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Abstract—Software defined networking (SDN) is an emerging
architecture used in many applications because of its flexible
architecture. It is expected to become an essential enabler for
the Internet of Things (IoTs). It decouples the control plane
from the data plane, and the controller manages the whole
underlying network. SDN has been used in wireless sensor
networks (WSNs) for routing. The SDN controller uses some
algorithms to calculate the routing path; however, none of
these algorithms have enough ability to obtain the optimized
routing path. Therefore, reinforcement learning (RL) is a helpful
technique to select the best routing path. In this paper, we
optimize the routing path of SDWSN through RL. A reward
function is proposed that includes all required metrics regarding
energy efficiency and network quality-of-service (QoS). The agent
gets the reward and takes the next action based on the reward
received, while the SDWSN controller improves the routing path
based on the previous experience. However, the whole network is
also controlled remotely through the Web. The performance of
the RL-based SDWSN is compared with SDN-based techniques,
including Traditional SDN and Energy-Aware Software Defined
Networking (EASDN), QR-SDN, TIDE and non SDN-based
techniques, such as Q-learning and RL-based Routing (RLBR).
The proposed RL-based SDWSN outperforms in terms of lifetime
from 8% to 33% and packet delivery ratio (PDR) from 2%
to 24%. It is envisioned that this work will help the engineers
for achieving the desired WSN performance through efficient
routing.

Keyword: Reinforcement Learning, Wireless Sensor Net-
works, Internet of Things, SDWSN, RL-based WSN, Energy
Optimization, Routing.

I. INTRODUCTION

There are tiny sensor nodes in wireless sensor networks
(WSNs) that may be stationary or mobile nodes deployed in
a dynamic environment. Each sensor node consists of a small
power source, transmission, and processing units [1]. The
WSN is an application-oriented information-centric network
used in many applications, including defense, environmental
monitoring (i.e., light, temperature, humidity, and vibration),
military, and health [2], [3].
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Much of the recent research work in the WSN area focuses
on low-cost and low-power networking solutions to execute
the cooperative and collaborative tasks under rigorous compu-
tation and energy constraints. Therefore, the wireless sensor
nodes operate for a long time without replacing their batteries
in many applications [4]. Thus, the sensor nodes’ energy con-
sumption is considered extremely crucial in wireless network
design. Routing is the core networking activity in WSNs that
routes the sense data from source (sensor node) to destination
(sink). It significantly impacts the network performance, such
as energy consumption, delay, latency, and packet delivery
ratio (PDR). In order to make WSNs more efficient, routing
strategies, such as software defined networking (SDN) [5], [6]
and Reinforcement Learning (RL) [7] , can be an excellent
choice to get an optimized routing path in WSNs.

SDN is an emerging architecture that manages the network
efficiently. It has three planes that include a data plane, a con-
trol plane, and an application plane. It decouples the control
plane from the programmable data plane. The idea behind
it is to manage and utilize network resources efficiently. In
SDN, the network is controlled through a centralized controller
(control plane) that can globally view the whole underlying
network and packet forwarding devices on the data plane. The
control plane is responsible for routing, traffic management,
and fault recovery; however, the data plane manages the packet
delivery. SDN uses the well-defined interfaces between each
plane, such as the southbound interface between the data
plane and the control plane, while the northbound interface
between the control plane and application plane. It also uses
the OpenFlow communication protocol used by the SDN
controller to communicate with data plane devices i.e., sensors,
switches, and routers. The use of SDN in the Internet of
Things (IoTs) is increasing day-by-day because of its efficient
structure that can efficiently manage and control the billion of
network devices [8]. Software defined IoT uses in a different
networs such as edge networking, access networking, core
networking, and data center networking. IoT is also comprised
of several wireless devices managed through SDN; however,
the IoT network is still facing some issues and challenges
related to security and scalability [9]. SDN is also used in
WSN, known as a software defined wireless sensor network
(SDWSN), that makes it robust and well organized. However,
SDWSN still has some limitations, such as finding the best
routing path. It can be solved through a learning technique
called RL. RL is an efficient method for a real-time path
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optimized path in reducing energy consumption and delay, and
increasing PDR.

RL is a type of machine learning (ML), in which a learner
is known as an agent who learns the optimal policy (π)
based on rewards and experiences. It satisfies the Markov
property, called the Markov Decision Process (MDP) [7], [10],
which gives the concept of RL. RL agent in the environment
can be explained as (S,A, P,R), where S is a set of states
{s1, s2, s3, . . . sm}, A is the set of actions {a1, a2, a3, ..., am}
that agent goes form one state to another state, while P is the
state transition probability. The agent A will get positive or
negative feedback after each round, called reward R(s′|s, a),
and select the next action according to the reward received,
as shown in Figure 3. The reward can be maximized by
optimizing the policy π : A← S.

The combination of both SDWSN and RL can efficiently
manage the network and improves the network performance.
The RL-based SDWSN architecture is shown in Figure 1.
Some artificial intelligence (AI) techniques (Deep Reinforce-
ment Learning) are used in SDN for the network self-learning
that can control the network efficiently [11]. However, the
WSN network can be controlled remotely by the IoTs [12],
[13]. It is a new paradigm that enables any device to connect
with another device through the Internet. The IoT architecture
consists of low-processing devices called nodes, the local
controller that collects the data from nodes, and the cloud
layer that monitors and controls the nodes remotely known
as the global control mechanism. The WSN framework for
IoT application is shown in Figure 2. For the local controlling
and optimization, we use the SDN architecture and RL for
optimizing the routing path. However, we are also controlling
the sensor node globally through the Web (Internet) as shown
in Section VI. The contribution of this paper is summarized
as follows:

• We propose a reward function to optimize the routing
that selects the best path from the routing list. It leads to
reduce the energy consumption of the network, improve
the network lifetime, and packet delivery ratio (PDR).

• We also propose two algorithms to improve the network
performance (i.e., energy efficiency, PDR, etc.). These
algorithms are applied to an intelligent SDN controller,
which can efficiently control the data plane devices.

