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• Optimal EV allocation balances energy 
trading and response time. 

• Comprehensive model considers 
mobility, V2G, G2V, response, and 
prices. 

• GAMS simulations show consistently 
high EV satisfaction levels. 

• Superior outcomes compared to COP 
and EVaaS models in satisfaction. 

• Future work targets an emergency 
model for EVs with low energy levels.  
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A B S T R A C T   

Electric vehicles (EVs) are experiencing substantial investment and widespread acceptance. However, successful 
penetration of the global market is contingent upon the development of a strategic plan for the efficient allo-
cation of EVs to optimal charging stations (CSs). This study combines several optimization models to system-
atically assign EVs to the optimal charging stations, with the goal of maximizing trading energy while 
simultaneously minimizing total response time. Factors taken into consideration include traveling distance, 
charging (V2G), and discharging (G2V) energy trading, total response time, and energy prices. The efficacy of the 
combined models is validated using GAMS and BARON solvers, with a focus on EV satisfaction factor, updated 
energy and response time, number of served EVs, and alleviation of range anxiety. The proposed models 
demonstrate 85% satisfaction factor for the majority of charging requests, reaching almost 99% for discharging 
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requests. These results surpass those of contemporary models, underscoring the heightened effectiveness of the 
proposed approach.   

1. Introduction 

The transportation sector stands out as a significant contributor to 
climate pollution. Electrifying transportation emerges as a viable rem-
edy to this issue, given its capacity for zero‑carbon emissions. However, 
the incorporation of electric vehicles (EVs) encounters several chal-
lenges. Additionally, the availability of charging facilities for electric 
vehicles remains limited and uneven, confronting obstacles related to 
technology, economics, and procedural impediments [1,2]. Neverthe-
less, the charging patterns of EV users tend to be erratic and unpre-
dictable, thereby presenting challenges for effective grid control [3]. 
This unpredictability can potentially compromise voltage quality and 
overall power system stability, particularly as a considerable number of 
EVs become integrated into the grid [3]. Furthermore, the allocation of 
charging and discharging schedules for plugin electric vehicle (PEVs) 
encounters various challenges, including issues related to communica-
tion reliability and responsiveness, demand/supply dynamics, battery 
degradation, range anxiety, computation capacity, and the pursuit of 
multiple objectives for both PEVs and charging stations (CSs), such as 
maximizing profits, minimizing costs, and optimizing the quality of 
service (QoS) [3,4]. Fortunately, the implementation of a coordinated 
charging and discharging strategy enables EVs to interact with the grid 
via aggregators and intelligent two-way chargers during periods of 
surplus availability [1]. This is facilitated by the swift response char-
acteristics of EVs and their extended periods of inactivity throughout 
their life cycle [1], embodying the concept known as vehicle-to-grid 
(V2G) [3]. The fundamental idea involves directing EVs to charge dur-
ing low-demand periods and discharge excess energy to the grid during 
peak-demand periods [2]. This approach enables users to capitalize on 
the revenue generated from discharging during peak hours, leveraging 
the price differential between peak and off-peak periods. Not only does 
this strategy fulfill the grid's peak-shaving requirements, but it also re-
duces the overall charging costs for users [2,3]. 

Addressing the challenges associated with supporting EVs necessi-
tates the development of two key infrastructures: a reliable communi-
cation infrastructure capable of facilitating data transfer between EVs 
and the grid, and a well-established network of charging stations 
deployed within urban areas, for instance. Both of these challenges 
require effective management. Considerable progress has been made in 
addressing the first challenge, with significant effort invested in 
designing a reliable communication infrastructure, particularly 
leveraging technologies such as 5G and Software-Defined Networking 
(SDN) to enhance the reliable exchange of data among EVs, charging 
stations, and the grid. While numerous papers in the literature explore 
solutions to this communication infrastructure challenge, it falls outside 
the scope of the current study. Conversely, this work focuses on a critical 
aspect related to the second infrastructure, namely the management of 
EV charging, charging stations, and vice versa. Numerous studies have 
delved into this aspect. 

Much of the current literature on PEVs places specific emphasis on 
integrating SDN technology into the smart grid (SG). Considering the 
challenges associated with the secure and effective exchange of infor-
mation among EVs, meters, CSs, and the power grid, Cai et al. developed 
a hybrid communication network encompassing both Vehicle-to- 
Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication [5]. 

Chen et al. proposed a two-tier SDN-based framework to integrate 
PEVs charging/discharging with the SG, enhancing system scalability 
and flexibility [6]. Focusing specifically on discharging energy, Jindal 
et al. developed an edge-as-a-service framework employing the Open-
Flow pattern, presenting a decentralized configuration with dynamic 
network policies [7]. The authors of [8] designed a communication unit 

based on an SDN network with three layers to regulate the connection 
between the grid, PEVs, and electric vehicle supply equipment (EVSEs), 
specifically addressing the PEVs charging assignment problem. The 
research presented in [9] emphasized that decoupling the control plane 
and data plane offers substantial benefits to SG communication frame-
works by improving flexibility and automated monitoring functions. In 
[10], the authors identified three layers for energy exchange between 
EVs and CS to maximize CS revenue and optimize EV energy prices. The 
upper layer was designated for CSs, the middle layer for aggregators, 
and the lower layer for EVs. 

