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a b s t r a c t 

With the implementation of demand response programs and its increasing penetration in the power grid, 

various new challenges to the grid’s operation have emerged. As a consequence, optimizing the operation 

of the power grid and the allocation of demand response resources, in the short-term, medium-term and 

long-term, has become a fundamental problem. This survey presents a review of the optimization ap- 

proaches in the literature for the integration of DR in three central problems in power systems planning, 

namely optimal power flow, unit commitment, and generation and transmission expansion planning. We 

also highlight important future research directions. 

© 2023 The Author(s). Published by Elsevier B.V. 
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. Context and motivation 

The growing adoption of renewable energy generation has 

ade the planning of power systems significantly more challeng- 

ng. At the same time, the advent of smart grids has enabled and 

ncentivized the development of demand response (DR) programs 

hat employ customer demand, including residential customers, to 

rovide ancillary services to the electric power grid. For example, 

R can contribute to mitigating the impacts of fluctuating renew- 

ble generation. These developments motivate the importance of 

pproaches to power system planning for both system operation 

nd system expansion that integrate the optimal use of DR re- 

ources. The focus of this survey is on the integration of DR into 

hree central problems in power systems planning, namely opti- 

al power flow (OPF), unit commitment (UC), and generation and 

ransmission expansion planning. 

OPF models were conceived to solve the problem of generat- 

ng and distributing energy optimally considering the transmission 

ystem ( Momoh et al., 1999 ). These models can consider different 

nergy sources on the generation side. Furthermore, the transmis- 

ion system model can be either more detailed by considering an 

lternating Current Optimal Power Flow (ACOPF) model or simpli- 

ed by considering a Direct Current Optimal Power Flow (DCOPF) 
odel. 

∗ Corresponding author. 
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UC models are used to determine an optimal operating plan for 

he generating units in the system so that the demand is met while 

ptimizing a given objective. This is typically the minimization of 

he total cost of generation but it can also be the minimization of 

ctive power losses ( Bingane et al., 2018 ) or other objective of in-

erest. The complexity of UC models comes from the fact that they 

onsider the implications of committing specific generating units, 

ccounting for the costs incurred when starting up these plants as 

ell as physical constraints when ramping up or down production 

 Tejada-Arango et al., 2019 ). 

Capacity expansion planning models consider the operation of 

he power system over a long-term time horizon. By contrast with 

hort-term or medium-term models, long-term models need to 

ake into account the fact that energy demand grows over time 

nd that the current installed capacity eventually may no longer 

uffice to supplying this demand adequately. Thus, there is a need 

o build additional generation capacity and to expand the trans- 

ission system to guarantee sufficient energy supply over a long 

ime horizon with minimum investment cost ( Hemmati et al., 

013a; Meza et al., 2007; Unsihuay-Vila et al., 2011 ). 

Demand response (DR) can be defined as the ability to change 

he energy demand so that one can alleviate energy demand 

eaks ( Albadi & El-Saadany, 2008 ). In order to implement DR in 

he power grid there are several options, which will be briefly 

xplained in the next section. As a result of the fact that DR 

esources are so sparsely distributed throughout the power grid, 

perating them and the power grid at the same time in a coordi- 

ated fashion is very challenging. To overcome this difficulty, the 

oncept of aggregator was developed. An aggregator is an entity 
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hat is responsible for the management of DR resources ( Carreiro 

t al., 2017 ) and facilitates the integration of DR resources into 

he operation of the grid. Aggregators may be grid operators or 

hey may be independent entities that interact with the grid via 

arket or control signals. Regardless of the specific arrangements, 

his problem is still very challenging. 

Although there are some reviews that approach some of the 

roblems that interest us, such as Abdi et al. (2017) ; Robert et al.

2018) ; Shariatzadeh et al. (2015) ; Verma et al. (2018) , none of

hem discuss both operations and capacity expansion planning 

roblems considering DR. In Robert et al. (2018) , even though 

hey discuss the DR-OPF integration, they neither present models 

or examine the DR-UC integration. In Verma et al. (2018) , they 

eview the techniques to handle uncertainty in smart grids, but 

hey do not discuss DR-UC or DR-OPF problems. In Abdi et al. 

2017) , although the authors consider OPF problems in general, 

hey only briefly discuss the inclusion of DR in OPF models. Fi- 

ally Shariatzadeh et al. (2015) discuss very briefly the impacts of 

R in operational problems. As a consequence, there is a need for 

 survey that explores in detail the operational models (OPF and 

C) and the capacity expansion planning models that consider DR. 

Our objective in this survey is thus to review the different ap- 

roaches used to model and solve the problem of planning the 

peration of the power grid and of DR resources in a coordi- 

ated fashion. This survey explores both the deterministic power 

rid operation models and the power grid operation under un- 

ertainty models, covering both operation and capacity expansion 

lanning models. We are interested in identifying both the op- 

imization techniques used as well as the modelling approaches 

aken to tackle these problems. We are also interested in highlight- 

ng the existing research gaps, both in terms of modelling needs 

nd of relevant optimization techniques. 

This survey is organized in five sections. After this introductory 

ection, Section 2 introduces the key concepts considered in this 

urvey, namely OPF, UC, Expansion Planning, and DR. Section 3 is 

oncerned with OPF models, Section 4 with UC models, and 

ection 5 with Expansion Planning models. Section 6 gives con- 

luding remarks and directions for future research. 

. Key concepts, definitions, and notation 

.1. Optimal power flow 

A power grid is composed of buses, indexed by m ∈ N, which 

ave power plants, indexed by j ∈ T h m 

, as well as transmission

ines, denoted by { m, n } ∈ �. Loads are also located at buses, and

e consider them below. An OPF model is a mathematical rep- 

esentation of this grid, and is concerned with its optimal opera- 

ion considering the transmission constraints and minimizing costs 

typically generation costs). 

