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In this work we address the problem of solving multiscenario optimization models that are deterministic
equivalents of two-stage stochastic programs. We present a heuristic approximation strategy where we
reduce the number of scenarios and obtain an approximation of the original multiscenario optimization
problem. In this strategy, a subset of the given set of scenarios is selected based on a proposed criterion,
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and probabilities are assigned to the occurrence of scenarios in the reduced set. The original stochastic
programming model is converted into a deterministic equivalent using the reduced set of scenarios.
A mixed-integer linear program (MILP) is proposed for the reduced scenario selection. We apply this
practical heuristic strategy to four numerical examples and show that reformulating and solving the
stochastic program with the reduced set of scenarios yields an objective value close to the optimum of

prob
cenario reduction
tochastic approximation

the original multiscenario

. Introduction

Optimization under uncertainty is a major issue in solving real
orld problems. Uncertainty is a common feature that presents

tself during the operation or design of any system. There is an abun-
ance of literature in the area of optimization under uncertainty

nvolving several applications. Some of these include: produc-
ion planning (Cheng, Subrahmanian, & Westerberg, 2003; Clay

Grossmann, 1997), scheduling (Balasubramanian & Grossmann,
002; Birge & Dempster, 1996), optimal chemical process syn-
hesis (Acevedo & Pistikopoulos, 1998; Liu & Sahinidis, 1996;
ooney & Biegler, 2003), electricity production (Nowak, Schultz,
Westphalen, 2005; Takriti, Birge, & Long, 1996). Usually prob-

ems with uncertainty are represented as stochastic programming
roblems (Birge & Louveaux, 1997) or as deterministic flexibil-

ty problems (Grossmann, Halemane, & Swaney, 1983). The focus
f this work is on solving two-stage stochastic programs with
ecourse, where we have some uncertain parameters that either
ollow a continuous distribution or take on a finite set of values.
he aim in such problems is to determine the 1st stage decision
ariables such that the sum of the 1st stage costs and the expected

alue of the 2nd stage costs is minimized. Other approaches for
olving problems under uncertainty include robust optimization,
robabilistic programming, fuzzy optimization, and dynamic pro-
ramming. Sahinidis (2004) presents a recent review of problems

∗ Corresponding author. Tel.: +1 412 268 3642; fax: +1 412 268 7139.
E-mail address: grossmann@cmu.edu (I.E. Grossmann).

098-1354/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2009.10.009
lem.
© 2009 Elsevier Ltd. All rights reserved.

under uncertainty along with the approaches used to solve such
problems.

There are different methods for solving stochastic programming
problems. Algorithms for stochastic integer programs have been
presented by Ahmed, Tawarmalani, and Sahinidis (2004), Carøe and
Tind (1997), Carøe and Schultz (1999), Klein Haneveld, Stougie, and
van der Vlerk (1995, 1996) among other authors. Norkin, Pflug, and
Ruszczynski (1998) developed a branch and bound technique for
global optimization of nonconvex nonlinear stochastic programs,
where stochastic lower and upper bounds are made to converge
with some confidence levels. In two-stage stochastic programming
with recourse, a common approach is to discretize the uncertain
parameter space and formulate a deterministic equivalent of the
stochastic program, which leads to a multiscenario optimization
problem (Dantzig, 1963). A single combination of the values of
the uncertain parameters leads to a particular scenario. In this
discretization approach there are usually a number of uncertain
parameters in a system and these are assumed to take on a finite
set of values. All possible combinations of these values lead to an
explosion in the number of scenarios. This greatly increases the size
of the optimization problem, making it very hard to solve.

The multiscenario problems represent an approximation of the
original stochastic problems and they are usually difficult to solve
directly due to their large dimension. In this work we address the

problem of reducing the number of scenarios in multiscenario opti-
mization problems. To deal with this problem, two approaches
can be used: (i) optimization methods, which exploit the structure
of the problem, or (ii) aggregation techniques, which reduce the
dimensions of the original scenario tree (Barro & Canestrelli, 2005).

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:grossmann@cmu.edu
dx.doi.org/10.1016/j.compchemeng.2009.10.009
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cenario aggregation techniques follow different principles such as
andom or Quasi Monte-Carlo sampling (Shapiro, 2003). An aggre-
ation technique presented by Hoyland, Kaut, and Wallace (2003)
s based on moment matching that uses nonconvex optimization
o generate scenarios, which match a specified set of statistical
roperties.

Another alternative is the use of probability metrics (see
upačová, Gröwe-Kuska, & Römisch, 2003; Heitsch & Römisch,
003; Henrion & Römisch, 1999; Rachev & Römisch, 2002). Some
f these scenario reduction algorithms determine a scenario subset
of prescribed cardinality or accuracy) and assign new probabili-
ies to the preserved scenarios. This is such that the corresponding
educed probability measure (the probability distribution of the
pproximation process) is the closest to the original measure (the
robability distribution of the original empirical process) in terms
f a certain probability distance between the original and the
pproximation probability distribution.

There are also scenario tree construction algorithms that suc-
essively reduce the number of nodes of a subtree of individual
cenarios by modifying the tree structure and by bundling simi-
ar scenarios. It makes use of the Fortet-Mourier metric and the
uality theory in linear programming (LP) to compute the distance
etween two probability measures, one corresponding to a huge
cenario tree with all the sequences, and another to a smaller sce-
ario tree of fixed cardinality.

Some heuristic approximation methods have been developed to
olve the stochastic program with fewer scenarios and still obtain
close to optimal solution. Novak and Kravanja (1999) have pre-

ented a reduced dimensional stochastic optimization technique
here they determine a subset of the vertices of the feasible poly-
edral space of the uncertain parameters and their corresponding
eights to approximate the expected value of the objective func-

ion of the original problem.
In this paper, we use a similar idea as given in Novak and

ravanja (1999), and Dupačová et al. (2003) to select a subset of
cenarios from a given larger set, for solving the stochastic pro-
ram. The goal is that the optimal objective of the full scenario
roblem is closely approximated by the optimal objective value of
he reduced problem. A mixed-integer linear programming (MILP)

odel is presented for the selection of the subset of scenarios. The
emainder of the paper is organized as follows. Section 2 presents
he problem statement, while the heuristic strategy to approximate
he original multiscenario problem is given in Section 3. Numerical
xamples on which the approach was applied are given in Section
, and finally Section 5 summarizes the conclusions.

