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Abstract: Undoubtedly, most industrial buildings have a huge Life Cycle Cost (LCC) throughout their
lifespan, and most of these costs occur in structural operation and maintenance costs, environmental
impact costs, etc. Hence, it is necessary to think about a fast way to determine the LCC values.
Therefore, this article presents an LCC deep learning prediction model to assess structural and
envelope-type alternatives for industrial building, and to make a decision for the most suitable
structure. The input and output criteria of the prediction model were collected from previous studies.
The deep learning network model was developed using a Deep Belief Network (DBN) with Restricted
Boltzmann Machine (RBM) hidden layers. Seven investigation cases were studied to validate the
prediction model of a 312-item dataset over a period of 30 years, after the training phase of the
network to take the suitable hidden layers of the RBM and hidden neurons in each hidden layer
that achieved the minimal errors of the model. Another case was studied in the model to compare
design structure alternatives, consisting of three main structure frames—a reinforced concrete frame,
a precast/pre-stressed concrete frame, and a steel frame—over their life cycle, and make a decision.
Precast/pre-stressed concrete frames were the best decision until the end of the life cycle cost, as it is
possible to reuse the removed sections in a new industrial building.

Keywords: life cycle cost (LCC); precast structure building; deep learning; prediction model; deep
belief network (DBN); restricted boltzmann machine (RBM); industrial building; precast/pre-stressed
(PC/PS)

1. Introduction

There is a growing need to raise awareness with respect to the economic sustainability
of industrial buildings, as this is considered one of the key aspects of buildings that can
contribute to economic recovery and end stagnation. Therefore, this study proposes an
initiative to assess the life cycle costing of industrial buildings by developing a deep
learning prediction model.

Life Cycle Costing (LCC) is a sustainable economic tool. This study applies LCC to
measure the economics of alternative-construction buildings that have different structures
and envelope types, in terms of their cash flows over a building’s total lifespan [1–3]. This is
considered to be an intelligent design process for controlling the initial and running costs of
construction and building ownership. The LCC method shows clearly that we could achieve
savings when the higher initial cost of a building reduces long-term running costs, such
as operation, maintenance, and environmental impact costs [2]. In contrast, a lower initial
cost could lead to increased running costs and repeal the initial savings throughout the
building’s lifespan. Life cycle costing is a combination of structural judgments, prediction
of costs, and a huge amount of calculations.
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The main problem is to figure out a fast method to represent the LCC. Therefore, this
study presents a fast tool from deep machine learning. Deep machine learning is a clever
form of optimization learning used to predict LCC. Deep learning is an artificial intelligence
(AI) method for developing complicated prediction algorithms and models [4–6]. Deep
learning comprises a class of machine learning algorithms [7] that use multiple layers
to extract progressively higher level features of the raw input; these analytical models
enable data analysts to uncover hidden insights, predict future values, and produce reli-
able, repeatable decisions through learning from historical relationships and trends in the
data [8].

The objective of this research is to develop software [9] for a deep learning prediction
model of historical building data, so as to predict the Life Cycle Cost (LCC) of a new
industrial building after n years (building age), and to evaluate structure and envelope-
type alternatives to make a decision for any given industrial building.

2. Literature Review
2.1. Life Cycle Costing Elements

Rather than focusing just on the initial cost, Figure 1 shows how the allocation differs
when LCC is taken into account [10]. Initial costs, running costs, energy, maintenance, and
cleaning charges, as well as other rates, are all factored in. LCC allocation differs depending
on the types and purposes of the constructions [10–12].
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Early decisions in the construction of a structure have the greatest impact, necessi-
tating the consideration of life cycle cost. Life cycle costing is an economic quantitative
estimation method [2,13] that examines the total cost of a building throughout its
entire operational life. Initial capital expenses, maintenance costs, running costs,
and the asset’s final disposal at the end of its life are all included in the operating
life [14–16].

In other words, an economic comparison takes into account not only the project’s
initial capital expenses, but also its operating costs and disposal production costs [8]. The
LCC method can also provide information for the calculation of a construction’s economic
feasibility, as well as the identification of cost drivers [17–19].

