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A B S T R A C T   

Life cycle assessment (LCA) and life cycle cost (LCC) are two primary methods used to assess the environmental 
and economic feasibility of building construction. An estimation of the building’s life span is essential to carrying 
out these methods. However, given the diverse factors that affect the building’s life span, it was estimated 
typically based on its main structural type. However, different buildings have different life spans. Simply 
assuming that all buildings with the same structural type follow an identical life span can cause serious esti
mation errors. In this study, we collected 1,812,700 records describing buildings built and demolished in South 
Korea, analysed the actual life span of each building, and developed a building life-span prediction model using 
deep-learning and traditional machine learning. The prediction models examined in this study produced root 
mean square errors of 3.72–4.6 and the coefficients of determination of 0.932–0.955. Among those models, a 
deep-learning based prediction model was found the most powerful. As anticipated, the conventional method of 
determining a building’s life expectancy using a discrete set of specific factors and associated assumptions of life 
span did not yield realistic results. This study demonstrates that an application of deep learning to the LCA and 
LCC of a building is a promising direction, effectively guiding business planning and critical decision making 
throughout the construction process.   

1. Introduction 

1.1. Importance of building life span in architectural engineering 

From planning to design, construction, maintenance, and disposal, 
decision making is essential at every stage in the building construction 
industry. Various economic and environmental feasibility evaluation 
methods are used to execute major decisions including the selection of 
structures, materials, and construction methods throughout the design 
and construction of a building. Among them, life cycle assessment (LCA) 
and life cycle cost (LCC) analysis are two primary verification methods 
commonly used across the industry - in particular, LCA for environ
mental verification and LCC for economic verification [1]. 

The LCA method evaluates the environmental aspects of a product 
system at all phases of its life cycle [2]. In the construction sector, LCA 
assesses the impact of a building on the environment in all phases 
including material manufacturing, material transportation, construc
tion, operation and maintenance, demolition, and construction waste 
disposal. According to the 2017 UNEP Global Status Report, the 

construction sector consumes 35% of global energy use and nearly 40% 
of energy-related CO2 emissions [3]. Furthermore, the operation phase 
accounts for 80–90% of the total energy consumed by the entire life 
cycle [4]. In the case of apartments made from reinforced concrete (RC), 
the operation phase contributes to 75.4% of the carbon emissions pro
duced over the entire life cycle [5]. Thus, for energy saving and envi
ronment protection, it is highly important that LCA is conducted 
accurately. 

LCC is an economic analysis method that calculates all or part of the 
total costs of construction, operation, maintenance, and disposal 
incurred by a project during its useful life. In LCC, the costs incurred in 
the operating phase, which include expense created from operating a 
building with its resource consumption such as energy and water, and in 
the maintenance phase, which include expense from sustaining building 
condition and quality, account for approximately 40% of all costs over 
the life cycle of a building [6]. Calculating the operation and mainte
nance costs requires accurate reference data on the building’s life span 
and the repair cycles of building materials, construction methods, and 
building equipment. 
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In the construction industry, an essential component of LCA and LCC 
is the life span of a building, which must be considered in the calculation 
of the environmental load and maintenance and operation costs. It 
serves as a key factor that determines the number of repairs required. 
Also, building life span has an absolute influence on the energy 
consumed during the service cycle of the building, total cost and 
quantity of building repairs, and total environmental load [7]. In addi
tion, as there are few reference data sources describing the standard life 
span of a building other than those sources assumed from the main 
structure of buildings, there are many cases in which LCC calculations 
omit the maintenance cost during the fulfilment of value engineering 
(VE) in the design phase. 

However, although a building’s life span strongly influences both the 
LCA and LCC outcomes, it is unrealistic to consider all the factors that 
affect it. Hence, the life span is a component typically assumed to be the 
same for all the buildings with the same main structure type or other 
similar incidental factors. In LCA, the operation life is often assumed to 
be 30–50 years, and the guidelines of building operation and mainte
nance are quite simple. However, some materials do not meet the typical 
service life period criteria due to mismatched exposure or usage char
acteristics, making it difficult to use a simplified description to fully 
express its maintenance conditions [8]. In practice, the life spans of 
buildings vary considerably due to different influencing factors, and the 
use of standard assumptions often lead to grossly inaccurate results [9]. 

1.2. Complexity of building life-span prediction 

There are three broad categories of building life span: physical life 
span, social life span, and functional life span.  

1. Physical life span refers to the period a building gets demolished 
because the major components of the building physically reach their 
life span and are no longer technically useable. It can be further 
divided into the structural, facility, interior, and exterior life spans. 
The structural life span refers to the number of years until the 
physical strength of the building wanes. It is a systemic description of 
the performance deteriorations, defects in sections, and poor con
struction conditions associated with the material types and their 
characteristics. In addition, the facility life span, which is concep
tually related to the idea of physical life span, refers to the number of 
years until the facility inside a building reaches a state in which it 
cannot be physically repaired. For example, according to structural 
standards and specifications, RC-framed apartment buildings in 
South Korea, which serves as a backdrop for our research, have a 
structural life span of 60–100 years. In contrast, the facility life spans 
of these buildings will vary depending on their material character
istics. In general, the facility life span is calculated to be approxi
mately one-third of the structural life span of a building.  

2. Social life span refers to the period a building lasts until human 
desire or legal requirement dictates replacement. It is dependent on 
changes in social conditions or needs. Apart from the physical or 
functional life span, the social life span includes the life span for re- 
development, reconstruction, and remodelling in accordance with a 
national policy or social demand. In addition, a building’s social life 
span may be affected by the adoption of new safety regulations or 
standards related to asbestos, fire resistance, or seismic resistance.  

3. The functional life span refers to the period before which a building 
loses its functional value due to societal or lifestyle changes. For 
example, commercial buildings, factories, and hospital buildings are 
subject to particularly rapid changes in function. Furthermore, 
housing needs vary over an approximately 10-year cycle due to 
population changes or resident preference changes. As buildings are 
directly affected by technological innovation or change in life style, a 
plan that will help a building withstand changes in function or use is 
important. In general, the spatial composition, centre (core) location, 

column spacing, and floor height of a building will affect its func
tional life span. 

In addition, there are various other concepts of life span, including 
economic, cultural, design, and tax life spans. The economic life span is 
governed by economics. A building is an assembly constructed of 
numerous materials using various methods that have diverse life cycles. 
In addition to the original purpose of a building, which is to shield the 
inhabitants from the outside environment, buildings are assets that have 
a strong purpose as a financial investment. Therefore, even if a building 
structure or component is defective, it may not be demolished; 
conversely, it may be demolished before reaching its life span limit even 
if its condition is sufficient for its intended purpose. The cultural life 
span refers to the cultural relevance of a building. Some buildings are 
preserved well beyond their life span either by artistry or through 
continuous renovation as a heritage site. The design life span is related 
to the relevant design trends. Public buildings, for example, are designed 
to help them survive for a long time, whereas the design of commercial 
buildings (and thus their life spans) changes depending on their sur
roundings, technology, and originality. The tax life span refers to the 
period the relevant tax law of the land is applicable to a building. In 
South Korea, for example, the tax law prescribes a tax life span of 40 
years for major structures such as steel–RC (reinforced concrete), RC, 
and steel frame buildings [10]. Thus, the actual life span of a building is 
not simply the sum of the internal factors of the building itself but also 
related to the site and surrounding environment (such as weather, hu
midity, salinity, and disaster), extent of maintenance, building-related 
regulations and guidelines, re-development and reconstruction stan
dards, asset value, and social demands and implications. 