. Problem statement

We are given a two-stage stochastic program whose determin-
stic equivalent has |S| separate scenarios with different realizations
f uncertain parameters. Each of these scenarios has a certain prob-
bility of occurrence. The uncertain parameters that make up these
cenarios take on a finite set of values. The probabilities of this
nite set of values for each uncertain parameter add up to 1. This
iscrete finite set is either given, or else it can be computed from a
ontinuous distribution (see Luceno, 1999).

The goal of this paper is to develop an approach where we can
elect a subset S′ of scenarios from the original set of scenarios
S) with new probabilities given to each of the |S′| scenarios, and
pproximate the optimal objective value of original multiscenario
roblem as closely as possible with the reduced number of scenar-
os. This means that on solving the reduced dimensional problem
with fewer scenarios), we get an objective value close to one of the
riginal multiscenario problem with |S| scenarios. The problem at
and is to devise an MILP (or a linear programming) formulation
hat allows us to select a subset of the scenarios, and gives us their
al Engineering 34 (2010) 1246–1255 1247

associated probabilities that would help in approximating the orig-
inal optimization problem. We are also interested in getting some
bounds on the theoretical error estimates.

3. Approximation strategy

Two-stage stochastic programs are often converted to deter-
ministic multiscenario optimization problems, by discretizing the
uncertain parameters with a finite set of scenarios. Such problems
grow larger with the number of scenarios. A multiscenario model
with a scenario set S can be expressed as follows:

min
d,xs

z = f 0(d) +
∑

s

psfs(xs, �̄s)

s.t.
hs(d, xs, �̄s) = 0

gs(d, xs, �̄s) ≤ 0

}
s ∈ S

d ∈ D, xs ∈ X, �̄s ∈ �

(P)

where s ∈ S is a single scenario in the multiscenario problem. d is
the set of 1st stage decision variables, while xs is the set of 2nd stage
variables in scenario s. �̄s is the vector of uncertain parameters in
scenario s. h(·) = 0 and g(·) ≤ 0 include the first and second stage
constraints. Our goal is to approximate the original set with |S| sce-
narios with a set with |S′| scenarios so that we have a smaller mul-
tiscenario problem that yields close to the optimal objective value.

3.1. Selection of subset of scenarios

In a multiscenario problem let � = {�i}i=1,. . .,I be the vector of
uncertain parameters. Let the uncertain parameter �i take on a
finite set of values given by {�ji

i
}
ji=1,...,Ji

. The probability associated

with the uncertain parameter �i taking on a value �ji
i

is pji
i
. With

multiple uncertain parameters, these can be combined together
by considering the corresponding Cartesian product of all the val-
ues of the uncertain parameters to yield the set with |S| scenarios.
The scenario s involves the following vector of uncertain parame-
ters �̄s = {�ji

i
}
i=1,...,I

, and there are a total of |S| =
∏I

i=1Ji scenarios.
Assuming independent distributions, the probability associated
with a scenario s in the original set of scenarios is given by ps =
p1j1,2j2,...,IjI =

∏I
i=1pji

i
.

In order to select a minimum subset from the original set of
scenarios, we propose the following heuristic criterion:

Criterion: The sum of the probabilities of the new scenarios in
which the uncertain parameter value �ji

i
appears is equal to pji

i
.

The above criterion should hold for all of the values of each
of the uncertain parameters. Furthermore, the sum of the proba-
bilities of the reduced set of scenarios should be equal to 1. We
want to re-arrange the scenario probabilities in such a way that the
overall probability of occurrence of a particular value of an uncer-
tain parameter across different scenarios matches the probability
of occurrence of that value for the given uncertain parameter. The
motivation behind such an approximation is to heuristically reduce
the approximation error. If the objective function of a multisce-
nario optimization formulation can be approximated as a sum of the
functions of the individual uncertain parameter values multiplied
by the respective probabilities of the scenarios in which they occur,
its value will be close to

∑
sps ·

∑I
i=1fi(�s

i
) =
∑I

i=1

∑Ji
ji=1pji

i
· fi(�ji

i
).

The re-assignment of probabilities to selected scenarios based on
the above-mentioned criterion and solving the optimization prob-

lem will then give an objective function that can be approximated

by
∑

s′ ps′ ·
∑I

i=1fi(�s′
i

) =
∑I

i=1

∑Ji
ji=1pji

i
· fi(�ji

i
). Since the objective

functions of the original and the reduced scenario problem can be
approximated by the same expression, the difference between their
values is also expected to be small.
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Fig. 2. (a) Re-combination of scenarios in illustrative example; (b) scenarios with
modified probabilities in illustrative example.

Table 1
Scenarios for two uncertain parameters in illustrative example.

Scenario, s �1 �2 Probability of scenario, ps

1 2 30 0.18

(P).
The aforementioned criterion is satisfied by the scenarios s′ ∈ S′.

For instance, in the original problem, �1 takes a value of 5 with a
probability 0.7. In the reduced set of scenarios S′, �1 takes a value of 5

Table 2
Reduced set of scenarios for two uncertain parameters in illustrative example.
Fig. 1. Scenarios in illustrative example.

To illustrate the scenario reduction approach with a small exam-
le, consider two uncertain parameters �1, and �2, where each
arameter can take on two values. Let �1 take the two values
2,5} each occurring with a probability of 0.5, and let parame-
er �2 take a value of 30 with a probability of 0.5 and a value
f 70 with a probability of 0.5. We obtain a set of four scenar-
os {(2,30), (2,70), (5,30), (5,70)} that result from the Cartesian
roduct of {2,5} and {30,70}. These are shown in Fig. 1 and
enoted by (1), (2), (3) and (4). The probability of occurrence of
ach of these scenarios is 0.25, which is obtained by multiplying
he probabilities of the uncertain parameter values in each sce-
ario.