When formulating an OPF model, there are several variables 

f interest. The first ones are the active and reactive power gen- 

ration, that are represented by T jm 

, QT jm 

, respectively. There is 

lso the voltage magnitude at a bus, V m m 

, the active and reactive 

ower injections in the ‘to’ point of the branch m , I 
p 
emn , I 

q 
emn , as well

s in the “from” point of the branch m , I 
p 

f mn 
, I 

q 

f mn 
. Several parame-

ers also have to be taken into consideration. In each bus there are 

he active and reactive power demands, D m 

, Q m 

, the shunt suscep- 

ance and the shunt conductance, B ′ m 

, G 

′ 
m 

. As regards the transmis- 

ion lines, there is their susceptance, B mn , their admittance, Y mn , 

nd their turns ratio, T n mn . There are also the coefficients of the

eneration cost function for the thermal plants, a T h 
jm 

, b T h 
jm 

, c jm 

. Fi-

ally, there are also the upper and lower bounds for all variables 

nd for the transmission. 

A general formulation of OPF is as follows: 
402 
• Objective function: 

min 

N ∑ 

m =1 

∑ 

j∈ T h m 

(
a T h jm 

T 2 jm 

+ b T h jm 

T jm 

+ c jm 

)
(1) 

• Active power balance constraint: 
∑ 

j∈ T h m 
T jm 

+ 

∑ 

{ m,n }∈ �
I p 

f mn 
+ 

∑ 

{ n,m }∈ �
I p enm 

− G 

′ 
m 

V m 

2 
m 

= D m 

∀ m ∈ N 

(2) 

• Reactive power balance constraint: 
∑ 

j∈ T h m 
QT jm 

+ 

∑ 

{ m,n }∈ �
I q 

f mn 
+ 

∑ 

{ n,m }∈ �
I q enm 

+ B 

′ 
m 

V m 

2 
m 

= Q 

t 
m 

∀ m ∈ N

(3) 

• Transmission constraints: 

I p 
f mn 

+ iI q 
f mn 

= − V m m 

T n mn 

[ (
i 
B mn 

2 
+ Y mn 

)
V m m 

T n mn 
− Y mn V m n 

] 
∀{ m, n } ∈ � (4) 

I p emn + iI q emn = − V m n 

T n mn 

[ (
i 
B mn 

2 
+ Y mn 

)
V m n − Y mn 

V m m 

T n mn 

] 
∀{ m, n } ∈ � (5) 

V m m 

≤ V m m 

≤ V m m 

∀ m ∈ N (6) 

(I p mn ) 
2 + (I q mn ) 

2 ≤ S mn 
2 ∀{ m, n } ∈ � (7) 

• Generation constraints: 

T jm 

≤ T jm 

≤ T jm 

∀ m ∈ N, ∀ j ∈ T h m 

(8) 

QT jm 

≤ QT jm 

≤ QT jm 

∀ m ∈ N, ∀ j ∈ T h m 

(9) 

The objective function minimizes the generation cost of meet- 

ng the energy demand. As for the constraints, there are the power 

alance constraints (2) and (3) , the transmission constraints (4) –

7) , and the generation bounds (8) and (9) . Because of (4),(5) and

7) , this model is a non-convex non-linear optimization problem, 

nd even checking its feasibility is strongly NP-hard ( Bienstock & 

erma, 2019 ). 

Because of the computational challenges faced when solving the 

COPF model, the use of the DCOPF model is often proposed. To 

btain the DCOPF model, one removes (3) –(7) and (9) , and updates 

he power balance constraint accordingly. A new variable is also 

dded, θ t 
n , that represents the voltage angle at bus n at time t . The

ollowing constraints are also added to the problem: 

 

p 
mn = B mn (θn − θm 

) ∀{ m, n } ∈ � (10) 

− S mn ≤ (I p mn ) ≤ S mn ∀{ m, n } ∈ � (11) 

An excellent introduction to the OPF problem is given by Frank 

 Rebennack (2016) . 

.2. Unit commitment 

The UC problem has a similar objective function to OPF but 

he focus of UC is on the physical constraints of the generat- 

ng units. This requires additional variables for each power plant, 

amely the start-up, shutdown and on/off state variables, respec- 

ively y t 
jm 

, z t 
jm 

, x t 
jm 

. We also add the following constraints to the

riginal OPF model: 
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t−1 
jm 

− x t jm 

+ y t jm 

− z t jm 

= 0 ∀ m ∈ N, ∀ j ∈ T h m 

, ∀ t ∈ T (12) 

 

t 
jm 

− T t−1 
jm 

≤ R 

U 
jm 

x t−1 
jm 

+ S U jm 

y t jm 

∀ m ∈ N, ∀ j ∈ T h m 

, ∀ t ∈ T (13) 

 

t−1 
jm 

− T t jm 

≤ R 

D 
jm 

x t jm 

+ S D jm 

z t jm 

∀ m ∈ N, ∀ j ∈ T h m 

, ∀ t ∈ T (14) 

t ∑ 

k = t−T U 
j 

+1 ,k ≥1 

y k jm 

≤ x t jm 

∀ m ∈ N, ∀ j ∈ T h m 

, ∀ t ∈ T (15) 

t ∑ 

k = t−T D 
j 
+1 ,k ≥1 

z k jm 

+ x t jm 

≤ 1 ∀ m ∈ N, ∀ j ∈ T h m 

, ∀ t ∈ T (16) 

Constraint (12) ensures that a generating unit is not turned 

n and turned off at the same time period. Constraints (13) and 

14) are the ramping constraints, and (15) and (16) are the uptime 

nd downtime constraints. The generation bounds constraints also 

eed to be modified so that the bounds only apply when the unit 

s on: 

 jm 

t x t jm 

≤ T t jm 

≤ T jm 

t 
x t jm 

(17) 

T jm 

t x t jm 

≤ QT t jm 

≤ QT jm 

t 
x t jm 

∀ m, ∀ j (18) 

mproved versions of some of these inequalities that lead to a 

ighter description of the feasible operating schedules for gener- 

tors were proposed in Ostrowski et al. (2011) . 

