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A B S T R A C T

The paper evaluates the impact of grid-interactive efficient buildings (GEBs) on power system reliability. To
achieve this, a single-zone thermal model of a building is developed, allowing for the simulation of indoor
temperature dynamics based on the characteristics of the building envelope and internal thermal mass. The
potential of GEBs to adjust their electric consumption, recognized as demand flexibility, is integrated into the
direct optimization of reliability indices, specifically Loss of Load Expectation (LOLE) and Expected Energy Not
Supplied (EENS). The analysis is conducted using the proposed optimization model in two distinct case studies.
In the first scenario, households do not support the power system and only optimize their energy consumption
for heating and cooling. In the second scenario, households provide available demand flexibility of GEBs to
the power system to enhance reliability. This demand flexibility is constrained by the need to maintain indoor
temperature within limits that ensure comfortable use of the space. The analysis highlights the potential of
GEBs to improve power system reliability by reducing LOLE and EENS. The primary scientific contribution of
this research is the development of an optimization model that incorporates a thermal model of GEBs without
assuming a generic demand flexibility for the buildings.
1. Introduction

As buildings consume a significant portion of electricity, namely the
electrification rate in the building sector reached 47.19% in 2020, [1],
their role in power system operations is becoming more critical, partic-
ularly in managing the uncertainties introduced by intermittent renew-
able energy sources and load flexibility. By utilizing variable resources
and demand, buildings can stabilize their interactions with the power
system and participate in demand response (DR) programs, helping
to balance supply and demand, [2,3]. GEBs, characterized by their
flexibility, stability, and independence, are designed to optimize energy
use, manage loads effectively, and support grid reliability, [4]. These
buildings not only reduce the burden on the system by minimizing
interaction volatility but also actively contribute to system stability
by adjusting their operations in response to system needs, particularly
during peak demand periods or supply shortages, [4].

1.1. Motivation

Historically, power system planning relied on deterministic ap-
proaches with ‘‘N-1’’ contingency analyses. However, with the rise
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of uncertainties in renewable energy production and the reliability
of controllable and communication devices, stochastic approaches are
becoming increasingly important. Moreover, societal awareness of sus-
tainable and environmentally acceptable infrastructure development
is pressuring network planners to maximize the potential of existing
power systems, rather than simply investing in new equipment.

In this perspective, GEBs will play in the future a pivotal role in
the shift from conventional methods to advanced approaches for power
system planning. This transformation introduces the potential of new
technologies such as demand flexibility of GEBs through energy storage
systems, hydrogen technologies, electric-drive vehicles, controllable
devices and renewable energy sources with intermittent production.
In this context, GEBs offer a critical advantage by integrating smart
controls that optimize energy consumption and provide grid services,
thus enhancing system resilience and reliability, [5,6]. In general, GEBs
support the broader energy system by integrating distributed energy
resources and facilitating the transition to net-zero emissions, [7]. As
active participants in the energy ecosystem, GEBs are essential for a
sustainable and resilient energy future, [5,6].
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Nomenclature

Abbreviations

COP Coefficient of performance.
CS Case study.
DR Demand response.
EENS Expected Energy Not Supplied.
GEB Grid-interactive efficient buildings.
HVAC Heating, ventilation, and air conditioning.
LOLE Loss of Load Expectation.
MILP Mixed-integer linear program.
PV Photovoltaic.
RC Resistances and Capacitances.
Sets and indices
𝑖 ∈  Set of possible resource capacity states 𝑖.
𝑗 ∈  Set of elements in the building envelope 𝑗.
𝑡 ∈  Set of time slots 𝑡.
𝛺 Set of optimization variables.
0 Index for initial state.
Variables

𝛼 ∈ {0, 1} Indicator variable.
𝑥 ∈ R Demand flexibility in positive direction.
𝑏 ∈ R Demand flexibility in negative direction.
𝑇 ∈ R Temperature.
𝑄 ∈ R Thermal energy (hear, cool).
𝛽 ∈ {0, 1} Indicator variable.
Matrices

T State vector.
A System matrix.
B Input matrix.
U Input vector.
Subscripts (descriptors)
o Outside.
i Inside.
w Wall.
win Window.
sol Solar.
z Zone, zonal.
Superscripts (descriptors)
indoor Indor.
heat Heating.
cool Cooling.
min Minimum.
max Maximum.
PS Power system.
H Household.
CS Case study.
Constants and parameters
𝑆 Number of time slots 𝑡.
𝑝 Probability of state.
𝑑 Duration of unsufficient generation capac-

ity.
a

2 
𝑤 Curtailed energy due to the capacity outage.

𝑎 Number of generators.
𝐴 Availability of generator.
𝑈 Unavailability of generator.
𝑅 Thermal resistance.
𝐶 Thermal capacitance.
𝑄 Thermal energy (indoor, sol, win).
𝑃 Power.
𝐶 𝑂 𝑃 Coefficient of performance.
𝑀 Large positive number.
Example

𝑇max
z,𝑡 Maximum zone temperature in time slot 𝑡.

1.2. Related work

Numerous applications of GEBs in power system operation are
proposed by different researchers. For example, the article [8], pro-
poses a hierarchical model-based scheme to enhance the operation of
power systems by aggregating and activating the energy flexibility of
multi-zone buildings. It introduces a novel approach where an aggrega-
or manages energy consumption across building zones, ensuring that
uildings remain committed to their energy bids in the power market
hile maintaining comfort levels. The method improves power system
peration by optimizing energy use and providing real-time regulation
apabilities.

A coordinated voltage regulation strategy that integrates buildings
with the distribution network by leveraging the flexibility of distributed
energy resources, including the heating, ventilation, and air condi-
tioning (HVAC) systems, is presented in [9]. The proposed method
utilizes model predictive control to optimize power flow and reactive
power control, enabling buildings to actively participate in voltage
ontrol. This approach enhances the stability and efficiency of the
istribution network while simultaneously optimizing building energy
anagement, ensuring that both voltage levels and energy usage are
aintained within desired limits.

The article [10] explores demand-side flexibility and demand-side
bidding strategies for managing flexible loads in air-conditioned build-
ings. It focuses on how buildings can optimize their participation in
electricity markets by adjusting HVAC system operations to bid for
and utilize demand-side flexibility. The study provides insights into
building energy modelling and management, with a particular empha-
sis on applications in Singapore’s power system, contributing to more
efficient energy use and enhanced grid stability through demand-side
management practices.

The study [11] proposes a novel distributed sliding mode control
pproach for aggregating the demand response of grid-interactive smart

buildings to support power system frequency regulation, enhancing the
stability and efficiency of the grid through decentralized coordination.