Life cycle costs play a key role in the decision making of green building projects [20].
Determining the economic effects of alternatives is an important step in the LCCA study.
The literature review was conducted to extract and coordinate common independent
variables related to LCCA [21–24]. The variables that applied for our LCC prediction model
were building area, floor height, number of floors, structure and envelope type, building
age, and year of construction [25–28].

2.2. Implementations of LCC in the Construction of Buildings

LCC is used in a variety of construction projects, including office buildings, infras-
tructure, and residential and commercial constructions. The author of [29] evaluated
the issues of LCC implementation and the limitations of LCC in building projects. The
benefits of LCC should be applied in construction projects, as determined by government
authorities and consultants [30]. Life cycle costing is the only approach to anticipate
the full cost of basic purchasing decisions [31]. Previous studies produced models
to predict office building life cycle cost as part of the basic design process [32–34].
LCC has a wide use in infrastructure building research [35–37]. LCC studies on edu-
cational buildings are reported in [38–41], and others were carried out in commercial
buildings [12,42,43].

Most previous studies in the field of industrial buildings were more concerned
with environmental evaluation than with economic evaluation, which is called life cy-
cle cost assessment [44–46]. Only a few studies that illustrate the LCC distribution
of industrial buildings have been published. In Sri Lanka, a study of LCC contrasted
green and traditional industrial buildings [47]. Kovacic et al. [48] created a decision-
making tool for assessing the economic and environmental effects of industrial build-
ings. Reisinger et al. [49] provided a model for the economic benefit and flexibility of
industrial buildings.

2.3. Artificial Intelligence Prediction Modelling in the Construction of Buildings

Artificial intelligence (AI)-related research has exploded with the development of
computer science [50] (e.g., machine learning and deep learning), and appears not only
in the field of computer science, but also regularly in the engineering sector [51,52].
Machine learning (ML) is the process of analyzing data and learning from them to
aid prediction and decision making [53]. ML with transfer learning is a technique to
obtain information on the properties of buildings from photos [54,55]. Deep learning is
a branch of machine learning, and not an autonomous learning approach [56]. Several
implications of deep learning—particularly in the construction industry—have yet to be
explored, including site management and planning, safety, and cost estimation. Previous
studies have applied deep learning to common construction issues such as structural
health monitoring, worksite safety, building utilization modelling, and energy usage
forecasting [57–60].
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3. Methodology

The applied methodology of this research introduces data collection to develop a tool
to predict LCC and assist in industrial construction to select the most favorable structure
and envelope type for new industrial buildings.

The conducted research applies deep learning to predict the LCC through devel-
oping deep belief networks with restricted Boltzmann machines. This research con-
sists of three structure alternatives and envelope types: a reinforced concrete frame, a
precast/pre-stressed concrete frame, and a steel frame. Table 1 summarizes various struc-
ture and envelope types that are commonly used in the design of industrial buildings
in Egypt [61].

Table 1. Structure and envelope types.

Alternatives Frame Type Wall Type Floor Type Roof Type

C/M Reinforced concrete Masonry Solid concrete
slab

Solid concrete
slab

PC/PS Precast/pre-stressed Precast concrete
panels Pre-stressed slab Hollow core slab

S/M Steel frame Masonry Concrete/metal
deck/open joists

Concrete/metal
deck on open

web joists

The selected framework introduces the inputs and outputs of the deep learning
prediction model to achieve the best decision making with respect to the favorable structure
frame for industrial buildings, with minimal LCC (Figure 1).

3.1. Required Data for LCC Model
3.1.1. Data Preparation

The input and output criteria of the LCC model were collected from existing literature
and civilian experience. The inputs were building area, floor height, number of floors,
structure and envelope type, building age, and year of construction [42,43,61]. The outputs
were initial cost, operation and maintenance cost (energy costs, catering and services,
cleaning, major repairs, periodic maintenance, and rent and insurance), environmental
impact cost (structure and envelope material waste costs, and market price of resulting
CO2), and end-of-life cost (residual value and demolition cost). Table 2 describes the model
inputs and outputs, the main sources, and references of data collection related to building
life cycle cost.

Table 2. Description and preparation of input and output criteria related to building life cycle cost.

Selected Criteria Descriptions Data Preparation

Inputs

Building area The total area of the building, which is
one of the basics of the building footprint.