More detailed presentations on UC problems can be found in 

njos et al. (2017) and van Ackooij et al. (2018) . 

.3. Expansion planning 

Unlike the OPF and UC models, expansion planning models are 

sed to plan for the optimal operation of the power grid over a 

ong-term horizon. When planning operation of the power grid 

ver such a time horizon, one has to consider the expansion of 

oth the generation capacity and the power transmission system. 

here are models that only focus on the former, some that only 

ocus on the latter, and some that consider both problems. 

Because expansion planning is carried out for a long-term hori- 

on, the grid operation constraints generally do not include the 

nit commitment constraints. Moreover, expansion planning mod- 

ls typically consider a DCOPF model of the transmission system. A 

eneral formulation of the expansion planning model is as follows: 

• The objective function is defined as 

min c t op + c t te + c t ge (19) 

here 

 

t 
op = 

N ∑ 

m =1 

∑ 

j∈ T h m 

(
a T h jm 

T 2 jm 

+ b T h jm 

T jm 

+ c jm 

)
(20) 

 

t 
te = 

N ∑ 

m =1 

N ∑ 

n =1 

∑ 

k ∈ Te mn 

ρt 
kmn (21) 

 

t 
ge = 

N ∑ 

m =1 

∑ 

l∈ Ge m 

ρt 
ln (22) 
403 
ith c t op being the total power system operation cost, c t te the total 

ransmission system expansion cost, and c t ge the total generation 

xpansion cost, and where T e mn is the set of potential new trans- 

ission lines that can be built connecting nodes m and n , and Ge m 

s the set of potential new energy plants that can be built at node 

 . The variable ρt 
ln 

indicates that the potential plant l at node n 

s operational at time t , and the variable ρt 
kmn 

indicates that the 

otential line k between nodes m and n is operational at time t . 

• Transmission constraints: 

I p 
kmn 

= B mnk (θnk − θmk ) ∀{ m, n } ∈ �, ∀ k ∈ T e m 

(23) 

−S mnk ρ
t 
kmn ≤ (I p 

mnk 
) ≤ S mnk ρ

t 
kmn ∀{ m, n } ∈ �, ∀ k ∈ T e m 

(24) 

• Generation plants bounds: 

T lm 

ρt 
ln ≤ T lm 

≤ T lm 

ρt 
ln ∀ m ∈ N, ∀ l ∈ Ge m 

(25) 

• Expansion decisions: 

ρt 
kmn ≥ ρt−1 

kmn 
∀ m, n ∈ N∀ k ∈ T e m 

(26) 

ρt 
ln ≥ ρt−1 

ln 
∀ m ∈ N, ∀ l ∈ Ge m 

(27) 

ρt 
kmn ∈ { 0 , 1 } ∀ m, n ∈ N∀ k ∈ T e m 

(28) 

ρt 
ln ∈ { 0 , 1 } ∀ m ∈ N, ∀ l ∈ Ge m 

(29) 

First, for each potential new transmission line, we add its re- 

pective transmission constraints. Second, the generation plants 

ounds for the potential new generation plants have the upper and 

ower bounds multiplied by the decision variable relative to build- 

ng the plant. Third, the constraints for expansion decisions guar- 

ntee that if a new generation plant or transmission line is built at 

ime t then this will be reflected in the time periods that follow, 

nd that the expansion decision variables are binary variables. 

We note that there are additional constraints that may be con- 

idered in an expansion planning model, such as precedence con- 

traints between expansion projects or the possibility of having 

inks between expansion projects ( Thomé et al., 2019 ). 

A thorough presentation of generation expansion problems can 

e found in Koltsaklis & Dagoumas (2018) , and a detailed presenta- 

ion of transmission expansion problems can be found in Hemmati 

t al. (2013b) . 

.4. Demand response 

Demand response is the ability to change consumption patterns 

ccording to the system operator’s needs. This can be done by ei- 

her shifting or reducing demand, typically by providing a benefit 

o customers that change their consumption habits ( Deng et al., 

015 ). 

There are three main actions that can be classified as demand 

esponse ( Deng et al., 2015 ): 

• Peak clipping or load curtailment: This is a reduction of the 

load at peak energy consumption times in order to avoid sur- 

passing the maximum total generation capacity of the power 

grid. 
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• Valley filling: This is achieved using energy storage devices to 

store energy during off-peak periods, thus increasing off-peak 

consumption, and the stored energy is used during peak con- 

sumption periods without contributing to the peak. 
• Load shifting: This consists of shifting an amount of energy 

consumption from peak to off-peak periods without lowering 

the total energy demand over the day. 

Demand response has several potential applications in the op- 

ration of the power grid. It can be used: i) to mitigate the inter- 

ittent energy output of renewable energy sources ( Bitaraf & Rah- 

an, 2017 ); ii) to help alleviate congestion in the transmission sys- 

em ( Yousefi et al., 2012 ); iii) to guarantee voltage stability ( Wang 

t al., 2011 ) or provide other ancillary services to ensure opera- 

ional security in general ( Lee et al., 2016 ); iv) to mitigate the need

or expanding generation capacity on the grid ( Malik, 2007 ). 