Looking at the �1 axis, we find that �1 takes a value of 2 in sce-
arios (1) and (4), where each of these scenarios occurs with a
robability of 0.25, thus making the overall probability of occur-
ence of the value 2 for �1 to be 0.5. The creation of scenarios
as separated the value of 2 taken by �1 into different scenarios.
owever, the creation of scenarios has ensured that the sum of the
robabilities of the scenarios in which �1 takes a value of 2 is the
ame as the occurrence probability of �1 = 2, which is 0.5. The same
nalysis is true for the value of 5 taken on by �1. When looking at
he �2 axis, we can find an identical analysis for the values taken
n by �2.

To reduce the number of scenarios, we use the idea of revers-
ng this disaggregation of uncertain parameter values and their
robabilities, and combining back the scenarios so that the proba-
ilities of occurrence of the individual uncertain parameter values
emain intact. One possible re-combination is shown in Fig. 2a,
here scenario (2) is combined with scenario (1), while scenario

4) is combined with scenario (3), leading to the new scenarios (1′)
nd (3′) in Fig. 2b.

In Fig. 2b, the individual uncertain parameter values have the
ame probability of occurrence through the scenarios (1′) and (3′),
s when the scenarios had not even been created. For instance, look-
ng at the �1 axis, we see that �1 takes a value of 2 only in scenario
1′), which has a probability of 0.5 ensuring the probability of occur-
ence of the value 2 for �1 to be 0.5. Similarly for �1 = 5, this value
ow occurs only in scenario (3′) whose probability is 0.5, mean-

ng that �1 = 5 occurs with a probability of 0.5 in the overall system,
hich is the probability of occurrence of the value 5 for �1. A similar

nalysis holds for the values on the �2 axis.
The minimum number of reduced scenarios that we can obtain

epends also on the individual probabilities of the values taken on

y the uncertain parameters. To illustrate this, let �1 now take two
alues {2,5} each occurring with corresponding probabilities of 0.3
nd 0.7, respectively. The parameter �2 takes a value of 30 with a
robability of 0.6 and a value of 70 with a probability of 0.4. Com-
2 2 70 0.12
3 5 30 0.42
4 5 70 0.28

bining these two uncertain parameters, we obtain four scenarios as
shown in Table 1.

Now on selecting a subset of scenarios from the given set in
Table 1, we obtain a reduced set of scenarios S′ (see Table 2) that
can be used for approximating the original multiscenario problem
Scenario, s′ �1 �2 Probability of scenario, ps′

1′ 2 30 0.3
2′ 5 30 0.3
3′ 5 70 0.4
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n s′ = 2′ and in s′ = 3′, and the sum of the probabilities of occurrence
f s′ = 2′ and s′ = 3′ is 0.7 (=0.3 + 0.4), ensuring that the proposed
riterion holds. The same logic holds for each of the values of both
he uncertain parameters.

To model the selection of scenarios, let the new probability
ssigned to a scenario s be p̂1j1,2j2,...,IjI , a continuous variable. The
inary variable w1j1,2j2,...,IjI corresponds to the existence of the
cenario s in the new set of scenarios. The MILP formulation to
etermine the minimum number of scenarios satisfying the pro-
osed criterion is as follows:

min f =
J1∑

j1=1

J2∑
j2=1

· · ·
JI∑

jI=1

w1j1,2j2,...,IjI

s.t.
J2∑

j2=1

J3∑
j3=1

· · ·
JI∑

jI=1

p̂1j1,2j2,...,IjI = pj1
1 , j1 = 1, . . . , J1

J1∑
j1=1

J3∑
j3=1

· · ·
JI∑

jI=1

p̂1j1,2j2,...,IjI = pj2
2 , j2 = 1, . . . , J2

...
J1∑

j1=1

J2∑
j2=1

· · ·
JI−1∑

jI−1=1

p̂1j1,2j2,...,IjI = pjI
I , jI = 1, . . . , JI

J1∑
j1=1

J2∑
j2=1

· · ·
JI∑

jI=1

p̂1j1,2j2,...,IjI = 1

p̂1j1,2j2,...,IjI ≤ w1j1,2j2,...,IjI , ∀j1, j2, . . . , jI
0 ≤ p̂1j1,2j2,...,IjI ≤ 1, ∀j1, j2, . . . , jI
w1j1,2j2,...,IjI ∈ {0, 1}, ∀j1, j2, . . . , jI

(SG)

On solving the MILP model (SG) we obtain the minimum set of
cenarios and their associated probabilities. The numerical value
f the probability corresponding to a scenario s with the uncer-
ain parameters {�j1

1 , �j2
2 , . . . , �jI

I } in the reduced set of scenarios is
ˆ∗

1j1,2j2,...,IjI
.

Remarks

. Since the problem (SG) can yield a very large MILP problem, we
can consider instead a linear programming relaxation (SG-L) to
obtain a set of scenarios satisfying the proposed criterion. This
can be done by eliminating the binary variables and modifying
the objective function as given in the formulation below:

min f =
J1∑

j1=1

J2∑
j2=1

· · ·
JI∑

jI=1

(1 − pj1
1 , pj2

2 , . . . , pjI
I ) · p̂1j1,2j2,...,IjI

s.t.
J2∑

j2=1

J3∑
j3=1

· · ·
JI∑

jI=1

p̂1j1,2j2,...,IjI = pj1
1 , j1 = 1, . . . , J1

J1∑
j1=1

J3∑
j3=1

· · ·
JI∑

jI=1

p̂1j1,2j2,...,IjI = pj2
2 , j2 = 1, . . . , J2

...
J1∑

j1=1

J2∑
j2=1

· · ·
JI−1∑

jI−1=1

p̂1j1,2j2,...,IjI = pjI
I , jI = 1, . . . , JI

(SG-L)
J1∑
j1=1

J2∑
j2=1

· · ·
JI∑

jI=1

p̂1j1,2j2,...,IjI = 1

0 ≤ p̂1j1,2j2,...,IjI ≤ 1, ∀j1, j2, . . . , jI
al Engineering 34 (2010) 1246–1255 1249

The weights in the new objective function involve the known
probabilities of the existing set of scenarios and are present to
drive the optimization to reduce the number of scenarios while
trying to keep the original set of scenarios that had relatively
larger probabilities. The solution will be a subset of the initial set
of |S| scenarios, although it is not guaranteed to be the minimum
number of scenarios since the problems (SG) and (SG-L) are not
equivalent. It is observed through the numerical examples that
the solution times for (SG) and (SG-L) are negligible.