The research presented in [11] proposed a new wireless real-time 
communication network, where EVs communicate with a local station 
controller installed for each CS set. This local controller communicates 
with a central station controller situated on a cloud platform, facilitating 
EV charging/discharging at public stations. In contrast, the investigation 
conducted in [12] assumed that, for V2G and G2V interactions, EVs 
could wirelessly communicate with the SG through a roadside unit. 
Specific communication technologies establish the connection between 
the SG and all EVs. In addition, the study detailed in [11] was among the 
early works to address the challenges of plug-in EVs charging and dis-
charging at public supply stations, employing a new cloud computing 
architecture for the SG. 

Chen et al. acknowledged that incorporating cloud computing 
technology into SG -SDN based systems can address the overhead 
problem of data flow processing and optimize data management within 
the SDN controller [6]. Furthermore, Ghorbanian et al. highlighted that, 
for minimizing real-time data traffic, cloud-based technology is suffi-
cient to facilitate the data transfer of sensitive SG applications and 
support local data processing [13]. In [8], both EVs and CSs were linked 
to a centralized cloud server via communication technologies within the 
SG. Aujla et al. suggested that in a smart city utilizing a cloud-based 
application, several aggregators could be installed and controlled 
based on the characteristics of each area for V2G and G2V interactions 
[10]. 

The approach proposed in [9] involved a centralized prediction unit 
for charging EVs, collecting data from each region and forecasting 
congestion in those locations. Therefore, the computational burden is 
concentrated on the centralized unit, making the training process for 
prediction algorithms computationally intensive. Accordingly, the au-
thors recommended investigating the system computation under the 
condition of integrating edge and cloud-centric systems to achieve 
improved and faster prediction and optimization results [9]. 

Contrastingly, emphasizing the security challenges associated with 
processing and storing data on the Cloud, particularly due to shared 
storage among multiple users, Ghorbanian et al. highlighted the adop-
tion of fog computing as a strategy to mitigate these security threats 
[13]. For example, in [14], the scheduling of charging/discharging PEVs 
at public stations was enhanced by introducing a new SG framework 
based on distributed Fog computing, aiming to achieve optimality and 
efficiency. The study outlined how classifying EVs scheduled for V2G 
charging based on charging activity proved to be an efficient method for 
V2G implementation. Considering only V2G behavior in the SG, Shen 
et al. proposed a hybrid fog and cloud computing architecture that in-
cludes 5G-based V2G communication networks, aiming to enhance 
power service providers' service quality and cost-efficiency [15]. 

In recent years, there has been a surge in literature addressing 
optimization models for scheduling the charging/discharging of PEVs. It 
is essential to explore diverse approaches, encompassing charging dur-
ing non-peak hours, discharging at peak hours, achieving equilibrium 
between these scenarios, making informed EV price decisions, and 
selecting appropriate parameters [16]. Consistent with this, the authors 
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in [11] presented a scheduling algorithm that prioritizes and optimizes 
the waiting time for charging/discharging EVs at public CSs, considering 
the mobility of EVs rather than traffic-related issues. Simulations results, 
utilizing actual supply energy data, demonstrated efficiency improve-
ments during peak load times [11]. Similarly, Brinkel et al. discussed the 
optimization algorithms employed for generating charging schedules 
and the growing challenge of managing the charging demand of a large 
number of EVs within a constrained electric grid [17]. These algorithms 
aim to strike a balance between user preferences, grid constraints, and 
energy costs, ensuring efficient and cost-effective charging. Further-
more, [18] presented an advanced smart management system designed 
for EV recharge. Leveraging intelligent algorithms, the system optimizes 
charging schedules by considering factors such as grid demand, energy 
costs, and user preferences. Real-time data and communication net-
works are utilized to enhance the efficiency and reliability of EV 
charging infrastructure. 

Furthermore, Chekired et al. formulated a mathematical model 
employing multi-priority queuing theory and cut-off discipline, utilizing 
Markov chains to minimize the waiting time for plugin charging and 
discharging EVs [14]. Their findings revealed that the rate of arrival 
charging/ discharging EVs, the values of cut-off, and the busy number of 
sockets at each public charging station significantly impact the waiting 
time, time to plugin, energy demand, and supply curve. Introducing a 
novel EV charging station access equilibrium model, Liu et al. incorpo-
rated a M/D/C queueing framework [19]. The model's objective was to 
optimize decision-making processes for EV users when selecting 
charging stations, considering factors such as charging station avail-
ability, service times, and user preferences. This study offered a 
comprehensive framework for understanding and analyzing the equi-
librium behavior of EV users in a charging network, ultimately 
contributing to the efficient utilization of EV charging infrastructure. 
Additionally, Aljaidi et al. presented a mathematical queueing model 
considering factors such as EV battery state, charging station capacity, 
and user preferences [20]. The proposed algorithm aimed to minimize 
charging time and waiting time for EVs, albeit without considering 
travel time. 