1.3. Limitations of existing building life-span prediction methods 

Various researchers have attempted to predict the building life span 
via building materials and construction methods. Many have only 
studied the life of materials and construction methods located in a 
specific region. It has been difficult to analyse all the factors influencing 
building life span because each material and method used to construct a 
building has distinct characteristics and are subject to different envi
ronmental conditions. Therefore, methods have been developed for 
predicting the life span of specific buildings according to specific factors 
by setting the goal and scope of the prediction according to the purpose 
of the study. Recently, hybrid methods that consider both the internal 
and external factors of a building to predict its life span have been 
developed [43,51–54]. However, most of these methods subjectively 
select important factors from numerous external factors and assign 
quantified weights based on the opinions of researchers or participating 
experts. Even in the case of the modeling-based approach [e.g., 52–54], 
most researchers selected a model simply based on the life span distri
bution and determined factors deemed to have high weights to the 
modeling. These methods suffer from inconsistency in assigning the 
weights across the countries or regions in which the internal and 
external factors of buildings are different, not to mention the subjec
tivity of participants. Therefore, the results of different studies are 
inherently empirical and difficult to standardize, making it impractical 
to predict the actual life span of any given building using one of those 
methods. 

In summary, the objective of this study is to identify the primary 
factors that affect the life span of a building by applying machine 
learning techniques to a large scale real-world dataset, which is the 
entire set of building permission registry data accumulated since 1950s, 
the era from which the current form of country-wide building registra
tion system began in South Korea. To examine the comparative advan
tage of our approach, we employ the current wide-spread method of 
calculating building life span using the linear regression technique, in 
addition to deep learning and traditional machine learning techniques. 
The ability to accurately predict the life span of a building can 
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dramatically improve the output accuracy of LCA and LCC and help 
building owners, contractors, designers, and other stakeholders make 
well-informed decisions. 

2. Related work 

2.1. Expected building life span 

Until now, there has been no consensus in the literature on the 
calculation of building life span [21,22]. The life span of buildings used 
in prior LCA studies [19,21–40] varies from 40 to 150 years. Most LCA 
and LCC practitioners do not estimate the actual life span of buildings 
but only apply default values obtained from the relevant structural 
calculation codes [e.g., 20]. When wooden or high-strength concrete 
structures were used to fabricate the main structure of a building, its life 

expectancy was typically assumed to be 100 years. Additionally, the life 
spans of 40, 45, and 150 years have been infrequently used in accor
dance of national corporate tax law, depending on major structural type 
variation (see Table 1). 

2.2. Actual building life span and main influencing factors 

O’Connor [41] conducted a demolition survey to identify the age, 
type, structural material, and reason for demolition of 227 buildings in a 
major North American city. The life spans of most of the demolished 
steel and concrete buildings were less than 50 years and no significant 
relationship was found between structural material and average service 
life. Moreover, ‘local re-development’ (34%), ‘lack of maintenance’ 
(24%), and ‘building no longer suitable for intended use’ (22%) were the 
most important external factors affecting building life. Dias [42] 

Table 1 
Building life span and basis of estimation in existing LCA and LCC studies.   

Building life span 
(years) 

Basis of estimation Title Country Year Main frame type 

1 50 Simple assumption Energy use during the life cycle of single-unit dwellings: 
Examples [21] 

Sweden 1997 Wood 

2 50 Economic building life span 
in Sweden 

Life cycle assessment of four multi-family buildings [22] Sweden 2001 Lightweight concrete & 
concrete, RC, Wood, Steel 
columns and concrete 

3 40 National corporate tax law Method of economic analysis for remodelling of 
deteriorated apartments using the life cycle costing [23] 

The Republic 
of Korea 

2005 RC 

4 50 Buidling life expectancy in 
midwestern U.S. 

Comparison of environmental effects of steel and 
concrete-framed buildings [24] 

US 2005 Steel frame, cast-in-place 
concrete frame 

5 50 Simple assumption Life cycle assessment of office buildings in Europe and the 
United States [25] 

US & Europe 2006 Steel framed RC 

6 100 Simple assumption Comparison of the life cycle assessments of an insulating 
concrete form house and a wood frame house [26] 

US 2006 Wood, Insulating concrete 
form 

7 50 Simple assumption Sustainability based on LCM of residential dwellings: a 
case study in Catalonia, Spain [27] 

Spain 2008 Brick 

8 50 Simple assumption Life cycle assessment in buildings: state of the art and 
simplified LCA methodology as a complement for 
building certification [28] 

Spain 2009 RC 

9 50 Simple assumption The environmental impact of the construction phase: An 
application to composite walls from a life cycle 
perspective [29] 

Spain 2010 Block 

10 50 Simple assumption Life cycle assessment of a house with alternative exterior 
walls (Comparison of three impact assessment methods) 
[30] 

Portugal 2011 RC 

11 50 (existing 
building) 
100 (high- 
strength concrete 
building) 

The lower limit of the 
lifespan of high-strength 
concrete structure 

Life cycle CO2 evaluation on reinforced concrete 
structures with high-strength concrete [31] 

The Republic 
of Korea 

2011 RC 

12 50 Simple assumption Assessment of the environmental performance of 
buildings: A critical evaluation of the influence of 
technical building equipment on residential buildings 
[32] 

Austria 2012 RC, Brick, Timber 

13 50 Prior work Environmental impacts of the UK residential sector Life 
cycle assessment of houses [19] 

UK 2012 Brick and Block 

14 50 Simple assumption Life cycle assessment of the air emissions during building 
construction process: A case study in Hong Kong [33] 

Hong Kong 2013 RC 

15 45 A durable period of a build Sustainability life cycle cost analysis of roof 
waterproofing methods considering LCCO2 [34] 

The Republic 
of Korea 

2014 RC 

16 50 Prior work Life cycle assessment (LCA) of roof waterproofing systems 
for reinforced concrete building [35] 

The Republic 
of Korea 

2014 RC 

17 50 (Alt1) 
30 (Alt2) 

Simple assumption Life cycle cost optimization within decision making on 
alternative designs of public buildings [36] 

The Czech 
Republic 

2014 RC 

18 50–150 Prior work Life cycle assessment (LCA) of building refurbishment: A 
literature review [37] 

Spain 2017 RC, etc. 

19 100 Simple assumption Life cycle assessment of building materials for a single- 
family house in Sweden [38] 

Sweden 2019 Wood, Concrete 

20 100 The expected building 
lifetime in Czech Republic 

LCC Estimation Model: A Construction Material 
Perspective [39] 

The Czech 
Republic 

2019 Masonry 

21 40 Simple assumption Life cycle greenhouse gas emission and cost analysis of 
prefabricated concrete building façade elements [40] 

The 
Netherlands 

2020 Prefabricated concrete 

Note: As shown in the table above, there are many cases in the LCC-related studies in which the life span was estimated to be a certain number of years using a simple 
assumption (without providing any explicit reference). In the LCA-related research, most studies assumed the life span to be 50 years by referring to prior work. These 
approaches are still widely used today. 
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surveyed the conditions of several buildings under 125 years old in a 
humid, tropical environment to find that the change in function of or 
lack of investment in a building reduced its life span and that new 
planning regulation or archaeological heritage had an impact on 
extending the life span. Liu et al. [43] used an improved hedonic model 
to investigate the factors influencing the life spans of 1732 demolished 
buildings from 2008 to 2010 in seven communities of Jiangbei District, 
Chongqing, China. The average service life of the buildings was deter
mined to be 34 years—much shorter than the design life span in China. 
They also noted that external influences were more important than in
ternal influences, and that internal factors excluding floor area were less 
important than expected. Grant [9] modelled nine combinations of 
building envelopes using five service life models. The study results 
indicated that the life span of a building varied with its conditions, and 
the annual cumulative life cycle and life cycle effects depended mainly 
on the predicted life span of the materials and the environmental indi
cator used. 