2. It is also possible to assign weights to the individual terms in
(SG) to help select scenarios with new probabilities close to their
original probabilities.

3. In this method for determining a smaller number of scenarios, it
may be possible to identify the worst-case scenarios from among
the given discrete set of scenarios (that guarantee feasibility of
design for all the given discrete scenarios). If such scenarios exist,
and are easily identified, they can be included in the reduced
set of scenarios. The more general approach would be to use a
method for flexibility analysis to rigorously identify such a worst
point (Grossmann et al., 1983). In the MILP formulation (SG), this
would mean assigning a lower bound on the probability of the
worst-case scenarios (if known) as pworst-case scenorios ≥ ε, where
ε is a small positive number less than or equal to 1. The binary
variables wworst-case scenarios are fixed to a value of 1.

4. The theoretical minimum number of scenarios that can be
obtained using this method is the maximum of the number of
independent values that each uncertain parameter can take. The
other limiting case is that if no value of an uncertain parameter
occurs in more than a single scenario in the set S, the number of
scenarios cannot be reduced with this method.

3.2. Reduced scenario optimization

The stochastic optimization problem (P′) that uses a reduced set
of scenarios |S′| is as follows:

min
d,xs′

z′ = f 0(d) +
∑

s′
ps′ fs′ (xs′ , �̄s′ )

s.t.
hs′ (d, xs′ , �̄s′ ) = 0
gs′ (d, xs′ , �̄s′ ) ≤ 0

}
s′ ∈ S′

d ∈ D, xs′ ∈ X, �̄s′ ∈ �

(P′)

All the functions in (P′) have the exact same form as the corre-
sponding functions in (P). ps′ is the probability of a selected scenario
s′ obtained by solving (SG) or (SG-L). The optimal value of the design
variable vector obtained by solving (P′) is denoted by d̂, and the
optimal expected objective value by z′*. In case the worst-case sce-
narios from the set S are included in the set S′, then d̂ will be feasible
for every scenario in the original scenario set S (Grossmann et al.,
1983). We can also solve the original problem (P) by fixing the
design variables in (P) to the value d̂. Note that this makes the model
(P) decomposable into |S| separate optimization subproblems with
each subproblem corresponding to a single scenario. Solving (P) by
fixing the design variables to the value d̂ gives us a locally optimal
solution to the original problem where the optimal objective value
obtained using this method is z̃∗.

For practical purposes, we can obtain a bound on the error in
such an approximation as follows:

(a) The expected objective value is computed by solving each sce-
nario (SPs) separately (e.g. wait-and-see approach) or may be

approximated by taking a subset of scenarios with larger proba-
bilities. The optimal objective values of all considered scenarios
s ∈ S are summed to obtain zB∗ =

∑
sz

s∗.
(b) The objective value of the best found feasible solution so far is

z̃∗ (this value is either the global minimum or higher than it).



1250 R. Karuppiah et al. / Computers and Chemical Engineering 34 (2010) 1246–1255

Table 3
Reduced number of scenarios for example 1.

Scenario, s′ �1 �2 Probability of
scenario, ps′
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Table 4
Reduced number of scenarios for example 2 obtained from solving model (SG-E2).

Scenario, s′ �1 �2 Probability of scenario, ps′

1′ 1 3 0.2
′

p̂11,23 + p̂12,23 + p̂13,23 = 0.2
3∑ 3∑

p̂1j ,2j = 1
1 1 1 0.1
2′ 1.5 1.5 0.6
3′ 2 2 0.2
4′ 1 1.5 0.1

The value of EB = z̃∗ − zB∗ is calculated, which is an upper bound
on the error using the approximation technique. Note that this
bound may be loose.

. Numerical examples

The proposed scenario reduction and approximation approach
s applied to four examples. The optimization problems are formu-
ated using GAMS (Brooke, Kendrick, Meeraus, & Raman, 1998) and
olved on an Intel Centrino duo Windows machine with 2 GB mem-
ry. The LP and MILP problems are solved using GAMS/CPLEX 11.2
hile GAMS/CONOPT 3.0 is used for the nonlinear programming

NLP) problems.
Example 1. This small example is taken from Clay and Grossmann

1997) and corresponds to problem (EX1) in that paper. It is a
tochastic program with 2 uncertain parameters {�1, �2} and one
st stage decision variable (d). In order to convert this problem into

ts deterministic equivalent, the uncertain parameters are assigned
hree values each, which leads to the creation of the LP determinis-
ic equivalent with 9 scenarios. The two uncertain parameters are
iven by �1 and �2, each with 3 values and associated probabilities
s follows:

j1
1 = {1, 1.5, 2}, pj1

1 = {0.2, 0.6, 0.2}

j2
2 = {1, 1.5, 2}, pj2

2 = {0.1, 0.7, 0.2}
The LP deterministic equivalent is as follows:

min z = d +
3∑

j1=1

3∑
j2=1

p1j1,2j2 (x1j1j2 + x2j1j2 )

s.t. x1j1j2 ≥ 3�j1
1 − �j2

2 , j1 = 1, . . . , 3, j2 = 1, . . . , 3

x2j1j2 ≥ −�j1
1 + 2�j2

2 , j1 = 1, . . . , 3, j2 = 1, . . . , 3

x1j1j2 + x2j1j2−d ≤ �j1
1 + �j2

2 , j1 = 1, . . . , 3, j2 = 1, . . . , 3

d ∈ �1+
x1j1j2 ∈ �1+, x2j1j2 ∈ �1+, j1 = 1, . . . , 3, j2 = 1, . . . , 3

(E1)

In the above formulation, x1j1j2 and x2j1j2 are the continuous 2nd
tage variables and p1j1,2j2 = pj1

1 · pj2
2 .

The LP formulation for the deterministic equivalent (E1) with
scenarios has 19 continuous variables and 27 constraints. Solv-

ng this model yields an optimal objective value of 10.1, where the
ptimal value of the 1st stage variables is 4.0. We apply the scenario
eduction technique to this problem and obtain the 4 scenarios in
able 3.