• The loop-free communication is established through
Spanning Tree Protocol (STP).

• A real-time experimental platform is developed using
Raspberry Pi, where SDWSN routing based on RL ex-
periment is carried out.

• A web-based dashboard is also developed to control and
analyze the sensor nodes data remotely.

• The proposed RL-based SDWSN technique is compared
with RL-based and non RL-based techniques/algorithms
on a real-testbed.

The rest of this paper is organized as follows: Section II
provides the literature review related to RL-based SDWSN
and non RL-based routing techniques. In Section III, RL is
explained. However, the reward function is also explained
in detail in Section III. Section IV provides the detail of

the energy consumption model used for experimental work.
In Section V, the proposed methodology and algorithms for
the SDN controller and sensor node are explained. Section
VI provides the detail of the experimental testbed, and also
compares the proposed RL-based SDWSN algorithm with
different routing protocols. Finally, the paper is concluded in
Section VII.

II. RELATED WORK

Routing can optimize the performance of WSN, such as
energy efficiency and Quality-of-Service (QoS) parameters.
In optimal routing, we adopt SDN architecture and propose
some algorithms to improve SDN-based network performance
through routing. While, sometimes, the SDN-based network
has poor real-time performance. To resolve this issue, RL
can play an essential role in optimizing network performance.
This section divides the routing approaches into two different
groups: SDN-based routing approaches and RL-based SDN
routing approaches.

A. Non RL-based routing techniques

In [14], the author proposed an energy-aware routing algo-
rithm for the SDN-based WSN network. The author adopts the
extreme assumption for implementation that includes the SDN
controller knows the initial status data (i.e., position, energy,
and neighboring nodes) of all sensor nodes. The controller also
has direct access (e.g., the controller can send a routing table
directly to each node) to all the nodes, which is practically im-
possible. A distance-based routing path is established by using
a Dijkstra algorithm and changes it if any node runs out of
energy. An energy-aware routing protocol is proposed for the
SDN network know as EASDN [15]. This paper proposes three
algorithms, including neighbor discovery algorithm, status data
collection algorithm, and controller operation phase algorithm.
In EASDN, the controller uses two parameters of distance
and residual energy to calculate the routing path. The SDN
controller sends a new routing table whenever he observes any
node runs out of energy or is below the user’s threshold. Rasp-
berry pi is used to perform a real-time experiment as a sensor
node. However, in [16], the author proposed a traffic control
scheme that monitors the traffic behavior and prevents traffic
congestion through Deep Packet Inspection (DPI). In another
work [17] proposed a novel green datapath framework was
proposed to reduce energy consumption by looking for energy-
efficient routing paths for TCAM-based SDN. TCAM provides
search operations for packet switching networks and is used
by networking devices to speed-up the networking tasks, for
example, packet classification. This study of green datapath
focuses on TCAM usage in hybrid SDN networks by intro-
ducing dynamic voltage and frequency scaling (DVFS) power
management technique. Hence, TCAM memory deploys the
enriched routing functionality and also provides speed-up
interaction between switches and controllers. However, in the
[18], the energy-efficient architecture is proposed for SDWSN.
It reduces data packet generation by content awareness and
adaptive data broadcast of cached data. While, an SDN-
based routing protocol is developed for the multihop wireless
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Fig. 1. RL-based Software Defined Wireless Sensor Network Architecture.

Fig. 2. Wireless Sensor network framework for IoT application.

network [19]. The routing path develops through residual
energy and a minimum number of hop count for getting the
shortest path. The model was developed using OPNET. The
simulation results are compared with old routing protocols,
such as Optimized Links State Routing Protocol (OLSR), and
Ad hoc On-Demand Distance Vector (AODV). A software
defined energy-aware routing (SD-EAR) is proposed in [20]
to reduce the network’s energy consumption. The network
is divided into different zones or clusters, and each zone is
controlled through the SDN controller. The SDN controller
knows each zone topology, selects the energy-efficient path
based on the global view, and knows each node’s residual
energy. While in [21], an energy-efficient routing algorithm is
developed for SDWSNs. The proposed algorithm selects the

control node to assign different tasks dynamically. The NP-
hard definition is used to select control nodes. For tackling the
NP-hard problem, an improved particle swarm optimization
(PSO) algorithm is proposed. However, PSO often becomes
more complicated in solving these types of issues.

SDN-based optical networks support huge IP traffic with
great energy efficiency. Therefore, an SDN-based cross-
network is proposed in [22] for joint energy efficiency designs
from wired to wireless networks, potentially facilitating a
large-scale deployment. This approach uses SDN to focus on
designing the improved communication protocols, considering
that the sensors are not constrained by the battery-based power.
As energy efficiency has always been one of the important
goals of cellular wireless communications. A great work made
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by some authors in [23], focuses on the design of green
cloud radio access network (C-RAN) through jointly assuming
the power consumption of remote radio head (RRH) and
transport network. In [24], the authors proposed an energy-
efficient mechanism for transferring the power wirelessly to
SDWSN. The proposed process specifies the minimum number
of energy transmitters. The optimization problem is formulated
to find the minimum number of energy transmitters that reduce
the network’s energy consumption. However, SDN can also
improve WSN management. In [25], the authors addressed the
many traditional and SDN-based protocol. This paper gives
the inside detail of SDN-based management techniques for
WSN. The benefits of SDN-based network management are
discussed, some challenges of SDN faces are also explained.
For Multi-Protocol Label Switching (MPLS) [26], the energy-
aware routing and resource management model is developed
using SDN. First, the SDN controller sets up multipath and
then uses these pre-multipath paths (PMP) for routing. How-
ever, depending on traffic conditions, the SDN controller saves
energy by turning the PMP on or off. Load balancing and
route resizing are often used to utilize network resources and
effectively minimize network energy consumption. However,
global power management is achieved through SDN in [27].
In the proposed technique, the traffic is rerouted and adjust
the network workload in different links. A network topology
is constructed according to routers connection. The In teger
linear programming model (0-1) minimizes the integrated
chassis and line-cards power. Two algorithms (alternative
greedy algorithm and global greedy algorithm) are proposed
for efficient link utilization and packet delay reduction.