A strategy for integrated energy collaborative optimal dispatch
within smart grids, incorporating energy-flexible buildings, is presented
in [12]. The proposed solution introduces a model that integrates
energy DR with thermal resistance modelling of buildings to enhance
load management and grid stability. This approach allows for more
efficient dispatch of energy resources by leveraging the flexibility of
building energy consumption, contributing to the overall optimization
of smart grid operations.

The research presented in [13] investigates the cost-optimal op-
eration of a flexible building equipped with local photovoltaic (PV)
systems in a Singaporean environment. It presents an optimization

odel that balances energy consumption, PV generation, and grid inter-
ction to minimize costs while considering demand response strategies.
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The study contributes to smart grid operations by demonstrating how
flexible buildings can effectively integrate renewable energy sources,
optimize energy use, and reduce reliance on the grid through efficient
scheduling and forecasting methods.

A critical aspect of research on GEBs and buildings in general is
the development of a thermal model that accurately incorporates the
thermal properties of the building envelope and internal thermal mass.
This ensures a comprehensive representation of the building’s energy
dynamics.

The existing literature provides several different thermal models of
uildings that range from simple empirical models to highly detailed
hysical models. The choice of model depends on the desired accuracy,

complexity, data availability and computational resources available.
mong the various approaches, grey-box models and resistances and
apacitances (RC) models are particularly popular due to their balance

between accuracy and computational efficiency, [14].
Grey-box models, [15], combine the physical insights of white-box

odels, [15], which are based on detailed physical principles, with
he simplicity and flexibility of black-box models, [15], which are
urely data-driven. Grey-box models typically incorporate a simplified
epresentation of the building’s physical characteristics while using
easured data to calibrate the model parameters. This approach allows

or the inclusion of key thermal dynamics, such as heat transfer through
he building envelope and the thermal inertia of the structure, without
equiring the detailed specifications necessary for white-box models.
rey-box models are commonly used for control-oriented applications,

uch as model predictive control of HVAC systems, where a detailed
nderstanding of the building’s thermal response is necessary, but the
odel needs to be computationally efficient. These models are also

mployed in demand response strategies, where buildings adjust their
nergy consumption in response to external signals from the grid. A typ-
cal grey-box model of a building might represent the building’s thermal
ehaviour using a small number of lumped thermal capacitances and
esistances, which approximate the heat storage and transfer charac-
eristics of the building. The parameters of these elements are often
stimated using system identification techniques, based on measured
emperature and energy use data, [16].

RC models are a specific type of grey-box model that represent the
thermal behaviour of a building using electrical analogies, i.e. resistors
(R) for thermal resistances and capacitors (C) for thermal capacitances.
In an RC model, the building is conceptualized as a network of resistors
and capacitors. Thermal resistances represent the resistance to heat
flow (e.g., through walls, windows), and thermal capacitances repre-
sent the ability of the building’s mass to store heat. The interactions
between these elements describe the dynamic thermal behaviour of the
building. RC models can vary in complexity. Simple RC models might
use a single resistor and capacitor to represent the entire building,
focusing on the overall heat balance. More complex RC models might
include multiple resistors and capacitors to represent different building
components (e.g., walls, windows, internal mass) and their interactions.

The simplest form is the 1R1C model, with one resistor represent-
ng the overall thermal resistance and one capacitor representing the

overall thermal capacitance. The 2R1C model includes two resistors
representing the heat transfer through the building envelope and inter-
nal mass and one capacitor, and the 3R2C model is more detailed model
ince it adds an extra layer of complexity by separating the building
nvelope and internal thermal mass into distinct thermal paths. There
ave been many improvements in the RC model over the years such as
he 3R4C and 4R5C models that enable even more accurate modelling
equired for some detailed analysis of thermal dynamics of buildings.
 critical review of grey-box modelling is provided in [17].

RC models are relatively easy to develop and computationally ef-
icient, making them suitable for real-time applications like predictive
ontrol. However, their accuracy depends heavily on the correct iden-
ification of parameters, and they may not capture all the nuances of
 building’s thermal behaviour, especially in buildings with complex
3 
geometries or varying thermal properties. RC models are widely used in
building energy management systems for tasks such as energy forecast-
ing, demand-side management, and optimizing HVAC operations. Due
to their simplicity, they are particularly useful in applications where
computational resources are limited or where fast simulation times are
required.

1.3. Knowledge gap

The primary knowledge gap in the existing literature centres on
ow to effectively model the contribution of household flexible demand
n GEBs to power system reliability. While significant attention has
een given to power system operation, the integration of power system
lanning, particularly in assessing reliability metrics such as LOLE and
ENS, remains underexplored. Although thermal models of buildings
xist, there is a critical need to develop models that not only incorpo-
ate these thermal dynamics but also integrate power system reliability
ndices like LOLE and EENS. This integration is essential for a more
omprehensive analysis of how GEBs can support both the operational
nd planning aspects of power systems, ultimately enhancing overall
ystem reliability.

1.4. Contributions

This paper builds on our previous work [18] by advancing the
ptimization model for power system reliability, with a particular focus

on metrics such as LOLE and EENS, through the integration of GEBs
nto the power system planning process. To achieve this, we develop an
dvanced optimization model that maximizes power system reliability
y incorporating the thermal characteristics of buildings alongside
raditional reliability measures. This integrated approach offers a more
olistic framework for assessing and improving the reliability of power
ystems by leveraging the flexibility potential of GEBs.

In this research, the 3R2C model is employed due to its widespread
use in modelling transient heat transfer in building envelopes. This
model accurately represents the behaviour of indoor temperature in
response to various thermal inputs, including space heating, cooling,
solar radiation (walls and windows), and occupant activities. Addition-
ally, it accounts for the thermal properties of the building envelope and
internal thermal mass, ensuring a comprehensive representation of the
building’s energy dynamics.

The objective of this research is to harness the inherent flexibility
of HVAC systems in GEBs within the power system planning process.
By doing so, the aim is to enhance power system reliability in a more
sustainable manner, reducing the need for additional investments in
power infrastructure, including new generation sources, transmission
capacities, energy storage systems, and other technologies, while also
supporting the reliable operation of the power system.

The findings are particularly valuable for transmission and distri-
bution system operators involved in system planning, as well as for
building owners who contribute to ancillary services that enhance
system reliability.

1.5. Novelty of the proposed approach

The novelty of the proposed solution lies in integrating the 3R2C
thermal model for GEBs into the optimization of reliability indices,
specifically LOLE and EENS, as presented in [18]. This approach rep-
resents a significant advancement by extending traditional reliability
optimization methods to account for the dynamic thermal behaviour
of GEBs. Unlike traditional models, which often generalize building
demand flexibility without considering specific temperature control dy-
namics, our model incorporates these dynamics to capture temperature-
driven demand flexibility in real-time scenarios. By utilizing a single-
zone thermal model, this study provides a foundational analysis of

GEB impacts on LOLE and EENS, allowing for precise evaluations of
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their role in grid stability and resilience. This single-zone model en-
ables computational feasibility while laying the groundwork for future
extensions to more complex scenarios, such as multi-zone or multi-
building frameworks with diverse thermal characteristics and demand
flexibility.

