and 
numerous) are associated with bins. A villa can be based on both single- 
family and multi-family homes. As a result, the household agents were 
chosen at random between the minimum and maximum values: The 
number of chosen households were associated to a bin. According to the 
Planning and Statistics Authority, the average number of people living in 
a household in Qatar is 5.5 (Ministry of Development Planning and 
Statistics [MDPS], 2014). The average household size in the Al Rayyan, 
Qatar region, is 5.7, according to the Qatar Open Data Portal (2015). 
According to Symms and Singh Kler (2021), a person generates 2.5 kg of 
garbage per day; in the proposed model, we simulated 1.3 kg per capita 
on average for the domestic waste. The average daily waste generated by 
a household was calculated at random from the range of values between 
minimum and maximum. The travel times and distances were extracted 
using trucks as a mode of transportation from OSM (OpenStreetMap) 

Fig. 4. Distribution of bins in the Al Rayyan region.  
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datasets with the GraphHopper (Karich, 2014) API and server. Finally, a 
one-year simulation duration was established based on the parameter 
values described in Table 2. 

4.1. Waste generation 

Waste was generated by randomly selecting around 900 household 
agents from the study area, which were associated with 300 bins. The 
number of household members (average 5.7 per family) and number of 
families (average 3 per bin) was chosen at random. Fig. 5(a) displays the 
daily waste generation during the simulated period. The results revealed 
that the simulation created 6.67 tons of garbage on average, and the 
pattern was found to be linear throughout the simulation period. Fig. 5 
(b) shows the cumulative occurrence (actual and linear frequency) dis-
tribution of the generating waste. The number of observations that lie 
above or below a specific waste generation for a year using a specific 
number of households in a data set is used to calculate the cumulative 
frequency for waste generation. Fig. 5(c) depicts the daily garbage 
generated by bins, family, and per capita over the simulated period of 
one year. The blue curve indicates per bin waste, the orange curve per 
household, and the grey curve per capita. The figure shows that 
households dispose of 22.5 kg of waste per bin on average. Similarly, on 
average 7.5 kg of garbage is thrown off per family, and approximately 
1.31 kg is disposed of per person. The simulation produced the same 
quantity of waste as expected: A person in Qatar produces 1.3 kg of 
domestic waste per day on average, and we simulated the same density 
of waste per capita. Fig. 5(d) depicts the total garbage created in a year 
for each waste collection plan and scenario: (1) daily, after 2 days, after 
3 days, and weekly for the periodic review approach, and (2) 0.6, 0.7, 
0.8, and 0.9 bin filling threshold for the sensors-based waste collection 
strategy. The data demonstrate that households generate the same 
amount of waste for each collection strategy, which is around 2450 tons 
in a year. 

4.2. Comparison between periodic review and sensors-based collection 
models 

A total of 300 bins (about 900 households) were simulated to 
compare the periodic review and sensor-oriented collection procedures. 
The periodic review waste collection approach was simulated on a daily, 
after-two-days, after-three-days, and weekly basis. The wireless sensors- 
based garbage collection strategy was tested by using different bin filling 
threshold values of 0.6, 0.7, 0.8, and 0.9. Both strategies were examined 
based on the following performance measures: economic, environ-
mental, citizens’ satisfaction, and employees’ time savings. The assess-
ment of the system relies on an in-depth analysis of various essential 

data points linked to each performance metric. The economic issues are 
critical, as the cost-effectiveness of operations, budget allocation, and 
financial sustainability must all be considered. Environmental conse-
quences include assessing the systems’ carbon footprint, recycling effi-
ciency, and long-term ecological viability. Citizen satisfaction levels 
reveal the public’s perceptions of service quality, responsiveness, and 
overall effectiveness. Finally, efficient time management is critical in 
analyzing operational productivity, garbage collection punctuality, and 
adaptability to unexpected problems. Each of these indicators helps to 
provide a comprehensive picture of the strengths and weaknesses of 
waste management systems, leading to improvements and innovations 
in this critical public service sector. These measures are essential for 
assessing performance and outcomes; however, these come with 
intrinsic limitations and are based on certain assumptions. This under-
standing is required for conducting a comprehensive and accurate 
evaluation of any initiative. The subsequent section offers an in-depth 
explanation of each performance metric. 