There are two categories of DR programs: incentive-based DR 

IBDR) and price-based DR (PBDR). IBDR programs directly incen- 

ivize users to either reduce or shift their consumption. Exam- 

les of existing IBDR programs are Direct Load Control and Emer- 

ency Demand Reduction. PBDR programs also incentivize users to 

hange their consumption but do this via the pricing of electric- 

ty. The idea is that they will avoid consuming energy when the 

rice is higher, and consume more energy when the price is lower. 

xamples of PBDR programs are real-time pricing and time-of-use 

ricing. More recently, the concept of time-and-level-of-use pric- 

ng was proposed to price DR in terms of both power and energy 

 Besançon et al., 2020 ). 

When considering either IBDR or PDBR programs in optimiza- 

ion models, such as OPF, UC and expansion planning models, DR 

an be modelled as a variable, such as in Kwag & Kim (2012) for

BDR, and in Wu et al. (2013b) for PBDR. Alternatively, its im- 

act can be considered directly in the final demand, such as in 

ovardhan & Roy (2016) for IBDR, and in Tumuluru et al. (2014) for 

DBR. It should be noted that for IBDR, one can model DR through 

ncentive value variables, such as in Abdollahi et al. (2011) . 

Coordinating the operation of DR resources within the power 

rid is a complex process because DR is provided by a large num- 

er of small providers. To overcome this problem, an entity called 

ggregator was defined to act as a middleman between the system 

perator and the DR resources ( Carreiro et al., 2017 ). Although they 

acilitate the communication between the system operators and 

he DR resources, designing aggregators is challenging and there 

re several options for doing so, such as designing virtual power 

lants. 

We refer the reader to Deng et al. (2015) for more information 

bout DR and DR programs, and to Carreiro et al. (2017) for a re-

ent survey on aggregators. 

. Optimal power flow 

When integrating DR in the operation of the power grid, sev- 

ral different objectives can be considered in the modelling. In this 

ection, we discuss OPF models that take DR into consideration. 

ecause many of the parameters considered in this type of prob- 

em depend on data that cannot be predicted accurately, one really 

hould take uncertainty into account. However, uncertainty is often 

ot considered for two main reasons, the first being that the prob- 

ems become too complex and, consequently, too hard to solve, and 

he second being that there is a lack of data to adequately model 

he uncertainty. We discuss both deterministic and stochastic mod- 

ls, including algorithms and techniques used to tackle optimiza- 

ion problems under uncertainty. 

When considering DR in power grid operations, most models 

ill consider what kind of DR program is implemented, impact- 

ng the choices of how DR is integrated in the model. Besides that, 
404 
ecause of the challenges in coordinating DR resources, some of 

he proposed models consider that DR is offered through aggrega- 

ors, and this also impacts modelling choices. There are models in 

hich DR is offered through an IBDR program (e.g., Wang et al., 

015a ), others in which it is offered through a PBDR program (e.g., 

oel et al., 2008 ), and in some cases, both types of programs are

onsidered (e.g., Sugimura et al., 2020 ). There are also models that 

imply do not consider the DR program through which DR is of- 

ered. 

Another modelling choice is whether the transmission system 

s considered or not. If it is considered, as discussed in Section 2.1 ,

he model for the transmission system model must be determined, 

ypically it is the DCOPF or the ACOPF model. In most of the liter- 

ture, either the transmission system is not considered or a DCOPF 

odel is used. Because DCOPF models cannot directly account for 

ransmission losses, some authors add constraints to approximate 

hese losses and hence more accurately model the system be- 

aviour. Losses can be directly computed in the models that use 

n ACOPF model, such as in David & Li (1993) ; Duan et al. (2019) ;

horashi et al. (2020) ; Goel et al. (2008) ; Nojavan & Seyedi (2020) ;

afdarian et al. (2014) ; Singh et al. (2010) . 

.1. Purpose of DR integration in the grid 

Most authors are interested in the adequate integration of DR 

nto the power grid operation, such as in Bai et al. (2016) ; Cheng

t al. (2018) ; David & Li (1993) ; Goel et al. (2008) ; Kara et al.

2021) ; Sharma et al. (2014) ; Su & Kirschen (2009) . In some cases,

he problem of optimal location and sizing of DR resources is con- 

idered, see e.g. Cheng et al. (2018) . In Kara et al. (2021) , the

mpact of uncertainty in allocating demand response resources is 

aken into consideration and evaluated. 

DR can also be a key asset in dealing with the fluctuations 

f renewable energy sources. In these models, DR will help miti- 

ate this issue by shifting loads, such as in Bie et al. (2016) ; Duan

t al. (2019) ; Kies et al. (2016) ; Sugimura et al. (2020) ; Wang et al.

2015a) . 

There are also models that focus on the power grid operation 

ecurity. For example, voltage stability is a very important issue 

or a secure operation of the power grid, and, in some cases, DR 

an be used to help in guaranteeing voltage stability and avoiding 

oltage collapses, such as in Nojavan & Seyedi (2020) ; Wang et al. 

2011) . In Wang et al. (2011) , specifically, DR is only activated when

here are critical events, i.e., possible voltage collapse scenarios. In 

eng et al. (2018) , the authors propose a methodology for evaluat- 

ng the reliability value of DR in power grids, creating the concept 

f capacity credit with that goal. 

In addition, there are some approaches that use DR to manage 

ongestion in the transmission system. In Yousefi et al. (2012) , the 

uthors consider both DR and flexible alternating current transmis- 

ion system (FACTS) devices to manage congestion in the transmis- 

ion system. In Singh et al. (2010) , not only it is proposed using DR

or congestion management, but it is also used to avoid locational 

arginal prices spikes. In Wu et al. (2019) , a transmission line con- 

estion probability measure is used to guarantee that the transmis- 

ion system congestion will be less than a certain probability level. 

n Tabandeh et al. (2015) , the authors also take into consideration 

ossible transmission lines and generating units outages when us- 

ng DR for congestion management. Furthermore, DR can also be 

sed to enhance the reliability of the power system, which can be 

een in Goel et al. (2008) . DR resources are used in moments of 

ontingencies, such as when there are transmission system limits 

iolations. 

