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Natural Language Processing (NLP) is a branch of artificial intelligence that involves the design and imple-
mentation of systems and algorithms able to interact through human language. Thanks to the recent
advances of deep learning, NLP applications have received an unprecedented boost in performance. In
this paper, we present a survey of the application of deep learning techniques in NLP, with a focus on
the various tasks where deep learning is demonstrating stronger impact. Additionally, we explore,
describe, and revise the main resources in NLP research, including software, hardware, and popular cor-
pora. Finally, we emphasize the main limits of deep learning in NLP and current research directions.
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1. NLP in a nutshell documents, automatic answering of questions, classification and
Natural Language Processing (NLP) is a branch of artificial intel-
ligence brimful of intricate, sophisticated, and challenging tasks
related to the language, such as machine translation, question
answering, summarization, and so on. NLP involves the design
and implementation of models, systems, and algorithms to solve
practical problems in understanding human languages.

We may split NLP into two main sub-branches, which are fun-
damental (or basic) and applicative research. Belonging to the first
category, we find general problems representing the bricks to build
complex systems based on human language. Some of these tasks
are language modeling, morphological analysis, syntactic process-
ing, or parsing, and semantic analysis. Additionally, NLP deals with
applicative topics such as automatic extraction of relevant infor-
mation (e.g., named entities and relations between them) from
texts, translation of text between languages, summarization of
clustering of documents.
Thanks to the recent advances of deep learning, NLP applica-

tions have received an unprecedented boost in performance, gen-
erating growing interest from the Machine Learning community.
For instance, in Machine Translation, the phrase-based statistical
approaches that were at the state of the art have been gradually
substituted with neural machine translation, consisting of huge
deep neural networks that obtained better performance [1]. Simi-
larly, early approaches for named entity recognition based on dic-
tionaries, ontologies, and syntactic grammar rules have been
replaced by recurrent architectures [2] and deep learning models.
In both cases, large neural networks have demonstrated to be
superior to traditional ML algorithms, such as SVM, for multiple
reasons. Firstly, these models can often be trained with a single
end-to-end architecture and they do not require traditional task-
specific feature engineering, making their adoption convenient.
Secondly, deep neural networks are able to handle a huge amount
of training data. However, if we consider tasks related to the
semantic analysis of natural languages, the limited availability of
semantically annotated data, typically requiring specialized human
effort, has slowed the diffusion of the neural approaches.
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Recent models also started to overtake the human performance
on various tasks, such as Question Answering [3] or detection of
deceiving contents [4].

However, even if recent techniques are starting to reach excel-
lent performance on various tasks, there are still several problems
that need to be solved, such as the computational cost, the repro-
ducibility of results, and the lack of interpretability.

In the last years, various surveys concerning Deep Learning and
Natural Language Processing have been published. Given the fast
rate of progress in the field, we consider only the most recent sur-
veys, i.e. those appeared since 2019 [5–9].

Our paper, rather than a survey, aims at being a tutorial for the
Machine Learning community. In this perspective, it provides (i) a
classification of the main NLP tasks; (ii) an analysis of current
issues and future work, focusing on reproducibility; (iii) a descrip-
tion of software and hardware resources and of the main corpora
used in NLP. Some remarks concerning the previous surveys.
Specifically, the authors in [5] survey different architectures of
the classic neural network language models and their improve-
ments. [9] reviews deep learning models from the perspective of
text representation learning. [8] provides a brief introduction to
both NLP and deep neural networks, and discusses how deep learn-
ing is being used to solve current problems in NLP. [7] categorizes
and addresses the different aspects and applications of NLP that
have benefited from deep learning. Finally, the survey in [6] con-
centrates on cross-lingual word embedding models.

2. Tasks and applications

Due to the ubiquitous human–computer interaction, NLP tech-
niques are currently used in several different tasks, covering mul-
tiple domains. Most of modern NLP applications can be categorized
in the following classes:

Sequence classification. These NLP problems are full-fledged
classification tasks. Let X be a set of input sequences, where
each sequence s 2 X is a series of tokens s ¼ hw1 . . .wjsji and
let Yc ¼ fc1; c2 . . .g be a set of possible classes. Similarly to com-
mon classification problems in Machine Learning, the aim of
sequence classification is to find a function f c : X ! Yc able to
assign a class to each sequence. Some relevant examples are
(i) sentiment analysis, whose purpose is to classify a short text
according to its polarity, (ii) document categorization, that finds
the topic of a document (e.g., sport, finance. . .), and (iii) answer
sentence selection, where the goal is to select the best sentence
from a given paragraph/text to answer an input question.
Pairwise sequence classification. Pairwise sequence classifica-
tion consists in comparing and classifying two different
sequences according to their similarity, their semantics, and
their meanings. Usually, pairwise sequence classification is a
binary classification task where, given two different sequences
as input, returns +1 iff they express the same meaning, �1
otherwise, that is f p : X�X ! fþ1;�1g. Algorithms and mod-
els for these tasks need to fully understand a sequence and to
extract meaningful semantic representations, overcoming mul-
tiple problems like synonymy and polysemy. One of the most
popular applications is the Quora Question Pairs challenge,2

whose aim is to find duplicated questions from Quora.
Word labeling. In word labeling applications, a label is attached
to each token wi 2 s. Specifically, the output space Yw consists
of sequences of labels for each element of the input
y ¼ hy1 . . . yjsji 2 Yw. Examples of word labeling tasks are (i)
Named Entity Recognition (NER), where relevant entities (e.g.,
2 https://www.kaggle.com/c/quora-question-pairs.
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names, locations) are identified from the input sequence, (ii)
classical question answering, where a probability distribution
issued by an input paragraph is used to select a span containing
the answer, or (iii) Part-of-Speech (PoS) tagging, that is the pro-
cess of marking up a word in a text as corresponding to a par-
ticular part of speech (verb, noun, adjective, . . .).
Sequence2sequence. In seq2seq problems, the input sequence
is used to generate an output sequence. Differently from word
labeling applications, the input sequence s and the output
sequence y are not directly aligned, i.e. jsj: ¼ jyj, and the model
needs to generate a new sentence. Although either the input X
and the output Ys2s spaces contain sequences, they may be dis-
joint sets, as is the case of machine translation.

Note that this classification is not exhaustive but covers the
most popular and relevant tasks. An example of a few NLP tasks
applied to the input sentence ‘‘I really like David’s cat!” is shown
in Fig. 1.
3. Recent advances in NLP

One of the main issues in the last decade for NLP applications
was the definition of a suitable and effective representation of
tokens, sentences, and documents. Early approaches described a
word wi from a given dictionary R as one-hot encoding

hwi
2 f0;1gjRj (see Fig. 2). This solution has two main drawbacks.