WSN network reliability and traffic load management are
also a critical problem discussed in [28], [29]. A system called
improved software defined wireless sensor network (Improved
SD-WSN) is proposed to solve the WSN reliability problem.
The proposed structure tackles heterogeneous network man-
agement and network coverage problem, which can increase
network reliability. Where the traffic load minimization (TLM)
problem in software defined wireless sensor Networking is
resolved through the flow splitting optimization (FSO) algo-
rithm. In [29], two methods are used to reduce the traffic load
issue; the first one is used to select the optimal relay sensor
nodes, while the second one is responsible for the transmission
of optimal splitting flow.

A recent study in [30] confirms the great potential of infor-
mation and communications technologies (ICTs) to achieve
social and environmental advantages. Such systems make
a significant contribution for maintaining user connectivity
requirements, ensuring the desired user experience through
the deployment of new frameworks. Despite the abundance of
energy-saving technologies, ICTs systems are critical regard-
ing the current and future energy consumption of telecommu-
nication networks. Most of the evidence speaks against flatten-
ing or reducing ICT power. Great efforts have been made to
improve one or more specific features of energy-efficient based
systems. Energy efficiency has gained great importance in the
green spectrum. Green topics are multidisciplinary in nature,
encompassing energy-related issues and the broader context
of the environmental impact of the IoTs. Green IoTs can be

integrated into standalone lighting systems [31], from green
energy harvesting to smart energy management, which means
significant energy savings. In machine-to-machine (M2M)
systems, some machine nodes are battery-powered and need to
operate for long periods of time without battery replacement.
Therefore, it is very important for such nodes to be energy
efficient. To that end, researchers have come up with several
techniques to make these nodes energy efficient. To reduce the
energy consumption, a wake-up/paging strategy is proposed
in [32] by activating only those nodes ready to transmit and
receive. Using a more efficient XML interface, core links,
and protocol buffers, a security technique is used to control
sleeping devices from attackers.

B. RL-based routing techniques for software defined wireless
sensor networks

RL-based routing protocols are used to improve network
performance. A reinforcement learning-based routing proto-
col is defined in [33], called Reinforcement Learning-based
Routing (RLBR). The authors suggested the reward function
in RLBR, which uses neighbors’ distance, residual energy,
and hop count to sink to measure the reward. It optimizes
WSN routing, which helps to increase the network lifetime.
For the first time, Watkins proposed an estimation action
function called Q-function in [34] to reduce the time delay
in the network. After each iteration, the Q-function was
modified and converged to an optimum point after some
iterations. The combination of RL and SDN, however, provides
a stronger solution. A prototype is proposed for improving
the energy efficiency and adaptability of SDNWSN by using
RL [35]. For monitoring the environmental application, the
prototype considers the energy, computational capabilities, and
radio resources to optimize the WSN performance. RL is
not adequately used to optimize SDWSN performance. How-
ever, in the SDN-based network, the SDN switches face the
service placement problem that increases end-users’ service
costs. An algorithm named Q-placement[36] is suggested to
reduce the end-user expense through reinforcement learning.
It guarantees the efficiency of the network and increases its
convergence rate. It does not, however, concentrate on the
issue of energy optimization for the network. For multimedia
based SDNs, a reinforcement learning-based LearnQoS system
is proposed in [37]. Services based on video are important
because it has become an integral part of the end-user life. By
employing policy-based network management (PBNM), the
proposed LearnQoS framework increases the video QoS. A
video streaming framework based on SDN is suggested that
uses reinforcement learning to handle the flow of network
traffic [38]. The proposed approach learns the optimized
routing path and tries to minimize the controller cost, packet
loss rate while maintaining the video quality. In [39], QoS
aware adaptive routing is proposed to enhance the SDN-based
network throughput and reduce the delay and packet loss
ratio. The proposed routing protocol consists of multi-layers
hierarchical architecture. There are three kinds of controllers
to control the network: super controller, domain controller,
and slave controller. The network’s performance is enhanced
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through reinforcement learning. The designed reward func-
tion optimizes the QoS and achieves some metrics, such as
QoS-provisioning packet forwarding, time-efficiency, and fast
convergence rate. Time-relevance deep reinforcement learning
(TIDE) is another technique presented in [40] to improve the
network QoS. An Artificial Intelligence (AI)-based layer is
introduced to control the network associated with the SDN
controller. In TIDE, only QoS parameters are considered to
make routing decisions. However, in [41], the QR-SDN routing
approach provides multiple routing paths while preserving
flow integrity. An other algorithm [42], that is based on Q-
learning, which sets up the Q-tables. The goal of the proposed
algorithm is to find the best link for data forwarding. But the
main concern is QoS. Reward value is fixed against the QoS
performance of each link, so that if the QoS performance of
the link is between 0% to 30% then the reward value will
be 50, if the QoS performance of the link is between 31%
to 60% then the reward value will be 100; otherwise it will
be 150. In the future, deep learning will be combined with
Q-learning, which is called deep Q-learning. In the modern
era of information technology, most services mainly rely on
cloud infrastructure. The network flow includes the mice and
elephant flows in the cloud environment. For the management
of these flows, SDN-based approaches are used to allocate
the network resources efficiently. However, due to Ternary
Content Addressable Memory (TCAM) ’s limited capacity in
OpenFlow enables switches, the management of flow is a big
issue. Still, it is challenging to find the useful forwarding rule
in the flow table, which rules need to be processed by the
SDN controller. It is required to investigate the useful flow
items in the flow table and exclude the remaining flow items.
By doing this, control plane overhead can be reduced. For this
reason, it is helpful to use Reinforcement learning in [43]. To
minimize the overhead between the SDN controller and the
switch, the author proposes an algorithm based on RL and
an algorithm based on deep RL. Cybersecurity in SDN also
becomes a critical issue. Different forms of causative attacks
are studied using RL to learn how to react. RL-based algorithm
is proposed in [44] to prevent the SDN network. However, the
proposed algorithm’s basic purpose is to make the SDN plat-
form’s autonomous defense system. As IoT is a new paradigm
to interconnect the large-scale wireless devices and has a wide
range of application prospects. In [45], AI-based solutions
have been addressed related to spectrum access and random
access. In addition, deep learning algorithms can make IoT
smarter and friendly, as the development of AI is crucial for
IoT, which can be strongly supported in different ways. It also
facilitates AI’s development direction by proposing a DQN for
conducting efficient online training for RL. A learning-based
algorithm protects WSN from any external attack in [44]. Each
sensor node plays a critical role in WSN, and it should be
protected from external attacks. The author of [44] proposed
a self-protected learning algorithm (SPLA) that can resist
external attacks. In the proposed algorithm, Sensing Graph
(SG) is used to model the problem, determining the minimum
number of the nodes that can be protected. Each node is
equipped with a learning automation. SPLA tries to find the
minimum number of nodes that can be activated to protect the