DR is also used to help mitigate electricity prices volatility. 

ore specifically, in Goel et al. (2007) , DR is used to mitigate nodal

rice volatility. In some cases, when considering PBDR programs, 
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o

rice responsiveness is represented in terms of demand side bids, 

uch as in Su & Kirschen (2009) . 

Alternatively, in Safdarian et al. (2014) , the authors are inter- 

sted in analyzing the impacts of DR on the power grid operation, 

uch as system losses, voltage profiles and service reliability. 

There is also the possibility determining the operation of the 

R resources and the power grid in a coordinated fashion without 

he need of a centralized calculation. Instead, the problem can be 

olved in a distributed fashion, as done in Matsuda et al. (2019) us- 

ng an alternating direction method of multipliers (ADMM). 

In some cases, the cost of implementing the infrastructure nec- 

ssary for DR is also taken into consideration as well as the opti- 

al location for DR resources, as can be seen in Yu et al. (2018,

019) . 

There are some approaches where the DR is considered in a 

ore detailed fashion, not only having upper and lower bounds, 

ut also having ramping rate limits and constraints for the time 

f use of DR resources. For example, in Kies et al. (2016) DR re-

ources are modeled similarly to an energy storage system, with 

tate of charge and decisions of power charged and discharged. 

Although most of the models consider DR as a variable, there 

re some approaches that favour directly calculating a new de- 

and considering the DR usage, such as in Ghorashi et al. (2020) ; 

atsuda et al. (2019) ; Singh et al. (2010) ; Su & Kirschen (2009) .

n particular, Ghorashi et al. (2020) use a system of rewards and 

enalties so that customers adjust their demands according to the 

ewards and penalties offered to them by the operator. 

.2. Aggregators 

Because the DR resources are often spread thin throughout the 

ower grid and most of the consumers can only offer a very small 

mount of energy through DR, many models consider aggregators 

nstead of each individual customer’s DR. 

In much of the literature in which aggregators are considered, 

here is no detailed modelling of aggregators, as one can see in 

uan et al. (2019) ; Singh et al. (2010) ; Yousefi et al. (2012) . As

uch, the impact of aggregators is the smaller number of variables 

nd the tractability of the problem. However, in some cases, mod- 

ls for aggregators are developed. In Devine et al. (2019) , the au- 

hors propose a model where the objective is to maximize the ag- 

regators’ profit for using DR both for energy supply and reserve 

apacity. 

.3. Operation planning under uncertainty 

As mentioned earlier, when planning the operation of the 

ower grid, there are several parameters that cannot be known ac- 

urately, such as demand, solar and wind energy generation. There- 

ore, there is a need to consider their uncertainty by transforming 

he original, deterministic, problem into an optimization problem 

nder uncertainty. Broadly speaking, there are three main different 

odelling approaches for this purpose, namely stochastic program- 

ing, robust optimization and chance-constrained optimization. 

Stochastic programming (SP) generally encompasses mathemat- 

cal programs that consider uncertainty in some or all of their pa- 

ameters. In this survey, SP specifically refers to the representa- 

ion of uncertainty through a set of possible scenarios. For a more 

etailed introduction to stochastic programming, see Birge & Lou- 

eaux (2011) . 

Robust optimization (RO) models uncertainty through uncer- 

ainty sets . When using uncertainty sets , the solution of the problem 

as to be feasible for any value within the set. As a consequence, 

he optimal solutions of robust optimization problems tend to be 

ore conservative. We point out that while one needs to know the 

ncertain data distribution when solving a stochastic programming 
405 
roblem, this is not the case for RO. A more detailed exposition of 

obust optimization can be found in Ben-Tal et al. (2009) . 

Chance-constrained optimization (CCO) problems approach the 

ncertainty in the problem differently. Instead of considering the 

xpected value (like SP) or the worst-case scenario (like RO), CCO 

onsiders the probability of the constraints impacted by uncertain 

arameters to be respected. The classic article of Charnes & Cooper 

1959) remains an excellent reference about CCO. 

.3.1. Stochastic programming 

When solving a stochastic programming problem, regardless of 

odelling the problem as a two-stage or a multistage problem, the 

implest way to tackle it is formulating it as a deterministic equiv- 

lent, i.e., writing it as a single optimization problem, such as in 

ukhsh et al. (2015) ; Goel et al. (2007) ; Hu et al. (2016) ; Singh &

umar (2017) . However, this approach creates intractable problems 

hen considering a large number of scenarios. Thus, many practi- 

al approaches use a scenario reduction technique to select a few 

cenarios that are representative of the uncertainty, see e.g., Sun 

t al. (2021) ; Tabandeh et al. (2015) ; Talari et al. (2018) . Scenar-

os are typically generated using Monte Carlo simulation but not 

lways. For example, Huang et al. (2020) use the probabilistic col- 

ocation method with the aim of reducing the number of scenarios 

eeded for a good representation of the uncertainty. 

Another issue with SO is that risk is often not well represented, 

hich has prompted some authors to take into account risk mea- 

ures. One can observe this in Sun et al. (2021) , where the pro-

osed model uses the Conditional Value-at-Risk (CVaR) measure to 

odel the risk that is associated with the decisions made. 

.3.2. Robust optimization 

The most straightforward approach to tackle an optimization 

roblem under uncertainty with robust optimization is considering 

 single-stage RO problem, such as in Hu et al. (2018) , the so-called

tatic robust counterpart (SRC). 

Nonetheless, in many cases, there may be some decisions that 

eed to be made before the uncertainty is realized leading to a 

ulti-stage RO problem, which can be reformulated by finding its 

djustable robust counterpart (ARC), such as in Sheng & Gu (2019) ; 

u et al. (2018, 2019) ; Zhang et al. (2017) . In general, due to perfor-

ance considerations, decomposition methods are used to tackle 

his kind of problem. In most cases the column and constraint gen- 

ration (C&CG) algorithm is used, since it has a better convergence 

peed, such as in Zhang et al. (2017) . 