The corresponding reduced LP problem has 4 scenarios, 9 con-
inuous variables and 12 constraints. It is to be noted that an
nspection of the values of the uncertain parameters and their cor-
esponding probabilities is used in determining the reduced set of

cenarios, such that the criterion given in Section 3.1 is satisfied.
he MILP formulation (SG) is not used to select the scenarios in
his example. On solving the reduced scenario problem, we obtain
he optimum value of 10.1, and the value of the 1st stage variable
s again 4.0. This means that we have a zero approximation error
2 2 2 0.5
3′ 3 1 0.2
4′ 3 2 0.1

in this case. Note however that the reduced set of scenarios is not
unique. Solving the model (P′) with different scenarios with dif-
ferent probabilities could potentially lead to a value of the design
variable that is infeasible for the original problem (P). A design
variable obtained by solving the approximate model (P′) will be
feasible for the original problem only if the worst-case scenarios
from the original set of 9 scenarios are included in the reduced set
of scenarios used in formulating (P′).

Example 2. We solve the model (EX2P) taken from Clay and
Grossmann (1997) as a next example. This is an LP with 10 con-
tinuous variables and 18 constraints. It has 2 uncertain parameters
that are assumed to take on 3 values, each leading to a total of 9
scenarios. The two uncertain parameters and their distributions are
given below:

�j1
1 = {1, 2, 3}, pj1

1 = {0.2, 0.5, 0.3}

�j2
2 = {1, 2, 3}, pj2

2 = {0.2, 0.6, 0.2}

The formulation corresponding to this example is as follows,

min z = d +
3∑

j1=1

3∑
j2=1

p1j1,2j2 · x2j1j2

s.t. d + x2j1j2 ≥ �j1
1 , j1 = 1, . . . , 3, j2 = 1, . . . , 3

2d + x2j1j2 ≥ �j2
2 , j1 = 1, . . . , 3, j2 = 1, . . . , 3

d ∈ �1+
x2j1j2 ∈ �1+, j1 = 1, . . . , 3, j2 = 1, . . . , 3

(E2)

where d and x2j1j2 are the continuous 1st and 2nd stage vari-
ables, respectively, and the probability p1j1,2j2 = pj1

1 · pj2
2 .Solving

this model, we obtain an optimum expected value of 1.6333, and
the optimal value of the 1st stage variable is 0.6667. Using the pro-
posed scenario selection approach, we can obtain a minimum of
4 scenarios satisfying the proposed probability criterion in Section
3.1. The formulation (SG) corresponding to this example is given
below,

min f =
3∑

j1=1

3∑
j2=1

w1j1,2j2

s.t.
p̂11,21 + p̂11,22 + p̂11,23 = 0.2
p̂12,21 + p̂12,22 + p̂12,23 = 0.5
p̂13,21 + p̂13,22 + p̂13,23 = 0.3
p̂11,21 + p̂12,21 + p̂13,21 = 0.2
p̂11,22 + p̂12,22 + p̂13,22 = 0.6 (SG-E2)
j1=1 j2=1
1 2

p̂1j1,2j2 ≤ w1j1,2j2 , j1 = 1, . . . , 3, j2 = 1, . . . , 3
0 ≤ p̂1j1,2j2 ≤ 1, j1 = 1, . . . , 3, j2 = 1, . . . , 3
w1j1,2j2 ∈ {0, 1}, j1 = 1, . . . , 3, j2 = 1, . . . , 3
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Table 5
Values and probabilities for uncertain parameters T3, T5, T9.

j Tj
3 (◦C) p(Tj

3) Tj
5 (◦C) p(Tj

5) Tj
9 (◦C) p(Tj

9)

1 378.9 0.007 573.9 0.007 293.5 0.007
2 382.6 0.1545 577.6 0.1545 295.3 0.1545
3 388.0 0.677 583.0 0.677 298.0 0.677
4 393.4 0.1545 588.4 0.1545 300.7 0.1545
5 397.1 0.007 592.1

m

s
o
d
v

the design problem is to minimize the expected total cost that
Fig. 3. Heat exchanger network for example 3.

Table 4 shows the scenarios obtained by solving the above for-
ulation (SG-E2).
On solving the reduced dimensional model (P′) with the four
cenarios shown in Table 4 obtained by solving model (SG-E2), we
btain an optimal value of z′* = 1.6833, and the optimal value of the
esign variable is found to be 0.667. Fixing the value of the design
ariable d to 0.667 in model (E2) and re-solving it we obtain the

Fig. 4. Process networ
0.007 302.5 0.007

optimal objective value of z̃∗ = 1.6333, which is the same as the
optimum of model (P). We also see if we can refine the solution
by generating the scenarios using model (SG-L). We find that we
obtain the same set of 4 scenarios, as shown in Table 4, by solving
(SG-L) corresponding to this example.

Example 3. The third example is a larger case study and is taken
from Novak and Kravanja (1999) with some modifications. This
problem corresponds to the design of a heat exchanger network
with 5 heat exchangers, 2 hot streams, 2 cold streams, and 2 utili-
ties. The network structure is given is Fig. 3.

The three temperatures T3, T5 and T9 are uncertain parame-
ters that change during network operation. Each of these uncertain
parameters is assumed to take on 5 values with probabilities (p)
given in Table 5.

The optimization problem is formulated as a two-stage stochas-
tic program, which is converted to its multiscenario equivalent.
There are a total of 125 scenarios in this problem. The goal of
includes the capital cost of the heat exchangers and the expected
utility cost. The heat exchanger areas are the 1st stage design vari-
ables, while the heat loads and the temperatures that are not fixed
are the 2nd stage variables. The multiscenario model (E3) is as

k for example 4.
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ollows:

min z =
125∑
s=1

[
ps

(
1846

4∑
r=1

A0.65
r + 2350A0.65

5 + 0.02�4,s + 0.23�5,s

)]

s.t.