Firstly, input words are described by huge vectors whose dimen-
sion depends on the dictionary size. Secondly, different words have
orthogonal representations hwi

? hwj
, with a consequent drop of

any possible semantic relations between words. This aspect has
strongly limited the capability of NLP systems, unable for instance
to catch the similarities between apple, kiwi, table, peachwords and
discover unrelated word.
3.1. Word and sentence vectors

Recently, Mikolov et al. [10] proposed an efficient and effective
method to learn distributed low-dimensional word-level represen-
tations, known as word vectors or word embeddings, such that
words with similar meaning have similar representations. The
method, named Word2vec, consists of a shallow neural network
with an encoder-decoder structure pre-trained on unlabeled cor-
pora. Similarly to an autoencoder, the network tries to reconstruct
a neighbor word (context) wj given an input target word wi, that is

hwi
!enc vwi

!dec hwj
, where vwi

2 Rd is the word embedding of wi. Two
different models, CBOW and Skip-gram, have been proposed. The
former is trained to reconstruct a target word given its context
as input, whereas the latter tries to predict context words given
the target word. Word2vec has also shown its capability to capture
a large number of precise syntactic and semantic word relation-
ships. For example, the analogy ‘‘king is to queen as man is to
woman” is encoded in the resulting vector space as the equation
vking � vqueen ¼ vman � vwoman (see Fig. 3).

Due to its effectiveness on several tasks, such as NER [11], sen-
timent analysis [12], recommendation [13], and synonym recogni-
tion [14], Word2vec received considerable attention in the
literature, and several improved solutions have subsequently been
proposed. Some relevant examples are (i) Global-Vector (GloVe)
[15], that exploits statistical information computed on the whole
corpus, and (ii) fastText [16], that injects sub-words (character n-
grams) information to describe the inner structure of a word. This
inner structure can be extremely useful in several applications,
such as Biomedical text mining [17], where for instance affixes of
biomedical terms have a specific structure.

https://www.kaggle.com/c/quora-question-pairs


Fig. 1. Examples of NLP tasks applied to the same input sentence, including NER,
PoS, sentiment analysis, and machine translation.

Fig. 2. Example of one-hot encoding.

Fig. 3. Example of relation learned by Word2Vec.
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Beyond the models presented in this section, which are the
most popular and relevant, the literature on word embeddings cov-
ers more than a decade of research that cannot be easily summa-
rized in this type of paper. Countless surveys exist on this topic.
For instance, Almeida et al. [18] covers the evolution of word
embeddings starting from the first neural models proposed in
2003, emphasizing the differences between them and the intuition
behind the models. Differently, focusing on cross-lingual setting,
the survey provided by Ruder et al. [6] represents a strong
contribution.

However, despite the impressive results of word vectors, the
definition of a suitable representation for sentences and texts is
still challenging. One of the main approaches commonly used for
this purpose predates the explosion of deep learning and is known
as Bag-of-Words (BOW) [19]. BOW represents a document d as its
(countable) set of words that compose it, and it can be computed as
the sum of one-hot word vectors that compose the document
P

wi2dhwi
. This approach is really intuitive and the resulting feature

vector is able to describe the content of a document. However, the
dimension of the feature vector quickly increases with the dic-
tionary size, and the semantic of the text is not taken into account.
BOW representations have been widely used in the literature, such
as in spam filtering [20] and document classification [21,22]. With
the advent of word vectors, new methods to develop meaningful
document and sentence level representations have been proposed.
These methods can be categorized into two classes, i.e. unsuper-
vised document embedding techniques, typically inspired by
445
Word2vec, and supervised approaches. Unsupervised word/sen-
tence vectors aim at extracting general representations that can
be placed in various tasks. These methods can be trained on large
scale unlabeled corpora through a language model objective func-
tion, which is a probability distribution over sequences of words.
On the other hand, supervised methods use explicit labels to
develop meaningful representations used in downstream tasks.

As a primer attempt of unsupervised method, the simple aver-
age pooling of word vectors has been explored to derive sentence
vectors [23]. Consecutively, different methods that directly extend
Word2vec have been released, as is the case of Doc2Vec (also
known as ParagraphVector) [24]. A further relevant solution was
Skip-thought vectors [25] that is based on the same structure of
skip-gram, but it replaces the atomic units from words to sen-
tences. Given a target sentence, Skip-thought tries to reconstruct
a context sentence. An encoder-decoder structure based on RNN
with GRU units is involved. Other newsworthy approaches are fast-
Sent [26], which extends Skip-thought vectors, and [27], that uses
a combination of CNN (encoder) and RNN (decoder).

Several methods have also been proposed in supervised scenar-
ios. Most of them are based on recursive [28], recurrent, or convo-
lutional neural networks [29]. Usually, these methods build a
neural network on the top of word vectors, combining the proper-
ties of pre-trained word embeddings, the elasticity of neural archi-
tectures, and the strength of the supervision.

For instance, the neural network for sequence text classification
proposed in [30] takes a static word vector for each input word and
then it combines them through a CNN layer with multiple filters
and feature maps (see Fig. 4). The authors also shows significant
improvements when the word vectors are initialyzed with pre-
trained embeddings fine-tuned on the targe task. A similar
approach has been used in [31], where a siamese CNN is employed
to rank short text pairs.

One relevant application of such technologies is neural Machine
Translation (MT), where sequence2sequence neural networks have
been proposed as encoder-decoder (one for each language) archi-
tecture [32,33]. Unlike the previous phrase-based translation sys-
tem [34] that consists of many small sub-components separately
tuned, neural MT tries to build a single but larger neural network
that reads a sentence as input and returns the translation as out-
put. The main issue with this approach is that the information
coming from long sentences cannot be compressed in a fixed-
length vector (see Fig. 5), named context vector, with a consequent
drop in performance. To this end, attention mechanisms [1] have



Fig. 4. The typical structure of a CNN for sequence classification [30]. Static word vectors are used as input. Then, convolutional layers learns semantic relations between
words.

Fig. 5. Classical sequence2sequence architecture based on recurrent neural net-
works. The encoder (orange) produces a context vector to fed the decoder (blue).
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been introduced, where the context vector used to produce each
output state is defined as a linear combination of all internal
encoding contexts (Fig. 6). The model showed remarkable results
when dealing with long sentences.