In some cases, it is possible to know the distribution of some of 

he uncertain parameters of the problem, and a hybrid stochastic- 

obust optimization approach can be used, see e.g. Li et al. (2021) ; 

heng & Gu (2019) . 

Finally, some authors approach the uncertainty with informa- 

ion gap decision theory (IGDT), such as Ghahary et al. (2018) . IGDT 

s very similar to RO, however, it considers variable uncertainty 

ets, i.e., the upper and lower bounds of the uncertainty set are 

ot fixed. 

.3.3. Chance-constrained optimization 

When solving a chance-constrained problem, one builds a non- 

inear optimization problem that can be solved directly, as done 

n Wu et al. (2019) . However, the resulting non-linear optimization 

roblems can be hard to solve. 

. Unit commitment 

When solving UC problems, we are considering, besides the OPF 

spects, the technical constraints of energy plants, such as when 

hey can be started up or shut down, and their ability to ramp 

utput up or down. Similarly to the case of the OPF problem, there 
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re various benefits in taking DR into consideration when solving 

C problems. 

.1. DR purpose in the power grid 

Most authors are interested in integrating DR and power grid 

peration adequately, such as in Aghaei et al. (2016) ; Khodaei et al. 

2011) ; Kwag & Kim (2012) ; Magnago et al. (2015) ; Parvania et al.

2013, 2014) ; Tumuluru et al. (2014) ; Tumuluru & Tsang (2016) ;

u et al. (2013b) ; Zhang et al. (2015c) . In Zhang et al. (2015c) ,

R can be a source of energy for reserve capacity. 

DR can also be a huge asset in dealing with the fluctuations 

n renewable generation. In these models, DR mitigates this is- 

ue by shifting loads, such as in Bakirtzis et al. (2018) ; Bitaraf &

ahman (2017) ; Ikeda et al. (2012) . In Mousavi-Taghiabadi et al. 

2020) , DR and plug-in electric vehicles are used to ensure the 

ecurity of frequency dynamics, which is primordial and increas- 

ngly difficult in view of the increasing penetration of wind power 

eneration. In Bakirtzis et al. (2018) , differently from other mod- 

ls, the authors propose that industrial, commercial and residential 

R should be considered separately. Specifically, commercial and 

esidential DR resources are modelled as being supplied by an ag- 

regator, which is not the case for the industrial DR resources. In 

keda et al. (2012) , the authors take into account the forecast er- 

or, although they do not model the problem using stochastic op- 

imization. Finally, some approaches aim to minimize environmen- 

al impacts such as greenhouse gas emissions, see e.g. Hajibandeh 

t al. (2018) ; Zhao & Zeng (2012) . 

There are also models that focus on power grid operation secu- 

ity. In Lee et al. (2016) , a security-constrained unit commitment 

SCUC) problem is modelled and DR is used to ensure supply se- 

urity. In Alirezazadeh et al. (2021) , DR is used to supply reserve 

apacity in case of thermal unit outages. In Ansari & Malekshah 

2019) , DR is used to manage transmission lines outages. DR has 

lso been considered for supporting frequency control and hence 

upporting the secure operation of the grid, as seen in Bao et al. 

2017) ; Mousavi-Taghiabadi et al. (2020) . In Bao et al. (2017) , DR is

sed for both demand shifting and frequency control. 

Furthermore, DR is also used to help mitigate the volatility in 

lectricity prices. Specifically, in Abdolahi et al. (2019) , DR is used 

o smooth the local marginal price. 

Considering how the customers will respond to DR and how to 

ake it more attractive to them is an important aspect too. This is 

xplored in Bie et al. (2016) where the authors propose to measure 

he customers’ comfort, in addition to setting an attractive price, 

hen deciding how to request DR resources from them. 

On the other hand, in Jiang et al. (2017) , the authors focus on

valuating whether taking DR into consideration is the most ben- 

ficial alternative or not, and they also analyze how the net load 

aseline inflation impacts the DR and, consequently, the operation 

f the grid. 

In some cases, the cost of implementing the infrastructure nec- 

ssary for DR is also taken into consideration as well as the opti- 

al location for DR resources, as can be seen in Yu et al. (2018,

019) . 

Finally, there are some approaches where DR is modelled in 

 more detailed manner, not only with upper and lower bounds, 

ut also with ramping rate limits and constraints on the time of 

se of DR resources, such as in Bitaraf & Rahman (2017) ; Jiang 

t al. (2017) ; Khodaei et al. (2011) ; Kwag & Kim (2012) ; Wu et al.

2013b) ; Zarei et al. (2019) . In Khodaei et al. (2011) , the authors

ropose an UC model, and hence the DR also has an on/off state 

ariable. 

Although most of the models consider DR as a variable, there 

re some approaches that favour directly calculating a new de- 

and considering the DR usage, such as in Abdollahi et al. (2011) ;
406 
ovardhan & Roy (2016) ; Tumuluru et al. (2014) . Specifically in 

bdollahi et al. (2011) ; Govardhan & Roy (2016) , it is calculated 

ased on the incentive valued offered by the operator to the cus- 

omers. 

.2. Aggregators 

In much of the literature in which aggregators are considered, a 

odel for an aggregator is not included, as one can see in Bakirtzis 

t al. (2018) ; Konda et al. (2017) ; Parvania et al. (2014) ; Zhang et al.

2015c) . As such, the impact of aggregators is the smaller number 

f variables and the tractability of the problem. 