4.2.1. Performance measures 
Economic performance is crucial for municipalities as waste 

collection costs amount to 80 % of the total municipal waste manage-
ment budget (Hoornweg & Bhada-Tata, 2012). Many studies including 
(Singh et al., 2014; Sulemana et al., 2018) have demonstrated that the 
cost of waste collection increases linearly with the distance traveled by 
trucks. Consequently, the cost related to the total distance traveled was 
used to assess the economic performance indicator. Maintenance costs 
and employees’ salaries were assumed to be negligible, and the cost 
related to the distance travelled to collect waste is considered as shown 
by Eq. (11). 

Costoverall =
∑n

i=1
di × ucost (11) 

Costoverall computes the total cost using n trucks (here n is the number 
of trucks used to collect waste), di is the distance travelled by a truck and 
ucost is the cost per unit distance (e.g. per Km or per mile). Therefore, the 
cost is related to fleet size and also the distance travelled by each used 
truck. 

Cost measurements often assume stable economic conditions and 
prices. Variations in material costs, labor wages, and other operational 
expenses, on the other hand, can impact the accuracy of these calcula-
tions. Furthermore, indirect costs, such as those associated with envi-
ronmental damage or health consequences, are frequently overlooked. 

The environmental performance indicator is used to measure the 
environmental impact of the collection process. In particular, it focuses 
on CO2 emitted by the collection truck, and the total CO2 emissions are 
directly related to the distance traveled. In this research, the overall CO2 
emission (CEoverall) for all trucks’ trips was calculated using Eq. (12). 

CEoverall =
∑n

i=1
(FC × di) × ER + (L×C) (12)  

FC is the fuel consumption ratio per 100 km, di is distance traveled by 
truck i, and ER is the fuel emission factor, which is defined as the amount 
of carbon emissions per liter. Also, L is the number of locations visited by 
i, and C is the CO2 emission at a stop or location. According to Solutions 
(2020), a large vehicle carrying a weight of more than 23 tons consumes 
38 liters of diesel to travel 100 km; moreover, a truck carrying less than 
16 tons uses 25 liters (diesel) to travel 100 km. Further, according to 
Fleetnews (2021), a vehicle emits 2.62 kg of CO2 per 1 liter diesel. 

The accuracy of emission measures can be modified by a variety of 
factors, including fuel type, vehicle efficiency, and route choices. Inac-
curacies in determining the real environmental impact can result from 
assumptions regarding these factors. 

The policies set by municipalities for waste collection significantly 
impact citizen’s happiness. This indicator was calculated by keeping 
track of the average number of overfilled bins per trip. Citizens passing 

Table 2 
Simulation parameters and their values.  

No. of facilitating or planner’s locations 1 (Waff Facilities & Waste 
Management) 

No. of landfills 1 (Umm Al-Afai) 
No. of same-sized bins (1 m3) Varies with experiment: 200 to 500 

bins 
Maximum bin capacity (density) Average: 312 kg per cubic meter 
No. of planners (planning agents) 1 
No. of trucks and trucks drivers Multiple capacitated trucks and 

multiple drivers 
Households/families associated with each 

bin 
Average: 3 

People affiliated with a household Average: 5.7 
Minimum garbage bag capacity (density) 1.3 per capita 
Waste collection scenario in the periodic 

review approach 
daily, after 2 days, after 3 days, and 
weekly 

Sensors-based waste collection scenario bins’ filling threshold values: 0.6, 0.7, 
0.8, and 0.9 

Simulated period 1 year  

Dr.I. Hussain et al.                                                                                                                                                                                                                             



Sustainable Cities and Society 103 (2024) 105247

10

by an overfilled bin and those looking to dispose of waste will be irri-
tated not only by the state of the bin but also by the smell and aesthetics 
of the public space. Thus, when this indicator indicates a low number of 
overfilled bins, the model’s performance improves. The Eq. (13) com-
putes the quantity of overfilled bins, denoted as Bbof , that a truck driver 
empties from the assigned bins. The f(bi) returns 1 if the bin is overfilled 
otherwise, it will return 0. 

Bbof =
∑n

i=1
f (bi) :

{
1 if bi,density > bi, capacity

0 otherwise (13) 

Measuring social impact requires assumptions about a community’s 
beliefs and objectives. These measures are sensitive to interpretation 
and may not capture the entire spectrum of effects on various social 
groups. Furthermore, long-term societal consequences are frequently 
difficult to define and forecast. 