The capital planning and investment
control system. Some digital

spreadsheets that record the design
and construction costs from

manufactories such as
Modern4concrete in Egypt.

Floor height
The height of each building story in unit
length, which is one of the basics of the

building footprint.

Numbers of floors
Number of building stories (e.g., 1, 2, 3,
. . . ), which is one of the basics of the

building footprint.

Structure and envelope type These include steel, concrete, wood, and
precast concrete, in various combinations.
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Table 2. Cont.

Selected Criteria Descriptions Data Preparation

Building age The study period, in years (e.g., 15, 25, 30,
. . . years).

Year of construction This parameter includes the projects built
within the study period.

Outputs

Initial Cost (IC) Construction Cost

Operation and Maintenance
Cost (O&M)

This refers to hard facility-management
costs These costs include operating costs

such as cleaning and energy costs,
maintenance costs, and other costs [1,2].

Computerized maintenance
management systems of industrial
boards of construction companies

in Egypt.

Energy Cost (EC) Energy used for heating and lighting [27].
From standard energy and simulation.

The building energy
management systems.

Catering and Services
(C&S)

General support services,
communications and security services,
letting fees, facilities management fees,
caretaker and janitorial services, service
transport, IT services, and laundry and

linen services, e.g., internal deliveries [1].

From the industrial boards of
construction companies, such as the
Modern4concrete industrial board

in Egypt.Cleaning (C) Waste management and disposal.

Major Repairs (MR) Redecoration, renovation, rehabilitation,
and replacement.

Periodic Maintenance (PM)
The cost of contractors who perform

skilled jobs, such as the sanitation and
HVAC services [1].

Rent and Insurance (R&I) Insurance rates and other local taxes
and charges.

Environmental
Impact Cost (EIC)

The environmental cost refers to the cost
of controlling gas emissions, and of

structural and envelope material waste
costs [41].

From environmental impact
estimators in Egypt [62].

Structure and envelope
Material Waste Cost (MWC)

Waste gathered from all stages, such as
production of raw materials,

manufacturing of concrete, placing
concrete at the location, and demolition.

From the industrial boards of
construction companies and their

computerized maintenance
management systems.

Market price of resulting
CO2 (RCO2) Cost of controlling gas emissions. From the carbon market (Point

Carbon website) [63].

End-of-Life Cost (EoLC)

This includes disposal and demolition,
but specifically includes the worth of

alternatives at the end period of
LCCA [64].

The capital planning and investment
control system.

Some digital spreadsheets that record
the design and construction costs.

Some physical documents related to
building design and construction.

Residual Value (RV) or
Salvage Value (SV)

Salvage value, recycling, the conversion
of waste from the building into

new objectives.

Demolition cost (DC)
Building demolition waste such as

materials, aggregates, concrete, wood,
and metal.

3.1.2. Data Analysis

We used a dataset of 312 values, with 6 input and 11 output criteria. All gathered data
were collected in an excel sheet. Basic statistics were applied to the variables, as shown in
Table 3.
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Table 3. The basic statistical information about the data collection variables.

Basic Statistics Area (m2)
Floor Height

(m)
Number of

Floors
Structure and

Envelope Type
Building

Age (Years)
Year of

Construction
Initial Cost

(LE)

Maximum 40,000 8 5 1 20 2020 43,172,350
Minimum 820 3 1 1 1 2000 3,261,480

Mean 18,052 5.2 3 1 11.3 2013 17,005,149
Median 16,200 5 3 1 13 2015 15,582,100

3.1.3. Data Derivation

The LCC of the prediction model was been studied over a period of 30 years. To
compare the LCCs of the industrial buildings over the past 30 years, several hypotheses
were considered. The initial costs, O&M, EIC, and EoL costs of all buildings were converted
to the “present values” in 1991. We assumed that that for each building, the changes in cost
over time were proportional to the rate of inflation [65]. The present value of all costs was
calculated according to the following equations [66]:

The present value of the initial cost was calculated according to the following equation:

PVIC = IC × ∏t
i = 1 (1 + ri) (1)

where:

PVIC is the present value of the initial cost;
IC is the amount of initial cost;
t is the building age;
ri is the annual inflation rate of i years ago.