Fig. 3. RL Model.

Fig. 4. Q-Learning block diagram.

network. However, in [46], a Decentralized Swift Vigilance
(DeSVig) framework is proposed to identify adversarial attacks
in an industrial AI system. Due to decentralization, DeSVig
improves the effectiveness of recognizing abnormal inputs.

III. Q-LEARNING

Q-learning is a model-free learning approach first proposed
by Watkins [34]. It is used to estimate Q′(st, at), called Q-
function, and its learning technique is called Q-learning. In
Q-leaning, a learner is known as an agent that selects an
action according to the current state by interacting with the
environment and getting either positive or native feedback
based on the action called reward and calculates the Q-value.
In the next state st+1, the agent selects an action based on the
previous reward. After some rounds, the agent is trained and
converges to the optimal point. In Q-learning, the Q-value is
updated after each iteration, as shown in Figure 4. The update
Q-value is defined in equation 1.

Q(st, at)← (1−α)Q(st, at) +α[Rt + γmaxQ′(st+1, at+1)]
(1)

Q(st, at) is the Q-value that the agent takes an action
at in state st and gets an immediate reward Rt, where
maxQ′(st+1, at+1) is the maximum value that can get in
the next state st+1. α is the learning rate that determines the
what extend the newly acquired information update to the old
information and the range is (0 < α ≤ 1). Where the γ is
the discount factor that determines the importance of future
reward and its range is (0 < γ ≤ 1).
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A. Q-Routing Protocol

It comes from Q-table, which uses the Q-learning method
to route the data packets [34]. In Q-routing, the first Q-matrix
of node i is initialized. The initialization of the Q-matrix may
be random. Then node i sends a packet P to neighbor node j.
Node i selects the forwarder node j with the lowest Q-value
because of low distance up to destination d. Low distance
has a low delivery delay (end-to-end delay), which is routing
cost. Qi(d, j) is the delivery delay calculated from equation 3
and tj is the estimated remaining time in the trip that node i
immediately gets back j′s and it can be found by equation 2.

tj = min
k∈Ng(j)

Qj(d, k) (2)

Let Qi(d, j) is the estimated time that the node i takes to
deliver the packet P up to node j using distance, and it can
be calculated by equation 3.

Qi(d, j) = (1− α) ∗Qi(d, j) + α ∗ (qi + Tx+ tj) (3)

qi is the time to spend packet P in the queue of node i, α
denotes the learning period, and Tx represents the time used
for transmission between node i to node j.

The Q-routing algorithm is given below in Algorithm 1.

Algorithm 1 Q-Routing Algorithm
begin Initialized the Q-matrix (Q(x,y)))

while (Until the terminal state is reached) do
if Is data packet ready to send then

Calculate the Q-Value.
Select next hop j with lowest Q-value.
Send the packet to selected forwader node j.
Calculate the delivery delay time using Eqns (2) and (3).
Update the node i delivery delay time.

end
end

B. Q-learning based routing in SDWSN

Consider a network containing the n sensor nodes, and each
sensor senses the environment and selects one neighboring
node j to send the data packet up to the destination d. For
selecting the best optimal path, a Q-learning uses the previous
experience to select routing paths. In the next epoch, the
sensor node i selects the best path to send the destination’s
data packet. We use the Q-learning for the route selection in
SDWSN. In the SDN-based network, the controller controls
the whole network. It selects the best path according to the
implemented algorithm. We use the spanning tree protocol
(STP) for getting all possible routing paths at the controller.
SDN controller selects a routing table from the list of paths
with Q-learning and sends the nearest neighboring node. Q-
learning includes the state, action, reward, and Q-value, which
are defined as follows:

1) States: Let the S is the set of states S =
{si, sj , sk, ..., sn} which means that after each round, the
controller selects an other routing table from routing table list.

2) Actions: An action is an act where any path from the
set of routing paths {p1, p2, p3, ..., pn} is selected by the agent
and sends it to the neighboring node.

3) Reward Function: The reward Rt is the feedback after
agent action ai, which can be positive or negative. It has much
importance in Q-learning because the next action will be based
on Q-value, which varies according to the received reward.
The optimal strategy will be obtained after each iteration.
The reward function uses different metrics to calculate the
reward. In [34], Watkins only uses packet delay in the reward
function that is not enough for the energy-efficient network.
This paper uses different reward function metrics, including
distance to sink, the number of hops from neighboring nodes
to destination/sink, node residual energy, and packet success
ratio. Each metric’s weight is considered in the proposed
reward and took the sum of all nodes reward defined in
equation 4.

Rt =
N∑
i=0

(w1∗d(si)+w2∗H(si)+w3∗E(si)+w4∗p(si)) (4)

d(si) =
Dist to Negb(si)

Dist to Sink(si)
(5)

Where the Dist to Negb is the distance from neighboring
node to destination/controller and Dist to Sink(si) is the
maximum distance to sink.

H(si) =
Hj(si)

Hmax(si)
(6)

H(si) is the ratio of the number of hops from neighboring
nodes to destination and maximum possible hop counts.