Another performance metric is employees’ time saving, which is 
also a significant consideration when scheduling garbage collection 
excursions. The planner agent plans the trip when the drivers and other 
employees are available to execute the trip. When staff and drivers spend 
less time collecting waste, they have more time for other activities and 
can perform more allocated duties in less time. Ultimately, municipal-
ities can save money as a result of this. The Eq. (14) calculates the 
overall travel time Ttrip of a trip performed by a truck driver including 
the waiting time at each location for collecting and dumping waste at 
bins and dumping locations. 

Ttrip =

(
∑n

i=1

dli− 1 ,li

v
+ twait,li

)

+
dln ,l0

v
(14) 

The distance travelled between bins’ locations li− 1and li is 

represented by dli− 1 ,li and v denotes the average speed of the driver. Note 
that the l0 is the origin location from where the truck driver starts trip 
and ln is the waste dumping location where the truck driver dumps the 
collected waste. The parameter twait,li represents the waiting time at each 
location. Finally, the truck driver ends his trip at the origin location. 
Time-saving indicators often assume a direct relationship between effi-
ciency gains and time savings. However, external factors like road 
congestion, regulatory compliance, and unexpected delays can all have 
an impact on time-saving indicator. Furthermore, the perceived value of 
time saved can fluctuate between stakeholders. 

4.2.2. Periodic review and sensors-based collection models 
The comparisons in Fig. 6 are between the business-as-usual (the 

periodic review) and the wireless sensors-based collection models. As 
previously stated, that in the periodic review collection strategy, the 
truck driver must visit all bin locations to collect waste however in the 
wireless sensors-based waste collection strategy, only the bins with filled 
or overfilled status are visited. In the periodic review, the number of trips 
varies during the year depending on the collection scenarios (daily, 
after-2-days, after-3-days, and weekly) and also on the use of different 
capacitated trucks. Waste collection trips can be triggered daily in the 
wireless sensor-based collection strategy, and the per-trip distance var-
ies based on filled or overfilled bin locations simulated using different 
collection scenarios with bin filling threshold values: 0.6, 0.7, 0.8, and 
0.9. The experiments were conducted with identical input values, as 
given in Table 2, and by altering different collection scenarios. 

Fig. 6(a) shows the average per-trip distance (in kilometers) traveled 
by the truck driver based on various collection scenarios under the pe-
riodic review and wireless sensors-based strategies. The figure shows 
that average distances of 156, 197, 244, and 366 km per daily trips are 

Fig. 5. (a) The daily waste generation throughout the simulation period, (b) the cumulative occurrence distribution of the waste generation, (c) the per bin (blue 
curve), per household (orange curve), and per capita (grey curve) waste generation, and (d) the yearly waste generation by households under various waste 
collection strategies. 
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traveled by the truck driver under daily, after-two-days, after-three- 
days, and weekly scenarios, respectively. However, the trucks travel 
under different scenarios with threshold values of 0.6, 0.7, 0.8, and 0.9 
of the wireless sensors-based strategy in 81, 78, 75, and 76 km per day. 
With a higher bin filling threshold, the truck driver travelled fewer ki-
lometers, while a lower threshold led to more bins being emptied and 
more distance travelled. Fig. 6(b) depicts the CO2 emissions (in ton) 
under each scenario. Although the weekly collection scenario generates 
the highest amount of CO2 emissions per-day-trips, since the higher 
number of trucks used and each truck is driven for a longer distance 
during the day. It releases less CO2 overall (in a year) since only 52 trips 
are conducted in a year. A slight change in CO2 emissions was observed 
under different scenarios of the wireless sensors-based model. It was 
found that with an increase in the threshold value, less CO2 is emitted, 
since a smaller number of bins locations are visited. Fig. 6(c) shows the 
number of overfilled bins emptied by the truck driver per trip. In the 
periodic review, the weekly scenario leads to the highest number of 
overfilled bins—more than 3.2 (on average) per day. In the wireless 
sensors-based strategy, the overfilled bins are represented only by the 
bin filling threshold of 0.9 scenario. The average number of overfilled 
bins emptied per trip was close to 2.16. The lower the threshold value, 
the better were the results. Fig. 6(d) represents the travel times taken by 
the truck driver to collect the waste. The result shows that the weekly 
collection strategy leads to a greater amount of time spent in a day 
(14.28 h); this is because the scenario requires a higher number of trucks 
in a day to collect the waste. The driver spends less time around 2.55 h 
under the threshold value of 0.9, since a small number of bins are 
emptied as compared to the other threshold scenarios. With the 
threshold value of 0.6, a higher number of hours (around 3) are spent for 
the waste collection and the collection time is reduced by increasing the 

threshold value. 
The same amount of domestic waste was gathered and dumped on 

average using each waste collection scenario. 