The choice of a single-zone thermal model enables a focused anal-
sis of the interactions between indoor temperature control and power
ystem reliability. This model provides a computationally feasible

framework to evaluate the effects of temperature-based demand flex-
ibility on reliability metrics like LOLE and EENS. Although it is a
simplified representation, the single-zone model captures key dynamics
necessary for understanding GEB contributions to grid stability. This
choice serves as a foundational approach, allowing for extensions to
multi-zone and multi-building scenarios in future work.

1.6. Organization of the paper

The remainder of this paper is organized as follows: Section 2
presents the reliability indices LOLE and EENS that are later applied
in the proposed power system reliability optimization, Section 3 intro-
duces the thermal model of GEBs that is incorporated in the proposed
optimization model for power system reliability support provided by

EBs presented in Section 4; results are analysed and discussed in detail
n Section 5, followed by the final Section 6, which concludes the paper

and provides directions for future work.

2. Power system reliability

This research focuses on maximizing power system reliability
hrough the demand response of HVAC systems installed in households.

The objective is to demonstrate the impact of controlled HVAC oper-
ations as an ancillary service on power system reliability, measured
by the well-known and widely used indices, Loss of Load Expectation
LOLE) and Expected Energy Not Supplied (EENS). Specifically, these
ndices serve as measures of resource adequacy, which is a critical
omponent of system reliability.

2.1. Reliability indices

LOLE represents the expected number of hours during which the
available generation capacity is insufficient to meet demand. It is
calculated using the following equation:

𝐿𝑂 𝐿𝐸 =
∑

𝑖∈
𝑝𝑖𝑑𝑖, (1)

where 𝑝𝑖 represents the probability of state 𝑖 with a particular gen-
eration configuration, 𝑑𝑖 is obtained from the load duration curve
and represents the duration during which load demand exceeds the
remaining capacity 𝑃𝑖, and  is the set of possible generation states. For
multiple generators, the calculation considers all possible states, mak-
ing LOLE a demanding yet essential reliability metric. If 𝑎 generators
are considered, 2𝑎 capacity states are possible since each generator can
either operate as scheduled with a probability defined by its availability
𝐴, represented by status ‘1’, or be out of operation with a probability
efined by its unavailability 𝑈 = 1 − 𝐴, represented by status ‘0’.
herefore, in the case of numerous generators, calculating the relia-

bility indices LOLE and EENS becomes computationally demanding, as
all combinations of operating statuses of generators (‘in operation - 1’
and ‘out of operation - 0’) must be considered. Fig. 1 presents the load
duration curve with defined 𝑑𝑖.

The EENS index calculates the total energy not supplied due to
apacity shortages:

𝐸 𝐸 𝑁 𝑆 =
∑

𝑖∈
𝑝𝑖𝑤𝑖, (2)

where 𝑤𝑖 represents the curtailed energy due to outages in state 𝑖, as
illustrated in Fig. 1. These indices are foundational to power system
reliability assessments and serve as direct outputs of the proposed
optimization model.
4 
Fig. 1. Load duration curve with 𝑑𝑖 and 𝑤𝑖.

2.2. Role of load forecasting in demand flexibility

Accurate load forecasting is crucial for the demand flexibility of
GEBs, as it enables the model to anticipate and adapt to various load
types that affect grid reliability. Load forecasting enhances the model’s
bility to optimize demand-side flexibility, allowing GEBs to adjust

their consumption patterns in response to system demands effectively.
This approach aligns with recent advancements in load forecasting,
which improve demand response strategies through better predictive
accuracy.

Prior studies have demonstrated effective methods for forecasting
complex, dynamic load profiles. For instance, [19,20] have laid foun-
ational work in capturing varied load characteristics, enabling more
eliable and responsive demand-side management. These studies inform

the load forecasting techniques integrated into our model, ensuring a
robust basis for evaluating GEB impacts on LOLE and EENS.

2.3. Integrating thermal model and reliability metrics

After defining the reliability indices, a thermal model of the building
ust be introduced to accurately model the limits of the building’s

demand response capacity, which is incorporated into the maximization
of power system reliability. The primary goal is to maintain the indoor
emperature within predefined limits that ensure comfortable use of the

space. The building envelope and its characteristics, internal thermal
mass, and space properties, as well as internal thermal sources includ-
ing the HVAC system, have the most significant impact on temperature.
The building possesses a certain thermal inertia, which allows for
adjustments in electricity consumption for heating and cooling without
causing discomfort to the occupants due to overheating or excessive
cooling. This flexibility enables the electric power system to be reliably
supported.

To support demand flexibility, we utilize the 3R2C thermal model,
which provides an accurate yet computationally feasible representation
of building thermal dynamics. This model captures key factors like in-
door heating and cooling, solar radiation, and occupancy. The thermal
response of GEBs, modelled within a single-zone setup, allows for pre-
cise adjustments in HVAC operations, maintaining indoor temperatures
within comfort thresholds while contributing to power system relia-
bility. This thermal modelling forms part of our optimization process,
where load forecasting informs adjustments to HVAC setpoints, aligning
GEB flexibility with grid reliability needs.

The final optimization model integrates load forecasting, thermal
dynamics, and reliability indices to minimize LOLE and EENS. By
leveraging mixed-integer linear programming, we dynamically control
HVAC operations in response to real-time load forecasts. This approach
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enables GEBs to act as active participants in grid stability, offering a
ustainable solution that aligns with resource adequacy requirements.

The thermal model employed in this study was calibrated using
standard building energy profiles, which are widely accepted in grid-
interactive efficient building research. To ensure the validity and re-
liability of the experimental setup, the measured data used in this
study were derived from these standard profiles, which represent real-
istic scenarios for residential energy consumption. These profiles were
calibrated and validated against existing methodologies in the litera-
ture to align with established frameworks. While direct comparisons
with real-world data were not part of this study, future work will
incorporate real-world validation to further strengthen the reliability
of the proposed model. These profiles provide realistic data for indoor
temperature dynamics and energy consumption, ensuring the model’s
consistency with existing frameworks. While the model’s performance
aligns with established methodologies, direct validation with real-world
data was beyond the scope of this study. However, this validation
is planned for future research to further ensure its applicability and
reliability under diverse conditions.