3. Methodology 

3.1. Big data approach 

3.1.1. Data sources for building life-span prediction 
In many countries, to be in compliance with the building codes, 

building permits, construction permits, and construction reports are 
required when constructing a building. Plan checks, which verify the 
compliance of buildings with the area plan requirement, are also being 
implemented as part of the approval process [11]. Furthermore, builders 
must typically procure permits for use upon building completion and 
apply for a permit prior to building demolition. In the United States, a 
building permit must be obtained before construction in accordance 
with the Law on Spatial Planning and Construction. Completed build
ings can be occupied and operated once a use permit has been obtained 
indicating that all the relevant technical documents, standards, regula
tions, and norms have been observed. Finally, a demolition permit must 
be obtained to demolish a building. These permits can be obtained from 
the Department of Town Planning, Housing and Communal Affairs and 
Ecology. In the United Kingdom, a planning permit or development 
approval is necessary to construct or extend a building (including major 
renovations), as well as to demolish a building in some jurisdictions [12, 
13]. Under the Building Law of the People’s Republic of China, prior to 
the commencement of construction work, the construction agency must 
apply for a construction permit with the department-in-charge of the 
government construction administration of the relevant administrative 
district. When the construction is completed, a ‘Construction Process 
Completion’ certificate is issued following an inspection [14]. In South 
Africa, major permit stages and obligation items in construction, usage, 
and demolition are specified in accordance with the National Building 
Regulations and Building Standards Act (Act No. 103, 1977) [15]. In 
most countries, the construction permit or declaration is mandatory, and 
although it may take slightly different names and forms, it involves 
nearly the same criteria. 

In South Korea, the following permit-related records are created with 
regard to building construction and demolition:  

• Authorised Register on Building Permit: A document detailing the 
‘Building Permit’ expressing permission from the Governor of the 
Special Self-Governing Province or the head of a Si/Gun/Gu, by 
which a person who intends to construct or repair a building is 
authorised.  

• Authorised Register on Approval of Use: After the completion of 
building construction, the owner of the building must apply for an 
‘Approval of Use’ in order to occupy the building by attaching a 
supervision completion report and a construction completion docu
ment prepared by the construction supervisor.  

• Authorised Register on Demolition Permit: When the owner or 
manager of a building has lost all or part of the building owing to a 
disaster or other destruction, they shall prepare an ‘Architecture Loss 
Declaration’ and file it with the Governor of the Special Self- 
Governing Province or the head of the District (called Si, Gun, Gu 
in Korean) within a week of the scheduled demolition date. 

The South Korean construction administration system, named 
Seumteo, has been established to handle almost all construction-related 
administrative duties. The construction data describing building per
mits, construction reports, completion (Approval of Use), maintenance, 
and demolition are provided to the private sector through an open data 
service named the Architectural Data Private Open System [16]. Even in 
South Korea, where the information technology industry is relatively 
advanced, such large-scale data on buildings have not been released to 
the private sector until recently. Although many other countries have 
not yet opened administrative building data to the private sector, more 
and more countries are expected to share the construction- and 
demolition-related information freely in the form of raw data as time 
goes on. 

The service life (or service period) of a building is the period for 
which it remains durable, stable, and resilient [17]. The international 
standard ISO 15686:2014 documents an analysis of this concept [18]. 
Realistically, the building service life or building life span generally 
refers to the period between its construction and demolition, as the 
actual life span does not solely depend on stability and durability. 
Therefore, the life span of a building can be considered as the period 
between the date of approval of use and the date of demolition from an 
administrative perspective. Any country can therefore analyse and 
predict the actual life span of a building in its territory by utilising its 
mandatory and practical administrative data, which has been accumu
lated by law as part of the construction permitting process. The larger 
the quantity of data and the longer the period of recording, the more 
accurate a prediction based on this data can be. 

3.1.2. Big data characteristics and challenges of the study data 
The collection of the Korean dataset described in 3.1.1 involves a 

government-wide effort on establishing an integrated database from all 
the records produced in South Korea in relation to construction. Given 
that various records and data from all over the country have been 
accumulated over a long time period, the dataset reflected several 
characteristics of big data and consequently a big-data analysis strategy 
was required to accomplish the intended purpose of this research. Below 
are the characteristics and the challenges of the integrated records that 
we encountered. We addressed the characteristics according to the 7Vs 
presented in the work of Sivarajah et al. [55].  

1. Volume: The Seumteo database we accessed is established with all 
the construction related documents registered to the local govern
ment offices throughout the nation. The partial database of the de
molition records that this research mainly utilizes includes 
1,812,700 cumulative demolition cases arranged with 78 different 
building characteristics from the 1950s to the current date. As a full 
data record of construction events, the data used in this research can 
be considered as one of the largest datasets used for analysing con
struction and demolition events.  

2. Variety: The database includes data with a different aspect of 
building characteristics. For example, characteristics such as an 
address, lot type, and environmental grade are recorded to describe 
administrational information, while structures, number of floors, 
and parking space type are recorded to describe the physical aspects 
of the building. All these different types of information are evaluated 
and registered from different procedures performed by different 
groups of people with different professions. The variety of the type 
and the source of this information cause challenges in processing and 
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analysing source data, therefore cautious selection, imputation, and 
integration of the data are necessary.  

3. Veracity: The dataset has been collected for decades while the 
registration procedure, form, input type of raw data have been 
changed over time. This characteristic produces discrepancy in the 
data quality and bias depending on the input methodology utilized. 
Old data get corrupted or lost in physical form, producing data 
sparsity when they are integrated and transferred to a large elec
tronic database. Therefore, the validation and the control of sparse 
data is necessary to keep an adequate level of veracity. For the same 
reason, the database has been set up based on the information sub
mitted to government offices under strict legal restrictions. There 
also are several audit processes in place to verify the validity and 
reliability of registered information and data, so that the Seumteo 
database can be considered one of the most reliable construction 
information databases in South Korea. 

4. Velocity: As the Seumteo database accumulates the registration re
cords submitted and approved by the local government offices, the 
dataset gets updated on a monthly basis. To provide a more accurate 
estimation of life span, the utilization of new data is essential so that 
the model can respond to changes in the building characteristics or 
new trends in the construction industry. Therefore, methodologies 
with real-time analytical and evidence-based planning are necessary. 
The machine learning-based approach in this research is an adequate 
choice to address such challenges. 

5. Variability: In terms of variability, there is a limitation in the data
base and the dataset we utilize. It can be asserted that the meaning in 
data changes as the requirements, terms, structures of construction 
registration change over time. However, the Seumteo database aims 
to provide a unified set of data for its users so that the variability will 
be managed according to the legislation.  

6. Visualization: Due to the sheet volume of the data and the diverse set 
of features, it is a big challenge to represent key information in the 
dataset in a pictorial or graphical layout. The dataset we utilize 
typically requires the use of a geographic information system to 
produce real-time, geographical rendering of registered building 
information.  

7. Value: One of our goals in this research is to show the discrepancy 
between life span calculated by conventional estimation methodol
ogy and the actual life span recorded. The Seumteo database can 
contribute to the comparison with the actual data recorded in the 
dataset. In general, to estimate or forecast an accurate life span of a 
building, it is necessary to identify key building characteristics and 
trace their influences on the life span. The Seumteo database in
cludes a huge amount of data regarding the buildings and con
struction activities in South Korea that would help to validate and 
find independent variables that affect the building life span. 

3.1.3. Focus and approach of analysis 
In this research, we chose South Korea as the research backdrop for 

this study due to the extent and availability of its construction admin
istration records as well as the comprehensibility of data by the authors. 
The overall flow of the big data analysis approach used to predict a 
building’s life span for use in LCA or LCC is shown in Fig. 1. 

The big data analysis approach was implemented in the following 
steps:  

1. An understanding of the characteristics of the target building group 
was developed.  

2. Big data were collected describing as many factors as possible that 
were likely to affect the life span of the buildings. 