Alternatively, some researchers focused on the demand-supply 
problem. For instance, Aujla et al. presented a charging/discharging 
model designed to address the demand-supply issue, allowing EVs to 
engage in energy selling and buying, thereby enabling profit generation 
[8]. In another the authors examined the charging assignment problem 
for PEVs within an integrated architecture consisting of communication, 
optimization, and prediction units to select the optimal CS [9]. 
Considering the practical implementation of CSs, the proposed frame-
work underwent testing using a case study, revealing that EVs play a 
dual role in managing energy demand and maximizing profits for both 
EVs and CSs [9] [8]. Additionally, [21] focused on improving the effi-
ciency and fairness of EV charging infrastructure by tailoring charging 
assignments based on individual vehicle preferences and real-time de-
mand. Through the implementation of distributed ledger technology, 
the study demonstrated how decentralized decision-making can 
enhance transparency, security, and scalability in EV charging networks, 
ultimately contributing to the sustainable integration of EVs into the 
energy grid. 

The application of the Stackelberg game proves beneficial in a dy-
namic framework where CSs cannot unilaterally decide on pricing, and 
EVs also play a role in these decisions [16]. For instance, [10] intro-
duced two scenarios for energy exchange between EVs and CSs using the 
Stackelberg game as a multi‑leader multi-follower approach, aiming to 
maximize CS revenue and optimize EV energy prices. The same study 
proposed dynamic energy pricing through multi-parameter adjustments 
based on factors such as time of use, amount of use, class of EVs, and the 
position of CSs, influencing the pricing structure. The simulation results 
analyzed in the study demonstrated that the scenario where EVs act as 
leaders and CSs as followers is more profitable for both CSs and EVs, 
consistently maintaining a satisfaction factor close to the highest value 

for EVs [10]. 
Some studies have focused on addressing the assignment problem in 

the context of EVs charging. In [22], a decentralized stochastic tech-
nique was introduced to suggest the most suitable CS for EVs charging, 
taking into account various utility functions. The authors in [20] pro-
posed a new approach that addresses the allocation problem by 
considering multiple factors, such as the displacement between the 
current position of the EV and the CS, the difference in elevation be-
tween their positions, and the capacity of the CS. 

In recent years, there has been a notable surge in the application of 
reinforcement learning (RL) techniques to address the allocation of EVs 
to CSs, garnering substantial attention within the research community. 
Introducing RL charging as a novel approach for recommending optimal 
charging stations for electric vehicles (EVs), Zhang et al. employed 
imitative multi-agent spatiotemporal RL [23]. RL charging utilizes RL 
techniques to model the dynamic and spatial aspects of EV charging 
demand. The system adopts a multi-agent framework to capture com-
plex interactions between charging stations and users, thereby 
enhancing the recommendation process. Furthermore, [24] presented a 
novel RL-based Assignment Scheme for EVs to CS. The proposed scheme 
aims to optimize the allocation of EVs to charging stations dynamically 
and efficiently. Utilizing RL techniques, the system learns to make 
intelligent decisions in real-time, considering factors such as EV battery 
state, station availability, and user preferences. Experimental results 
demonstrate the effectiveness of the proposed scheme in reducing 
charging wait times and maximizing overall system efficiency, posi-
tioning it as a promising approach for managing EV charging infra-
structure. Similarly, the authors of [25] proposed a data-driven 
approach that utilizes real-time data and advanced algorithms to opti-
mize charging schedules for each EV in the fleet. This approach con-
siders factors such as battery state of charge, energy demand, and 
charging infrastructure availability. By analyzing historical charging 
data and adapting to real-time conditions, the system aims to minimize 
charging costs and reduce the environmental impact of EV fleets. The 
study delves into the key components of the data-driven smart charging 
system, including data collection from EVs, cloud-based data processing, 
and optimization algorithms. Moreover, some studies have presented a 
hybrid control framework that combines policy gradient methods with 
rule-based algorithms to enhance the efficiency of EV charging systems. 
For example, the research in [26] addresses challenges associated with 
EV charging, including managing charging schedules, minimizing costs, 
and ensuring user satisfaction. To achieve these objectives, the authors 
proposed a hybrid control strategy that integrates RL techniques from 
the policy gradient family with predefined rules for decision-making. 
The policy gradient component of the framework is responsible for 
learning optimal charging policies through interactions with the EV 
charging system. By leveraging RL, the model adapts and improves its 
charging strategies over time, considering dynamic factors such as 
electricity pricing, grid load, and user preferences. 

However, prior research has neglected the exploration of a unified 
G2V and V2G architecture as a multi-objective optimization problem 
aimed at identifying the optimal CS. The optimization involves maxi-
mizing energy and minimizing the total response time, which comprises 
traveling time, waiting time, and charging time. This paper seeks to 
evaluate various models for allocating EVs to the optimal CS, consid-
ering multi-objective functions such as maximizing requested energy 
and minimizing total response time for both V2G and G2V interactions. 
We integrated an energy charging model based on state of charge (SOC) 
with the total response time model, accounting for travel time, charging 
service time, and waiting time at the CS. Likewise, we merged the energy 
discharging model, utilizing SOC, with the total response time. There-
fore, the outputs of these proposed models serve as input parameters for 
the assignment problem. To consolidate multiple objectives into a uni-
fied model, we focused solely on the energy objective, while con-
straining the time objective based on driver-specific expectations using 
the ε-Constraint Method. Finally, to validate the proposed models, we 
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used General Algebraic Modeling System (GAMS) and the BARON 
solver. GAMS, a widely used modeling language, and BARON, a state-of- 
the-art optimization solver, were selected for their capability to handle 
complex mathematical models and nonlinear programming. 