4.3. Sensitivity analysis 

The periodic-review and wireless sensors-based collection scenarios 
were simulated by varying number of bins (200, 300, 400, and 500). 
Fig. 7(a) depicts the average distance traveled by trucks to collect waste. 
The x-axis shows different scenarios related to different collection 
strategies. Different curves represent different number of bins: blue 
curve for the 200 bins, orange curve for the 300 bin, grey curve for the 
400 bins, and yellow curve for the 500 bins. The results demonstrated 
that the periodic review collection strategy scenarios covered more 
average mileage on collection day than the sensor-based collection 
scenarios. The milage covered during periodic-review waste collection 
scenarios varies depending on the large amount of waste which requires 
multiple trucks to be used for waste collection. The number of bins 
visited is constant across scenarios in the periodic-review waste collec-
tion strategy, but the mileage covered changes due to differences in the 
number of trucks used. In sensor-based collecting scenarios, the milage 
covered is greater when the threshold value is lower, and it decreases as 
the threshold value increases. This occurs because when the threshold 
value is lower, more bins are visited than when the threshold value is 
greater. Overall, the pattern of each curve remains consistent regardless 
of the number of simulated bins. Simulating a greater number of bins led 
to a larger amount of waste being collected, which required the use of an 
increased number of trucks. Fig. 7(b) illustrates the number of trucks 
employed for waste collection in each collection scenario, for various 
numbers of bins. The findings revealed that, on average, more vehicles 

Fig. 6. Simulation results for different waste collection scenarios, i.e., daily, after every two days, after every three days, and weekly, under the periodic review waste 
collection strategy and with different bin filling threshold scenarios, i.e., 0.6, 0.7, 0.8, and 0.9, under the wireless sensors-based waste collection strategy—in terms of 
(a) travel distance, (b) CO2 emission, (c) number of emptied overfilled bins, and (d) waste collection time. 
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are needed in periodic-review waste collection scenarios because large 
amount of waste is collected, and a greater number of bins are visited 
than in sensor-based scenarios. As the number of bins grows, a greater 
amount of waste will be accumulated, necessitating a larger number of 
trucks for waste collection in every collection scenario. 

Fig. 7(c) displays the average number of bins visited per trip day for 
different numbers of bins and also on various collection scenarios. The 
results revealed that the number of bins visited in the periodic-review 
waste collection scenarios remained the same for the simulated bins, 
whereas the number of bins visited in the sensor-based scenarios differs 
according to their threshold values. In sensor-based collecting scenarios, 
increasing the threshold values reduces the number of bins visited, and 
the pattern remained the same for each curve. The average number of 
hours spent by a garbage collection team collecting waste from the 
allotted bins is depicted in Fig. 7(d). The results demonstrate that the 
number of hours required to collect waste in the periodic-review sce-
narios is more than in the sensor-based collection scenarios. As a result, 
periodic-review scenarios demanded more resources than sensor-based 
scenarios. The sensor-based scenarios take only a few hours (between 
2 and 5) to gather waste from the simulated bins (between 200 and 500), 
but the periodic-review scenarios take 5 to 24 h. As a result, in the 
periodic-review garbage collection scenarios, multiple waste collection 
teams will be required. The more bins there are, the longer it will take to 
collect waste therefore multiple waste collection teams are required. 

4.4. Results discussion 

When the two strategies were compared, it was found that by 
adopting the periodic review approach (in every scenario), the mileage 
covered much longer compared to when the wireless sensors-based 