3. Thermal model of a building

The RC (Resistance-Capacitance) thermal network model is a widely
sed approach for representing the thermal dynamics of buildings. This
odel effectively captures the thermal delays caused by the building

nvelope and internal thermal mass, providing robust and accurate
stimates of the heating and cooling loads alongside indoor temper-
ture variations. The RC model leverages the principle of analogy
etween two different physical domains, thermal and electrical, that
an be described by analogous mathematical equations. Specifically,
he building is represented as a linear electrical circuit, with the re-
ulting state-space equations derived from solving that circuit. In this
nalogy, temperature corresponds to voltage, heat flux to current,
hermal resistance to electrical resistance, and thermal capacitance to
lectrical capacitance. The equivalent circuit of the building is then
onstructed by assembling the models of individual components such
s walls, windows, and internal mass.

Over the years, the RC model has seen various improvements,
such as the development of the 3R4C and 4R5C models. However, in
this research, the 3R2C model is utilized due to its balance between
accuracy and computational efficiency.

In the 3R2C model, the building envelope, comprising walls, roof,
and floor, is represented by an RC circuit, as shown in Fig. 2. Here,
𝑇o represents the ambient temperature, 𝑇wo,𝑗 is the temperature on the
outside surface of wall 𝑗, 𝑇wi,𝑗 is the temperature on the internal surface
of wall 𝑗, and 𝑇z denotes the zone temperature within the building. The
parameters 𝑅o,𝑗 and 𝑅i,𝑗 represent the thermal convective resistances
of the ambient air and the zone air, respectively. 𝑅w,𝑗 represents the
thermal conductive resistance of wall 𝑗, while 𝐶w,𝑗 denotes the thermal
capacitance of the wall.

For this research, a single-zone model is employed to describe the
building. Interior walls are considered part of the internal thermal
mass, while exterior walls form the building envelope. To simplify the
model, the following assumptions are introduced:

• The building envelope is modelled as an ideal rectangle, consist-
ing of four walls, a floor, and a flat roof. The roof is treated as a
vertical wall and is modelled using the same network structure as
the walls.

• The zone air is assumed to be ideally mixed, resulting in a uniform
internal temperature.

• Each wall contains a window, which does not accumulate ther-
mal energy and is therefore represented by a simple thermal
resistance.
5 
Fig. 2. Structure of the 3R2C model of the building envelope 𝑗.

• The RC parameters are assumed to be time-invariant.

• The active elements in the building’s thermal circuit include
outdoor air temperature, solar radiation on the walls, roof and
windows, and internal thermal sources.

• Internal heat flux arises from internal thermal sources, such as
the activities of building occupants and the operation of electrical
appliances, including HVAC systems.

• The floor surface is considered adiabatic.
Fig. 3 illustrates the 3R2C thermal network model applied in this

research. The roles of the RC parameters in relation to the walls and
roof are as explained in Fig. 2. Additionally, windows are modelled
as thermal resistances 𝑅win,𝑗 with solar radiations entering the space
𝑄win,sol,𝑗 , where 𝑗 corresponds to each of the four walls. The symbol

z represents the total internal thermal sources, which include indoor
ctivities of the building occupants, denoted as 𝑄indoor

z , and electri-
cal appliances including heating and cooling provided by the HVAC
system, denoted as 𝑄heat

z and 𝑄cool
z , respectively:

𝑄z = 𝑄indoor
z +𝑄heat

z −𝑄cool
z . (3)

The symbol 𝐶z in Fig. 3 denotes the thermal capacitance of the zone
ir.

The main output of the model is the indoor temperature 𝑇z, which
s influenced by several inputs: outdoor air temperature 𝑇o, solar ra-
iations 𝑄sol,𝑗 and 𝑄win,sol,𝑗 , and internal sources 𝑄z. The temperatures
ow,𝑗 and 𝑇oi,𝑗 are also outputs of the model, although they are not the
rimary focus of this research.

To further simplify the network model shown in Fig. 3, an equiva-
lent network model, as depicted in Fig. 4, is introduced. The equivalent

C parameters and solar radiations are calculated as follows:

𝑅o =

(

∑

𝑗∈

1
𝑅o,𝑗

)−1

, (4)

𝑅w =

(

∑

𝑗∈

1
𝑅w,𝑗

)−1

, (5)

𝑅i =

(

∑

𝑗∈

1
𝑅i,𝑗

)−1

, (6)

𝑅win =

(

∑

𝑗∈

1
𝑅win,𝑗

)−1

, (7)

𝐶w =
∑

𝐶w,𝑗 , (8)

𝑗∈



M. Pantoš and L. Lukas

e

Applied Energy 381 (2025) 125045 
Fig. 3. The 3R2C thermal network model.
𝑄sol =
∑

𝑗∈
𝑄sol,𝑗 , (9)

𝑄win,sol =
∑

𝑗∈
𝑄win,sol,𝑗 , (10)

where  represents the set of five elements that constitute the building
nvelope, i.e., the four walls and the roof.

The equivalent network model shown in Fig. 4 can be represented
in state-space form by a set of first-order differential equations:
d𝑇wo
d𝑡

= − 2
𝐶w

(

1
𝑅o

+ 1
𝑅w

)

𝑇wo +
2
𝐶w

(

1
𝑅o

𝑇o +
1
𝑅w

𝑇wi

)

+ 2 𝑄̇ ,
(11)
𝐶w
sol

6 
Fig. 4. Equivalent of the 3R2C thermal model.
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d𝑇wi
d𝑡

= − 2
𝐶w

(

1
𝑅w

+ 1
𝑅i

)

𝑇wi +
2
𝐶w

(

1
𝑅w

𝑇wo +
1
𝑅i

𝑇z

)

, (12)

d𝑇z
d𝑡

= − 1
𝐶z

(

1
𝑅win

+ 1
𝑅i

)

𝑇z +
1
𝐶z

(

1
𝑅win

𝑇o +
1
𝑅i

𝑇wi

)

+ 1
𝐶z

(

𝑄̇indoor
z + 𝑄̇heat

z − 𝑄̇cool
z + 𝑄̇win,sol

)

.
(13)

It is important to note that the state-space representation of the
thermal dynamics of the building depends solely on the temperatures
𝑇wo, 𝑇wi, and 𝑇z. From Eqs. (11)–(13), it can be seen that the indoor
emperature 𝑇z is influenced by the outdoor temperature 𝑇o, solar
adiations 𝑄sol and 𝑄win,sol, and internal heat flux 𝑄z. By defining the
tate vector 𝐓 and input vector 𝐔 as follows:

𝐓 =
⎡

⎢

⎢

⎣

𝑇wo
𝑇wi
𝑇z

⎤

⎥

⎥

⎦

, (14)

𝐔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑇o
𝑄̇indoor

z
𝑄̇heat

z
𝑄̇cool

z
𝑄̇win,sol
𝑄̇sol

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (15)

the state-space model is expressed as
̇ = 𝐀 ⋅ 𝐓 + 𝐁 ⋅ 𝐔, (16)

where matrices 𝐀 and 𝐁 are given by

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

− 2
𝐶w

(

1
𝑅o

+ 1
𝑅w

)