The contributions of this study can be summarized as follows:  

1. We combined the energy charging model, based on the SOC, with the 
total response time model, incorporating traveling time, charging 
service time, and waiting time at the CS for plugin. These integrated 
models are called the Energy Charging Time Model (ECTM).  

2. Similarly, we integrated the energy discharging model based on the 
SOC with the total response time model, incorporating traveling 
time, discharging service time, and waiting time at the CS for plugin. 
These integrated models are called the Energy Discharging Time 
Model (EDTM).  

3. The objective of the assignment problem is to determine the optimal 
CS by maximizing the required energy and minimizing the total 
response time. The outputs of ECTM and EDTM serve as parameters 
input for the assignment problem. To consolidate the multiple ob-
jectives into a unified model, we focused solely on the energy 
objective and restricted the time objective within driver-specific 
expectations using the ε-Constraint Method. 

The remaining sections of the paper are structured as follows. Section 
III provides an overview of the system in this research. Section IV in-
troduces the ECTM and the EDTM, along with their mathematical 
models for the assignment problem. Results and discussions are pre-
sented in Section V, followed by conclusions in Section VI. 

2. System overview 

2.1. Problem statement 

Let I represent the number of electric vehicles distributed across an 
area A. to the objective is to assign each ith EV to a charging station, 
aiming to maximize the total energy attained by all EVs, while mini-
mizing the summation of traveling times, waiting plugin times, and 
charging/discharging times. In addition, the goal is to increase the 
number of served EVs in the system, thereby minimizing range anxiety. 
It is assumed that the available communication infrastructure possesses 
sufficient capacity to handle all required information exchanges. 

The power supply is considered to be obtainable from both the grid 
(G2V) and the electric vehicle to the grid (V2G). Different models of 
electric vehicles, such as Toyota Prius, Chevy Spark, and Mitsubishi 
iMiEV, are taken Into account, each with its specific battery character-
istics. The developed optimization model incorporates various factors 
including EVs mobility, SOC for each vehicle, electricity selling/buying 
prices, and satisfaction factors for both EVs and CSs. 

2.2. Mobility model 

Every city is divided into d blocks, following a Manhattan block city 
architecture. Each block contains a number of CSs s = {1, … , S} and EVs 
i = {1…,I}, as shown in Fig. 1. The primary factor influencing CS se-
lection for EVs is the distance from the EV location to the CS location 
within the same block. Consequently, each CV will prioritize exchanging 
energy with the nearest CS in its block. However, if a CS in a different 
block offers a lower energy price or total response time and is willing to 
travel and charge/discharge, the EV may be assigned to go to that block, 
particularly if the results of the mobility model are used in the energy 
trading models. 

The distance from the location of EV i to CS s is calculated using 
Rectilinear Distance, representing the distance along paths that are 
perpendicular to each other exclusively. If (xi, yi) denotes the location 
coordinates of EV i and (xs, ys) denotes the location coordinates of CSs, 
then the distance is given by: 

di→s = |xs − xi| + |ys − yi|. (1)  

3. Optimization models 

In this section, we discuss the two proposed models: (1) ECTM and 
(2) EDTM. It is noteworthy that the basic definitions are adopted from 
[8], unless explicitly stated otherwise. 

3.1. Energy charging time model (ECTM) 

In this model, EVs request to charge energy from CSs with the aim of 
reaching the maximum energy level. Each EV model is equipped with a 
charging battery having a different rated capacity. The required SOC for 
ith EV to achieve the maximum level is defined as follows. 

SOCreq
i = SOCmax

i − SOCprs
i , (2)  

where the present SOC for the ith EV is SOCprs
i and SOCmax

i is the 
maximum SOC level of the ith EV. Consequently, the required energy for 
the ith EV to reach the maximum level is given by: 

Ereq
i = SOCreq

i ×Ert
i , (3)  

where Ert
i is the rated energy capacity of the EV i battery, representing 

the maximum capacity of ith EV's battery. 
The energy available at CSs, denoted as SOCavl

s , is calculated as the 
present SOC at CSs SOCprs

s minus the SOC threshold SOCthr
s : 

SOCavl
s = SOCprs

s − SOCthr
s . (4) 

The energy available at CSs Eavl
s is calculated as: 

Eavl
s = SOCavl

s ×Ert
s , (5)  

where Ert
s is the rated battery pool capacity of the CSs. 

To ensure that CSs meet the requested EV energy, the present SOC at 
CSs SOCprs

s should be greater than the threshold SOC SOCthr
s : 

SOCprs
s > SOCthr

s . (6) 

The model then selects the optimal CS, and the EV pays a fixed price, 
assuming a fixed pricing structure as on the Hawaiian Electric Company 
website. The SOC of the EV is updated as follows: 

SOCupd
i = SOCprs

i + SOCgiv
s→i − SOCtrv

i→s. (7) 

The updated SOC 
(

SOCupd
i

)
for ith EV is equal to the present SOC 

(
SOCprs

i
)

plus the SOC given from CSs 
(

SOCgiv
s→i

)
minus the consumed 

Fig. 1. Model of EV mobility in an urban city [8].  
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SOC during traveling from the location X to CSs 
(
SOCtrv

i→s
)
. 