strategy was used. The trucks covered a greater distance in wireless 
sensors-based collection with the lower threshold values (i.e., 0.6) than 
with the higher threshold value (i.e., 0.9). As a result, when the truck 
traveled a shorter distance to collect the waste, the garbage collection 
expenses were reduced. The truck emitted more CO2 when utilizing the 
periodic review method (in the daily and after 2 days scenario) than 
when using the wireless sensors-based strategy. In the wireless sensors- 
based method, scenarios having higher bin filling threshold values may 
reduce CO2 emissions. In terms of public satisfaction, in the first three 
scenarios for each strategy, overfilled bins were not emptied. However, 
for the fourth scenario, which was the weekly waste collection for the 
periodic review and the bin filling threshold scenario of 0.9 for the 
wireless sensors-based strategy. The periodic review technique discov-
ered more overfilled bins (3.2 per day) than the wireless sensors-based 
strategy (2.16 per day). Overall, employees following the wireless 
sensors-based strategy needed less time to collect and dispose of the 
waste than those following the periodic review strategy in regard to the 
employees’ time-saving performance metric. The time required to 
collect waste increased with various scenarios i.e., after 2 days, after 3 
days, and weekly, since the capacitated truck was used to collect the 
waste by using multiple trucks in a day. When following the wireless 
sensors-based strategy, the driver took less time when the threshold 
value was higher since there were fewer bins to be emptied. As a 
consequence, the wireless sensors-based waste collection strategy was 
considered more robust than the periodic review approach. 

The findings obtained from considering multiple capacitated trucks 
and simulating a different number of bins during the sensitivity analysis 
for each collecting scenario. The results showed that the periodic review 
collection scenarios covered greater average mileage on collection day 
than sensor-based collection scenarios. In sensor-based collection 

Fig. 7. By simulating varying bins (200, 300, 400, and 500), the average (a) number of kilometers traveled every trip day, (b) number of trucks used, (c) number of 
bins visited, and (d) number of hours to collect waste. 
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scenarios, the distance covered decreases as the threshold value in-
creases. This happens because when the threshold value is lower, more 
bins are visited than when they are higher. Similarly, on average, more 
vehicles will be needed in periodic-review waste collection scenarios 
because more waste is collected, and a greater number of bins are visited 
than in sensor-based scenarios. The number of bins visited in the 
periodic-review waste collection scenarios remained same for the 
simulated bins, whereas the number of bins visited in the sensor-based 
scenarios differs according to their threshold values; increasing the 
threshold values reduces the number of bins visited. The periodic-review 
scenarios demanded more resources than sensor-based scenarios for 
collecting waste on time in a day. The sensor-based scenarios take only a 
few hours to gather waste from the simulated bins. However, in the 
periodic-review scenarios, a higher amount of time is required. As a 
result, in the periodic-review garbage collection scenarios, multiple 
waste collection teams and trucks will be used. 

This study has contributed to the existing literature by outlining a 
comprehensive agent-based architecture that encompasses a wide range 
of aspects, including the garbage collection method. The computation 
speed of the simulation model for wireless sensor-based scenarios is 
observed, and the model takes only a few seconds (between 1 and 2) to 
run for a day by simulating 200 bins. We discovered that the model took 
linear time to execute as the number of bins increased. The findings 
could be improved by gathering real-world historical data on waste 
generation patterns. Using the exact quantity of bins present on the 
streets as well as their actual capacity may also aid in obtaining more 
accurate findings. Investigating the various tactics used for distributing 
trucks as well as the impact of various waste collection rules on the 
entire state may yield helpful information. 

5. Conclusions and future works 

This research encompasses a comprehensive assessment of IoT 
integration in urban environments, focusing on its role in enhancing 
efficiency, effectiveness, and sustainability. It delves into the benefits of 
real-time monitoring in waste management, highlighting its contribu-
tion to improved decision-making and operational efficiency. A key 
aspect of the study is the development of a predictive model aimed at 
optimizing waste collection routes. Additionally, the introduction of a 
multiagent simulation framework facilitates a detailed analysis of the 
advantages IoT brings to urban settings. The study offers a streamlined 
comparison between innovative IoT sensor-based systems and tradi-
tional methods of waste collection, with a particular emphasis on eval-
uating the economic, environmental, and livability outcomes of each 
approach. Using a subset of data from Qatar’s northern Al Rayyan re-
gion, our experiments validated the waste production module’s ability 
to effectively simulate and anticipate waste generation across various 
scenarios, comparing periodic review and wireless sensor collection 
strategies. Significantly, the findings reveal that the periodic review 
method resulted in longer waste collection travel distances, which 
increased expenses, increased CO2 emissions, and required more time 
from workers. In contrast, the wireless sensor-based solution was more 
efficient and effective, resulting in cheaper collection costs, lower 
emissions, and faster completion times for drivers. This study focuses not 
just on waste collection efficiency, but also on broader environmental 
monitoring. The implications of these advancements are substantial, as 
they not only improve urban sanitation and public health but also 
contribute to smart city sustainability. 