E(si) =
ER(si)

Etotal(si)
(7)

E(si) is the ratio of remaining energy ER(si) to the total
energy Etotal(si) .

p(si) =
pack(si)

psend(si)
(8)

p(si) is the ratio of packet acknowledgment pack(si) re-
ceived by the neighboring node to the total packet psend(si)
sent.

All these factors are used in the reward function to calculate
the reward, which is given in equation (5) to (8).

The intelligent SDN controller calculates the reward after
each round. After getting a reward, Q-value is updated. The
new Q-value of the state-action (st, at) pair is determined by:

Q(st, at) = (1− α)Q(st, at) + α[Rt + γmaxQ(st+1, at+1)]
(9)
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IV. ENERGY CONSUMPTION MODEL

Each sensor node contains its small power supply that is
required for transmission and reception. Each node consumes
energy during transmission and reception. In order to calcu-
late the energy consumption during data communication, we
consider the first-order energy model [47]. In this model, two
types of channels are used to calculate path loss: One is a
free space model, and the second is multipath fading [15],
[21]. The model selection is based on the distance between
the transmitter and the receiver. If the transmitter-receiver
distance is less than or equal to the threshold d0, then the
free space model is selected; otherwise, multipath is selected.
The following equations measure the energy consumption due
to the transmission of each packet:

Etx(bl, d) =

{
bl ∗ Efs ∗ d2 + bl ∗ Eelec d ≤ d0
bl ∗ Emp ∗ d4 + bl ∗ Eelec d > d0

(10)

Etx is the energy consumption due to transmission, bl is the
total packet length in bytes, and d is the distance between the
sender and receiver. Since Efs denotes the energy consump-
tion due to free space and Emp is the energy consumption of
multiple paths. While Eelec refers to the energy consumption
due to circuit processing before the transmission of a data
packet and after the reception of a data packet. As d0 is
the distance threshold, which can be found by the following
equation.

d0 =
√
(Efs/Emp) (11)

The energy consumption due to the reception of a data packet
is calculated by:

Erx(bl) = bl ∗ Eelec (12)

Erx is the energy consumption due to the receiving bytes.

V. PROPOSED METHOD

In the WSN, each sensor node collects data from the envi-
ronment according to the network design and communication
range and sends it to the sink through a single/multihop. In
traditional WSN, each node broadcasts a control packet for
getting the neighboring node information. The network con-
sumes a lot of energy because of broadcasting, and also generic
algorithms cannot optimize the path. SDN is an emerging
architecture in which the data plane is separated from the
control plane. It manages the network through a centralized
controller that can view the network globally. However, the
SDN controller algorithms are inefficient in real-time routing
path optimization. RL is an efficient technique for learning
that can optimize the real-time routing route. The best choice
for optimizing the WSN routing path is the combination of
both SDN and RL. This paper uses RL on the SDN controller
to choose the routing list’s best routing path and change the
routing path if it finds the path to be bad.

We propose a reward function in our energy optimization
approach including all the required parameters related to net-
work performance. A reward function consists of the distance
to sink, the number of hops to sink, the residual energy, and

the packet success rate. To optimize the WSNs routing path,
this algorithm is divided into two parts: one for the intelligent
SDN controller and the other for the sensor nodes. On the
controller side, neighboring nodes are found after initializing
the controller node that collects the entire network’s status
data, as shown in the first phase of Figure 5. The controller
generates all possible routing paths through STP [48], [49].
It selects one routing table from the list with Q-learning and
sends it to the neighboring nodes, as shown in the second
phase of Figure 5. After each epoch, the controller gets the
status data of the sensor nodes and calculates the reward. The
intelligent SDN controller changes the routing path according
to system feedback in terms of reward, as shown in the third
phase of Figure 5. If the reward is negative, it will decrease
the network’s performance and change the path; otherwise,
it maintains the same path. The controller also continuously
monitors each node’s remaining energy. If any node has energy
less than the threshold, it is excluded from the node list,
recalculates the routing path list using STP, selects a routing
table from the list, and sends it to the neighboring node. The
algorithm for the SDWSN controller is shown in Algorithm 1.

However, on the node side, the first neighbor discovery
period starts, and each node broadcasts the Hello packet to
find the neighbors, as shown in Algorithm 2. This process
continues up to a specific time and a maximum number of an
acceptable neighbor threshold. After the neighbor discovery
period, each node shares the status data with its neighboring
nodes. The status data of each node reaches its destination
(controller) through multihop communication. Each node re-
ceives a routing table from the SDN controller and sends a
data packet according to the routing table provided by the
intelligent SDN controller. The sensor node calculates the
energy consumption using a mathematical model at the end
of each round; and sends the residual energy status to the
controller through a data packet. In the case of the relay node,
it first checks the node’s remaining energy; if it is greater than
the threshold, it accepts otherwise send a low energy message
to the controller and disconnect from the network. While the
computational complexity of the energy-efficient algorithm of
both controller and node side is also examined, the controller
side runs n times operation until the last node dies, and the
complexity of the whole controller side operation is O(n).
While, on the node side, the first operation remains valid up to
two threshold approaches tnbr and NBRmax. This operation
runs n times while the two inside operations take n times
that receivers the status data of neighboring nodes, and other
operations calculate the energy consumption of node up to
”Required Energy for Tx load”. The whole operation contains
n(n + n) iterations. So the overall node side complexity is
O(n2). The global optimization problem is NP-hard, and the
majority of previous solutions have been heuristic algorithms
that are slower than the proposed algorithms.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

This section will discuss the performance of the proposed
routing technique RL-SDWSN in terms of lifetime and PDR.
The performance of RL-SDWSN is compared with previous
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protocols, such as Q-routing, Reinforcement Learning-Based
Routing (RLBR), T SDWSN , EASDN, QR-SDN, and TIDE
implementation is given in the next subsection. Q learning and
RLBR are based on RL, but T SDWSN and EASDN depend
on the SDN architecture. However, QR-SDN and TIDE use
RL to control the flow in an SDN-based network. Q-routing,
RLBR, T SDWSN , and EASDN routing protocols are used
to optimize the energy consumption of WSN; however, QR-
SDN and TIDE are used to optimize the network QoS. In
our experimental setup, we use raspberry pi for real-time
experimental work and create a wireless ad hoc network.
Each raspberry pi (node) contains a wireless card using the
IEEE 802.11ac standard. The topology used for experimental
work is shown in Figure 6. All nodes are placed in the same
location, communicate using logical distance, and access the
neighboring node based on distance threshold.