The updated energy for the ith EV is given by: 

Eupd
i = SOCupd

i ×Ert
i . (8) 

The SOC wasted by the ith EV while traveling to CSs SOCtrv
i→s is 

calculated as: 

SOCtrv
i→s =

di→s

Dmax
i

*SOCmax
i , (9)  

where Dmax
i is themaximum distance of the ith EV with respect to all 

available CSs. 
The required energy by the ith EV to travel to CSs Etrv

i→s is computed as 
follows: 

Etrv
i→s = SOCtrv

i→s ×Ert
i . (10) 

Now, considering the case of the charging station, the updated SOC 
(
SOCupd

s

)
for CSs is equal to the present SOC 

(
SOCcur

s

)
minus the SOC 

charged from CSs 
(

SOCgiv
s→i

)
: 

SOCupd
s = SOCprs

s − SOCgiv
s→i. (11) 

The updated energy for CSs is given by: 

Eupd
s = SOCupd

s ×Ert
s . (12) 

The required energy by the ith EV should be less than or equal to the 
rated battery capacity: 

0 < Ereq
i ≤ Ert

i ∀i. (13) 

The energy available at the CSs should be less than or equal to the 
rated battery capacity: 

0 < Eavl
s ≤ Ert

s ∀s. (14) 

To evaluate the total response time, it is necessary to compute the 
following time components.  

• The time slot in which the ith EV arrives at the CSs is given by [9]: 

τn =
Ti + Ttrv

i→s

τ , (15) 

where Ti is the time when the ith EV makes the request, Ttrv
i→s is the 

traveling time, and τ is the length of the time slot period.  

• The traveling time for the ith EV to travel from its present location to 
the CS location is calculated as [9]: 

Ttrv
i→s =

di→s

Si
, (16) 

where Si is the average speed for the ith EV.  

• The service charging time for the ith EV at CSs is given by [9]: 

Tch
i,s =

{
SOCreq

i −
(
SOCprs

i − Rdis
i × di→s

) }
×Rch

s , (17)    

• where Rdis
i is the discharging rate for the ith EV, and Rch

s is the 
charging rate at CSs.  

• The waiting time for the ith EV at CSs is calculated as [9]: 

Tw
i,s = Γ× yˆs,n, (18) 

where Γ is a constant chosen arbitrarily, and yˆ
s,n is the predicted 

traffic arriving at the CSs at time slot n. 
Thus, the total response time for the ith EV to charge at the CSs can be 

computed as follows: 

Tcrs
i,s = Ttrv

i→s +Tw
i,s + Tch

i,s . (19) 

The satisfaction level of the EV after charging, considering updated 
energy and response time, is defined as follows: 

Sch
i =

Eupd
i

Ert
i
×α+ℵ× β. (20) 

The first term measures how much energy has been acquired 
comapred to its maximum capacity. Of course, as an EV user, he likes to 
maximimze this ratio. ℵ is defined as 

ℵ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if
Tavl

i,s

Tcrs
i,s

> 1

Tavl
i,s

Tcrs
i,s
, otherwise 

Where Tavl
i,s is the desired response time. Each term may have different 

importance, as defined by α, β which are percentages representing the 
importance of the factor level. The satisfaction level is then obtained by 
adding these terms. 

The outputs of the previous quantities are used in the assignment 
problem. To formulate the assignment problem, we have the following: 

Decision variables: 

Xi,s =

{
1, if ith EV is assigned to the CSs

0, otherwise 

Objective functions: 
Maximizing the energy required for each EV: 

Max CH = ai

∑I

i
ln
(
bi +Ereq

i × ps ×Xi,s − Etrv
i→s × ps ×Xi,s

)
. (21) 

Minimizing the total response time: 

Min CRT =
∑I

i

∑S

s
Tcrs

i,s ×Xi,s, (22)  

where ai and bi are constants, and ps is the price announced by the CS. 
Constraints:  

1. Every EV is assigned to only one CS 
∑

s
Xi,s ≤ 1,∀i (23)    

2. The overall energy supplied by CSs to all EVs assigned should be less 
than or equal to the available energy at that CS 

∑I

i=1
Egiv

s→i ×Xi,s ≤ Eavl
s ,∀s (24)    

3. The energy supplied to ith EV is less than or equal to the energy 
required by the same EV 

∑S

s=1
Egiv

s→i ×Xi,s ≤ Ereq
i ∀i (25)    

4. Every EV should have enough revenue (Vi) to pay for the energy 
price 

∑S

s=1
ps ×Ereq

i ×Xi,s ≤ Vi,∀i (26)    

5. The energy updated for ith EV is given by 

Eupd
i = Eprs

i +Egiv
s→i −

∑S

s=1
Etrv

i→s ×Xi,s,∀i (27) 
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6. The energy updated for CS s is calculated as 

Eupd
s = Eavl

s −
∑I

i=1
Egiv

s→i ×Xi,s,∀s (28)    

7. The energy updated for ith EV should be less than the battery capacity 
for the same EV 

Eupd
i < Erat

i (29)    

8. The energy supplied for ith EV should be greater than the traveling 
energy 

∑S

s=1
Etrv

i→s ×Xi,s < Egiv
s→i (30)    

9. The total response time should be less than or equal to the maximum 
estimated response time 

∑I

i

∑S

s
Tcrs

i,s ×Xi,s ≤ ε, (31) 

where ε is a constant value.  