Inspired by the recent success of bidirectional RNN [35,36],
ELMo [37] (Embeddings from Language Models) is probably one
of the most interesting methods emerging from a plethora of works
and previous attempts. In short, instead of using a static word vec-
tor, ELMo looks at the entire sentence producing a contextualized
word embedding through a bidirectional language model. The net-
work is a multilayer LSTM (see Fig. 7) pre-trained on unlabeled
data. Most important, the authors showed mechanisms to use
internal representations in downstream tasks by fine-tuning the
network, improving results on several benchmarks.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. The attention mechanism allows to produce an output state by means of a
combination of intermediate context vectors.
3.2. Pre-trained Transformer models

However, the last real boost in NLP after the advent of word
vectors and unsupervised pre-training is the Transformer model
[38]. The Transformer is the first architecture entirely based on
attention to draw global dependencies between input and output,
replacing the recurrent layers most commonly used in encoder-
decoder architectures. The model showed a new state of the art
in translation quality, while it can be trained significantly faster
than architectures based on recurrent or convolutional layers.
The evolution of language models pre-trained on large unlabeled
corpora and the surprisingly empirical effectiveness of Trans-
former architectures are the two main pillars of modern NLP.
One of the most popular pre-trained Transformer models is BERT
[39] (Bidirectional Encoder Representations from Transformers).
BERT is designed to pre-train deep bidirectional representations
from unlabeled texts by jointly conditioning on both left and right
contexts in all layers. The pre-training was driven by two language
model objectives, i.e. Masked Language Model (MLM) and Next
Sentence Prediction (NSP). In MLM, showed in Fig. 8, the network
masks a small number of words of the input sequence and it tries
to predict them in output, whereas in NSP the network tries to
understand the relations between sentences by means of a binary
loss. Specifically, the model has to select if two sentences are con-
secutive or not. After a pre-training phase, the model can be easily
used in downstream tasks by fine-tuning the network on the target
domain. BERT can be used in several different tasks, such as
sequence classification, word- labeling, sequence2sequence, and
so on. These methods rely on two main strengths, (i) the architec-
ture strongly based on self-attention mechanisms that allow to
read and to keep track of the whole input sequence, and (ii) the
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pre-training that allows the network to read and to (at least appar-
ently) understand a text, its semantic and the meaning.

Inspired by BERT, several pre-trained Transformers have been
subsequently proposed, as is the case of RoBERTa [40], ALBERT
[41], and DistilBERT [42]. These extensions of BERT were based
on the same Transformer architecture with few small differences,
without introducing additional features. For instance, RoBERTa
criticized the NSP loss arguing that NSP is a critical task also for



Fig. 7. ELMoo: the word embedding assigned to each token is a function of the
whole sentence. Note that the intermediate outputs from the two LSTM layers are
both used to define the final representation.

Fig. 8. Masked Language Model.

3 https://www.nltk.org/.
4 https://radimrehurek.com/gensim/.
5 https://spacy.io/.
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humans, and it does not improve the performance of the network.
Other relevant methods based on the same concepts are GPT
[43,44] (Generative Pre-Training), Transformer-XL [45], and its
extension XLNet [46].

Nowadays, these methods are continuously achieving excellent
performance on a plethora of NLP tasks, such as question answer-
ing [47–49], text classification [50], sentiment analysis [51],
biomedical text mining [52], and Named Entity Recognition [53].
Surprisingly, these networks started to overcome human perfor-
mance on several tasks that were considered unsolvable by AI,
such as Question Answering [3] and verbal lie detection [4].

And on top of that, pre-trained Transformers have shown
impressive performance in cross multilingual scenarios. For
instance, Pires et al. [54] showed that Multilingual-BERT (M-
BERT) pre-trained on 104 languages is extremely robust to develop
cross-language representations without using an explicit multilin-
gual training objective. Other authors [55] emphasized the fact
that the lexical overlap between languages plays a negligible role
in the cross-lingual success.

Transformer-based architectures have also been widely used for
text generation, i.e. the task of generating a text (typically a para-
graph of a sentence) given an input passage, including summariza-
tion, translation, or chatbot. A popular resource in this field is GPT
(Generative Pre-Training) [43]. GPT uses 12-layer decoder only
transformer structure with masked self-attention to train language
model on 7000 unpublished books. Released in 2019, GPT-2 [44]
extends its predecessor GPT. With a few minor changes, the net-
work consists of a 24-layers Transformer with 1.5 billions of learn-
able parameters. The context size as been also increased from 512
to 1024 tokens. Most important, GPT-2 introduced the concept of
Task Conditioning, for which the training allows to learn multiple
tasks using the same unsupervised model (that is: P(outputjinput,
task)). In other words, the model is expected to produce different
output for same input for different tasks. The task conditioning
for language models is performed by providing examples or natu-
447
ral language instructions to the model to perform a task. Task con-
ditioning forms the basis for zero-shot task transfer.

The recently proposed GPT-3 [56], an autoregressive language
model with 175 billion parameters, further improves the perfor-
mance of GPT-2, showing impressive results in text generation.
The authors showed the ability of the model in generating samples
of news articles which human evaluators have difficulty distin-
guishing from articles written by humans. Notably, GPT-3 has
shown effective in zero- and few-shot settings, resizing the impor-
tance of fine-tuning for very large language models. However, GPT-
3 still has several drawbacks, including its drop of coherence when
generating long texts and the high cost of inference. Additionally,
GPT-3 raises some ethical and sociological problems, including
the risk of using its generation capability phishing, spamming,
spreading misinformation, or performing other fraudulent
activities.

While their main success was in Natural Language Generation,
impressive results were also achieved for other tasks.

4. Resources

In this section, we describe the main resources in NLP research
and development, including software and scientific libraries, cor-
pora, and hardware analysis for running large-scale state-of-the-
art models, focusing on Transformers.

4.1. Software

NLP attracted, in the past decades, a consistent number of
developers and scientists who have made available a plethora of
libraries, tools, and scripts to handle with both low-level NLP mod-
ules (tokenization, PoS tagging. . .) and high-level systems (docu-
ment classifiers, models. . .).

In the following we provide a brief description of the main tools
that we consider most relevant for performing NLP tasks. The
selection of these tools is driven by (i) the set of functionalities that
they provide, (ii) the dimension of the community behind the
resource, and (iii) the usability.