�1,s = 1500(620 − T2,s) = 2000(T4,s − T3,s)

�2,s = 1000(T5,s − T6,s) = 2000(T8,s − T4,s)

�3,s = 1000(T6,s − T7,s) = 3000(393 − 313)

�4,s = 1500(T2,s − 350)

T10,s = �4,s

6000
+ T9,s

�5,s = 2000(600 − T8,s)

T6,s ≥ T4,s + 1

Ar ≥ �r,s

Ur �lnTr,s
, r = 1, . . . , 5

�lnT1,s · ln

(
620 − T4,s

T2,s − T3,s

)
= (620 − T4,s) − (T2,s − T3,s)

�lnT2,s · ln

(
T5,s − T8,s

T6,s − T4,s

)
= (T5,s − T8,s) − (T6,s − T4,s)

�lnT3,s · ln

(
T6,s − 393
T7,s − 313

)
= (T6,s − 393) − (T7,s − 313)

�lnT4,s · ln

(
T2,s − T10,s

350 − T9,s

)
= (T2,s − T10,s) − (350 − T9,s)

�lnT5,s · ln

(
620 − 600
619 − T8,s

)
= (620 − 600) − (619 − T8,s)

T3,s + 1 ≤ T2,s ≤ 620

T3,s ≤ T4,s ≤ 620

max(394, T3,s + 1) ≤ T6,s ≤ T5,s

314 ≤ T7,s ≤ 323

T3,s ≤ T8,s ≤ T5,s − 1

T9,s ≤ T10,s ≤ 323

T1,s ≥ 0

�r,s ≥ 0, ∀r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

s = 1, . . . , 125

U1 = U2 = U3 = U4 = 700 W/(m2 K), U5 = 1000 W/(m2 K)

Ar ≥ 0, ∀r

(E3)

In the above model, the subscript s corresponds to a particular
cenario. �r,s pertains to the heat load in heat exchanger r in sce-
ario s. The 1st stage design variable Ar pertains to the area of heat
xchanger r. T3,s, T5,s, T9,s are the values of the respective uncertain
arameters, T3, T5 and T9, in scenario s. The coefficient ps denotes
he probability of occurrence of scenario s, and is calculated by mul-
iplying the individual probabilities of the values of the uncertain
arameters which occur in that scenario s. The model (E3) with 125
cenarios is a nonconvex nonlinear program with 2005 continuous
ariables and 2375 constraints. On solving this model, we obtain the
ptimal solution of $45,223.07 with the following optimal values
f the design variables:

1 = 15.34 m2, A2 = 2.37 m2, A3 = 6.32 m2,

4 = 1.99 m2, A5 = 2.31 m2.
Applying our scenario reduction approach to this example,
here we first solve the MILP model (SG) for this problem, we

btain 5 scenarios (see Table 6).

able 6
educed number of scenarios for example 3.

Scenario, s′ T3,s′ (◦C) T5,s′ (◦C) T9,s′ (◦C) ps′

1′ 378.9 573.9 293.5 0.007
2′ 382.6 577.6 295.3 0.1545
3′ 388.0 583.0 298.0 0.677
4′ 393.4 588.4 300.7 0.1545
5′ 397.1 592.1 302.5 0.007
al Engineering 34 (2010) 1246–1255

On using the above 5 scenarios in problem (E3), reformulating it
and solving it, we obtain a nonconvex NLP model with 86 variables
and 96 constraints. The optimal objective of this reduced problem
is $45,310.08, which is 0.2% higher that the optimum of the original
multiscenario problem with 125 scenarios. The optimal values of
the design variables so obtained are Â1 = 15.28 m2, Â2 = 2.43 m2,
Â3 = 6.38 m2, Â4 = 1.98 m2, Â5 = 2.312 m2. On solving the 125 sce-
nario model (E3) by fixing the design variables to the optimal values
obtained by solving the reduced model, we obtain an expected cost
of z̃∗ = $45, 228.05 which is very close to the exact solution of the
original stochastic program. In terms of the computational times
for solving the optimization problems, it takes 4.6 CPUs to solve
(E3), while the reduced dimensional problem with 5 scenarios is
solved in 0.33 CPUs.

Example 4. The last example is a modified version of the one used
by Acevedo and Pistikopoulos (1998) and Wei and Realff (2004).
The original problem involves the production of 5 products from 5
raw materials using 11 different processes (Fig. 4). In this problem,
the uncertain parameters are the maximum availabilities of raw
materials, and the demands for products. The continuous decision
variables are the capacities for the processes, whereas the binary
variables denote the selection of the required processes.

The deterministic model for this example is based on basic mass
balances and is described as follows.

In Fig. 4, the nodes are either splitters or mixers. F(unit, unit1)is
the mass flow rate from a source ‘unit’ to a destination ‘unit1’. For
a splitter ‘split’ connected to a source ‘unit’ and destinations ‘unitq’,
the mass balance is given by,

F(unit, split) =
∑

q

F(split, unitq)

For a mixer ‘mix’, with input connections from ‘unitq’ and an
output to ‘unit’, the mass balances are,∑

q

F(unitq, mix) = F(mix, unit)

A raw material j with flowrate ‘RMj’ is assumed to come from an
inlet ‘sourcej’,

F(sourcej, unit) = RMj, ∀j

A product i with mass flow rate ‘Pi’ is assumed to go out to a
destination ‘outi’,

F(unit, outi) = Pi, ∀i

The sum of the mass flows to a process k from inlet sources ‘unitq’
is equal to ‘ISk’,∑

q

F(unitq, processk) = ISk, ∀k

The mass flow from a process k to a destination ‘unit’ is equal to

‘OSk’,

F(processk, unit) = OSk, ∀k

Other balances include:
Yield relations OSk = PCkISk , ∀k
Desired production Pi ≤ Di , ∀i
Availability of raw material RMj ≤ max RMj , ∀j

Logic constraints ISk – MIkQk ≤ 0, ∀k
Qk – max Qkyk ≤ 0, ∀k
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Table 7
Parameters used in the model for example 4.

Process k 1 2 3 4 5 6 7 8 9 10 11

PCk 13 15 17 14 10 15 16 11 13 15 17
MIk 18 20 15 20 20 21 15 15 25 15 20
OCk 400 400 400 400 400 400 400 400 400 400 400
DCk 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
FCk 400 2500 3500 300 4500 2500 300 2200 2800 2700 2500
max Qk 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Product i 1 2 3 4 5

Di 28 32 27 31 29 32 28 31 30
p(Di) 0.3 0.7 0.35 0.65 0.65 0.35 0.5 0.5 1

Raw material j 1 2 3 4 6

max RMj 33 36 34 37 32 35 35 36 35
p(max RMj) 0.4 0.6 0.45 0.55 0.55 0.45 0.5 0.5 1

Table 8
Design variable values obtained from solution of full multiscenario problem.

m

l

Table 11
Non-zero design variable values for extended example 4.