2
𝐶w𝑅w

0
2

𝐶w𝑅w
− 2

𝐶w

(

1
𝑅w

+ 1
𝑅i

)

2
𝐶w𝑅i

0 1
𝐶z𝑅i

− 1
𝐶z

(

1
𝑅win

+ 1
𝑅i

)

⎤

⎥

⎥

⎥

⎥

⎦

, (17)

𝐁 =

⎡

⎢

⎢

⎢

⎣

2
𝐶w𝑅o

0 0 0 0 2
𝐶w

0 1 1 1 1 0
1

𝐶z𝑅win

1
𝐶z

1
𝐶z

− 1
𝐶z

1
𝐶z

0

⎤

⎥

⎥

⎥

⎦

. (18)

The state-space model described in Eqs. (14)–(18) forms the basis
for simulating the thermal behaviour of the building under different
conditions, which is crucial for predicting the HVAC system’s perfor-
mance and optimizing energy consumption while maintaining comfort.
This model will be used to simulate different energy management
strategies and determine their effectiveness in maintaining the desired
indoor conditions with minimal energy use.

4. Optimization of power system reliability with grid-interactive
efficient buildings

To maximize power system reliability, the selected indices, Loss of
oad Expectation (LOLE) and Expected Energy Not Supplied (EENS),

must be minimized. This optimization problem is formulated as a
ixed-integer linear program (MILP) with the objective function:

𝐽 = minimize
Ω

∑

𝑖∈

∑

𝑡∈

(

𝑝𝑖𝛼𝑖,𝑡
)

, (19)

where 𝛼𝑖,𝑡 is an indicator variable for state 𝑖 and time slot 𝑡, defined as:

𝛼𝑖,𝑡 =
{

1 f or 𝑃𝑖 −
(

𝑃𝑡 + 𝑥𝑡 − 𝑏𝑡
)

< 0
0 f or 𝑃𝑖 −

(

𝑃𝑡 + 𝑥𝑡 − 𝑏𝑡
)

≥ 0
. (20)

This indicator variable is binary, taking values of 0 or 1 based on
he condition in Eq. (20). Fig. 5 graphically illustrates this condition for

states 𝑖 and 𝑖 + 1. Here, 𝑃𝑡 represents the electric power consumption
during time slot 𝑡 as part of the initial load profile, while 𝑃𝑖 represents
the remaining capacity in state 𝑖. The load duration curve shown in
Fig. 1 is derived from the electric power consumption 𝑃𝑡, as illustrated
y the bold line in Fig. 5. The variables 𝑥𝑡 and 𝑏𝑡 are continuous
ptimization variables that adjust demand flexibility in both positive
7 
Fig. 5. Indicator variable 𝛼𝑖,𝑡.

and negative directions. Consequently, 𝑃𝑡+𝑥𝑡−𝑏𝑡 in Eq. (20) and Fig. 5
represents the optimal load profile in time slot 𝑡, maximizing system
reliability.

Demand flexibility can be achieved using various technologies, such
as energy storage systems or electric vehicles, where 𝑥𝑡 and 𝑏𝑡 represent
he charged and discharged energy in time slot 𝑡, respectively. This
pproach is discussed in [18].

In this study, 𝑥𝑡 and 𝑏𝑡 represent changes in electric power con-
sumption 𝑃𝑡 during time slot 𝑡 due to the operation of HVAC systems in
households. Specifically, heating, ventilation, and cooling account for
additional electric energy consumption required to maintain the indoor
temperature 𝑇z,𝑡 within acceptable limits. This consumption is optimally
distributed over the observation period to maximize system reliability.

In Section 3, the building’s thermal model is presented without
considering time dependency. However, the active elements of the
uilding’s thermal circuit (outdoor air temperature, solar radiation on

walls, roof and windows, internal thermal sources) and the indoor
temperature 𝑇z are time-dependent. Thus, the correct notation is 𝑇z,𝑡
o reflect this time dependency.

The objective function in Eq. (19) is subject to the following con-
straint:

𝐓̇𝑡 = 𝐀 ⋅ 𝐓𝑡 + 𝐁 ⋅ 𝐔𝑡, (21)
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where 𝐓𝑡 and 𝐔𝑡 are time-dependent matrices with time-dependent
lements:

𝐓𝑡 =
⎡

⎢

⎢

⎣

𝑇wo,𝑡
𝑇wi,𝑡
𝑇z,𝑡

⎤

⎥

⎥

⎦

, (22)

𝐔𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑇o,𝑡
𝑄̇indoor

z,𝑡
𝑄̇heat

z,𝑡
𝑄̇cool

z,𝑡
𝑄̇win,sol,𝑡
𝑄̇sol,𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (23)

The matrices 𝐀 and 𝐁 contain the time-invariant RC parameters, as
noted previously.

Eq. (21) can be expanded as:

𝐓1 = 𝐓0 + 𝐀 ⋅ 𝐓0 + 𝐁 ⋅ 𝐔0, (24)

𝐓𝑡 = 𝐓𝑡−1 + 𝐀 ⋅ 𝐓𝑡−1 + 𝐁 ⋅ 𝐔𝑡−1 ∀𝑡 = 2,… , 𝑇 , (25)

where 𝐓0 and 𝐔0 represent initial state optimization variables 𝑇wo,0,
wi,0, 𝑇z,0 and inputs 𝑇o,0, 𝑄̇indoor

z,0 , 𝑄̇heat
z,0 , 𝑄̇cool

z,0 , 𝑄̇win,sol,0, 𝑄̇sol,0. The
ymbol 𝑆 denotes the number of time slots 𝑡 in the observed period
 .