NLTK [57]3 (Natural Language Toolkit) is a leading platform for
building Python programs to work with human language data.
It provides easy-to-use interfaces to over 50 corpora and lexical
resources such as WordNet, along with a suite of text processing
libraries for classification, tokenization, stemming, tagging, pars-
ing, and semantic reasoning, wrappers for industrial-strength
NLP libraries, and an active discussion forum.
Gensim [58]4 is a Python library for topic modelling, document
indexing and similarity retrieval with large corpora. Target audi-
ence is NLP and Information Retrieval (IR) communities. The
library contains efficient implementations of popular algorithms,
such as Latent Semantic Analysis (LSA/LSI/SVD), Latent Dirichlet
Allocation (LDA), Random Projections (RP), Hierarchical Dirichlet
Process (HDP). The library also includes several Word2vec pre-
trained models.
SpaCy [59]5 is an industrial-strength library for performing NLP
tasks in Python. The library is specifically designed to build com-
plex industrial systems, and it interoperates seamlessly with Ten-
sorFlow, PyTorch, scikit-learn, Gensim and the rest of Python’s AI
ecosystem. Spacy includes several functionalities, such as tok-
enization, NER, sentence segmentation, PoS tagging, and depen-

https://www.nltk.org/
https://radimrehurek.com/gensim/
https://spacy.io/
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dency parsing. The library also contains various pre-trained word
vectors.
Transformers [60]6 provides general-purpose architectures
(BERT, GPT-2, RoBERTa, XLNet. . .) for Natural Language Under-
standing (NLU) and Natural Language Generation (NLG) with over
32+ pretrained models in 100+ languages and deep interoperabil-
ity between TensorFlow 2.0 and PyTorch. The library is curated
by Huggingface, an NLP-focused startup with a large open-
source community. The library exposes APIs to use many well-
known pre-trained transformer architectures described in the
previous sections.
CoreNLP [61]7 is a NLP library encompassing the main NLP mod-
ules and tasks, i.e. tokenization, PoS tagging, parsing, NER, for the
Java programming language. The library provides support for 6
different languages.
Stanza [62]8 is a collection of accurate and efficient tools for
many human languages. Stanza includes a Python interface to
the CoreNLP Java package. The toolkit is designed to be parallel
among more than 70 languages, using the Universal Dependen-
cies formalism. Finally, the package provides specialized tools
and models for Biomedical and clinical tasks.

The main characteristics and details of these libraries are sum-
marized in Table 1.

4.2. Hardware

The second important ingredient in NLP research is the hard-
ware to run experiments and to train large-scale deep neural net-
works, such as the Transformer. In this section we will show an
overview of the main hardware resources for running NLP models
surrounded by thoughts, tips, and technical details.

Usually, small research labs use their own machines with a cou-
ple of affordable GPUs, such as the Nvidia RTX 2080-Ti or 1080-Ti.
Notwithstanding these solutions are not expensive9 and they do
not require specialized cooling systems, they have some drawbacks.
Firstly, these GPUs are not designed for running 24/7 applications.
Secondly, they have a limited amount of memory (about 11 GiB
for a 2080/1080-Ti), which is undersized for recent models. Differ-
ently, medium and large research labs leverage different and opti-
mized solutions, such as High Performance Computing (HPC)
clusters, as is the case of our lab, or on-demand web-services, such
as Amazon Web Services (AWS) or Microsoft Azure, which provide
their optimized GPUs for a discrete hourly cost.

As previously discussed, NLP research is brimful of different
tasks with different characteristics, complexities, and needs.
Hence, the selection of the correct hardware is fundamental in
order to maximize the productivity and to limit the overall cost,
which includes the initial hardware price, the maintenance, and
the energy consumption. This last aspect may be relevant as most
of GPUs for deep learning have a Thermal Design Power (TDP) of
250–400 Watt.

There are several key criteria in selecting the most suitable GPU
for a given purpose, and they include (i) the training speed (influ-
enced by the number of CUDA cores, the architecture, the fre-
quency. . .), (ii) the amount of memory on which the maximum
batch size depends, (iii) the efficiency, i.e. the TDP, (iv) the system
that manages the GPU (blade, workstation, desktop), and clearly (v)
the cost of the GPU.

Having said that, we evaluated a subsection of popular GPUs
showing their performance in relation to their cost and other
6 https://huggingface.co/transformers/.
7 https://stanfordnlp.github.io/CoreNLP/.
8 https://stanfordnlp.github.io/stanza/.
9 At the moment of writing, a 2080-Ti can be purchased for 600–650€.
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parameters when dealing with Transformer models. Our assessed
hardware comprises:

Nvidia Tesla V100: The V100 is, probably, the most known and
the fastest GPU for deep learning in 2017–2020. It is paired with
16 (or 32) GiB of memory, allowing us to operate with discrete
batch sizes.
Nvidia Tesla A100: This card has been introduced in the middle
of 2020, significantly overcoming the V100. The A100 is paired
with 40 GiB of memory (Nvidia announced a version with 80
GiB) and it is becoming the new standard for large-scale deep
learning applications.
Nvidia Tesla T4: The T4 is not extremely fast, but it is specifi-
cally designed for low power consumption (only 75 W TDP).
Thanks to this characteristic, it became popular in large HPCs.
Nvidia Tesla K80: The K80 is a popular solution widely used in
the past. Each card contains 2 GPU chips with 11 GiB. We
included this card in our analysis as it is extremely cheap at
the moment of writing (a K80 card, i.e. 2 GPUs, can be pur-
chased for 150–200€) and, notwithstanding it is designed with
a passive cooling, it can be effectively installed in a desktop.
Nvidia Tesla M60: As is the case of the K80, a M60 card consists
of 2 individual GPUs of 8 GiB each. Unfortunately, its price is
significantly higher than the price of the K80. Moreover, the
limited amount of memory (8 � 2) may limit its potentialities
with recent models.
Intel Xeon E5-2686-v4 (i): this is a popular CPU widely used for
these applications. It includes 18 physical cores and 36 threads
at 2.3 Ghz (base clock). It supports AVX-2 instructions for fast
vectorial operations.

The characteristics of these GPUs are summarized in Table 2.
We empirically compared these GPUs on a simple fine-tuning

task. Specifically, we extracted a subset of sequences from GLUE,
a popular benchmark dataset described in the next sections and
we fine-tuned a BERT-base-uncased model on those sequences.
We used a batch size of 16 to allow a fair comparison on all GPUs.
We also applied dynamic padding, where the overall length of a
batch is defined by the longest sequence that comprises it. The
average batch length is 148. Finally, we collected the average num-
ber of sentences that the networks (and the CPU) can process in a
second. Results of this comparison are shown in Fig. 9. The exper-
iment ran on a Linux system with CUDA 11.0, PyTorch 1.7, and
Transformers 3.5 installed.