T
R

T
U

k 4 7 8 10 11

Qk 0.121 0.129 0.182 0.142 0.091

The objective function is given by,

in z

= −

⎧⎨
⎩

5∑
i=1

ˇiPi −
5∑

j=1

˛jRMj −
11∑

k=1

OCkISk −
11∑

k=1

[DCkQk + FCkyk]

⎫⎬
⎭

The symbols in the previous equations are summarized as fol-
ows:

Di is the uncertain demand for product i (parameter)
DCk is cost for process k (parameter)
F(unit, unit1) is the mass flow rate in the stream between unit and
unit1 (variable)
FCk is the fixed cost of process k (parameter)
ISk is the mass flow in input stream to process k (variable)
max Qk is the maximum volume capacity of process k (parameter)

max RMj is the uncertain maximum availability of raw material j
(parameter)
MIk is the mass flow to volume relationship constant for process k
(parameter)
OCk is the operating cost of process k (parameter)

able 9
educed set of scenarios for example 4.

Scenario, s′ max RM1 max RM2 max RM3 max

1 33 34 35 35
2 33 34 35 35
3 36 34 35 35
4 36 37 32 35
5 36 37 32 36

able 10
ncertain parameter data for extended example 4.

Product i 1 2

Di 28 30 32 27 29 31
p(Di) 0.2 0.55 0.25 0.3 0.4 0.3

Raw material j 1 2

max RMj 33 35 36 34 36 37
p(max RMj) 0.1 0.5 0.4 0.3 0.4 0.3
k 4 7 8 10 11

Qk 0.121 0.129 0.182 0.141 0.091
yk 1 1 1 1 1

OSk is the mass flow in output stream to process k (variable)
Pi is the mass flow of product i (variable)
PCk is the yield constant for process k (parameter)
Qk is the capacity of process k (variable)
RMj is the mass flow of raw material j (variable)
yk is the binary variable for selection of process k (binary variable)
˛j is the cost of raw material j (parameter)
ˇi is the price of product i (parameter)

Since Di and max RMj are uncertain parameters, the above model
is converted into a two-stage stochastic program, which is then re-
formulated as a deterministic multiscenario model by discretizing
the uncertain parameters. Qk and yk are the first stage decision vari-
ables, while the flows in the system, raw material consumptions,
and product flows are the second stage variables. The objective is
to minimize the negative of the profit function,

In the multiscenario formulation, the uncertain parameters are,

Di, i = 1, . . ., 4, and max RMj, j = 1, . . ., 4, and each of these is assumed
to take two values. D5 and max RM5 are assumed to be known and
constant. The values for all the parameters used in this example 4
can be seen in Table 7 where the two levels of the eight uncertain
parameters and their probabilities can also be found.

RM4 D1 D2 D3 D4 ps′

28 27 32 28 0.3
32 31 29 28 0.1
32 31 29 28 0.05
32 27 32 28 0.05
32 31 29 31 0.5

3 4 5

29 31 32 28 30 31 30
0.3 0.45 0.25 0.15 0.65 0.2 1

3 4 5

32 34 35 35 35.5 36 35
0.2 0.35 0.45 0.25 0.6 0.15 1
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Table 12
Reduced set of scenarios for extended example 4.

Scenario, s′ max RM1 max RM2 max RM3 max RM4 D1 D2 D3 D4 ps′

1 33 34 32 36 28 27 32 28 0.075
2 33 37 32 36 28 31 32 28 0.025
3 35 36 35 35.5 30 29 31 30 0.4
4 35 37 34 35.5 30 27 29 30 0.05
5 35 37 35 35.5 30 27 31 30 0.05
6 36 34 32 35 28 31 32 31 0.05
7 36 34 34 35 32 31 29 31 0.1
8 36 34 34 35.5 30 31 29 30 0.025
9 36 34 34 35.5 32 31 29 30 0.05

10 36 37 32 36 28 31 32 28 0.05
11 36 37 34 35 32 27 29 30 0.05
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12 36 37 34
13 36 37 34

In this example we obtain an exact solution considering all the
cenarios, and compare that optimal value of the objective func-
ion with those obtained using the proposed approach and by using
ample Average Approximation (SAA).

The multiscenario problem with 256 scenarios consists of 11
inary variables, 17,165 continuous variables, and 19,212 con-
traints. By solving the full multiscenario problem, we find that
nly processes 4, 7, 8, 10 and 11 are in operation (yk = 1; k = 4, 7, 8,
0, 11) and the optimal objective function value is −63,677.5. This
ILP model solves in only 2.04 CPUs. Table 8 shows the values for

he design capacity variable Qk.
Using the proposed method in the paper, a reduced set of sce-

arios along with their probabilities is obtained by solving model
SG) corresponding to this example and the results are shown in
able 9. The reduced scenario problem has only 5 scenarios and 11
inary variables, 348 continuous variables, and 387 constraints.

On using the reduced set of scenarios, reformulating and solving
he problem, the values for Qk (except Q10; Q10 = 0.141) and yk are
he same as in Table 8, and the optimal objective value is found to
e −63,754.5. The solution time for the reduced scenario model is
.22 CPU s. If we fix the values of Qk and yk in the full multiscenario
odel to those obtained by solving the reduced scenario problem,
e obtain an objective function value of −63,643.8 which is within

.05% of actual optimal objective function value. We should note
hat though the solution times for the original and the reduced
cenario problems are very small, they show the potential of the
roposed approach to reduce computational times for much larger
roblems.

Finally, we find the solution provided by the SAA method and
n interval for the solution with a confidence limit of 95% (see Wei
Realff, 2004). A statistical lower limit on this interval (−63,715.4)

s found by solving the stochastic program 10 times each with 10
andomly selected samples (scenarios). The statistical upper limit
−62,947.8) is found by formulating a multiscenario problem with
0 scenarios randomly selected from the given set of 256 scenarios,
nd solving it with fixed values of the first stage decision variables
btained during calculation of the lower statistical limit on the con-
dence interval for the solution. Since we sampled scenarios from a
nite population, adjustments were made in the calculation of the
tatistical limits. The optimal objective value using the proposed
pproach also lies between the statistical limits computed by the
AA method.