10. The total number of EVs charging at CSs should be less than or 
equal to the CS capacity Cs 

∑

i
Xi,s ≤ Cs∀s (32)    

11. Binary variable 

Xi,s = {0, 1}∀i, s (33)    

12. None negativity 

Tcrs
i,s ,E

giv
s→i,Eupd

i ≥ 0 (34)  

3.2. Energy discharging time model (EDTM) 

In this model, EVs request to supply (i.e., discharge) energy to CSs to 
reach the maximum energy level for selling at a reasonable price. The 
SOC available with the ith EV 

(
SOCavl

i
)

is equal to the present SOC at ith 

EV 
(
SOCprs

i
)

minus the SOC threshold 
(
SOCthr

i
)
: 

SOCavl
i = SOCprs

i − SOCthr
i . (35) 

The energy available at the ith EV, Eavl
i , is given by: 

Eavl
i = SOCavl

i ×Ert
i . (36) 

To ensure that the ith EV can participate in the discharging process, 
the present SOC at the ith EV 

(
SOCcur

i

)
should be greater than the 

threshold SOC SOCthr
i [8]. 

SOCprs
i > SOCthr

i (37) 

Every CS is supplied by two primary sources: renewable energy 
sources (PV panels) and discharging EVs. The calculation for the 
maximum energy at every CS is as follows. 

Eprs
s = Eren

s +
∑I

i=1
Edis

i (38) 

The required SOC for CSs to reach the maximum level is: 

SOCreq
s = SOCmax

s − SOCprs
s . (39) 

The energy required by CSs, Ereq
s , is: 

Ereq
s = SOCreq

s ×Ert
s , (40)  

where Ert
s is the rated battery pool capacity of the CSs. 

The EVs participating in the discharging process will select the 
optimal CS and discharge their energy. The CS will pay for the energy 
discharged by the EV. 

SOCupd
s = SOCprs

s − SOCdis
i→s (41) 

The updated SOC 
(
SOCupd

s
)

for CSs is equal to the present SOC 
(
SOCprs

s
)

minus the SOC discharged from the ith EV 
(
SOCdis

i→s
)
.

The updated energy for CSs is calculated as: 

Eupd
s = SOCupd

s ×Ert
s . (42) 

After discharging, the updated SOC 
(

SOCupd
i

)
for the ith EV is equal to 

the present SOC 
(
SOCprs

i
)

minus the SOC given to the CS 
(

SOCgiv
i→s

)
minus 

the SOC consumed during traveling from the EV location to the CS 
(
SOCtrv

i→s
)
.

SOCupd
i = SOCprs

i − SOCgiv
i→s − SOCtrv

i→s (43) 

The updated energy for the ith EV is given by: 

Eupd
i = SOCupd

i ×Ert
i . (44) 

The energy required by CSs should be less than or equal to the rated 
battery capacity: 

0 < Ereq
s ≤ Ert

s ,∀s. (45) 

The present energy available at CSs should be less than or equal to 
the rated battery capacity: 

0 < Eprs
s ≤ Ert

s ,∀s. (46) 

Every CS should have enough revenue (Vs) to pay for the energy 
price: 

∑S

s=1

∑I

i=1
pi ×Ereq

s ≤ Vs. (47) 

The energy price announced by the ith EV is given by [8]: 

Pi = δ×
(

SOCmax
i

SOCavl
i − SOCthr

i

)

, (48)  

where δ is a constant to ensure that the overall price is always greater 
than the purchasing price. 

The total response time is calculated using the same procedure as in 
ECTM. The time slot in which the ith EV arrives at CSs is calculated using 
(15). The traveling time for the ith EV to travel from its present location 
to the CS location is given by (16). In contrast, the service discharging 
time for the ith EV at CSs can be computed as in (49). 

Tdis
i,s =

{(
SOCprs

i − Rdis
i × di→s

)
− SOCthr

i

}
×Rdis

s (49) 

Eq. (18) presents the waiting time for the ith EV at CSs. The total 
response time for the ith EV to discharge at CSs is given by: 

Tdrs
i,s = Ttrv

i→s +Tw
i,s + Tdis

i,s . (50) 

The EVs satisfaction level after discharging, considering the sold 
energy and response time, can be expressed as follows [8]: 

Sdis
i =

Egiv
i→s

Eavl
i

×α+ℵ× β, (51)  

where α and β are percentages representing the importance of the factor 

level, and ℵ = 1 if T
avl
i,s

Tdrs
i,s
> 1 and 0 otherwise. 
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The output of the previous equations is used in the assignment 
problem. To formulate the assignment problem, we have the following: 

Decision variables: 

Xi,s =

{
1, if the ith EV is assigned to the CSs

0, otherwise 

Objective function: 
Maximizing the energy required for every CS [8]: 

Max DSH = as

∑S

s
ln
(
bs +Ereq

s × pi ×Xi,s
)

(52) 