Beyond the mere training speed, selecting the right fleet is not
trivial. For instance, old Nvidia Tesla cards, such as the K80 or
M40, are much slower than a recent V/A100, but they are extre-
mely cheap nowadays and they are paired with 24 GB of memory.
As a further example, let us compare the Nvidia Tesla K80 and the
Tesla T4, which are two GPUs with similar speed (if you consider
the two chips inside the K80 card together). On the one hand,
the K80 is extremely cheaper compared to the T4 (200$ against
2,000$) and it has much more memory (12 � 2 against 16). On
the other hand, the latter is much more efficient, allowing to regain
the initial cost in long-term scenarios.

The energy consumption should not be underestimated for two
main reasons, which are the energy cost and the consequently car-
bon footprint [63,64]. Recent findings in NLP literature show that
the computations required for deep learning research have been
doubling every few months, resulting in an estimated 300,000x
increase from 2012 to 2018 [65]. In order to better explore this
aspect, Fig. 10 shows the speed of fine-tuning BERT-base compared
to the TDP.

However, there are other aspects that characterize a GPU. For
instance, recent Nvidia GPUs (Turing, Volta, and Ampere) are
highly optimized for mixed precision computation with FP32 and

https://huggingface.co/transformers/
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/stanza/


Table 1
NLP software libraries and their characteristics.

Library 1st release Language Multilingual License

NLTK 2001 python yes Apache 2.0
Gensim 2009 python partially GNU LGPLv2+
SpaCy 2015 python yes MIT license

Transformers 2019 python partially Apache 2.0
CoreNLP 2010 Java yes GNU GPLv3
Stanza 2019 Python yes Apache 2.0

Table 2
Main characteristics of popular hardware widely used in deep learning and NLP.

Model Year Memory TFlops TDP Price
GiB FP32 Watt €

V100 SXM2 2017 16 15.67 250 2600–3000
A100 SXM4 2020 40 19.49 400 4000–10000

T4 2018 16 8.14 75 1500–2000
K80 2014 12 � 2 4.11 � 2 150 � 2 150–200
M60 2015 8 � 2 4.83 � 2 150 � 2 1600–2000

E5-2686-v4 2016 – 0.6 145 400

Fig. 9. Hardware speed when fine-tuning BERT-base-uncased pre-trained model. In
the case of dual GPUs (K80 and M60), a single chip is considered.
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FP16 operations, improving the scalability of large-scale models
without affecting the final result.10 Also, GPUs equipped with Ten-
sor cores (as is the case of the T4) may further accelerate typical
deep learning workloads such as feed-forward and convolutional
layers when using mixed-precision. A final mention in this overview
of hardware is reserved to high-performance Application Specific
Integrated Circuit (ASIC) chips that are designed to accelerate
machine learning workloads during inference time. These chips
include, for instance, Tensor Processing Unit (TPU) or AWS
Inferentia.

4.3. Datasets

Starting from the 1990’s, NLP has been characterized by
increasing efforts in organizing competitions and shared tasks
(see [66] for a description of early efforts), where multiple teams
are challenged to solve specific problems with standard datasets
and public leaderboards. Additionally, thanks to the recent explo-
sion of deep learning and the abundance of increasingly intelligent
models, NLP tasks quickly evolved growing in complexity. A primer
example is provided by Question Answering (QA): a task that were
considered, in the past, extremely complex for a machine is now
partially solved as state-of-the-art models and industrial virtual
assistants are ready to answer complex open-domain questions
in a multi-turn conversation.

In the remainder of this section we briefly describe the refer-
ence datasets of the most relevant NLP tasks, with a particular
attention for those more suitable for the DL approaches.

4.3.1. Question Answering
As we already introduced in this work, QA is the task of produc-

ing an answer given the question and a passage (or short text).
There are mainly two distinct tasks in QA literature. The first is
the Answer Sentence Selection (AS2), and it consists of selecting
the sentence constituting (or containing) the answer. The second
task, that is known as Machine Reading (MR), consists of identify-
ing the exact text span representing the answer.

First QA models were based on linguistic theory, and they lever-
age the concept of words overlapping (or Redundancy-based tech-
niques [67]), assuming that the passage containing the answer
partially overlap with the question (e.g., the passage ‘‘Abraham Lin-
10 https://github.com/huggingface/transformers/tree/master/examples/text-classifi-
cation#mixed-precision-training.
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coln was an American statesman and lawyer. . .” cannot answer the
question ‘‘Who is Lady Gaga?” as these two sentences do not share
any entity). Surprisingly, some authors showed that simple word
matching outperformed various sophisticated systems [68]. With
the advent of neural networks, several models belonging to the
compare-aggregate framework have been proposed [69,70]. In
short, these networks act in two phases. Firstly, they try to develop
a contextualized representation for the question and candidate
answers (e.g., sentences from a text). Then, they compare these
representations selecting the candidate answer that better repre-
sents the question. Thanks to the ability of these new models in
developing a suitable neural representation, QA gained attraction
and corpora moved from simple and factoid questions towards
open domain QA.

A popular and widely used open domain MR datasets is the
Stanford Question Answering Dataset (SQuAD-1.1) [71]. The cor-

https://github.com/huggingface/transformers/tree/master/examples/text-classification#mixed-precision-training
https://github.com/huggingface/transformers/tree/master/examples/text-classification#mixed-precision-training


Fig. 10. Hardware speed per watt when fine-tuning BERT-base-uncased pre-trained
model.
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pus consists of questions posed by crowdworkers on a set of Wiki-
pedia articles, where the answer to every question is a segment of
text, or span, from the corresponding reading passage. Recently, an
evolution of SQuAD-1.1, namely SQuAD-2.0 [72], has been intro-
duced. SQuAD-2.0 combines the 100,000 questions in SQuAD-1.1
with other 50,000 unanswerable questions written adversarially
by crowdworkers to look similar to answerable ones. To do well
on SQuAD-2.0, systems must not only answer questions, but also
determine when no answer is supported by the paragraph and
abstain from answering. This last sub-task is known as answer trig-
gering. The main drawback of SQuAD is that the passage containing
the question consists of a simple short paragraph, and recent sys-
tems overcome the human performance.11

Thanks to the recent breakthrough carried by the Transformer
network, QA is evolving towards three main directions. Firstly,
inspired by practical reasons (e.g., virtual assistants), various large
corpora consisting of complex user-generated questions and long
passages (e.g., complete webpages and not a simple paragraph)
have been proposed. One of the most important resources for MR
in this scenario is Natural Questions (NQ) [73]. NQ contains real
user questions issued to Google search, and answers found from
Wikipedia by annotators. The resource comprises 307,373 training
examples. Differently from SQuAD or other previous corpora, like
WikiQA [74], another small but widely used resource for AS2, the
text containing (or not) the answer consists of a complete Wikipe-
dia article retrieved by a search engine rather than a simple para-
graph, making the task more challenging. An adaptation of NQ for
AS2, named ASNQ, has been recently proposed [48].