The optimization objective in Eq. (19) is also constrained by the
indoor temperature, which must remain within predefined limits 𝑇min

z,𝑡
and 𝑇max

z,𝑡 to ensure occupant comfort. These comfort limits for indoor
emperature are typically defined based on commonly accepted stan-
ards for thermal comfort in residential buildings. In the optimization
odel, these limits are enforced through explicit inequality constraints,

nsuring that the indoor temperature remains within the specified
ange throughout the simulation:

𝑇min
z,𝑡 ≤ 𝑇z,𝑡 ≤ 𝑇max

z,𝑡 . (26)

The final constraint describes the relationship between the heating
nd cooling needs of a building, 𝑄heat

z,𝑡 and 𝑄cool
z,𝑡 , and the additional

electricity consumption required to meet those needs. To properly
account for the efficiency of the heating and cooling systems, the
coefficient of performance (COP) must be considered. For heating, the
COP represents the ratio of heat output to the electrical input, while for
ooling, it represents the ratio of heat removed to the electrical input.
he relationship can be expressed as:

𝑥𝑡 =
𝑄̇heat

z,𝑡

𝐶 𝑂 𝑃 heat
+

𝑄̇cool
z,𝑡

𝐶 𝑂 𝑃 cool
, (27)

where 𝐶 𝑂 𝑃 heat and 𝐶 𝑂 𝑃 cool are the coefficients of performance for
heating and cooling, respectively. The total electricity consumption
𝑥𝑡 is constrained by a minimum value 𝑥min, typically set to 0, and
a maximum value 𝑥max, which corresponds to the installed power
capacity of the HVAC system. This ensures that the system operates
within its feasible limits:

𝑥min ≤ 𝑥𝑡 ≤ 𝑥max. (28)

In the thermal model of a building presented in Section 3, the
ymbols 𝑄indoor

z,𝑡 , 𝑄heat
z,𝑡 , and 𝑄cool

z,𝑡 represent all internal thermal sources
nd are included in the matrix 𝐔. However, in the optimization model

for power system reliability, 𝑄̇heat
z,𝑡 and 𝑄̇cool

z,𝑡 are treated as optimization
variables that contribute to the variable 𝑥𝑡 as in Eq. (28). The indoor
activities 𝑄̇indoor

z,𝑡 , however, are not optimized since they are still consid-
red input parameters and, as such, are excluded from the optimization

variable 𝑥𝑡.
The heating and cooling devices within the HVAC system cannot

operate simultaneously. Therefore, the following constraint has to be
added to the model:

heat cool
̇
z,𝑡 𝑄̇z,𝑡 = 0. (29)

8 
However, the current formulation of the optimization problem in
qs. (19)–(29) is not directly applicable as a Mixed-Integer Linear

Program (MILP) due to the non-linear nature of conditions (20) and
(29). To overcome this, we can transform the problem into a set of
linear constraints by introducing binary optimization variables 𝛼𝑖,𝑡 and
𝛽𝑡. The non-linear condition in Eq. (20) is linearized using the Big M
method as follows:

− 𝑥𝑡 ≤ −𝑃𝑖 + 𝑃𝑡 +𝑀1
(

1 − 𝛼𝑖,𝑡
)

, (30)

𝑥𝑡 ≤ 𝑃𝑖 − 𝑃𝑡 +𝑀2𝛼𝑖,𝑡, (31)

where 𝑀1 and 𝑀2 are sufficiently large positive numbers. Similarly,
the non-linear condition in Eq. (29) is linearized as follows:

𝑄̇heat
z,𝑡 ≤ 𝑀3𝛽𝑡, (32)

𝑄̇cool
z,𝑡 ≤ 𝑀3

(

1 − 𝛽𝑡
)

, (33)

where 𝑀3 is another large positive number.
The resulting MILP optimization problem, defined by Eqs. (19)–

33), can now be solved to find the optimal set of variables 𝛺:

𝛺 =
{

𝛼𝑖,𝑡, 𝛽𝑡, 𝑥𝑡, 𝑇z,𝑡, 𝑇wo,𝑡, 𝑇wi,𝑡, 𝑄heat
z,𝑡 , 𝑄cool

z,𝑡

}

. (34)

Among these, the most critical variables are 𝑇z,𝑡, 𝑄heat
z,𝑡 , and 𝑄cool

z,𝑡 . The
ariable 𝑇z,𝑡 represents the indoor temperature, which must remain
ithin predefined limits to ensure occupant comfort. The terms 𝑄heat

z,𝑡
nd 𝑄cool

z,𝑡 represent the electric energy required to maintain this tem-
erature. The distribution of this energy over the observed period 
irectly impacts power system reliability, which is the primary focus
f this research.

5. Case studies

The households modelled in these case studies are based on a
standard residential building type with a single thermal zone. Each
household is equipped with a centralized HVAC system capable of
providing both heating and cooling, maintaining indoor temperatures
within predefined comfort limits: 17 ◦C to 19 ◦C at night and 21 ◦C to
23 ◦C during the day. The thermal envelope of the buildings assumes
moderate insulation, with parameters calibrated to represent typical
construction in temperate climates. For simplicity, the buildings are
considered unoccupied, eliminating internal heat gains from occupants
or equipment. Solar radiation effects are also excluded to focus on the
fundamental interactions between HVAC demand flexibility and power
system reliability.

The impact of grid-interactive efficient buildings on the reliability
of electric power systems is evaluated through two case studies (CSs):

• CS1: The households maintain the indoor temperature 𝑇z,𝑡 within
specified limits using minimal heating and cooling power. The
objective is formulated as:

𝐽SC1 = minimize
Γ

∑

𝑡∈

(

𝑄̇heat
z,𝑡 + 𝑄̇cool

z,𝑡

)

, (35)

subject to the constraints (21)–(26) and (29). In this scenario,
the households do not provide demand flexibility to support
the power system. Instead, they act as conventional consumers,
drawing energy from the grid for their heating and cooling needs.
Similar optimization model is presented in [21].

• CS2: The households contribute to maximizing power system
reliability applying Eqs. (19)–(33) by leveraging grid-interactive
efficient buildings, which enable demand flexibility. The indoor
temperature 𝑇z,𝑡 is still maintained within predefined limits to
prevent discomfort due to overheating or excessive cooling.
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Table 1
Parameters of generators in power system.
Generator Installed power (MW) Availability

1 1273.0 0.9718
2 604.2 0.8954
3 319.2 0.8383
4 102.6 0.9923
5 129.2 0.9843
6 1065.9 0.9557
7 110.2 0.9886
8 85.5 0.9991

Fig. 6. Daily profile of the household consumption 𝑃H
𝑡 without heating and cooling.

In both case studies, the power generation portfolio includes eight
enerators with installed capacities and availability factors as detailed

in Table 1. These generators must meet the electricity demand specified
n Table 2. The second column of Table 2 presents the power sys-
em demand, 𝑃 PS

𝑡 , excluding the residential electricity use of 600,000
ouseholds. Their electricity consumption, represented by 600,000𝑃H

𝑡 ,
s shown in the third column. This power is also supplied by the grid.

For simplicity, all 600,000 households are considered identical, and the
daily load profile of a single household (excluding heating and cooling)
is illustrated in Fig. 6. The power required for heating and cooling is
excluded from this diagram, as it is determined separately in each case
study through the proposed optimization model. The final column in
Table 2 shows the total hourly consumption 𝑃𝑡, which is used in the
LOLE and EENS optimization as described in Section 2.