The present value of the operation and maintenance cost was calculated according to
the following equation:

PVOM = Σn
j = 1 ((ECj + C&Sj + CCj + MRj + PMj + R&Ij) × ∏j

i = 1 (1 + ri)) (2)

where:

PVOM is the present value of operation and maintenance costs;
ECj is the annual energy cost j years ago;
C&Sj is the annual catering and services cost j years ago;
CCj is the annual cleaning cost j years ago;
MRj is the annual major repairs cost j years ago;
PMj is the annual periodic maintenance cost j years ago;
R&Ij is the annual rent and insurance costs j years ago;
n is the length of the study period in years.

The present value of the environmental impact cost was calculated according to the
following equation:

PVEIC = Σn
j = 1 ((MWCj + Rco2j) × ∏j

i = 1 (1 + ri)) (3)

where:

PVEIC is the present value of environmental impact cost;
MWCj is the annual structure and envelope material waste cost j years ago;
Rco2j is the annual market price of resulting CO2 j years ago.

The present value of the end-of-life cost was calculated according to the follow-
ing equation:

PVEoLC = Σn
j = 1 ((DCj − SVj) × ∏j

i = 1 (1 + ri)) (4)
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where:

PVEoLC is the present value of end-of-life cost;
DCj is the annual demolition cost j years ago;
RVj is the annual residual value cost j years ago.

3.2. Development of the LCC Deep Learning Prediction Model

This study presents new software using a library built in a .NET framework—asp.net
core MVC; database: Microsoft SQL Server Database; programming language: C#. The
deep learning network is applied by a deep belief network with restricted Boltzmann
machine hidden layers, based on 312 historical data of input and output criteria. A belief
network is a directed acyclic graph made up of random variables [9,67].

We were able to observe some variables in order to fix two major problems:

• The inference problem: Inferring the configurations of the unobserved parameters.
• The learning problem: Adjusting the connections between variables of the network to

be more likely to produce the desired results.

Two types of generative neural network can learn deep belief nets:

• A sigmoid belief net is formed when binary stochastic neurons are coupled in a
directed acyclic graph.

• A Boltzmann machine is created when binary stochastic neurons are coupled utilizing
symmetric connections.

As a result, the connectivity is restricted in a special way by simple learning with
Boltzmann machines.

3.2.1. Configuration of the Deep Belief Network (DBN)

This involves the following steps for the LCC deep learning prediction model:
Step 1: setting the required parameters for creating the DBN.
The model has a dataset of 312 values, with 6 inputs and 11 outputs. After the network

training, 3 hidden layers of restricted Boltzmann machines with 6 hidden neurons in each
hidden layer are reached to achieve minimal error in the prediction model (Figure 2).
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Step 2: setting the required parameters for the training operation.
The model has a double learning rate that varies from 0 to 1, based on the number of

training epochs and dataset size (Figure 3).
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Step 3: loading the training dataset.
From (choose file) we can upload the dataset as a document file (.txt), and then click

“save” (Figure 3).

3.2.2. Training of the Network

A dataset of 312 values, with 6 inputs and 11 outputs, is used in the training phase to
choose the best numbers of hidden layers and neurons until the model establishes weights
that achieve minimal errors.

• DBNs are trained using greedy learning methods. For learning the top-down,
generative weights, the greedy learning algorithm employs a layer-by-layer ap-
proach [9].

• On the top two buried layers, the DBNs follow Gibbs sampling steps. The RBM
described by the top two hidden layers is sampled in this stage.

• DBNs use a single pass of ancestral sampling through the rest of the model to generate
a sample from the visible units.

• DBNs learn that the values of the latent variables in each layer can be inferred using a
single bottom-up pass.