The second research direction concerns the interaction (or dia-
log) between a questioner, who is trying to learn about a text, and
an answerer. In this scenario, two fundamental resources are Ques-
tion Answering in Context (QuAC) [75] and Conversational Ques-
tion Answering Challenge (CoQA) [76]. Both of them are
surrounded by a discrete community providing scripts, code, and
baselines.
11 https://rajpurkar.github.io/SQuAD-explorer/.
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The third direction focuses on the question and its understand-
ability. Is the question comprehensible? Does the question contain
an ambiguity? Does it require a clarification? Recently, large-scale
corpora have been released to train models for these purposes,
such as [77,78].

Another relevant resources for AS2 that deserve a mention in
this summary is MS-Marco [79], which contains 100,000 open-
domain questions and an associated text retrieved fromWikipedia.
4.3.2. Sentiment Analysis
Sentiment Analysis (SA) is the task of identifying the people’s

feeling about a specific event or entity. One of the most popular
applications of SA in the NLP field concerns the product reviews,
where the goal is to predict the user’s feeling about a purchased
item or a watched movie. This information is extremely helpful
for companies that aim at improving their systems (e.g., e-
commerce) by analyzing the users’ ratings and feelings. Usually,
SA is a sequence classification task where, given the input text,
the system returns the label representing the feeling.

One of the most popular SA datasets widely used to benchmark
NLP models is the IMDB Movie Reviews Dataset [80]. The dataset
consists of 50,000 movie reviews of which 25,000 are labelled as
positive intent and 25,000 as negative.

Much effort has been also devoted in collecting data from Twit-
ter. The most popular large-scale SA corpus generated from Twitter
traffic is, without a doubt, Sentiment140 [81]. The corpus consists
of 1,400,000 tweets, and it is used to analyze user responses to dif-
ferent products, brands, or topics through user tweets. However,
the corpus has been collected with a distant supervised approach
based on the emoticons inside the tweets to define the label. For
instance, a tweet containing the emoticon ‘‘:)” is classified as pos-
itive. Clearly, this approach does not take various problems into
account, such as the irony and the sarcasm.

Moving towards different domains, the Paper Reviews Data Set
[82] contains 405 reviews of scientific papers, and they are labelled
with a score from �2 (very negative) to 2 (very positive).

As is the case of other tasks, SA has recently evolved towards
the combination of information from multiple sources, e.g. text,
images, and videos. Some relevant corpora for Multimodal SA are
(i) IEMOCAP [83], a multimodal and multi-speaker database con-
taining 12 h of audiovisual data, the labels are categorical and
reflect different emotional states, such as anger, happiness, and
sadness; (ii) MOSI [84], an opinion-level annotated corpus of sen-
timent and subjectivity analysis in online videos composed by
3,702 distinct examples; and (ii) its extension CMU-MOSEI [85],
which contains 23,453 distinct examples.
4.3.3. Machine Translation
A comprehensive resource for MT is OPUS,12 a collection of

translated texts from the web. The OPUS project aims to convert
and align free online data, to add linguistic annotation, and to pro-
vide the community with a publicly available parallel corpus. OPUS
is based on open source products and the corpus is also delivered as
an open content package. All pre-processing is done automatically.
No manual corrections have been carried out. OPUS provides a wide
coverage of MT resources but it lacks specific indications about the
relevance of the single resources.

The reference source for the use of MT datasets is WMT,13 the
most important MT evaluation campaign. On its website, it is possi-
ble to find the parallel corpora used in various evaluation campaigns.
The main corpora are Europarl [86] and News Commentary [87], and
UN [87] for some language pairs.
12 http://opus.nlpl.eu/.
13 http://www.statmt.org/wmt20/.
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To train a good general-purpose model it is necessary to exploit
parallel texts of at least hundreds of millions words. To obtain such
amount of words, ParaCrawl14 and OpenSubtitles [88]15 can be
used. Another interesting resource is MultiUN [87], a collection of
translated documents from the United Nations. For translations
from/to English, there is OPUS-100,16 an English-centric multilingual
corpus covering 100 languages.

It is worthwhile also to mention WIT3 [89] (Web Inventory of
Transcribed and Translated Talks). WIT3 is a ready-to-use version
for research purposes of the multilingual transcriptions of TED
talks.17 Since 2007, the TED Conference has been posting on its web-
site all video recordings of its talks, English subtitles and their trans-
lations in more than one hundred languages. In order to make this
collection of talks more effectively usable by the research commu-
nity, the original textual contents are redistributed here, together
with MT benchmarks and processing tools.

As for speech translation, there are the following two resources:
MuST-C [90] and Europarl-ST [91]. MuST-C is a multilingual speech
translation corpus whose size and quality facilitates the training of
end-to-end systems for speech translation from English into sev-
eral languages. For each target language, MuST-C comprises several
hundred hours of audio recordings from English TED Talks, which
are automatically aligned at the sentence level with their manual
transcriptions and translations. Europarl-ST is a Multilingual
Speech Translation Corpus, that contains paired audio-text sam-
ples for Speech Translation, constructed using the debates carried
out in the European Parliament in the period between 2008 and
2012.

4.3.4. Biomedical text mining
With the enormous volume of biological literature and its rapid

growth, Biomedical text mining is becoming increasingly impor-
tant to provide a structured and rapid access to actionable Biomed-
ical information. Formally, Biomedical text mining (BioNLP) refers
to the methods and study of how text mining and NLP techniques
may be applied to the Biomedical literature and texts.

Recently, deep learning has boosted the development of effec-
tive biomedical text mining models. However, directly applying
NLP techniques and models to biomedical text mining often yields
unsatisfactory results due to a word distribution shift from general
domain corpora to biomedical corpora [52]. To this end, several
NLP tasks (and resources) have been specialized in the Biomedical
domain.

One of the most popular examples is the Biomedical NER
(BioNER), whose focus is to extract relevant Biomedical entities,
such as proteins, chemical compounds, or organism names from
Biomedical documents.