We extend example 4 by increasing the number of values taken
n by each uncertain parameters from two to three. The new uncer-

ain parameter realizations and associated probabilities are given
n Table 10.

The extended example has 6561 scenarios, which leads to a
ultiscenario MILP with 11 binary variables, 439,600 continuous

ariables, and 492,087 constraints. This model solves in 472 CPUs
32 27 32 31 0.05
30 27 29 30 0.025

and yields an objective function value of −63,799.2. The non-zero
design variable values are shown in Table 11.

In order to obtain a reduced set of scenarios (see Table 12), we
solve model (SG-L) for the extension of example 4.

The reduced scenario model for the extended example 4 is con-
siderably smaller than the original formulation as it has only 13
scenarios, yielding an MILP with 11 binary variables, 884 contin-
uous variables, and 987 constraints. The reduced model optimal
objective value is −63,856.2 and solves in just 0.24 CPUs. The
design variable values obtained by solving the reduced scenario
model are the same as those obtained by solving the full multi-
scenario model corresponding to the extended example 4 (except
for a small difference with Q10 = 0.142 in the solution of the
reduced scenario model). We then fix the values of the design
variables Qk and yk in the full multiscenario model correspond-
ing to the extended example 4 to those obtained by solving the
reduced scenario model. On solving the large model we find that
it solves in 20.6 CPUs and yields and optimal objective value of
−63,784.1, which is very close to the actual objective function value
of −63,799.4.

5. Conclusions

This work has presented a new practical heuristic strategy for
solving two-stage stochastic programming problems formulated
as deterministic multiscenario optimization problems. The idea
consists of replacing a given set of scenarios, obtained by dis-
cretization of the uncertain parameter space, by a smaller set of
scenarios and thus approximating the optimization problem in a
reduced space. The proposed criterion for selecting a subset of
given set of scenarios is that the overall probability of occurrence
of a particular realization of any uncertain parameter in the final
set of scenarios should be equal to the probability of the uncer-
tain parameter taking on that particular value. This criterion has to
be satisfied for each uncertain parameter in the model. We pre-
sented an MILP formulation, as well as a relaxed LP model for
determining a minimum subset of scenarios from a given scenario
set such that this criterion is satisfied. The stochastic programs
were reformulated with the smaller set of scenarios in order to
obtain approximate models. The application of this heuristic tech-
nique on numerical examples has shown that we obtain close to
optimal solutions using the approximate model with the smaller
number of scenarios. It is also our observation that when the
objective value of the reduced function matches closely with that

of the original problem, the design variable values match very
closely as well. This method would also complement other sam-
pling based optimization methods as this heuristic can be applied
to the samples collected from an infinite space to further simplify
the problem.
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Dupačová, J., Gröwe-Kuska, N., & Römisch, W. (2003). Scenario reduction in
stochastic programming: An approach using probability metrics. Mathematical
Programming, 95, 493–511.

Grossmann, I. E., Halemane, K. P., & Swaney, R. E. (1983). Optimization strategies for
flexible chemical processes. Computers and Chemical Engineering, 7, 439–462.

Henrion, R., & Römisch, W. (1999). Metric regularity and quantitative stability in
stochastic programs with probabilities constraints. Mathematical Programming,
84, 55–88.

Heitsch, H., & Römisch, W. (2003). Scenario reduction algorithms in stochastic pro-
gramming. Computational Optimization and Applications, 24, 187–206.

Hoyland, K., Kaut, M., & Wallace, S. W. (2003). A heuristic for moment-matching
scenario generation. Computational Optimization and Applications, 24, 169–185.

Klein Haneveld, W. K., Stougie, L., & van der Vlerk, M. H. (1995). On the convex hull
of the simple integer recourse objective function. Annals of Operations Research,
56, 209–224.

Klein Haneveld, W. K., Stougie, L., & van der Vlerk, M. H. (1996). An algorithm for the
construction of convex hulls in simple integer recourse programming. Annals of
Operations Research, 64, 67–81.

Liu, M. L., & Sahinidis, N. V. (1996). Optimization in process planning under uncer-
tainty. Industrial and Engineering Chemistry Research, 35, 4154–4165.

Luceno, A. (1999). Discrete approximations to continuous univariate distributions—
An alternative simulation. Journal of the Royal Statistical Society (Series B), 61,
345–352.

Norkin, V. I., Pflug, G. Ch., & Ruszczynski, A. (1998). A branch and bound method for
stochastic global optimization. Mathematical Programming, 83, 425–450.

Nowak, M. P., Schultz, R., & Westphalen, M. (2005). A stochastic integer programming
model for incorporating day-ahead trading of electricity into hydro-thermal unit
commitment. Optimization and Engineering, 6, 163–176.

Novak, Z., & Kravanja, Z. (1999). Mixed-integer nonlinear programming problem
process synthesis under uncertainty by reduced dimensional stochastic opti-
mization. Industrial and Engineering Chemistry Research, 38, 2690–2698.

Rachev, S. T., & Römisch, W. (2002). Quatitative stability in stochastic program-
ming. The methods of probability metrics. Mathematics of Operations Research,
27, 792–818.

Rooney, W. C., & Biegler, L. T. (2003). Optimal process design with model parameter
uncertainty and process variability. AIChE Journal, 49, 438–449.

Sahinidis, N. V. (2004). Optimization under uncertainty: State-of-the-art and oppor-
tunities. Computers and Chemical Engineering, 28, 971–983.

Shapiro, A. (2003). Monte Carlo Sampling Methods, Chapter 6. In A. Ruszczyn-

ski, & A. Shapiro (Eds.), Handbooks in OR & MS (pp. 353–425). Elsevier
Science.

Takriti, S., Birge, J. R., & Long, E. (1996). A stochastic model for the unit commitment
problem. IEEE Transactions on Power Systems, 11, 1497–1506.

Wei, J., & Realff, M. J. (2004). Sample average approximation methods for stochastic
MINLPs. Computers and Chemical Engineering, 28, 333–346.


	A simple heuristic for reducing the number of scenarios in two-stage stochastic programming
	Introduction
	Problem statement
	Approximation strategy
	Selection of subset of scenarios
	Reduced scenario optimization

	Numerical examples
	Conclusions
	Acknowledgments
	References