Finally, three hidden layers of the RBM, with six hidden neurons in each hidden layer,
achieve the minimal errors of the model outputs during the training phase; Figure 4 shows
an example of the DBN structure [9].
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3.2.3. Predicted Values of LCC Parameters from DBN Input Simulations

LCC outputs can be predicted by choosing prediction archive and then clicking “create
prediction”, causing an input page to appear, as shown in Figure 5; we can fill all required
inputs (Figure 5), and then click “predict”. All output results will then appear; Figure 6
shows how the program works.
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4. Validation and Implementation with Case Study
4.1. Validation of the Network

The validity of the utilized LCC prediction model is considered a crucial concept.
Therefore, seven case studies of precast industrial buildings are devoted in this section
to validating the prediction modelling procedures. The inputs and the actual LCCs of
the seven case studies were obtained from the Modern4concrete group in Egypt, and are
displayed in Tables 4 and 5 for the year of 2021.The values are forecasted for 30 years of
building age from the year of 1991, extracted from deep learning input simulations, as
shown in Table 6. The prediction model calculates an error ratio of each case between 3.2
and 3.82, as shown in Table 6.

Table 4. Data collection of the seven case studies.

No. Project Name City
Input Building Parameter

Area (m2) Floor Height (m) Number of Floors

1 Frag Tex 10th of Ramadan 13,435 8 1
2 Shrbagy Textile 10th of Ramadan 11,560 5 3
3 El sham El Obour 16,100 3 5
4 Basma Gee 10th of Ramadan 7784 8 1
5 Fitex 10th of Ramadan 11,344 6 2
6 Mise Spain Soinng factory Sadat city 38,388 5 3
7 Exaust Store Robaeia Sadat city 4672 8 1



Buildings 2022, 12, 502 11 of 21

Table 5. Actual LCC of the case studies in 2021 (L.E).

Actual Values of Buildings’ LCC in 2021 (EGP)

Project Name Frag Tex
Factory

Shrbagy Textile
Factory

El Sham
Factory

Basma Gee
Factory

Fitex
Factory

Mise Spain
Soinng Factory

Exaust Store
Robaeia

IC 15,450,250 22,831,000 26,967,500 7,394,800 20,702,800 40,891,065 4,947,413

O&M
Cost

EC 2,410,509 3,545,335 4,228,111 1,178,026 3,240,058 6,385,139 774,764
C&S 665,865 987,217 1,166,355 315,457 841,566 1,736,051 213,060
CC 1,201,755 1,727,667 2,131,555 574,013 1,651,029 3,190,820 387,382
MR 725,553 1,072,600 1,260,933 342,408 972,318 1,916,692 232,429
PM 842,828 1,255,367 1,478,689 405,409 1,134,720 2,237,974 271,167
R&I 181,063 268,950 316,233 86,352 247,154 473,923 58,107

EIC
MWC 1,048,129 1,439,723 1,709,629 452,511 1,392,858 2,612,683 322,818
RCO2 2,354,301 3,406,020 4,235,802 1,185,858 3,153,001 6,198,260 753,243

EoL
SV 442,057 652,099 762,058 216,449 620,381 1,162,526 143,474
DC 1,160,143 1,525,248 1,923,144 542,123 1,530,953 2,976,314 358,687

Table 6. The predicted values from the deep learning model after 30 years.

Predicted Values LCC of Buildings’ after 30 Years (EGP) from the Year of 1991

Project Name Frag Tex Shrbagy Textile El Sham Basma Gee Fitex Mise Spain
Soinng Factory

Exaust Store
Robaeia

IC 13,844,146 23,099,754 2,2787,784 7,296,579 19,416,808 39,286,999 5,061,459

O&M
Cost

EC 2,151,722 3,983,835 3,870,192 1,201,967 2,837,209 6,792,340 757,467
C&S 591,724 1,095,555 1,064,303 330,541 780,233 1,867,893 208,303
CC 1,075,861 1,991,918 1,935,096 600,984 1,418,605 3,396,170 378,733
MR 645,517 1,195,151 1,161,058 360,590 851,163 2,037,702 227,240
PM 753,103 1,394,342 1,354,567 420,689 993,023 2,377,319 265,113
R&I 161,379 298,788 290,264 90,148 212,791 509,426 56,810

EIC
MWC 896,551 1,659,931 1,612,580 500,820 1,182,170 2,830,142 315,611
RCO2 2,091,952 3,873,173 3,762,687 1,168,579 2,758,398 6,603,664 736,426

EoL
SV 321,260 564,525 577,593 176,410 485,232 1,074,311 149,914
DC 996,168 1,844,368 1,791,756 556,466 1,313,523 3,144,602 350,679

Error Ratio % 3.60 3.47 3.20 3.53 3.64 3.82 3.31

Each of the case studies’ predicted output probability distributions was investigated
by using some descriptive statistics, regression, mean square error, and autocorrelation.
The statistical methodology refers to the relationship between two or more quantitative
variables, with the assistance of SPSS Statistics v22.