Several BioNER corpora exist in the literature (see [92] for a
recent comprehensive analysis). Most of them are publicly avail-
able on GitHub.18 The characteristics of these corpora are briefly
described in Table 3.

The BioNER tasks organized in the context of Biocreative19 com-
munity effort are particularly relevant. Biocreative started in 2005
and the last edition was organized in 2017. Several corpora, such
as BC5CDR or CHEMDNER, have been used in various organized
challenges.

Additionally, there are a number of tasks derived from simple
BioNER, such as (i) Concept Recognition, that assigns an identifier
to retrieved entities, or (ii) Relation Extraction, which extracts rela-
14 http://opus.nlpl.eu/ParaCrawl.php.
15 http://opus.nlpl.eu/OpenSubtitles-v2018.php.
16 http://opus.nlpl.eu/opus-100.php.
17 http://www.ted.com/.
18 https://github.com/cambridgeltl/MTL-Bioinformatics-2016.
19 https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/.
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tions between different entities, as described in Fig. 11. The infor-
mation (and the supervision) for solving these tasks is usually
included in BioNER corpora.

Biomedical text mining is not limited to BioNER. A further pop-
ular and relevant task is known as Biomedical Semantic Indexing
(BioSI), and it consists in classifying Biomedical documents accord-
ing to a hierarchy labels (e.g., MeSH).

Several BioSI shared-tasks have been organized by the BioASQ
community20 since 2012. The community provides large-scale cor-
pora consisting of tens of millions of documents manually annotated
by experts, representing the most important resources in BioSI [93].

Another relevant application is Biomedical QA, whose goal is to
answer Biomedical-related questions. Curated resources manually
annotated by experts are, for instance, PubMedQA [94] which con-
tains a mixture of labelled, unlabelled, and artificially generated
examples, and BioASQ [95]. However, these datasets are extremely
small due to the cost of the annotation process.

Other works tried to build larger Biomedical QA corpora, e.g.
[96,97]. However, questions of these corpora are mostly factoid,
and answers can be extracted in the contexts without much rea-
soning. See [98] for a recent survey on Biomedical QA resources.
4.3.5. GLUE and other benchmarks
The General Language Understanding Evaluation (GLUE) bench-

mark [99] is a collection of tasks for evaluating models’ perfor-
mance on a set of various Natural Language Understanding (NLU)
tasks in English.

GLUE consists of 9 different tasks, each one with different char-
acteristics and peculiarities. In practice GLUE includes both single-
sentence (linguistic acceptability, sentiment analysis) and
sentence-pair tasks (similarity and paraphrase, linguistic infer-
ence). Moreover, the size of the corresponding datasets varies
widely, ranging from a few hundred to a few hundred thousand
examples. Additionally, the content of the datasets is extracted
from several domains, including news, social media, books, and
Wikipedia. Finally, the evaluation metric varies with the task and
the dataset characteristics. Table 4 shows a synthetic representa-
tion of the benchmark features.

Given the wide variety of the benchmark, GLUE is regarded as a
tool to evaluate models’ ability to learn general linguistic knowl-
edge and has become increasingly relevant in the Natural Language
Processing community for general-purpose models evaluation. A
public leaderboard is also available.21

However, the performance of state-of-the-art models has
recently come close to the level of non-expert humans, suggesting
limited headroom of GLUE for further research. In order to over-
come this limitation, SuperGLUE [100] has recently been proposed.
Along the lines of GLUE, SuperGLUE consists of several challenging
NLU tasks, summarized in Table 5.

Inspired by the success of the General Language Understanding
Evaluation benchmark, the Biomedical Language Understanding
Evaluation (BLUE) benchmark [101] has been introduced to facili-
tate research in the biomedicine domain. The benchmark consists
of five tasks with ten datasets that cover both biomedical and clin-
ical texts with different dataset sizes and difficulties. BLUE relies
on existing datasets that have been widely used by the BioNLP
community as shared tasks. The five tasks are: sentence similarity,
named entity recognition, relation extraction, document multilabel
classification, and inference. A summary of these tasks is shown in
Table 6.
20 http://bioasq.org.
21 https://gluebenchmark.com.
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Table 3
BNER corpora description.

Corpus Entity counts

BC2GM Gene/protein: 24,583
BC4CHEMD Chemical: 84,310
BC5CDR Chemical: 15,935;

Disease: 12,852
BioNLP09 Gene/protein: 14,963
BioNLP11EPI Gene/protein: 15,811
BioNLP11ID Gene/protein: 6551

Organism: 3471
Chemical: 873
Regulon-operon: 87

CRAFT Sequences: 18,974;
Gene/protein:16,064;
Chemical: 6053. . .

Linnaeus Species: 4263
NCBI-disease Disease: 6881

Fig. 11. Example of BioNER, Concept Recognition, and Relation Extraction. The
BioNER module identifies thyrotoxicosis, methimazole, and agranulocytosis as named
entities, the Concept Recognition module associates those entities to known
identifiers, and the Relation Extraction module shows the relation between entities.
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4.3.6. Other resources
We summarize here other resources and tasks which are not

described in the previous sections.
NER was one of the first NLP tasks that started adopting quan-

titative evaluation in the context of competitions organized in the
Message Understanding Conferences (MUCs) [66] mainly during
the 1990’s. Relevant entities in open-domain texts are usually per-
sons, locations, or organizations. From the very beginning, lan-
guages other than English were taken into account: MUC
(English, Japanese and Chinese), CoNLL 2002 (Spanish and Dutch;
[102]), CoNLL 2003 (English and German; [103]), Automatic con-
tent extraction (ACE22; English, Arabic and Chinese) [104]. However,
notwithstanding the interest NER has aroused in the past years,
nowadays this task attracts researchers mainly in the Biomedical
domain, which is considered much more challenging.

The shared tasks on Word Sense Disambiguation (WSD) started
in the late 1990’s with the pilot evaluation exercise at SensEval
[105] in 1998. At SensEval-1 the languages considered were Eng-
lish, French, and Italian. In the following editions of SensEval/
SemEval, WSD tasks with different characteristics and dealing with
different languages were present till SemEval 2015 Task 1323 (Mul-
tilingual All-Words Sense Disambiguation and Entity Linking).