Minimizing the total response time: 

Min DRT =
∑I

i

∑S

s
Tdrs

i,s ×Xi,s, (53)  

where ai and bi are constants, and ps is the price announced by the CS. 
Constraints:  

1. Every EV is assigned to only one CS 
∑

s
Xi,s ≤ 1, ∀i (54)    

2. Every CS should have enough revenue (Vs) to pay for the energy price 

∑I

i=1
pi ×Ereq

i ×Xi,s ≤ Vs,∀s (55)    

3. Energy updated for EV i is given by 

Eupd
i = Eprs

i − Edis
i→s ×Xi,s −

∑S

s
Etrv

i→s ×Xi,s, ∀i (56)    

4. Energy updated for CSs is calculated as 

Eupd
s = Eprs

s +Eren
s +

∑I

i
Edis

i→s ×Xi,s, ∀s (57)    

5. Updated energy at CSs should be less than or equal to the rated pool 
capacity 

Eprs
s +Eren

s +
∑I

i
Edis

i→s ×Xi,s ≤ Erat
s ,∀s (58)    

6. The total response time should be less than or equal to the maximum 
estimated response time 

∑I

i

∑S

s
Tdrs

i,s ×Xi,s ≤ ε, (59) 

where ε is a constant value.  

7. The total number of EVs discharging at CSs should be less than or 
equal to the CS capacity Cs 

∑

i
Xi,s ≤ Cs∀s (60)    

8. Binary variable 

Xi,s = 0, 1∀i, s (61)    

9. None negativity 

Tdrs
i,s ,Eupd

s ,Eupd
i ,Edis

i→s (62)  

4. Results and discussion 

The developed models underwent testing in a case study involving 40 
EVs distributed across six different EVs (Toyota Prius, Chevy spark, 
Mitsubishi iMiEV, BMW i3, Nissan Leaf, and Tesla S) and four charging 
stations. The case study was conducted in an urban area (5 × 5 km2), 
organized in a Manhattan layout. We used actual CSs data from the 
Hawaiian Electric Company website [27], and the details are summa-
rized in Table 1. Additional parameters for the CSs are presented in 
Table 2. 

The coordinates of the CSs locations (x,y) are randomly generated 
using a uniform distribution. Specifically, the x-coordinate is generated 
within the range [0,25] and the y-coordinate is chosen from a discrete 
set of values [0,5,10,15,20,25]. Similarly, the coordinates of the EVs 
locations (x, y) are also generated using the same random process. 

During the mid-day time period, requests are collected within 15 s, 
and charging stations are allocated accordingly. The request time is 
determined by generating a random number between 0 and 15. Subse-
quently, traveling time as well as charging and discharging times are 
calculated based on the time response model. The average speed is fixed 
for all EVs to be 50 km/h, ensuring that traveling speed does not 
significantly influence the allocation process, with the distance being the 
critical factor. 

In contrast, waiting and discharging/charging times vary among CSs 
due to different discharging/charging rates. These rates are randomly 
generated using Table 3. For waiting times to plugin, probabilities ob-
tained from a prior study [9] are utilized, with waiting times being 0.28, 
0.4, 0.32, and 0.34 for CSs 1, 2, 3, and 4, respectively. These waiting 
times are applied uniformly across all EVs. 

The present SOC for each EV and CS is randomly generated using a 
uniform distribution within the range [0,100]. A value of 100 implies 
that the EV is fully charged, while a value of 0 signifies an empty battery. 
Additionally, the rated energy capacity is randomly assigned using 

Table 1 
Specifications of charging stations.  

Charging 
station 

Charger type Public 
access 

Time of use 
period 

Price 
($/kWh) 

Oahu (1) DC Fast 
Charger 

24 h Mid-Day 
(9 a.m.–5 p.m.) 

0.49 

Maui (2) DC Fast 
Charger 

24 h Mid-Day 
(9 a.m.–5 p.m.) 

0.49 

Molokai (3) DC Fast 
Charger 

24 h Mid-Day 
(9 a.m.–5 p.m.) 

0.54 

Hawaii Island 
(4) 

DC Fast 
Charger 

24 h Mid-Day 
(9 a.m.–5 p.m.) 

0.51  

Table 2 
Charging station parameters.  

Parameter Value 

a 1.5 
b 1 
SOCthr

s (charging) 50% 

SOCthr
s (discharging) 50% 

Ert
s 100 kWh [8]  

Table 3 
Time response model parameters.  

Discharge rate 0.1–2.5 kWh/mile 

Charging rate 1–5 kWh 
EV avg. speed 50 km/h 
ε 30 (min)  
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Table 4. Subsequently, based on SOCthr
i , we further classify the EVs' re-

quests into charging and discharging groups. If SOCprs
i is less than or 

equal to SOCthr
i , the request is considered as a charging request; other-

wise, it is treated as a discharging request. For charging requests, EVs are 
assigned to the optimal CS if SOCprs

i is greater than or equal to the 
minimum SOCtrv

i→s; otherwise, the EV will not be served. 
The specifications of the machine used for running the program are 

summarized in Table 5. The obtained figures are resulted from averaging 
10 rounds of optimization, where we achieved 95% confidence level. 