This study paves the path for more adaptable, responsive, and sus-
tainable urban ecosystems, with waste management playing an impor-
tant part in preserving the balance between urbanization and 
environmental conservation. It lays a foundation for future studies 
focusing on waste management’s critical aspects within Qatar. To 
improve accuracy, forthcoming studies should incorporate the real 
quantity and capacity of bins on the streets. Expanding the study’s scope 
to include multiple municipalities simultaneously, such as a nationwide 

analysis in Qatar or statewide studies in large countries, might provide 
more comprehensive insights. Furthermore, additional enhancements to 
the model and simulation components, such as performance and us-
ability, are recommended. Looking ahead, integrating advanced tech-
nologies such as Artificial Intelligence to optimize collecting routes and 
blockchain for increased data security represents a natural progression 
in this rapidly evolving field. These innovations align with the dynamic 
advancements in the technical landscape, holding the potential for 
substantial enhancements in the efficiency and reliability of IoT-enabled 
waste management systems. 
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collection routing problem: Alternative operational management approaches. Expert 
Systems with Applications, 103, 146–158. https://doi.org/10.1016/j. 
eswa.2018.03.001 

Roy, A., Manna, A., Kim, J., & Moon, I. (2022). IoT-based smart bin allocation and 
vehicle routing in solid waste management: A case study in South Korea. Computers 
& Industrial Engineering, 171, 2022. https://doi.org/10.1016/j.cie.2022.108457 

Salman, M. Y., & Hasar, H. (2023). Review on environmental aspects in smart city 
concept: Water, waste, air pollution and transportation smart applications using IoT 
techniques. Sustainable Cities and Society, 94, Article 104567. https://doi.org/ 
10.1016/j.scs.2023.104567 

Sarmah, S. P., Yadav, R., & Rathore, P. (2019). Development of Vehicle Routing model in 
urban solid waste management system under periodic variation: A case study. In , 
52. 9th IFAC Conference on Manufacturing Modelling, Management and Control MIM 
2019 (pp. 1961–1965). https://doi.org/10.1016/j.ifacol.2019.11.490 

Shang, C., Ma, L., Liu, Y., & Sun, S. (2022). The sorted-waste capacitated location routing 
problem with queuing time: A cross-entropy and simulated-annealing-based hyper- 
heuristic algorithm. Expert Systems with Applications, 201, Article 117077. https:// 
doi.org/10.1016/j.eswa.2022.117077 

Singh, G. K., Gupta, K., & Chaudhary, S. (2014). Solid waste management: Its sources, 
collection, transportation and recycling. International Journal of Environmental 
Science and Technology, 5, 347–351. 

Solutions, W. (2020). What is the diesel consumption per kilometer of trucks? Webfleet Solut. 
- Bridg. Co.  

Sulemana, A., Donkor, E. A., Forkuo, E. K., & Oduro-Kwarteng, S. (2018). Optimal 
routing of solid waste collection trucks: A review of methods. Journal of Engineering. , 
Article 4586376. https://doi.org/10.1155/2018/4586376 

Symms, A., & Singh Kler, A. (2021). Waste management – A Qatari perspective. 
Suryawan, I. W. K., & Lee, C. H. (2023). Citizens’ willingness to pay for adaptive 

municipal solid waste management services in Jakarta, Indonesia. Sustainable Cities 
and Society, 97, Article 104765. https://doi.org/10.1016/j.scs.2023.104765 

The World Bank. (2022). Solid waste management. The World Bank, urban planning. 
Retrieved from https://www.worldbank.org/en/topic/urbandevelopment/brief/sol 
id-waste-management. 

Tran, T. H., Nguyen, T. B. T., Le, H. S. T., & Phung, D. C. (2024). Formulation and 
solution technique for agricultural waste collection and transport network design. 
European Journal of Operational Research, 313(3), 1152–1169. https://doi.org/ 
10.1016/j.ejor.2023.08.052 

Xu, Y., Sahnoun, M., Mazar, M., Abdelaziz, F. B., & Louis, A. (2019). Packaged bio-waste 
management simulation model application: Normandy Region, France. In Presented 
at the 2019 8th International Conference on Modeling Simulation and Applied 
Optimization (ICMSAO) (pp. 1–5). https://doi.org/10.1109/ICMSAO.2019.8880427 

Yerraboina, S., Kumar, N. M., Parimala, K. S., & Jyothi, N. A. (2018). Monitoring the 
smart garbage bin filling status: An IoT application towards waste management. 
International Journal of Civil Engineering and Technology (IJCIET), 9(6), 373–381. 