3. Predictive models suitable for data preparation and big data char
acteristics were developed.  

4. Several iterations, from the previous stage to the predictive models 
were run until a model with satisfactory performance was achieved. 
If the prediction was not acceptable, all steps were repeated starting 

from Step 1. There was no specific thresholds (e.g., minimum RMSE) 
but each iteration required adjusting parameters for the model to get 
a better outcome, which was indicated by the difference between the 
estimated life span and the actual life span. Thus, if the subsequent 
trial did not produce a better estimation result than the previous one, 
the parameters of the trial were disregarded and a new trial was 
continued. Note that even if the problem is not solved by running the 
process once from beginning to end, it is not a failure; the results can 
be used to improve the model.  

5. Once an acceptable prediction was achieved, the model could be 
deployed in LCA and LCC analyses and used to support decision 
making, and the results could be fed back into the model to better 
understand the building characteristics. 

Indeed, every step of this process explores the data. Thus, the more 
iterations are run, the more information is generated, resulting in better 
models [44]. 

3.2. Building life span in South Korea 

In South Korea, the life span of a building is considerably shorter 
than the one assigned to it according to its main structure type. Most 
buildings in South Korea consist of RC, steel frame, or steel frame–RC 
structures; among these, 90% are RC structures [35]. Because limited 
types of structures have been used in South Korea, a large amount of 
data are available for each structure. Over the period covered in this 
study, there has been no change in the durability of buildings, and no 
drastic changes in construction methods, materials, or real estate and 
building laws have occurred that would significantly affect the life span 
of buildings in South Korea. In addition, the mandatory legal enforce
ment of construction practices in South Korea means that there is almost 
no omission of building data. 

Fig. 1. Flow of building life-span prediction approach using big data.  
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3.3. Exploratory study based on building registration records 

To identify the characteristics affecting the life spans of buildings, 
the average life spans of each main frame type in each region were 
examined using data from an authorised register on demolition permits 
in the Electronic Architectural Administration Information System 
(EAIS). These data, described in detail in Appendix, constitute a total of 
1,812,700 cumulative demolition records of buildings since the 1950s to 
December 2019, along with the characteristics of the buildings (i.e. main 
frame type, site, gross area, etc.). In this study, after removing cases 
including missing values, misinputted data values and outliers from the 
database, 971,514 building records were used to analyse building life 
spans by major structural type and regions. The number of registered 
records and the average life span from each period are listed in Table 2. 
The EAIS databased built on the records which were constructed 
manually from 1950s by local governments personnel. The old hand
written data was transformed and digitized so that the database included 
a large number of missing and misinputted values. Among 1,812,700 
records, 692,894 records with missing values, 148,284 records with 
misinputted data variables and 8 outliers, which have extremely long 
life span (>200) were removed. Our primary focus of this research was 
to propose a better methodology to estimate building life span suitable 
for LCC and LCA for general buildings, excluding extremely old build
ings not typical for ordinary residence purposes. 

Interestingly, according to Table 2, fewer than 250 buildings per year 
were demolished between the 1950s and 1970s. However, the reason for 
this aberration appears to be that many records from immediately after 
the end of the Korean War (1953) were lost in the process of digital
isation, as it was often difficult to record data electronically because the 
existing handwritten records were too old to legitimise their contents. In 
addition, we have presumed that the number of demolition records 
would only increase as we approach the modern age because more data 
would be stored in a computerised format, and there would be less data 
loss. Thus, as the data are more recent, they are more likely to be 
complete with no missing values and therefore to be included in the 
analysis. In this study, the actual life span was calculated as the differ
ence between the year of demolition and the year of approval of use. 

3.4. Machine learning-based building life-span estimation using building 
registration records 

The primary objective of this study was to predict the most realistic 
building life span using various machine learning techniques. Building 
life span was predicted based on an authorised register of the demolition 
permit dataset from EAIS, seismic regional classification from Regula
tion of Building Structure Standards (RBSS), and climate regional clas
sification and insulation requirement information from Energy Saving 
Design Standards of Buildings (ESDSB) [45,46]. A prediction model 
containing overall 21 sets of building information as the independent 
variables was thus developed using 19 sets of building information 
provided by EAIS and 2 sets of building information on seismic and 
climatic conditions provided by RBSS and ESDSB. The information 
describing these independent variables is provided in Table 3. The 

analyses were performed using Python 3.5 on an Intel i5 8th-Gen CPU 
computer with 16 GB RAM running Windows 10. The software package 
was managed using Anaconda 4.8.4, and Pycharm 2020.02 was used as 
the IDE for the actual programming and various library applications. 

3.5. Development of machine-learning-based life-span estimation model 

3.5.1. Model development overview 
Machine learning commonly involves training a model using data 

and evaluating the ability of the model to generalise to new test data. In 
addition to the classification of data, machine learning can be flexibly 
applied to solve various problems due to its ability to identify key re
lationships between variables and predict patterns through data 
learning [47]. Because machine learning makes it easy to analyse data 
using large volumes of multi-dimensional variables that are otherwise 
difficult to handle using traditional statistical methods, we considered 
machine learning a suitable method for developing a prediction model 
using the data collected in this study. 

When applying machine learning, the conditions required to obtain 
optimal results depend on the problem and the characteristics of the 
data. Therefore, it is necessary to apply techniques that are specific to 
the problem. Because the life cycle of a building is a continuous variable, 
we constructed a prediction model using simple regression method as a 
baseline and compared it with three other state-of-the-art machine 
learning models to assess their potential improvements relatively. 

Table 2 
Demolition records and average life cycle by period within the records to be 
analysed.  

Period Number of demolition records 
(Cases) 

Average building life span 
(Years) 

1950s 53 12.7 
1960s 34 12.8 
1970s 237 22.9 
1980s 2324 20.3 
1990s 11,741 21.8 
2000s 357,849 24.9 
2010s 599,276 30.0  

Table 3 
Building-related information for life-span prediction.    

Factors Details Source 

1 Internal Building area Sum of the floor area of all 
floors in all buildings on a site 

EAIS 

2 Internal Building floor area Floor area of building(s) is the 
sum of the gross horizontal 
areas of several floors 

EAIS 

3 Internal Building structure 
type 

Main structure types that make 
up a building 

EAIS 

4 Internal Roof structure type Types of major structures that 
make up the roof of a building 

EAIS 

5 Internal Number of storeys 
above ground 

Number of storeys above 
ground of a building 

EAIS 

6 Internal Number of storeys 
under ground 

Number of storeys 
underground of a building 

EAIS 

7 Internal Number of 
elevators 

Number of elevators in a 
building 

EAIS 

8 Internal Number of outdoor 
parking spaces 

Number of outdoor parking 
spaces of a building 

EAIS 

9 Internal Area of outdoor 
parking spaces 

Area of outdoor parking spaces EAIS 

10 External Approval date of 
use 

Completion date of 
construction 

EAIS 

11 External Building Type Detached building; Aggregate 
building 

EAIS 

12 External Building ledger 
Type 

General building; Section for 
describing the title 

EAIS 

13 External Metropolitan city Metropolitan city where 
building is located 

EAIS 

14 External City or county City or county where building 
is located 

EAIS 

15 External District District where building is 
located 

EAIS 

16 External Site Type Site; Forest land; Road; Rice 
paddy; Field 

EAIS 

17 External Extra parcels Number of extra parcels EAIS 
18 External Building 

subordination type 
Main building; Sub-building EAIS 

19 External Major use 
classification 

Major use of building EAIS 

20 External Seismic regional 
classification 

Classification of seismic hazard 
by location of buildings 

RBSS 

21 External Climatic regional 
classification 

Classification according to the 
heat perfusion rate table of 
buildings by region 

ESDSB  
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3.5.2. Regression model 
For the baseline condition, the linear regression method from the 

Scikit-Learn Python library was used. A linear regression model seeks to 
describe the relationship between independent variables (x1, ⋅ ⋅ ⋅ , xn) 
and a continuous dependent variable (y) by fitting a linear equation 
(ŷ = w1 × x1 + ⋅⋅⋅+ wn × xn + b) to the data. The linear regression 
module provided by Scikit-Learn uses the singular value decomposition 
(SVD) method to calculate the pseudo-inverse matrix to build a model. 
Like traditional statistical analysis, a model that minimises the root 
mean square error (RMSE) and maximizes the coefficient of determi
nation (R2) is considered to be more accurate. 