4.1.1. Descriptive Statistics

Basic statistical information was studied for the seven case studies. Table 7 shows the
mean and standard deviation of each case study.

Table 7. The mean and standard deviation of each case study.

Frag Tex Shrbagy
Textile El Sham Basma Gee Fitex Mise Spain

Soinng Factory
Exaust Store

Robaeia

Mean 2,139,035 3,727,394 3,655,261 1,154,888 2,931,741 6,356,415 773,432
Standard
Deviation 3,933,869 6,532,598 6,447,773 2,067,754 5,530,462 11,103,635 1,439,142
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4.1.2. Regression and Mean Square Error Results

The correlation between outputs and targets was evaluated using regression results.
A close association has an R value of 1, whereas a random relationship has an R value of
0. The bigger the regression coefficient, the smaller the difference between the predicted
and real series. The average squared difference between outputs and targets is known
as the MSE. For each case study, Table 8 provides the regression and mean square
error results.

Table 8. The regression and mean square error of the seven case studies.

Frag Tex Shrbagy
Textile El Sham Basma Gee Fitex Mise Spain

Soinng Factory
Exaust Store

Robaeia

R 1.00 0.996 0.998 1.00 0.997 0.998 0.995
Mean Square

Error E14 1.547 4.260 4.156 0.427 3.058 12.30 0.207

The next step of the model validation is to plot the regression between the outputs and
the actual values to find their relationship, as shown in Figure 7. The relationship seems
perfect when the network outputs and the actual values are exactly equal, but it is rarely
ideal in practice. For each case study, the network outputs are shown against the actual
values in the following regression plots (Figure 7). The fit is satisfactory for all cases, with
R values 0.995 or above. A regression model relates Y to a function of X and β, where β is
the unknown parameter, X is the independent variable (actual), and Y is the dependent
variable (output).

4.1.3. Autocorrelation Test (Durbin–Watson)

The Durbin–Watson statistic ranges from zero to four. Positive autocorrelation is
defined as a value between zero and two, whereas negative autocorrelation is defined as a
number between two and four. We have positive autocorrelation in Frag Tex, at less than 2.
The rest of the seven case studies have negative autocorrelation, as the autocorrelation is
greater than 2. Table 9 shows Durbin–Watson autocorrelation for each case study in the
model, with all outputs correlated strongly.

Table 9. Durbin–Watson autocorrelation for the seven case studies.

Frag Tex Shrbagy
Textile El Sham Basma Gee Fitex Mise Spain

Soinng Factory
Exaust Store

Robaeia

Durbin–
Watson 1.138 2.969 2.790 2.118 2.599 2.735 2.833

4.2. Implementation with a Case Study

We applied the economic branch of sustainability in this case study by predicting the
LCC of the three different alternative structural frames, so as to enable decision makers on
industrial boards to select the best structures and envelope types for their new industrial
buildings. The analyzed case study is a one-story industrial factory building built in El
Mahalla city, El Garbiah, Egypt, in 2019. Table 10 shows the general parameters of the
tested case study.
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Table 10. General parameters of the tested case study.

Parameter Description Parameter Description

Industry name El Mahalla Spinning City El Mahalla

Area 53,398 (m2) Number of floors 1

Floor height 8 (m) Structure type Test all

Lifespan 30 years Year of construction 2019

Meanwhile, we achieved the prediction model objectives shown in Table 11, which
presents the total life cycle component costs for each alternative in Egyptian pounds (EGP),
at an extremely constant error ratio of about 5%.

Table 11. Shows El Mahalla Spinning’s predicted LCC over 30 years (EGP), with the three variables
C/M, PC/PS, and S/M.