Algorithm 2 Algorithm for SDN Controller
Input Network status data including total number of edges,
Vertex, G=(V, E), STP, Reward function, Learning rates.
Output Set of routing paths.
Initialize the controller.
Assign the IP to controller.
Controller discover the neighboring nodes.
Collect the status data from all sensor nodes within the
threshold and Nmax.
Nmax is the maximum number of nodes that can be possible
neighbors; however, the threshold is the time threshold.
Calculate the routing table using STP.
RT ← {x1, x2, x3, ..., xn}.
SDN Controller← RT.
Initially, the Q-value is considered as the worst case where all
the nodes die without sending any data.
Select one routing table randomly from the routing table list.
Calculate the Reward by using equation 4.
Calculate the Q-Value using equation 9.
Update the Q-value.
while (Received node data upto last node die) do

if (Eresidual
node <TH) then

Exclude that node from the list.
Recalculate the routing tables using STP.
RT ← {x1, x2, x3, ..., xm}.
Select one routing path from the list and send it to the
neighboring node.

end
else

RT ← {x1, x2, x3, ..., xn}.
SDN Controller← RT.
Estimate the PELT.
Calculate the Reward by using equation 4.
Calculate the Q-Value using equation 9.
Select one routing table with highest Q-value.
Update the Q-value.
end

end

TABLE I
EXPERIMENTAL PARAMETER TABLE.

Parameters Value
Initial Energy 5J
Eelc 50 nJ/bit/m2

Efs 100 pJ/bit/m2

Emp 0.0013 pJ/bit/m4

Data packet size 100 bytes
α 0.3,0.5
γ 0.5

Algorithm 3 Algorithm for Sensor Nodes
Input Routing paths that receive from controller.
Output Each node {S1, S2, ..., Sn} sends the collected
information to the controller related to energy and QoS.
Initialize the nodes S = {S1, S2, . . . , Sn}.
Assign the IP to controller.

if (RE >EThreshold) then
S ←parameter setting from controller
Search the neighboring node
while (time <tnbr) & len (My Neighbor list) <NBRmax do

if ttbt<tmax allowed then
Broadcast the Hello packet

end
On (Reception of Hello packet for neighbor)
if ( Nbr node id not exist in ”Nbr list” ) then

Add into the neighboring list.
end

end
Calculate the energy consumption of nodes after each Tx
and Rx control and data traffic.
while (t <tthreshold) and (response number <Nmax) do

Send the status data to neighboring node.
On Reception of Status data packet do
if (source address not exist in the ”node list”) then

Add the sender node address into list.
++ Status data response number.

end
end
while (RE <Required Energy for Tx load) do

Tx & Rx the both control and data traffic .
Calculate the energy consumption of nodes after each
Tx and Rx control and data traffic.

end
Send the notification of low energy to controller through
neighboring node and disconnect.

end

In our experimental work, the communication between the
nodes is real-time, but the energy consumption is calculated
by simulation. The reason to use the simulation for the
calculation of energy consumption is that raspberry pi could
not directly calculate the energy consumption. It requires
an external module to calculate energy consumption (i.e.,
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Fig. 5. Establish the route according to receive the flow table from the controller example.

Fig. 6. Topology used for experimental work.

MoPi). However, the SDN controller energy consumption is
not considered here, and it is assumed that the controller has
infinite energy. The simulation parameters are given in Table
I. In the parameter setting, we took two different α learning
rates to observe the impact on network performance. In each α
experiment, we consider three definitions of the lifetime (the
first node dies, 50% node dies, and the last node dies) and two
different deployment areas (100m*150m and 200m*300m).
Experimental settings, platforms, and performance metrics are
explained in the following subsections.

A. Experimental Platform
We did our experimental work on a real testbed using

Raspberry Pi and developed the program using Python 3.0.
Raspberry Pi is a low powered, low cost, and small size
single-board computer. It is used as a sensor node to transmit
data up to the controller/sink and as a controller to control
the underlying network that collects data from the sensor
nodes in the SDWSN network. Raspberry pi has become
more attractive because of its small size and used in many
real-time applications such as WSN, cloud computing ap-
plications, robotic projects, and so on. In our experiments,
we used the Raspberry pi B+ model, which has a powerful
1.4GHz x Cortex-A53 CPU and ARMv8 microcontroller with
1Gb RAM. On the software side, it supports a variety of
operating systems, including Debian Linux-based operating
system recommended by the Raspberry pi foundation, and also
optimizes the Raspberry pi hardware. Compared with other
models, the specifications of Pi B+ are marvelous. It also
contains the wireless LAN card having IEEE 802.11ac for
wireless communications. In our experimental work, we use
Raspberry pi WLAN to create the wireless ad hoc connection.
Another advantage of Raspberry pi is that it has a secondary
memory, storing large amounts of data on a micro SD card.
It has been deployed as an intelligent sensor node, but in our
experimental work, we use it as an intelligent SDN controller,
and the rest of the nodes are considered as normal nodes that
collect the data from the environment and send it to the SDN
controller.

B. Performance metrics
In this paper, we consider two metrics for results evaluation,

as describe below:
1) Network Lifetime (LT):
• The time until the first node runs out of energy.
• The time until the X% nodes runs out of energy.
• The time until the last node run out of energy.
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(a) Area 100m*150m. (b) Area 200m*300m.

Fig. 7. Network Lifetime.

2) Packet delivery Ratio (PDR): The percentage of packet
successfully deliver up to a destination is called PDR. It can
be represented as:

PDR = [
PTDP

PTSP
] ∗ 100 (13)

PTDP is the total delivered packet, and the PTSP is the
total send packets from source to destination.