3.5.3. XGBoost ensemble model 
Extreme gradient boosting (XGBoost) is an improved model of the 

decision tree boosting technique presented by Chen and Guestrin [48]. 
Boosting is an ensemble technique that combines numerous weak clas
sifiers to create a strong classifier that can compensate for the errors 
from the previous steps while sequentially executing the weak-tree 
classifiers. In this manner, XGBoost improves the slow learning speed 
of boosting through parallelisation and is accordingly gaining popularity 
by proving its excellence in the data-analysis-competition platform 
Kaggle (http://www.kaggle.com). 

3.5.4. LightGBM ensemble model 
The light gradient boosting machine (LightGBM) algorithm de

creases the data processing time using the gradient-based one-side 
sampling and exclusive feature binding techniques. Its speed is thus far 
greater than that of the XGBoost and quantile gradient boosting 
regression tree models, which use the existing gradient boosting deci
sion tree [49]. 

3.5.5. Deep neural network model 
As an alternative to XGBoost and LightGBM, we employed an arti

ficial neural network (ANN) based on TensorFlow to implement a deep 
learning neural network (DNN) model. TensorFlow has become the most 
used machine learning software library since Google released it as a free 
and open-source library in November 2015 [50]. The ANN is a data 
processing system consisting of multiple layers, variable connection 
strengths, a transition function, and a learning algorithm, and has a 
structure in which weights are repeatedly adjusted through the input 
and output data values to eventually reflect the relationship between the 
two. 

In this study, we constructed a hidden layer in the form of an inverted 
pyramid to output a single dependent variable using a limited number of 
independent variables. Thus, five hidden layers were used to minimise 
the mean squared error between the predicted and actual building life 
spans (Fig. 2). The rectified linear unit (ReLU) was used as the activation 
function of the hidden layer, and the Adadelta optimiser provided by 
Keras was used as the gradient boost optimiser. 

3.5.6. Pre-processing and model parameter tuning 
We pre-processed and optimised the model parameters using a data 

set to adjust the model performance and training time. To pre-process 
the data, we used the pre-processing and scaler functions of Scikit- 
Learn. The training and test data sets were normalised to values be
tween 1 and 0 using the MinMaxScaler method provided with the pre- 
processing package. Additionally, we sought the optimal model 
parameter using the GridsearchCV function and Bayesian optimiser 
packages provided in Scikit-Learn. 

3.5.7. Model training and evaluation 
Building life spans were trained and predicted by developing the 

regression, XGBoost, LightGBM, and DNN models using the demolition 
permit dataset. 971,514 cases, which included data from January 1950 
to December 2019 were used to train the prediction models. For test 
data, we acquired a recently generated dataset separately to test the 
performance of the model trained with records up to the 2010s. The 
most recently recorded authorised register on demolition permit dataset 
(38,676 cases) from January 2020 to June 2020 was used as a test set. 
The new test dataset was preprocessed in the same manner as training 
data. Overall, a total of 1,010,190 records from January 1950 to June 
2020 were used in this experiment. The resulting RMSE and R2 were 
calculated and compared to verify the performance of each model. 

4. Results 

4.1. Exploratory building life-span analysis 

We conducted an exploratory analysis of the data to develop an 
initial understanding of how building life span changes by main frame 
type and regional differences. 

4.1.1. Analysis of number of buildings by main frame 
The number of buildings classified by main frame type and their 

corresponding percentages of representation in the data are shown in 
Fig. 3. There were 25 types of main frames in the data. In Fig. 3, the main 
frame types that accounted for less than 1% of the data, including steel, 
cement block, and container, are grouped together and indicated as 
‘Others’. With 36%, brick buildings accounted for the largest proportion 
of the data, followed by block, RC, general wood, lightweight steel, steel, 
steel pipe, masonry, and others. Thus, RC buildings, which were 
assumed to be predominant, accounted for the third largest proportion 
of buildings in the data set. Although RC has been widely used since the 
1950s, brick, block, wood, lightweight steel, etc. are suitable for low-rise 
buildings, are fireproof, durable, and easy to construct, and as a result 
were widely used after the Korean War. 

Fig. 4 illustrates the percentages of buildings by region in South 
Korea according to main frame type. Brick buildings constitute the 
largest share of building frame type in of South Korea overall, and in 
Seoul, Gyeonggi, Daegu, and Chungbuk. However, block buildings are 
the most common in Busan and Jeju, whereas wooden buildings are 
most common in Gangwon, Gyeongnam, Jeonnam, and Jeonbuk, and 
lightweight steel buildings are most common in Jeonbuk. It is presumed 
that the preference for a particular frame type varies according to the 

Fig. 2. Visual representation of the structure of a deep neural network.  
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site conditions in each region. 

4.1.2. Analysis of building life span by main frame type 
To examine how the building life span changes by main frame type, 

the average of building life span was computed for the ten most used 
main frame types identified. Fig. 5 illustrates the average building life 

span for the eight most used main frame types, excluding the two of the 
top ten that accounted for less than 1% in total. As indicated in the 
graph, the building life spans exhibited large variations according to 
main frame type. This overall trend reveals that the differences between 
the main frame types have a significant influence on the average life 
span. In addition, it is commonly understood that there can be a 

Fig. 3. Number of buildings according to main frame type.  

Fig. 4. of buildings in South Korean regions by main frame type.  
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significant difference between the durability life span of a building and 
its actual life span according to the main frame type. For example, a 
wooden building is generally known to have a life span of 50–100 years 
but has an actual average building life span of 52.6 years, which is close 
to the lower limit. The assumed life spans of block and brick buildings 
are approximately 50 years each, whereas their actual average life spans 
were found to be 31.3 and 29.3 years, respectively. Buildings made of 
RC, which is the most used material for new buildings today, have an 
assumed durability life span of 50–100 years, but an actual average life 
span of only 22.8 years. 

4.1.3. Analysis of building life span by region 
The average building life cycle and its distribution were analysed by 

region according to the classification of metropolitan cities and districts 
in South Korea. As indicated in Fig. 6, there was little variation between 
regions in terms of average life cycle. In particular, there were five re
gions with an average building life of more than 30 years: Jeonbuk (34.2 
years), Busan (32.6 years), Gyeongnam (32.4 years), Seoul (31.4 years), 

and Jeonnam (31 years). Notably, there were no specific factors dis
tinguishing different regions. Therefore, it cannot be concluded that the 
characteristics of a region (i.e. local vs. city, regional building prefer
ence, etc.) are key factors in determining the life span of a building. 
However, in the case of Sejong City, the average life span was found to 
be far lower than the other regions, a difference that may reflect the 
rapid, large-scale demolition of existing buildings occurred recently in 
accordance with the creation of a newly planned city established by the 
Korean government policy. 

4.1.4. Analysis of building life span according to main frame type by region 
Fig. 7 depicts the average life spans of buildings according to the 

most commonly used main frame types throughout South Korea. In all 
the regions, wooden buildings were found to have the highest average 
building life span. Although there were slight differences between re
gions, brick and block buildings had the second and third longest life 
spans, respectively. In most areas, RC buildings and gauge steel build
ings had the fourth and fifth longest life spans, respectively. There were 

Fig. 5. Distribution of average building life span by main frame type.  

Fig. 6. Average building life span according to region.  
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no significant differences between the life spans of buildings with the 
same main frame type according to region. The average RC building life 
span in Busan was the longest at 26.3 years, followed by Seoul and 
Jeonbuk, both with an average life span of 24.3 years, and Daegu with 
the third longest life span of 23.9 years. The region with the shortest 
average building life span was Gyeonggi Province at 19.9 years. 
Notably, Seoul is the largest city, with the largest number of residents 
and buildings in South Korea, while Daegu and Busan are also large 
cities with relatively high population and building densities. Therefore, 
the life spans of buildings must be long. However, it is difficult to make a 
blanket statement based on this simple analysis because Jeonbuk is not a 
densely populated area. 