Yoada, R. M., Chirawurah, D., & Adongo, P. B. (2014). Domestic waste disposal practice 
and perceptions of private sector waste management in urban Accra. BMC Public 
Health, 14, 697. https://doi.org/10.1186/1471-2458-14-697 

Dr.I. Hussain et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.scs.2020.102393
https://doi.org/10.1016/j.scs.2020.102393
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0013
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0013
https://doi.org/10.1016/j.ifacol.2022.09.515
https://doi.org/10.1016/j.wasman.2018.05.019
https://doi.org/10.1016/S0004-3702(99)00107-1
https://doi.org/10.1016/j.cor.2021.105518
https://doi.org/10.1016/j.cor.2021.105518
https://www.graphhopper.com/
https://doi.org/10.1016/j.matpr.2021.07.179
https://doi.org/10.1016/j.matpr.2021.07.179
https://doi.org/10.1016/j.procir.2020.01.083
https://doi.org/10.1016/j.eswa.2021.115392
https://doi.org/10.1016/j.scs.2017.08.023
https://doi.org/10.1016/j.jclepro.2020.124183
https://doi.org/10.1016/j.eswa.2015.11.025
https://doi.org/10.1016/j.eswa.2015.11.025
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0025
https://doi.org/10.1016/j.jhazmat.2023.132838
https://doi.org/10.1016/j.matpr.2020.09.190
https://doi.org/10.1016/j.wasman.2016.10.048
https://doi.org/10.1016/j.wasman.2016.10.048
https://doi.org/10.1016/j.apcbee.2014.10.024
https://doi.org/10.1016/j.apcbee.2014.10.024
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0030
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0030
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0030
https://doi.org/10.1016/j.jksuci.2020.08.016
https://doi.org/10.1016/j.jksuci.2020.08.016
https://doi.org/10.1016/j.eswa.2023.119708
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0033
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0033
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0033
https://doi.org/10.1016/j.rser.2021.112031
https://doi.org/10.1016/j.rser.2021.112031
https://doi.org/10.1016/j.eswa.2018.03.001
https://doi.org/10.1016/j.eswa.2018.03.001
https://doi.org/10.1016/j.cie.2022.108457
https://doi.org/10.1016/j.scs.2023.104567
https://doi.org/10.1016/j.scs.2023.104567
https://doi.org/10.1016/j.ifacol.2019.11.490
https://doi.org/10.1016/j.eswa.2022.117077
https://doi.org/10.1016/j.eswa.2022.117077
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0040
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0040
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0040
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0041
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0041
https://doi.org/10.1155/2018/4586376
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0043
https://doi.org/10.1016/j.scs.2023.104765
https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management
https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management
https://doi.org/10.1016/j.ejor.2023.08.052
https://doi.org/10.1016/j.ejor.2023.08.052
https://doi.org/10.1109/ICMSAO.2019.8880427
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0048
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0048
http://refhub.elsevier.com/S2210-6707(24)00076-3/sbref0048
https://doi.org/10.1186/1471-2458-14-697

	Smart city solutions: Comparative analysis of waste management models in IoT-enabled environments using multiagent simulation
	1 Introduction
	2 Literature review
	2.1 Agent-based modeling in waste management
	2.2 Waste collection mechanisms

	3 Multiagent simulation-based modelling and assessment framework
	3.1 Problem description and system model
	3.2 Problem domain – waste management process
	3.2.1 Waste disposal and filling bins
	3.2.2 Monitoring bins and planning waste collection trips
	3.2.3 Waste collection and dumping

	3.3 Agent domain: multiagent-based simulation modelling
	3.3.1 Household agent
	3.3.2 Planner agent
	3.3.3 Driver agent


	4 Case study, experiments and results
	4.1 Waste generation
	4.2 Comparison between periodic review and sensors-based collection models
	4.2.1 Performance measures
	4.2.2 Periodic review and sensors-based collection models

	4.3 Sensitivity analysis
	4.4 Results discussion

	5 Conclusions and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