It is assumed that the households are unoccupied, thereby elim-
inating any indoor activities that would contribute to internal heat
ains. Consequently, the term representing indoor heat gains, 𝑄indoor

z,t ,
s considered to be zero. Furthermore, the effects of solar radiation on
he building envelope and windows are neglected, leading to 𝑄win,sol,t

and 𝑄sol,t being set to zero as well. These assumptions are consid-
ered reasonable and do not compromise the validity of the research
conclusions. Specifically, the excluded parameters, internal heat gains
and solar radiation, are input variables within the model. While they
are set to zero in this analysis, the model can accommodate non-
zero values for these parameters if needed. The focus of this study is
on the fundamental interactions within the system under controlled
onditions, and the exclusion of these variables allows for a more
traightforward analysis of the primary effects under study. Moreover,
hese assumptions help to isolate the impact of other factors, ensuring
hat the results are not confounded by the variability introduced by
nternal heat gains or solar radiation.

Figs. 7 and 8 show the ambient temperature 𝑇o,𝑡 and the resulting
ptimal indoor temperature 𝑇z,𝑡 in CS1 and CS2, respectively. The
bserved period spans two days, July 22 and 23, 2024, with a sim-

ulation time step of one minute. Both days feature identical ambient
temperatures 𝑇o,𝑡 to highlight the transient effects at the beginning of
the simulation, which diminish within a few minutes. These transients
are influenced by the initial values of the optimization variables 𝑇 ,
wo,0

9 
Table 2
Hourly consumption of electric energy.
Hour 𝑡 𝑃 PS

𝑡 (MW) 600.000𝑃H
𝑡 (MW) 𝑃𝑡 (MW)

1 1033.07 289.63 1322.70
2 971.17 272.33 1243.50
3 928.28 281.52 1209.80
4 922.34 261.36 1183.70
5 907.17 267.73 1174.90
6 925.59 265.31 1190.90
7 966.68 284.92 1251.60
8 1089.52 300.18 1389.70
9 1199.26 337.54 1536.80
10 1285.62 367.88 1653.50
11 1286.84 363.46 1650.30
12 1297.02 359.98 1657.00
13 1344.40 386.10 1730.50
14 1253.83 337.57 1591.40
15 1181.42 349.98 1531.40
16 1168.75 328.15 1496.90
17 1206.26 330.64 1536.90
18 1214.19 353.21 1567.40
19 1367.61 371.79 1739.40
20 1364.25 408.85 1773.10
21 1434.27 428.83 1863.10
22 1359.09 366.51 1725.60
23 1203.74 365.36 1569.10
24 1112.42 321.18 1433.60

𝑇wi,0, 𝑇z,0 and inputs 𝑇o,0, 𝑄̇indoor
z,0 , 𝑄̇heat

z,0 , 𝑄̇cool
z,0 , 𝑄̇win,sol,0, 𝑄̇sol,0, which

comprise matrices 𝐓0 and 𝐔0.
The results indicate that in both case studies, the indoor tempera-

ure 𝑇z,𝑡 remains within the prescribed bounds, 𝑇min
z,𝑡 and 𝑇max

z,𝑡 , ensuring
that comfort levels are maintained throughout the observed period  .
In CS1, during periods of low ambient temperature 𝑇o,𝑡, the indoor
temperature 𝑇z,𝑡 tends to reach the lower allowable limit, thereby
minimizing the required heating energy. Conversely, during periods
of high ambient temperature 𝑇o,𝑡, 𝑇z,𝑡 approaches the upper allowable
limit, reducing the need for cooling energy. This behaviour reflects the
building’s thermal dynamics, with 𝑇z,𝑡 oscillating close to the upper
bound in CS1.

In contrast, CS2 shows a more dynamic temperature profile, with
oticeable fluctuations, including peaks and troughs. These variations
uggest that heating and cooling periods were intentionally shifted or
elayed to provide demand-side flexibility, particularly during peak
emand hours. As a result, 𝑇z,𝑡 in CS2 is generally closer to the lower
ound, 𝑇min

z,𝑡 , during these high-demand periods. This approach en-
ances the reliability of the power supply system by actively managing
emand response, allowing the system to be more resilient. The more
daptive temperature controls in CS2 align with power system needs,
educing the overall strain on the grid during high-demand periods.

Figs. 9 and 10 illustrate the electric power required for heating
and cooling during the observed period  , denoted as 𝑄̇heat

z,𝑡 and 𝑄̇cool
z,𝑡 ,

for a single household in scenarios SC1 and SC2, respectively. For
simplicity in this analysis, both the heating and cooling coefficients
f performance (𝐶 𝑂 𝑃 heat and 𝐶 𝑂 𝑃 cool) are set to 1. The total energy
onsumption in SC1 and SC2 is 3.42 k Wh and 5.18 k Wh, respectively.
his difference is expected, as the objective in SC1 is to minimize the
nergy required for heating and cooling.

Fig. 11 presents the total hourly electricity consumption, 𝑃𝑡, which
is also summarized in Table 2. This figure includes the residential
consumption of 600,000 households, excluding heating and cooling,
as well as the consumption of other network users. The reference con-
sumption, 𝑃𝑡, is used for both simulated scenarios, with the additional
onsumption required for heating and cooling 600,000 households

added as 𝑥SC1𝑡 and 𝑥SC2𝑡 . The total electricity consumption during the ob-
served period  for SC1 and SC2 is 74,096.74MWh and 75,150.96MWh,
respectively.

For both case studies, the LOLE is calculated as a measure of
power system reliability. The LOLE values obtained are 0.082 h and



M. Pantoš and L. Lukas

i

i

o
S

t

o
6

a

w
d
s
t

s
p
l
s

Applied Energy 381 (2025) 125045 
Fig. 7. Ambient temperature 𝑇o,𝑡 and optimal indoor temperature 𝑇z,𝑡 within the limits
n CS1.

Fig. 8. Ambient temperature 𝑇o,𝑡 and optimal indoor temperature 𝑇z,𝑡 within the limits
n CS2.

Fig. 9. Electric power required for heating and cooling of one household in CS1.

0.075 h for the observed period  of two days. Extrapolated on a
yearly basis, the expected LOLE values would be 14.81 h and 13.65 h.
In this study, LOLE improves by 7.82% when 600,000 households
with grid-interactive efficient buildings are included in the reliability
ptimization, despite the increased total electricity consumption in
C2.

Considering EENS as another measure of power system reliability,
he values obtained for SC1 and SC2 are 135.39MWh and 125.88MWh
 s

10 
Fig. 10. Electric power required for heating and cooling of one household in CS2.

Fig. 11. Total electricity consumption in CS1 and CS2.

for the observed period  of two days, respectively, corresponding to
24,708.76MWh and 22,972.99MWh annually. By applying the proposed
ptimization model, EENS improves by 7.02% with the engagement of
00,000 households.