C/M PC/PS S/M

Initial Cost (IC) 41,140,383 40,598,120 42,403,737

O&M Cost

EC 9,097,530

21,700,204

8,571,926

20,637,500

9,892,950

23,744,438

C&S 2,310,490 2,212,022 2,539,439
CC 4,200,891 4,021,858 4,617,162
MR 2,520,535 2,413,115 2,770,297
PM 2,940,624 2,815,301 3,232,014
R&I 630,134 603,279 692,574

EIC
MWC 3,914,573

13,048,576
3,685,694

12,285,678
4,273,239

14,244,131RCO2 9,134,003 8,599,953 9,970,892

EoLC
SV 1,199,273

2,705,512
1,175,703

2,563,137
1,203,084

3,087,116DC 3,904,784 3,738,840 4,290,200

Total LCC (EGP) 78,594,676 76,084,405 83,479,422

Error Ratio % 5.05 5.03 4.99

5. Results

The results of the case study demonstrate the effectiveness of the deep learning LCC
prediction model framework for identifying the best structure frame between the three
different alternatives, at an extremely constant error ratio of about 5%, where the LCC values
of the precast concrete frame with precast concrete walls alternative (PC/PS) achieved the
best scores, compared with the reinforced concrete frame with masonry wall alternative
(C/M) and the steel frame with masonry wall alternative (S/M), which increased the costs
by 3.2% and 8.9%, respectively. The lowest initial cost was recorded at 40.6 million LE for
the PC/PS alternative, while the highest cost was 42.4 million LE for the S/M alternative.
The O&M costs varied between 20.38, 21.7, and 23.74 million LE for PC/PS, C/M, and S/M,
respectively, as shown in Scheme 1, while EIC and EoL cost achieved the highest scores in
S/M and C/M, respectively, and the lowest in the PC/PS alternative.

As an alternative to cast-in-place and steel construction, pre-stressed/precast concrete
construction can increase a building’s overall sustainability in terms of both environmental
and economic aspects. This was clear in terms of energy costs, catering and services,
cleaning, major repairs, and periodic maintenance costs, as all of these values in PC/PS
were the least cost, and increased in C/M by approximately 4% and in S/M by 11%. As
such, PC/PS provides the opportunity to investigate the reuse of existing materials from
a previous project several times in order to reduce operating and maintenance costs, as
shown in Scheme 2.
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Scheme 2. Shows the operating and maintenance component values of the various alternatives for
the case study.

Among the environmental impact costs related to our case study, structure and en-
velope material waste cost 3.91 million EGP in C/M, 3.68 million EGP in PC/PS, and
4.273 million EGP in S/M, whereas the market price of resulting CO2 in PC/PS was the
lowest compared to C/M and S/M, as shown in Scheme 3.
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Scheme 3. The environmental impact cost component values of the various alternatives for the
case study.

Precast/pre-stressed concrete construction allows for the possibility of removing
existing sections during the demolition of one project, and their reuse in a new project, so
PC/PS provides the most savings in demolition costs, followed by C/M and S/M. Thus, it
was natural to achieve the highest residual value in PC/PS, as shown in Scheme 4.
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6. Discussion

To improve the economic sustainability throughout the lifespan of industrial buildings,
an LCC deep learning prediction model framework can be applied. The model published
by Reisinger et al. [49] increases the flexibility and economic advantages of industrial
building structures, whereas the developed deep learning tool described in this research
can be used to model historical costs and forecast the life cycle costs of industrial buildings
in Egypt in a fast manner. The proposed framework of this study enables us to predict and
compare between three different structures and envelope types of industrial buildings—a
reinforced concrete frame, a precast/pre-stressed concrete frame, and a steel frame—and to
make decisions as to the most suitable structure.

A few studies have provided feedback on the economic performance of industrial
buildings [46–48]. This is why in this study we created a new forecasting tool that can
estimate the life cycle costs of the different structural framework alternatives in industrial
buildings. The findings of the industrial case study show that the deep learning LCC
prediction model framework is effective in selecting the optimal structural frame from
among the three alternatives, with an extremely low error ratio of roughly 5%. The LCC of
the precast concrete frame with precast concrete walls alternative (PC/PS) achieved the
best scores, compared with the reinforced concrete frame with masonry wall alternative
(C/M) and the steel frame with masonry wall alternative (S/M), which are increased the
LCC by 3.2% and 8.9%, respectively.