3) Lifetime: We performed our experimental work in two
different scenarios. In the first scenario, the deployment area is
100m*150m, and in the second scenario, it is 200m*300m. We
consider three different lifetime definitions: the first node dies,
50% node dies, and the last node dies. The experimental work
for a lifetime is also performed with two different parameters
(e.g., α=0.3 and 0.5). In the first part of the experimental work,
we compare the lifetime of five different prior methods with
three different lifetime definitions by considering two different
areas (100m*150m and 200m*300m). The proposed technique
RL-based SDWSN is compared with four previous techniques.
In the second scenario of lifetime description, we compare all
previous techniques with our proposed technique with different
learning rates (α).

First, we use two dimensions to calculate the network’s
lifetime, as shown in Figure 7. In Figure 7(a), all three-lifetime
definitions are taken into account, and the area of 100m*150m
is taken for the experiment. The proposed RL-based SDWSN
technique provides a better lifetime in all definitions. In
the first node dies definition, the proposed technique RL-
based SDWSN has a higher lifetime than Q-learning, RLBR,
traditional SDWSN, EASDN, QR-SDN and TIDE. RL-based
SDWSN is better than Q-learning because it considers all
parameters (distance from the source to destination, number
of hopes up to the destination, remaining energy, and QoS)
related to energy optimization. But in Q-learning, it only
considers the delay parameter and wastes a lot of network
energy during path finding. Q-learning also uses the control
packet to obtain new information about neighboring nodes.

Usually, the control packet frequency is greater than the data
packet frequency, causing the network lifetime to be shortened.
However, in RLBR, it also has a shorter lifetime than RL-based
SDWSN. In RLBR, a large number of control packets update
the neighboring table. It is also not considered all the required
parameters to find the optimized path in energy optimization.
Both traditional SDN and EASDN give less lifetime than
RL-based SDWSN because of non-efficient SDN controller
algorithms. In traditional SDN, only distance is considered for
the calculating the routing path and also considered some as-
sumption (i.e., the controller can access to all nodes within one
hop, and also knows the initial status data of all nodes, such as
node energy, position, and neighboring node list) in a real-time
network, that is not possible. SDN controller cannot find the
optimized path based on distance only; for these reasons, the
traditional SDN has a shorter lifetime than RL-based SDWSN.
In EASDN, it takes into account two parameters (i.e., distance
and residual energy) to calculate the routing path. Network
quality is also not taken into account when calculating routing
paths. However, both QR-SDN and TIDE networks are based
on SDN architecture that is controlled through RL. These
techniques do not focus on network energy consumption
issues, and no energy measurement parameter is considered in
the reward function. In contrast, RL-based SDWSN considers
all required parameters in its reward function to find the best
optimal path and change the path whenever the SDN controller
observes another best path. Therefore, SDWSN based on RL
has a higher lifetime than Q-learning, RLBR, traditional SDN,
EASDN, QR-SDN and TIDE which are approximately 25%,
20%, 13%, and 8%,6% ,and 5.5%, respectively. In the second
lifetime definition (50% node die), the proposed technique RL-
based SDWSN is also outperforming as compared to SDN and
RL-based techniques, as described earlier. RL-based SDWSN
gives a higher lifetime than Q-learning, RLBR, traditional SD-
WSN, and EASDN, which is approximately 25%, 24%,17%,
and 11%, respectively, as shown in Figure 7(a) However, in
the third-lifetime definition, the proposed RL-based SDNWSN
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(a) First node die. (b) 50% nodes die.

(c) Last node die.

Fig. 8. Network Lifetime (Area 100m*150m) with different learning rates.

technique also has a higher lifetime as compared to SDN
and RL-based techniques. RL-based SDWSN gives a higher
lifetime than Q-learning, RLBR, traditional SDWSN, EASDN,
QR-SDN and TIDE, which is approximately 33%, 28%,23%,
and 14%, 12% and 11%, respectively.

In the second scenario, we enhanced the deployment area
100m*150m to 200m*300m and observed the lifetime per-
formance of the network. Lifetime decreases in this scenario
compared to the small area scenario because the increased
distance between nodes results in more energy consumption.
The energy consumption of nodes depends on the length
of the data packets and the distance between the nodes, as
discussed in the energy consumption model section. However,
the proposed technique improves the lifetime as compared to
SDN and RL-based techniques, as shown in Figure. 7(b). With
the exception of RLBR in the second life cycle definition
(half node die), all techniques behave similarly to the first
scenario. RL-based SDWSN has a higher lifetime than Q-
learning, RLBR, traditional SDWSN, EASDN, QR-SDN, and
TIDE approximately 8% to 33% in all definitions.

4) Comparison of Lifetime with difference learning rate:
In the RL-based network, the learning rate has a significant
effect on network performance. This section compares the
two learning rates and looks at their impact on the network’s
lifetime. For this experimental work, we also consider three
definitions of lifetime and two different areas. In the first
scenario, the area of 100m*150m is selected. As can be seen
from Figure 8, the learning rate is influencing the lifetime
of the network. It increases the network lifetime of the RL-
based network, while SDN-based network remains unchanged
due to the lack of learning. All RL-based techniques (i.e., Q-
learning, RLBR, and RL-SDWSN) improve the lifetime as the
learning rate increases. From Figure 8(a),8(b), & 8(c) show
that α = 0.5 gives a higher lifetime because it quickly learns
the network and can quickly optimize the routing path. In all
definitions of a lifetime, when α changes from 0.3 to 0.5, the
life cycle increases by 3% to 5%.

In the second scenario, we change the deployment area from
100m*150m to 200m*300m to see its impact on lifetime.
As can be seen from Figure 9(a),9(b), & 9(c) , as the area
increases, the lifetime of the network also decreases because
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(a) First node die. (b) 50% nodes die.

(c) Last node die.

Fig. 9. Network Lifetime (Area 200m*300m) with different learning rates.

of the distance between nodes increases, which increases the
energy consumption of the network. However, we can also see
from these results that the learning rate also affects the network
lifetime. It increases the lifetime of RL-based techniques by
3% when α increases from 0.3 to 0.5. We also observed
that the proposed technique RL-based SDWSN has a higher
lifetime than SDN and RL-based networks.