4.2. Analysis of prediction models and comparison of their performances 

The analysis results obtained using the four predictive models are 
shown in terms of RMSE and R2 in Table 4. As the RMSE represents an 
error value, the smaller the number, the smaller the error. In regression 
model evaluation with machine learning methodology, there is no 
consensus on a standard metric to assess the results of regression itself. 
The mean square error (MSE) and its rooted variant (RMSE), or the mean 
absolute error (MAE) and its percentage variant (MAPE) were often 
employed to evaluate prediction outcomes [56]. In this research, we 
used RMSE to evaluate the model outcome because the metric is robust 
to the influence of outliers and their errors [57]. Even though we stan
dardized values and preprocessed outliers and abnormal values in our 
dataset, there is the possibility that a few large values may distort the 

model estimation due to its great volume and large variance from the 
real data. Therefore, it is necessary to use a metric robust to generalized 
predictions. Other than prediction precision, we also needed to check if 
the regression model is well representing the observed value and dis
tribution of life span. Therefore, we present R2 value (also known as the 
coefficient of determination). There are arguments in prior studies that 
SMAPE (symmetric mean absolute percentage error) should be used for 
such criteria, however, recent comparative research claimed superiority 
of R2 over SMAPE [56]. The RMSE of the linear regression model, 
XGBoost regression model, LightGBM model, and DNN model were 
distributed between 3.72 and 4.6, and the coefficient of determination 
was greater than 0.9. The examined models were all able to predict the 
life span of buildings in South Korea reasonably well and the DNN model 
was the best among them. 

The performance of the XGBoost model was slightly weaker than the 
regression model. According to prior research, XGBoost is expected to 
show similar prediction performance as the LightGBM model because 
they both are based on gradient boosting [49]. It is difficult to explain 
precise reasons for the weaker performance of XGBoost, but the 

Fig. 7. Average building life span by region for each main frame type.  

Table 4 
Performance comparison between machine learning models.  

Model RMSE R2 

Linear regression 4.53 0.934 
XGBoost 4.60 0.932 
LightGBM 4.33 0.939 
DNN 3.72 0.955  

Table 5 
Key variables for each model sorted in the order of importance.  

Regression model Variables 

Linear regression Date of use permit 
Number of storeys above ground 
Number of storeys underground 
Number of elevators 
Metropolitan city 

XGBoost Date of use permit 
Roof structure type 
Major use 
Building area 
Building floor area 

LightGBM City or county (Si, Gun, Gu) 
Date of use permit 
District (Dong) 
Major use 
Main frame type  
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implementation details of the two algorithms seem responsible for the 
subtle difference between the two gradient-boosting models we have 
utilized in the study. The two algorithms are different in how they 
manage the nodes in splitting decision trees based on the gradient. 
LightGBM uses Gradient-based One-Side Sampling (GOSS) to filter out 
the data instances for finding a split value. This approach applies a 
multiplier constant to nodes with a small gradient, which allows 
focusing on under-trained features. However, XGBoost uses a pre-sorted 
algorithm so that the model can be robust to overfitting but may 
disregard instances with small gradients. 

To further understand the comparative characteristics of the models, 
we examine the key features of each model we constructed. Except for 
the DNN model, the importance of each variable to the models can be 
determined based on the weight or importance of the associated feature 
in each model. Table 5 lists five main variables with the strongest in
fluence on the predicted values for each model. 

Table 5 reveals that each model has a different set of important 
features. They all agree that the date of use approval is an important 
variable. However, there are significant differences in the combination 
of the five variables and their importance levels across the prediction 
models. Therefore, it shows that each model operates in a distinct way, 
implying that it is important to consider a diverse set of variables and the 
influence of those variables together. To more directly examine the 
problem of conventional life-span estimation, which employ main frame 
type and region as the independent variables to estimate building life 
span, we applied those two variables to the same machine learning 
estimation protocols we used in this research. Table 6 shows the RMSE 
and R2 values for each of the predictive models using either or both of 
the major structural types of buildings and regions, which are most 
commonly employed features in determining the life span of a building 
in LCA or LCC studies. 

As shown in Table 6, RMSE values are significantly greater than the 
values presented in Table 4, revealing that there are large discrepancies 
between real building life span and estimated building life span, which is 
predicted based on one of, or both of, the structural and regional factors. 
Therefore, the proposed methodology of this research should be 
considered superior over the traditional estimation approaches. 

5. Discussion 

In this study, the prediction of building life span was attempted for 
the first time based on real-world administrative big data that spans over 
65 years of a whole nation. Big data analysis performed in this study 
showed that the actual life spans of the building differ substantially from 
those calculated using the mainframe type or region variables, indi
cating that the current estimation practices simply based on those var
iables are far from the reality. Despite its widespread use, it is not 
appropriate to perform an LCA or LCC using the simple estimation of a 
building’s life span that is significantly different from the actual one. 

Machine learning methods, especially the DNN, depend less on pre- 

classified key factors (or features) while providing more accurate results 
than other prediction methods. Because machine learning methods can 
utilize patterns that exist in the given data set that are otherwise difficult 
to identify, they represent a suitable approach to solving highly complex 
problems, including building life span prediction. Thus, as demonstrated 
in this study, we can build a computational model using machine 
learning methods that is more accurate than the currently employed life 
cycle pattern analysis method (which is based on assumptions regarding 
building characteristics), providing improved predictive power over 
general regression analysis. 

However, it should be noted that the methods evaluated in this study 
have several potential limitations. First, it is difficult to predict the life 
span of buildings constructed using innovative methods and materials, 
as there are no actual life span data that reflect the life span of such 
futuristic buildings. Innovative methods have the potential to drastically 
increase the general life span of a building. Another limitation may arise 
from scenarios in which current building laws have been amended or a 
natural calamity has occurred, suddenly impacting building life spans. 
However, the current trend of using RC, steel, and wood is not likely to 
change for a while. Moreover, although a few housing laws and building 
laws may be enacted, altered, or abolished, no change in the basic 
construction paradigm is likely to occur. Authorities have endeavoured 
to prolong the life spans of recently constructed buildings by responding 
to the predictable functional and environmental changes and improving 
structural durability. If changes occur in the future that directly affect 
building life span, such as the introduction of completely different 
construction methods like building 3D printing technology, populari
zation of new materials, or revision of re-development and reconstruc
tion laws that affects building profitability, it will be necessary to 
consider a new hybrid research method that includes a more conven
tional factor method as well as the big data approach employed in this 
study. 

It is important to note that the proposed methodology and prediction 
models are estimated based on the prior records of the buildings that are 
effectively demolished. Therefore, the prediction may not reflect the 
characteristics of existing buildings with long life spans and buildings 
with different feature variances which may occur in the future. To 
mitigate the bias and the discrepancy between the model prediction and 
such untrained life span cases, we constructed and trained the models 
with the records from 1950 to 2019, and have the model predict the life 
span of the buildings demolished in 2020, which are not reflected in the 
trained models. Even though, there still exists the potential limitation of 
model performance for cases with different feature variances, our study 
has demonstrated that the proposed performs better than the conven
tional approach. Moreover, there is a room for improvement as the 
construction datasets are continuously being collected and applied to 
the model training. 

The most practical problem that we wanted to address in this 
research was to introduce an improved methodology that estimates the 
realistic life span necessary for accurate LCC and LCA results. Thus, we 
aimed to employ and test a methodology that is universally applicable to 
the life span estimation modeling for LCC and LCA. As a data-driven 
approach, our proposed model may not be permanent and have limi
tations in predicting unobserved cases. However, our study results show 
that our methology based on the utilization of big data and machine 
learning is good enough to enhance the outcome of LCC and LCA cal
culations. The methodology in this study can be employed universally, 
with only minor adjustments for different datasets. 