According to previous research on the evaluation of the sustainability performance
of industrial buildings [13,47,68–70], as an alternative to cast-in-place and steel con-
struction, pre-stressed/precast concrete construction can increase a building’s overall
sustainability in terms of economic aspects. This can be seen clearly in terms of energy
costs, catering and services, cleaning, major repairs, and periodic maintenance costs, as
all of these values had the least cost in PC/PS, increasing in C/M by approximately 4%
and in S/M by 11%. As such, PC/PS provides the opportunity to investigate the reuse of
existing materials from a previous project several times in order to reduce operating and
maintenance costs.

The literature on precast concrete buildings [70–73] indicates that this is the most
sustainable structure type. The results of this research indicate that a precast concrete
frame is the most economically sustainable structural alternative for industrial buildings,
as it achieved the lowest cost of all LCC variables. This research presents a quick and
easy method to forecast the LCC of buildings without resorting to long and complicated
calculations, by using a deep learning network model based on a DBN with RBM hidden
layers. Moreover the developed deep learning prediction model allows users to predict the
cost closer to the real cost, because it gives a minimal error rate.

Future research directions abound for this model, which is not only useful for
the LCC prediction of industrial buildings, as presented here, but also has broader
implications for LCC modeling in the modeling of competing options for other buildings.
If the prediction model is uploaded with a historical dataset file document (.txt) of any
type of building—such as schools, residential, infrastructure, or commercial buildings—
the model can learn these data and predict the LCC of a new building of the same type
after n years.

7. Conclusions

A new approach is presented in this study for modelling historical costs and forecasting
the life cycle costs of industrial buildings in Egypt in a fast manner. This method is based on
a deep learning network, which combines a deep belief network and restricted Boltzmann
machine. The dataset was composed of 312 values, with 6 input and 11 output criteria,
in an Excel sheet, and converted into a document file (.txt) to prepare it for uploading to
the model. The LCC prediction model inputs were building area, floor height, number of
floors, structure and envelope type, building age, and year of construction. The outputs of
the model were initial cost, operating and maintenance (energy cost, catering and services,
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cleaning, major repairs, periodic maintenance, and rent and insurance), environmental
impact cost (structure and envelope material waste costs, and market price of resulting
CO2), and end-of-life cost (salvage value and demolition cost). All costs of buildings were
converted to the “present values” in 1991, according to the rate of inflation. During the
training phase of seven case studies in the deep belief network, three hidden layers of
restricted Boltzmann machines, with six hidden neurons in each hidden layer, achieved the
minimal errors of the model outputs.

The prediction model was experimentally validated by seven case studies of precast
industrial buildings over a study period of 30 years, from 1991 to 2021. The prediction
model calculated the error ratio between 3.20 and 3.82 for the seven case studies. This
model provides a much more accurate forecast of construction costs in the long run.

Statistical methodology was utilized to validate the outputs of the network by using
some descriptive statistics, regression, mean square error, and autocorrelation, with the
assistance of SPSS Statistics v22. The fit was reasonably good for all cases of regressions
between the outputs of the network and the actual costs, with R values 0.995 or above. In
the deep learning prediction model, the outputs were strongly correlated.

This model is not only useful for forecasting the LCC of precast industrial buildings,
but also has wider implications for modelling LCC in competing option modelling in three
types of structural frames: reinforced concrete frames, precast/pre-stressed concrete frames,
and steel frames. This modeling was applied in an industrial case study to compare and
make a decision as to the most suitable structure and envelope type of buildings in terms
of economic sustainability, at an extremely constant error ratio of about 5%. The results
show that the precast concrete frame is the most economically sustainable of the structural
alternatives for industrial buildings, as it achieved the lowest LCC after 30 years compared
with the reinforced concrete frame and the steel frame, which increased the LCC by 3.2%
and 8.9%, respectively.

There is a future opportunity to apply this prediction model to all manner of buildings,
such as schools, economic buildings, infrastructure, or residential buildings; if a historical
dataset file document (.txt) of the same type of building is uploaded, the model can learn
these data and predict the LCC of a new building of the same type after n years.

Future research should study the environmental impact cost criteria related to a wide
range of industrial buildings in more detail, as this was not covered clearly in this study.

Future studies may assess other types of building using sustainability measures and
life cycle costing techniques, such as offshore structures.
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