It is important to note that the case studies were conducted under
uniform climatic conditions and building types to ensure consistency
nd simplify the analysis. However, variations in climate, such as hotter

or colder regions, or differences in building characteristics, such as
higher or lower thermal inertia or insulation levels, could significantly
impact the results. For instance, buildings in colder climates may
have higher heating demands, while those in warmer climates may
rely more on cooling, influencing the flexibility potential. Similarly,

ell-insulated buildings with higher thermal inertia may offer greater
emand flexibility compared to poorly insulated ones. These factors
hould be explored in future research to validate the applicability of
he proposed model to diverse real-world scenarios.

5.1. Complementary grid technologies

While the demand flexibility provided by GEBs significantly con-
tributes to grid reliability, other grid-supporting technologies, such as
battery storage and flexible line ratings, further enhance system re-
ilience. Battery storage systems provide essential backup power during
eak loads or outages, complementing GEB demand response. Simi-
arly, dynamic line ratings allow for adjustments in the transmission
ystem’s capacity based on real-time conditions, which can help reduce

tress on the grid during critical periods.
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Studies have shown the benefits of integrating GEBs with addi-
tional grid technologies to achieve a comprehensive approach to grid
reliability. For example, [22] highlights how flexible line ratings can
mprove resilience during high-demand periods. Additionally, [23,24]
emonstrate the combined benefits of distributed generation, dynamic
ine ratings, and storage technologies in supporting grid stability.

Integrating GEBs with these grid-supporting technologies offers a
olistic pathway to enhanced power system reliability. By combining

demand flexibility with advanced storage and transmission capabilities,
the grid can better manage diverse operating conditions. This ap-
proach provides opportunities for future research and implementation,
where GEBs and advanced grid technologies collaborate to address the
complexities of modern power systems.

5.2. Potential impacts on other reliability metrics

While this study focused on LOLE and EENS as key reliability
etrics, power system reliability is inherently multidimensional and

ncludes additional aspects such as frequency regulation and volt-
ge stability. GEBs, with their ability to dynamically adjust demand
n response to grid conditions, hold significant potential to impact
hese metrics. For instance, by modulating demand in real-time, GEBs
an help stabilize frequency fluctuations during periods of rapid load
hanges or generation imbalances. Similarly, their flexible operation

can improve voltage profiles by reducing stress on local distribution
networks during peak load conditions.

These additional dimensions of reliability were not included in the
current study due to the specific focus on resource adequacy metrics
(LOLE and EENS) and the complexity of modelling real-time grid
dynamics within the scope of this research. However, future work will
investigate how GEBs can contribute to these areas, complementing
their role in improving resource adequacy and enhancing overall grid
stability.

5.3. Scalability and application to complex systems

While this study focuses on a single-zone thermal model for sim-
plicity and computational feasibility, the proposed optimization frame-
work is designed to be scalable and applicable to more complex real-
world scenarios. Extending the model to multi-zone buildings or sys-
tems involving many buildings with varying thermal characteristics
would require enhancements to account for the heterogeneity of these
systems.

For multi-zone applications, the model could integrate individ-
al zone dynamics, capturing variations in internal heat gains, so-
ar radiation, and occupancy patterns across different zones within
 building. This would allow the optimization framework to man-
ge interactions between zones, such as heat transfer through shared

walls, while maintaining indoor comfort in each zone. The Ref. [25]
emonstrates a model-based optimal control strategy for Variable Air

Volume air-conditioning systems in multi-zone buildings, using genetic
lgorithms to enhance control efficiency and scalability. Similarly, [26]
rovides an overview of HVAC system simulations in multi-zone build-
ngs, discussing the scalability challenges and strategies to address

computational complexity in such models.
For systems involving multiple buildings, the optimization would

need to account for diverse building types, thermal properties, and
emand flexibility profiles. This could be achieved by clustering build-
ngs with similar characteristics and incorporating these clusters into
he optimization model. Aggregating demand flexibility across clusters
ould simplify the computation while preserving the benefits of GEB
ntegration at the system level. The article [27] reviews methods for
redicting building energy consumption in multi-zone systems and
ighlight techniques for ensuring scalability in complex scenarios. The
aper [28] discusses state-of-the-art modelling methods that emphasize

the need for multi-building energy performance predictions, providing
 o
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insights into how such approaches can be integrated into system-level
optimization frameworks.

Scalability also poses challenges, particularly in terms of compu-
tational complexity and data requirements. Incorporating additional
zones or buildings would increase the number of variables and con-
straints, potentially requiring advanced computational techniques, such
as parallel processing or heuristic algorithms, to solve the optimization
roblem efficiently. Additionally, accurate data on thermal properties
nd flexibility potentials for diverse buildings would be necessary to
nsure realistic modelling outcomes. Future research will explore these

extensions to validate the scalability of the model and its applica-
bility to large-scale systems, including multi-zone and multi-building
cenarios.

5.4. Sensitivity analysis: Comfort limits and thermal inertia

The flexibility potential of GEBs is significantly influenced by the
ndoor comfort limits and the thermal inertia of the building. Comfort
imits define the allowable temperature range within which HVAC sys-
ems can operate without compromising occupant comfort. Narrower
omfort ranges constrain demand flexibility, as the system has less

room to adjust HVAC operations without violating comfort constraints.
Conversely, wider ranges provide greater flexibility, enabling more sig-
nificant load shifting and potentially improving grid reliability metrics
such as LOLE and EENS.

Thermal inertia, representing the building’s capacity to retain heat,
also plays a critical role. Buildings with high thermal inertia can

aintain indoor temperatures within comfort limits for longer periods
ithout active heating or cooling, offering greater flexibility. In con-

rast, buildings with low thermal inertia require more frequent HVAC
djustments, which limits their ability to contribute to demand-side
lexibility. These theoretical insights suggest that the choice of comfort
imits and thermal properties is crucial when scaling GEB models to
iverse building types.

While no additional simulations were conducted in this study, these
conclusions align with existing knowledge and highlight key factors
that should be considered in future research and model extensions.

6. Conclusion

This paper introduces a novel method for the direct optimization
f power system reliability, leveraging the potential of GEBs. The

proposed solution involves thermal modelling of buildings to simu-
ate indoor temperature dynamics, considering the building envelope
haracteristics and internal thermal mass. The research findings demon-
trate that households can effectively enhance power system reliability
y utilizing the available demand flexibility of their buildings. Future
esearch will focus on an economic assessment of this support, com-
aring it with existing services provided by conventional power plants
nd demand-side flexibility. Additionally, the influence of indoor ac-
ivities on GEB demand flexibility and its contribution to power system
eliability will be explored in greater detail, employing more advanced
hermal modelling techniques. Future research will also focus on val-
dating the thermal model with real-world data from grid-interactive
fficient buildings. This step will enhance the accuracy and practical
elevance of the findings, ensuring that the proposed model is robust
nd applicable under diverse operational conditions.
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