Models of the aggregator are sometimes taken into considera- 

ion. In Bao et al. (2017) , the aggregator offers the DR resources 

hrough a virtual power plant (VPP), and, consequently, DR be- 

omes akin to a generation plant. In Tumuluru & Tsang (2016) , the 

ggregation is done through finding an equivalent price elasticity 

t a system level, and, as a consequence, the authors were able 

o implement price-based DR through aggregators. Parvania et al. 

2013) presents a model where the objective is to maximize the 

ggregators profit, DR contracts are aggregated, and different types 

f DR are considered separately. In Saebi & Nguyen (2020) , a DR 

arket model is developed for the aggregator to operate in, which 

s applied only at the distribution system level. The decisions about 

he use of DR resources at the distribution level are then used at 

he transmission system level. In Talari et al. (2018) , the aggrega- 

ors offer DR resources through DR contracts; there are both day- 

head DR and real-time DR contracts. 

.3. Operation planning under uncertainty 

.3.1. Stochastic programming 

When solving a stochastic problem, regardless of modelling the 

roblem as a two-stage or a multistage stochastic programming 

roblem, the simplest way to tackle it is formulating it as a de- 

erministic equivalent, such as in Ansari & Malekshah (2019) ; Gong 

t al. (2017) ; Han et al. (2017) ; Karangelos & Bouffard (2011) ; Saebi

 Nguyen (2020) ; Wang et al. (2015b, 2016) ; Wu et al. (2013a) .

owever, this approach creates intractable problems when con- 

idering a large number of scenarios. For this reason, many ap- 

roaches use a scenario reduction technique to have a few scenar- 

os that are representative of the uncertainty, such as in Hamdy 

t al. (2019) ; Parvania & Fotuhi-Firuzabad (2010) ; Rahmani et al. 

2020) ; Sahebi & Hosseini (2014) ; Talari et al. (2017) ; Valinejad 

t al. (2017) . 

The practical performance issues have also led to the use of de- 

omposition methods such as Benders decomposition (BD) which 

an be seen in Soltani et al. (2018) ; Vahedipour-Dahraei, Na- 

afi, Anvari-Moghaddam, & Guerrero (2018) ; Zhang et al. (2015b) . 

n particular, Huang et al. (2014) implements the Benders-based 

ranch-and-Cut that works by verifying whether every examined 

nteger solution is optimal or not. If it is not, a Benders cut is 

dded and the resulting problem is solved again. This process is 

epeated until it returns an optimal integer solution, or a frac- 

ional solution, or the problem becomes infeasible. This algorithm 

emoves the need to solve a MILP problem several times, signifi- 

antly improving the performance of BD. 

Another way to tackle the performance issues is to use heuris- 

ics. In De Jonghe et al. (2013) , the authors use the PIES algo-

ithm to solve the problem, and in Khazali & Kalantar (2016) , 

he PSO algorithm is used. Heuristics are also applied to multi- 

bjective problems, such as in Hajibandeh et al. (2018) where a 

ulti-objective multi-criteria decision making heuristic is applied, 

nd in Furukakoi et al. (2018) , where a genetic algorithm is used 

o solve the model. In Kiran & Kumari (2016) , instead of using an



V.N. Motta, M.F. Anjos and M. Gendreau European Journal of Operational Research 312 (2024) 401–412 

h

m

s

m

p

s

I  

s

m

t

a

d

t

a

m

4

p

R

T

i

n

a

a

Z

d

I  

m

i

Z

c

a

s

a

4

t

l

m

t

s

c

s

e

a

t

e  

g

m

5

n

e

p

s

p

t

t

t

t

M

p

o

m

n

b

5

i

(  

d

d

a  

t

i  

D

t

o

f

g

p

a  

O

e

r

5

s

K

(  

Z

p

v

(  

a

t

e

i

i

(  

t

A

o

v

K

n

I

R

n

D

(

b

euristic, the authors apply lagrangian relaxation to the original 

odel and they solve the new model in an iterative fashion. 

Besides that, there is the issue that risk is often not well repre- 

ented, which has prompted some authors to take into account risk 

easures. One can observe this in Wang et al. (2016) , where the 

roposed models use the Conditional Value-at-Risk (CVaR) mea- 

ure to model the risk that is associated with the decisions made. 

n Yin & Zhao (2018) , the authors propose the use of the fuzzy

tochastic CVaR to measure the risk adequately, since they aim to 

easure the risk associated with the wind power and DR uncer- 

ainties. In Huang et al. (2014) , the authors use the Average Value- 

t-Risk instead of CVaR as a risk measure. 

Finally, because of the lack of information about the uncertainty 

ata distribution, in some cases the uncertainty of some parame- 

ers is modeled using information gap decision theory (IGDT), such 

s in Ahrabi et al. (2021) where a hybrid IGDT-stochastic program- 

ing model is developed. 

.3.2. Robust optimization 

The most straightforward approach to tackle an optimization 

roblem under uncertainty using RO is to consider a single-stage 

O problem, such as in Heydarian-Forushani et al. (2015) ; Liu & 

omsovic (2015) ; Mahboubi-Moghaddam et al. (2016) , and to solve 

t via the so-called static robust counterpart. 

Nonetheless, in many cases, there may be some decisions that 

eed to be taken before the uncertainty is realized. This leads to 

 multi-stage RO problem that can be reformulated by finding its 

djustable robust counterpart (ARC), such as in Zhao et al. (2013) ; 

hao & Zeng (2012) . In general, due to performance considerations, 

ecomposition methods are used to tackle this kind of problem. 

n some cases BD is applied, as seen in Zhao et al. (2013) , but in

ost cases the column and constraint generation (C&CG) algorithm 

s used because it has a better convergence speed, see e.g., Zhao & 

eng (2012) . 

In Du et al. (2020) , the authors take into account adjustable un- 

ertainty sets and use the affinely adjustable approach, generating 

n affinely adjustable robust counterpart (AARC), which is less con- 

ervative than the ARC. 