5) Packet Delivery Ratio (PDR): This section discusses the
packet success rate, how many packets reach their destina-
tion, and how much are lost in transmission. To test PDR,
we also use two different areas. In Figure 10(a), the area
of 100m*150m is used. It can be seen that RL-SDWSN
has a higher PDR than Q-learning, RLBR, traditional SDN,
EASDN, QR-SND, and TIDE. In Q-learning, each node tries
to learn the best path by itself. At the beginning of the
communication, many packets are lost because the network
needs time to establish a path from source to destination.
During this period, each node broadcasts control packets to
get neighbor information to estimate the best possible path.
However, in this case, the network becomes congested, and a

large number of packets are lost due to congestion.

Similarly, in RLBR, the network is decentralized, and each
node tries to learn the optimal path, but in order to learn, each
node broadcasts control packets to obtain the state information
of neighboring nodes. In the RL-based network, it is necessary
to obtain the latest status data of neighboring nodes. The
network became congested due to the large number of control
packets being exchanged. As a result, a large number of
packets are lost. However, in the SDN-based network, it has
better PDR as compared to RL-based network, but the RL-
based SDWSN performance is better than that of traditional
SDWSN and EASDN. In the SDN-based network, the con-
troller can view the underlying network globally and control
the network. However, both QR-SND and TIDE are also SDN-
based networks. In QR-SDN, the design of the reward function
is not too much affecting the network data flow control that
results in losing more packets during communication and giv-
ing less PDR as compared to the proposed RL-based SDWSN.
In contrast, TIDE performance is approximately approaching
RL-based SDN performance because it is taken into account
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(a) Packet delivery ratio of 100m*150m area. (b) Packet delivery ratio of 200m*300m area.

Fig. 10. Packet Delivery Ratio (PDR).

(a) Single dashboard for all sensor nodes.

(b) Sensor node 1,2,3 and 4 dashboard. (c) Sensor node 5,6,7 and 8 dashboard.

Fig. 11. Web based sensor node monitoring dashboard 1.

in reward function that improves the network performance in
terms of PDR.

The SDN controller manages network traffic to avoid con-
gestion; that is why the SDN-based network gives better PDR
than the RL-based network. However, the SDN controller
algorithm sometimes does not work well. The controller did
not consider all the necessary factors to avoid congestion.
In RL-based SDWSN, the agent selects a routing path after
considering all factors (i.e., packet loss rate between two
nodes, number of hops up to the destination, and distance up
to sink). These factors affect network performance in terms
of the packet success rate. In RL-based SDWSN, the agent
has the ability to select the best routing path to achieve low
congestion and high PRR. In the second scenario, the node
deployment area is 200m*300m. In Figure 10(b), it can be

seen that the RL-based SDWSN also has better PDR compared
with all other techniques, and its behavior is also similar.
However, the performance of RLBR is a little low compared
with Q-learning. In terms of delivery ratio, all methods are
giving low PDR in this scenario (200m*300m) than the first
scenario (100m*150m) because the distance between two
nodes increases, and the loss rate also increases with distance.
From Figure 10(b), we can see that the RL-based SDWSN
has little impact compared with other technologies. However,
RL-based techniques are more effective in terms of PDR.

C. Web based sensor node monitoring System
IoT-based networks control the network devices (i.e., sensor

nodes) remotely through the Web. We also developed a web-
based dashboard for controlling the sensor nodes. In our
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(a) Single dashboard for all sensor nodes.

(b) Sensor node 1,2,3 and 4 dashboard. (c) Sensor node 5,6,7 and 8 dashboard.

Fig. 12. Web based sensor node monitoring dashboard 2.

network, eight sensor nodes have been deployed that measure
the temperature. The dashboard is shown in Figure 11 & 12. In
Figure 11, four months temperature is monitored through web.
In Figure11(a), two different windows are shown. The first
window shows the temperature of all deployed sensor nodes,
while the second window shows the average temperature of all
sensor nodes. However, in Figure 11(b), shows the individual
temperature of sensor node 1 to 4 and 11(c), shows the
temperature from sensor node 5 to 8.

In Figure 12, some sensor nodes are off (i.e., 3,4,5,& 6)
that is shown in red colour; however, sensor node 1, 2, and
8 are on and the data (temperature) of these sensor nodes
are shown in Figure 12(a). However, Figure 12(b) and 12(c)
show the individual data of all sensor nodes. In Figure 12(b),
we can see that only sensor nodes 1 and 2 are active and
data is also showing on the dashboard, and similarly sensor
node 5,6, and 7 are inactive, and the windows of these sensor
nodes are empty. As we can see from both Figure 11 and
Figure 12, network devices can be easily managed, observed
and controlled remotely through the web.

VII. CONCLUSION

Wireless sensor networks (WSNs) is increasingly used in
our daily life. This paper elaborates the need for an efficient
IoT-based WSN framework because of its great importance in
various application environments. It is an intimidating task
to achieve the desired WSN performance through efficient
routing. Therefore, we use RL and SDN combinations for
efficient WSN routing, leading to improved routing decisions.
SDN controller learns the routing path through RL and takes
the next action according to the previously received reward.
We used RL to select the best routing path from the routing
list obtained by STP. The performance of RL-based SDWSN
is compared with existing SDN-based techniques, including
the traditional SDN and energy-efficient technique used for

routing. The proposed RL-based SDWSN technique provides
a better lifetime of 8-33% on average in all scenarios. We also
compared the results of two different learning rates. Our pro-
posed RL-based SDWSN method also increased the average
network lifetime from 8 to 12% in all scenarios. Furthermore,
we compare the performance of PDR that gives a higher
delivery ratio as compared to SDN and RL-based techniques.
Some other metrics, such as latency, delay, and throughput,
also greatly impact network performance. In the future, we
plan to optimize the parameters that are mentioned above by
proposing some new algorithms and implementing the large-
scale network. Also, we intend to compare the performance of
the real-time network with the simulation work. However, we
have also plan to detect the abnormal traffic of the network
by using RL.
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