Building construction requires compulsory administrative processes 
from building permits to construction reports to authorisation of use to 
demolition. Therefore, if a computerised administrative registration 
process for maintenance work such as waterproofing, facilities, and 
replacement of internal and external equipment is implemented, big 
data can be collected on the replacement cycle and cost of materials or 
construction methods during the maintenance stage. Thus, life expec
tancy could be accurately predicted using big data for construction 

Table 6 
Performance comparison between machine learning models estimated with 
mainframe type and region.  

Factor variable Model RMSE R2 

Main frame Type Linear regression 18.40 − 0.080 
XGBoost 20.30 − 0.315 
LightGBM 20.31 − 0.316 
DNN 19.76 − 0.246 

Region Linear regression 18.03 − 0.037 
XGBoost 17.90 − 0.023 
LightGBM 17.90 − 0.023 
DNN 17.97 − 0.030 

Main frame Type & Region Linear regression 18.19 − 0.005 
XGBoost 18.96 − 0.148 
LightGBM 20.13 − 0.294 
DNN 19.18 − 0.175  
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methods or building materials using the same method presented in this 
study. In addition, including the required quantity and cost in the record 
items generated during the maintenance process would help more 
accurately analyse the economic and environmental impacts of building 
life cycle characteristics. 

6. Conclusion 

The objectives of this study are to investigate how much the pre
sumed building life span, which has been commonly utilized to perform 
LCA or LCC analyses, differs from actual building life span and to find a 
better approach that can accurately predict building life span, thereby 
contributing to more accurate practices of LCA or LCC analysis. In prior 
LCA or LCC studies, the life span was often assigned to be either 50 or 
100 years old depending on the structures. However, our analysis results 
show that the actual life span of the building was very different from that 
of the 50 years or 100 years that was commonly used in those studies. 
Therefore, there is a dire need to reflect a realistic building life span in 
the LCA and LCC, rather than rely on an incorrectly presumed one. 
Responding to this need, we have explored the possibility of applying 
prominent machine learning approaches to the data set of South Korean 
building registration and demolition records (971,514 cases). Our study 
results clearly show that the actual building life spans are very different 
from those presumed numbers. In the case of a reinforced concrete 
structure building, which is currently the most used structure in South 
Korea, the average life span of the actual buildings was 22.8 years, with 
a difference of 27.2 years from the standard reference of 50 years. In the 
case of the brick structure building, which accounts for 36% of the total 
buildings in the study, the life span of the building was 29.3 years, with a 
difference of 20.7 years. 

In this study, we have also sought an effective way to predict realistic 
building life spans by applying the latest machine learning prediction 
methods. Building life spans were predicted using four prediction 
models including linear regression, XGBoost, LightGBM, and Deep 
Neural Network (DNN). With this big data approach, even the basic 
linear regression model showed a fairly powerful prediction accuracy of 
93.4%. Moreover, among the alternative machine learning models 
examined in this study, the prediction accuracy of the latest DNN model 
was 95.5%, which was 2.2% better than the linear regression model. 
Overall, the big data approach shows that those machine learning 
models are far more accurate in predicting actual life spans of buildings, 
relative to the current practices relying on the presumed numbers, and 
DNN is the most effective model among those models examined in this 
study. The findings of this study contribute to the prediction of realistic 
building life spans, opening up a new horizon for various evaluations 
and decision making practices in the building construction industry. 

Table A1 
Data and type by factor  

Factors Data Type 

Building area (m2) 0–6,316,730  
Building floor area 

(m2) 
0–204,930,809  

Main frame ‘RC’, ‘Brick’, ‘Steel frame’, ‘Light gauge steel’, 
‘Block’, ‘General wood’, ‘Masonry’, ‘General 
steel’, ‘Stone’, ‘Steel pipe’, ‘Wood’, ‘Concrete’, 
‘Steel RC’, ‘Precast concrete’, ‘Steel concrete’, 
‘Steel house’, ‘Log’, ‘Cement block’, 
‘Prefabricated panel’, ‘Steel pipe’, ‘Soil brick’, 
‘Structure consisting of beams, columns, and 
slabs’, ‘Container’, ‘Steel RC synthesis’, ‘Truss 
wood’  

Roof structure type ‘RC’, ‘Other roof type’, ‘Slate’, ‘Tile’  
Number of storeys 

above ground 
1–274  

0–51  

(continued on next column) 

Table A1 (continued ) 

Factors Data Type 

Number of storeys 
underground 

Number of elevators 0–93  
Number of outdoor 

parking spaces 
0–9012  

Outdoor parking area 0–495,420  
Date of approval of use 1800–2018  
Building type ‘Detached building’, ‘multi-unit dwelling’  
Building ledger type ‘Section for describing the title’, ‘General 

building’  
Metropolitan city ‘Seoul’, ‘Gyeonggi’, ‘Gangwon’, ‘Daegu’, 

‘Incheon’, ‘Gwangju’, ‘Ulsan’, ‘Gyeongnam’, 
‘Jeju’, ‘Daejeon’, ‘Chungbuk’, ‘Chungnam’, 
‘Jeonbuk’ ‘, ‘Jeonnam’, ‘Gyeongbuk’, ‘Busan’, 
‘Sejong’  

City or county code (Si, 
Gun, Gu) 

11,110–50130  

District code (Dong) 00000–47029  
Site type 0,1,2  
Extra parcels 0–4734  
Building subordination 

type 
‘Main building’, ‘Sub building’  

Major use 
classificatiral accon 

‘Multi-unit dwelling’, ‘detached building’, ‘class 
2 neighbourhood living facilities’, ‘educational 
research and welfare facilities’, ‘class 1 
neighbourhood living facilities’, ‘neighbourhood 
living facilities’, ‘animals and plants related 
facilities’, ‘warehouse facilities’, ‘factory’, 
‘business facilities’, ‘offices’, ‘automotive 
facilities’, ‘correctional and military facilities’, 
‘accommodation facilities’, ‘education and 
research facilities’, ‘dangerous goods storage and 
treatment facilities’, ‘public facilities’, ‘elderly 
people facilities’, ‘excretion and waste disposal 
facilities’, ‘tourist rest facilities’, ‘cultural and 
assembly facilities’, ‘sales and sales facilities’, 
‘religious facilities’, ‘amusement facilities’, 
‘medical facilities’, ‘retail stores’, ‘other 
warehouse facilities’, ‘exercise facilities’, ‘singing 
practice grounds’, ‘training facilities’, ‘sales 
facilities’, ‘restaurants’, ‘multi-family housing’, 
‘oil sales office’, ‘academy’, ‘joint house’, 
‘congratulations’, ‘repair store’, ‘greenhouse’, 
‘community office’, ‘dormitory’, ‘public office’, 
‘market’, ‘religious assembly hall’, ‘apartment’, 
‘cemetery related facilities’, ‘general restaurant’, 
‘manufacturing establishment’, ‘quarantine 
hospital’, ‘transport facility’, ‘multiple housing’, 
‘shop’, ‘church’, ‘police box’, ‘general business 
facility’, ‘multi-family housing’, ‘gymnasium’, 
‘broadcasting and communication facilities’, 
‘temporary buildings’, ‘power generation 
facilities’, ‘shelters’, ‘golf driving range’, ‘power 
plants’, ‘kindergarten’, ‘dangerous goods 
storage’, ‘health centre’, ‘research institute’, 
‘military facility’, ‘other class 1 neighbourhood 
facility’, ‘funeral facility’, ‘geneommodation 
facility’, ‘industrial exhibition centre’, ‘cosmetic 
shop’, ‘wholesale market’, ‘day-care centre’, 
‘hospital’, ‘apse chapel’, ‘tourist 
accommodation’, ‘living area training facility’, 
‘garage’, ‘prison’, ‘storage shop’, ‘general 
factory’, ‘slaughterhouse’, ‘liquefied gas 
handling station’, ‘parking lot’, ‘children-related 
facilities’, ‘water purification plants’, ‘waste 
treatment facilities’, ‘resource recycling 
facilities’, ‘hotels’, ‘gas stations’, ‘inns’, 
‘subsidiary facilities’, ‘living facilities’, ‘temples’, 
‘social welfare facilities’, ‘camping facilities’, 
‘bowling alley’, ‘reading room’, ‘science hall’, 
‘post office’, ‘other sales and sales facilities’, 
‘athletic stamp’, ‘substation’, ‘airport facilities’, 
‘entertainment tavern’, ‘excretion treatment 
facility’, ‘youth hostel’, ‘chicken factory’, 
‘newspaper’, ‘waste recycling facility’, 
‘exhibition hall’, ‘theatre (movie theatre)’, ‘drug  