Part-of-Speech (PoS) tagging is the process of marking up a
word in a text as corresponding to a particular part of speech,
e.g. verbs, adjectives, articles, and so on. The first major corpus of
English for PoS tagging was the Brown Corpus, developed in the
22 https://web.archive.org/web/20060308054306/http://www.itl.nist.gov/iad/894.
01/tests/ace/
23 https://alt.qcri.org/semeval2015/task13/.
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mid-1960s. This corpus has been used for several studies concern-
ing word-frequency and POS, and it inspired the development of
similar annotated corpora in many other languages. Another stan-
dard dataset for POS tagging is the Wall Street Journal (WSJ) por-
tion of the Penn Treebank [106], containing 45 different POS tags
and 5 millions of annotated tokens.

As is the case of other tasks, PoS is suffering a decline in interest
after the advent of state-of-the-art deep learning models. Nowa-
days, the research is moving towards critical scenarios, such as his-
torical corpora [107], languages with poor annotated data, and
cross-languages [108].
5. Current issues and future directions

Word and sentence/document embeddings are constantly
evolving, and new representations are continuously proposed.
However, despite the capabilities of this new generation of models,
there are still problems in NLP that need to be solved. E.g., popular
Transformers are not fully able to encode whole documents as
their complexity is quadratic to the sequence length and their
input sequences cannot exceed 512 tokens, which typically corre-
sponds to a single paragraph. However, a few variations of the clas-
sical Transformer exist to handle long documents, as is the case of
Transformer-XL [45] and Longformer [109], which apply a relax-
ation of the classical self-attention with various strategies.

Moreover, one of the main worrying aspects of these models is
their computational cost. Pre-trained transformers usually consist
of 110–340 million of learnable parameters, and they require spe-
cialized and expensive hardware. As we already mentioned, this
last topic is becoming popular in the NLP community and it is
extremely important as the carbon footprint of training suchmodel
is growing exponentially. Consequently, a considerable branch of
research is currently exploring the development of efficient meth-
ods, including lighter Transformers [110,41,111] and distillation
approaches [42,112].

The computational cost described above negatively affects the
model selection, and the exhaustive evaluation of multiple
hyper-parameters (learning rate, batch size, warm-up sched-
uler. . .) configurations can be hardly carried out. In order to allevi-
ate this issue, the model selection is often simplified by using only
default configurations or only a single run. The main consequence,
is that the quality of scientific results may significantly decrease as
they may drop reproducibility. The statistical significance, for
example, is rarely taken into account. In order to better explore this
aspect, we manually analyzed a set of 50 peer-reviewed scientific
papers that use a pre-trained Transformer model. These papers
have been randomly sampled from the ACL-Anthology, a popular
repository for NLP papers. Results of our analysis indicates that
only 26% of papers declared that multiple fine-tuning runs of the
Transformer have been considered, but only 10% reported the stan-
dard deviation. Moreover, 80% of papers do not show a complete
and clear model selection procedure, i.e. they did not report the
optimal configuration or they simply exposed the used configura-
tion, without mentioning the searching strategies nor the tested
values. To make things worse, it is known that these architectures
may be really sensitive to the selection of the hyper-parameters
[113,114].

As a further limitation, Transformers and modern architectures
are often used as blackbox tools, and their outputs are hardly inter-
pretable. Interpretability is a key aspect of NLP applications in del-
icate domains like medicine for instance. Interpretability is
becoming a newsworthy aspect in the literature, and it has been
the main topic of several recent workshops.24 The goal of the Black-
24 E.g. BlackboxNLP, held at EMNLP 2018, ACL 2019 and EMNLP 2020.
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Table 4
GLUE benchmark features.

Corpus jTrainj Task Metric Domain

CoLA 8.5 K acceptability Matthews corr misc.
SST-2 67 K sentiment accuracy movie reviews
MRPC 3.7 K paraphrase accuracy/F1 news
STS-B 7 K sent. similarity Pearson/Spearman corr misc.
QQP 364 K paraphrase accuracy/F1 social questions
MNLI 393 K NLI matched/mismatched acc misc.
QNLI 105 K QA/NLI accuracy Wikipedia
RTE 2.5 K NLI accuracy news, Wikipedia
WNLI 634 coref./NLI accuracy fiction book

Table 5
SuperGLUE benchmark features.

Corpus jTrainj Task Metric Domain

BoolQ 9427 yes/no QA acc. Google queries, Wikipedia
CB 250 NLI acc./F1 misc.
COPA 400 QA acc. blogs, photography encyclopedia
MultiRC 5100 QA F1a/EM misc.
ReCoRD 101 K QA F1/EM news (CNN, Daily Mail)
RTE 2500 NLI acc. news, Wikipedia
WiC 6000 WSD acc. WordNet, VerbNet, Wikitionary
WSC 554 coref. acc. fiction books

Table 6
BLUE benchmark features.

Corpus jTrainj Task Metric Domain

MedSTS,sentence pairs 675 sent. similarity Pearson Clinical
BIOSSES,sentence pairs 64 sent. similarity Pearson Biomedical
BC5CDR-disease,mentions 4,182 NER F1 Biomedical
BC5CDR-chemical,mentions 5,203 NER F1 Biomedical
ShARe/CLEFE,mentions 4,628 NER F1 Clinical
DDI,relations 2,937 relation extraction micro-F1 Biomedical
ChemProt,relations 4,154 relation extraction micro-F1 Biomedical
i2b2 2010,relations 3,110 relation extraction F1 Clinical
HoC,documents 1,108 document classification F1 Biomedical
MedNLI,pairs 11,232 inference accuracy Clinical
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boxNLP workshop series is to bring together people who are
attempting to peek inside the neural network blackbox, taking inspi-
ration from machine learning, psychology, linguistics, and neuro-
science. Finally, further research directions in NLP include (i)
cyber-security, such as fake news detection, (ii) industrial applica-
tions, such as virtual assistants (Alexa, Siri. . .), and (iii) text genera-
tion based for instance on recent variational autoencoders or
Generative Adversarial Networks.
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[6] S. Ruder, I. Vulić, A. Søgaard, A survey of cross-lingual word embedding
models, J. Artif. Int. Res. 65 (1) (2019) 569–630.

[7] A. Torfi, R.A. Shirvani, Y. Keneshloo, N. Tavaf, E.A. Fox, Natural language
processing advancements by deep learning: A survey (2021).
arXiv:2003.01200..

[8] D.W. Otter, J.R. Medina, J.K. Kalita, A survey of the usages of deep learning for
natural language processing, IEEE Transactions on Neural Networks and
Learning Systems 32 (2) (2021) 604–624.

[9] K. Babic, S. Martincic-Ipšic, A. Meštrovic, Survey of neural text representation
models, Information 11 (11) (2020) 511.

[10] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed
representations of words and phrases and their compositionality, in: NIPS,
2013.
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