Table 6 summarizes the optimal assignments based on the proposed 
models. In this scenario, there are 20 charging requests. Ten of these 
{1,9,12,21,23,29,31,33,34,38} can reach the nearest CSs with their 
present SOC; while the other ten {5,10,13,14,15,18,20,28,32,39} are 
unable to travel to any CS. The first group of EVs utilizes the charging 
model to select the optimal CS, considering the distance as a primary 
factor and price along with the total response time as a secondary factor. 

Fig. 2 shows the updated energy Eupd
i for each charged EV, illustrating 

that. All assigned EVs are able to acquire a reasonable amount of energy 
relative to their maximum capacities, as indicated in Table 4. The 
satisfaction factor for each electric vehicle is presented later. Fig. 3 
shows the updated energy Eupd

s in each charging station by the end of this 
scenario. 

For the discharging requests, there are a total of 20 such requests. 
The discharging model will assign these EVs to the optimal CS for dis-
charging. First, the model checks if the EV has sufficient energy to trade 
with the CS by comparing Eavl

i with the minimum Etrv
i→s. If Eavl

i is greater 
than the minimum Etrv

i→s, then the EV is assigned to the primal CS based 
on the distance as the primary factor and price along with total response 
time as secondary factors. Otherwise, the system suggests that this EV 
should initiate a charging request, and that request is rejected. At the 
end of this process, 15 requests are rejected, and only five are accepted, 

as detailed in Table 6. The updated energy for both EVs and CSs is shown 
in Fig. 4 and Fig. 5, respectively. 

To validate our models, we conducted a comparative analysis with 
two recent related works, COP [9] and EVaaS [8], utilizing satisfaction 
factors (as in Eqs. (20) and (51)). Both approaches involve different 
optimization models for assigning EVs to CSs, while considering the 
same mobility model, energy trading, and SOC. The basis for comparison 
lies in assessing the updated energy and total response time after 
assigning EVs to CSs. We assumed the same parameters and case study 
for this comparative analysis. Fig. 6 illustrates the results, demonstrating 
that our proposed model consistently provides satisfaction levels of 80% 
and above for all electric charging vehicles. In contrast, COP drops as 
low as 60%, and EVaaS reaches levels as low as 30%. Additionally, the 
satisfaction of selected EVs for discharging at charging stations is as high 
as 100% in our proposed model, surpassing the satisfaction levels ach-
ieved by both COP or EVaaS. (See Fig. 7.) 

Table 4 
EVs battery specifications.  

Model Battery 
capacity Ei

rt 

(kWh) 

Electric 
range (km) 

Charging 
voltage (VAC) 

Charging 
current (A) 

Toyota Prius 4.4 18 230 15 
Chevy spark 21.3 132 230 15 
Mitsubishi 

iMiEV 
16 128 230 15 

BMW i3 22 160 230 30 
Nissan leaf 24 160 230 30 
Tesla S 70 390 265 40  

Table 5 
Machine specifications.  

Processor Intel(R) Xeon(R) W–1290P CPU @ 3.70GHz 3.70 GHz 

Installed RAM 32.0 GB 
System type 64-bit operating system, x64-based processor  

Table 6 
Summary of the optimal assignments; the pair {1←4} means CS# 4 is charging EV#1, the pair {7→1} means EV#7 is discharging in CS#1}, and so on.  

Type of Service EVs in in Dis/charge CS in Dis/charge 

G2V (Charging) {1,9,12,21,23,29,31,33,34,38} {1←4}{9←4}{12←3} 
{21←2}{23←1} 
{29←2}{31←3} 
{33←3}{34←1} 
{38←2} 

V2G (Discharging) {7→1}{25→2} 
{27→2}{35→2} 
{40→2} 

Nominated:{2,3,4,6,7,8,11,16,17,19,22,24,25,26,27,30,35,36,37,40} 
Accepted:{7,25,27,35,40} 

Not Served {5,10,13,14,15,18,20,28,32,39}   

Fig. 2. Updated EVs energy using the charging model.  

Fig. 3. Updated CSs energy using the charging model.  
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5. Conclusion 

We proposed two optimization models aimed at efficiently allocating 
electric vehicles to charging stations, with the goal of maximizing 
trading energy and minimizing response time. Our proposed models 
consider various factors, including EV traveling distance, charging 
(V2G), and discharging (G2V) energy trading, total response time, and 
energy prices. To assess the effectiveness of our proposed models, we 
conducted extensive simulations using GAMS. Comparative analysis 
against two recent related works, COP and EVaaS, revealed that our 
models consistently achieved high satisfaction levels for both charging 
and discharging EVs. However, some EVs were left unsupported as they 
lacked sufficient energy to reach any stations when they sent their re-
quests for charging. As a potential avenue for future work, we plan to 

develop an emergency model that can effectively serve these EVs, 
maximizing both trading energy and the number of served EVs in the 
system. 

It is worth to note that the proposed models are mixed integer 
nonlinear programming (MINLP) models and the complexity of solving 
the problem is considered to be NP-hard. As a result, the time required to 
solve this problem can increase exponentially with the size of the input 
data. The complexity arises from the combination of both discrete and 
continuous variables coupled with nonlinear relationships within some 
constraints. This issue will be tackled in our future work to expedite the 
computation time. 
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