(continued on next page) 
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Table A1 (continued ) 

Factors Data Type 

clinic’, ‘welfare facilities’, ‘broadcasting 
stations’, ‘other public facilities’, ‘other animals 
and plants related facilities’ 

Seismic regional 
classification 

I, II  

Climatic regional 
classification 

Central region 1, central region 2, southern 
region  

* Some data outliers were found, but the frequency of data with a building area 
of 1,000,000 m2 or more is 1 and that with a total floor area of 3,000,000 m2 or 
more is 2, the data frequency of more than 50 storeys above ground level is 2, 
that of more than 10 basement storeys is 7. It was confirmed that there were only 
four data frequencies exceeding 1000 other parcels and had little effect on the 
overall big data analysis.  

Table A2 
Earthquake area and area coefficient  

Earthquake area 
classification 

Administrative district Earthquake 
area coefficient 

I City Seoul, Busan, Incheon, Daegu, 
Daejeon, Gwangju, Ulsan, 
Sejong 

0.22 g 

Province Gyeonggi, South Gangwon1), 
Chungbuk, Chungnam, 
Jeonbuk, Jeonnam, 
Gyeongbuk, Gyeongnam 

II Province North Gangwon2), Jeju 0.14 g 
Annotation 

1) South Gangwon: Gangneung, Donghae, Samcheok, Wonju, Taebaek, Yeongwol, 
Jeongseon 
2) North Gangwon: Sokcho, Chuncheon, Goseong, Yanggu, Yangyang, Inje, 
Cheorwon, Pyeongchang, Hwacheon, Hongcheon, Hoengseong  

Table A3 
Classification by region according to climate in Energy Saving Design 
Standards of Buildings  

Region 
classification 

Administrative district 

Central region 1 Gangwon (excluding Goseong, Sokcho, Yangyang, Gangneung, 
Donghae, and Samcheok), Gyeonggi (Yeoncheon, Pocheon, 
Gapyeong, Namyangju, Uijeongbu, Yangju, Dongducheon, 
Paju), Chungbuk (Jecheon), Gyeongbuk (Bonghwa, 
Cheongsong) 

Central region 2 Seoul, Daejeon, Sejong, Incheon, Gangwon-do (Goseong, 
Sokcho, Yangyang, Gangneung, Donghae, Samcheok), 
Gyeonggi (excluding Yeoncheon, Pocheon, Gapyeong, 
Namyangju, Uijeongbu, Yangju, Dongducheon, Paju), 
Chungbuk (excluding Jecheon), Chungnam, Gyeongbuk (except 
Bonghwa, Cheongsong, Uljin, Yeongdeok, Pohang, Gyeongju, 
Cheongdo, Gyeongsan), Jeonbuk, Gyeongnam (Geochang, 
Hamyang) 

Southern region Busan, Daegu, Ulsan, Gwangju, Jeonnam, Gyeongbuk (Uljin, 
Yeongdeok, Pohang, Gyeongju, Cheongdo, Gyeongsan), 
Gyeongnam (Excluding Geochang and Hamyang)  
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[51] A.J.P. Ibáñez, J.M.M. Bernal, M.J.C. de Diego, F.J.A. Sánchez, Expert system for 
predicting buildings service life under ISO 31000 standard. Application in 
architectural heritage, J. Cult. Herit. 18 (2016) 209–218. 

[52] A. Miatto, H. Schandl, H. Tanikawa, How important are realistic building lifespan 
assumptions for material stock and demolition waste accounts? Resour. Conserv. 
Recycl. 122 (2017) 143–154. 

[53] C.J. Chen, Y.K. Juan, Y.H. Hsu, Developing a systematic approach to evaluate and 
predict building service life, J. Civ. Eng. Manag. 23 (7) (2017) 890–901. 

[54] W. Zhou, A. Moncaster, D.M. Reiner, P. Guthrie, Estimating lifetimes and stock 
turnover dynamics of urban residential buildings in China, Sustainability 11 (13) 
(2019) 3720. 

[55] U. Sivarajah, M.M. Kamal, Z. Irani, V. Weerakkody, Critical analysis of Big Data 
challenges and analytical methods, J. Bus. Res. 70 (2017) 263–286. 

[56] D. Chicco, M.J. Warrens, G. Jurman, The coefficient of determination R-squared is 
more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis 
evaluation, PeerJ Computer Science 7 (2021) e623. 

[57] T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error 
(MAE)?–Arguments against avoiding RMSE in the literature, Geosci. Model Dev. 
(GMD) 7 (3) (2014) 1247–1250. 

S. Ji et al.                                                                                                                                                                                                                                        

https://doi.org/10.3390/su6010158
https://doi.org/10.12989/aer.2014.3.4.367
https://doi.org/10.12989/aer.2014.3.4.367
https://doi.org/10.1016/j.proeng.2014.10.572
https://doi.org/10.1016/j.proeng.2014.10.572
https://doi.org/10.1016/j.enbuild.2016.11.042
https://doi.org/10.1016/j.egypro.2019.01.913
https://doi.org/10.3390/buildings9080182
https://doi.org/10.1111/jiec.12991
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref42
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref42
https://doi.org/10.1016/j.habitatint.2014.04.009
https://doi.org/10.1016/j.habitatint.2014.04.009
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref44
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref44
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref47
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref47
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref49
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref49
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref49
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref50
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref50
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref50
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref51
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref51
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref51
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref52
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref52
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref52
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref53
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref53
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref54
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref54
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref54
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref55
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref55
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref56
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref56
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref56
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref57
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref57
http://refhub.elsevier.com/S0360-1323(21)00667-3/sref57

	Building life-span prediction for life cycle assessment and life cycle cost using machine learning: A big data approach
	1 Introduction
	1.1 Importance of building life span in architectural engineering
	1.2 Complexity of building life-span prediction
	1.3 Limitations of existing building life-span prediction methods

	2 Related work
	2.1 Expected building life span
	2.2 Actual building life span and main influencing factors

	3 Methodology
	3.1 Big data approach
	3.1.1 Data sources for building life-span prediction
	3.1.2 Big data characteristics and challenges of the study data
	3.1.3 Focus and approach of analysis

	3.2 Building life span in South Korea
	3.3 Exploratory study based on building registration records
	3.4 Machine learning-based building life-span estimation using building registration records
	3.5 Development of machine-learning-based life-span estimation model
	3.5.1 Model development overview
	3.5.2 Regression model
	3.5.3 XGBoost ensemble model
	3.5.4 LightGBM ensemble model
	3.5.5 Deep neural network model
	3.5.6 Pre-processing and model parameter tuning
	3.5.7 Model training and evaluation


	4 Results
	4.1 Exploratory building life-span analysis
	4.1.1 Analysis of number of buildings by main frame
	4.1.2 Analysis of building life span by main frame type
	4.1.3 Analysis of building life span by region
	4.1.4 Analysis of building life span according to main frame type by region

	4.2 Analysis of prediction models and comparison of their performances

	5 Discussion
	6 Conclusion
	Declaration of competing interest
	References