Finally, some authors approach the uncertainty using IGDT, such 

s Ahrabi et al. (2019) ; Nikoobakht & Aghaei (2017) . 

.3.3. Chance-constrained optimization 

A CCO problem can be transformed with a non-linear optimiza- 

ion problem but this latter problem is often hard to solve. This has 

ed to the use of solution methods or problem reformulations that 

ake the model more tractable. In Tan & Shaaban (2020) , the au- 

hors use the so-called Big-M method to linearize the model, and, 

imilarly, in Wang et al. (2012) , a MILP reformulation of the chance 

onstraints is used. 

Heuristics are sometimes used in order to find a good quality 

olution in a reasonable amount of time. In Azizipanah-Abarghooee 

t al. (2016) , the authors propose an improved version of the jaya 

lgorithm, which is a population-based method. Particle swarm op- 

imization (PSO) is also employed in some cases, such as in Liu 

t al. (2019) . In Zhang et al. (2015a) , the authors apply PSO to-

ether with some of the genetic algorithm operators, such as the 

utation and crossover operators. 

. Expansion planning 

In this section, we cover the various capacity expansion plan- 

ing models in the literature for generation and/or transmission 

xpansion planning taking DR into account. When operating the 

ower grid over a long-term horizon, different issues must be con- 

idered. Because energy consumption grows over time, it is ex- 

ected that the generating capacity may not suffice to supply all 
407 
he demand, and that the transmission system may not be able to 

ransport all the energy to meet the demand. There is thus a need 

o plan the expansion of both generation and transmission. When 

ackling this problem, one may consider only one or both aspects. 

oreover, modellers also make assumptions about the kind of DR 

rogram considered, and how it is integrated in the model. More- 

ver, when the transmission system is included in the model, one 

ay choose how it is represented. Most of the models either do 

ot consider a transmission system or consider a DCOPF model, 

ut some models do use an ACOPF representation. 

.1. Generation expansion planning 

The impact of DR on generation expansion planning is taken 

nto account in articles such as De Jonghe et al. (2012) ; Malik 

2007) ; Oderinwale et al. (2020) ; Samadi et al. (2013) . It may be

one with different possible goals. 

Most approaches in the literature consider DR resources in or- 

er to minimize or delay investments in new energy plants, such 

s in Malik (2007) ; Samadi et al. (2013) . In some cases, in addition

o delaying investments, DR is also used to mitigate the variabil- 

ty of renewable generation, such as in De Jonghe et al. (2012) . In

omínguez & Carrión (2019) , the authors also consider the need 

o minimize greenhouse gas emissions, and DR also supports that 

bjective. 

Some authors, such as in Oderinwale et al. (2020) , only account 

or DR with regards to how it impacts the operation of the power 

rid. The operation of the power grid is used to verify if the pro- 

osed expansion plan is optimal. 

Finally, although DR is often represented using a specific vari- 

bles for it, such as in De Jonghe et al. (2012) ; Malik (2007) ;

derinwale et al. (2020) , this is not always the case. In Samadi 

t al. (2013) , DR is represented by calculating the new demand di- 

ectly considering the electricity price. 

.2. Transmission expansion planning 

There are several approaches in which transmission expan- 

ion planning takes into account the impacts of DR, such as in 

azerooni & Mutale (2010) ; Löschenbrand (2021) ; Özdemir et al. 

2015) ; Qiu et al. (2017a) ; Rathore & Roy (2016) ; Xie et al. (2020) ;

akeri & Askarian Abyaneh (2017) . DR may be considered in ex- 

ansion planning for various purposes. 

There are models that consider DR resources to mitigate the 

ariablility of renewable energy sources, such as in Qiu et al. 

2017a) ; Rathore & Roy (2016) . In Qiu et al. (2017a) , the authors

lso consider system reliability, using DR to support reliability in 

he presence of large quantities of renewable generation. In Li 

t al. (2015) , the authors consider potential outages of generat- 

ng units and transmission lines outages. Congestion management 

ssues also need to be considered, as seen in Hajebrahimi et al. 

2015) . In some cases, DR is used to reduce the need to build new

ransmission lines or to reinforce existing ones, such as in Zakeri & 

skarian Abyaneh (2017) . Besides that, in certain cases, the impact 

f DR is evaluated on the daily power grid operation in order to 

erify if a given transmission expansion plan is optimal, such as in 

azerooni & Mutale (2010) . 

We again point out that including DR in a model does not 

ecessarily imply having specific variables and constraints for it. 

n fact, in Kazerooni & Mutale (2010) ; Özdemir et al. (2015) ; 

athore & Roy (2016) ; Zakeri & Askarian Abyaneh (2017) , DR is 

ot calculated directly, but rather it is the new demand, after 

R is requested, that is calculated directly. In Kazerooni & Mutale 

2010) ; Özdemir et al. (2015) , this new demand value is calculated 

ased on the price elasticity and on the electricity price, and in 
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akeri & Askarian Abyaneh (2017) , besides these two factors, in- 

entives are also taken into account. 

.3. Joint generation and transmission expansion planning 

The impact of DR on joint generation and transmission ex- 

ansion planning is taken into account in articles such as Anjo 

t al. (2018) ; Gbadamosi & Nwulu (2020) ; Guerra et al. (2016) ;

amidpour et al. (2019) ; Jenabi et al. (2013) ; Khodaei et al. (2012) ;

axena & Bhakar (2019) ; Unsihuay-Vila et al. (2011) ; Zhang et al. 

2016a,b) . As mentioned in previous sections, the inclusion of DR 

as several possible goals. 

Some approaches in the literature consider DR resources to 

inimize or delay investments on new power plants as well as in- 

estments on new transmission lines, such as in Hamidpour et al. 

2019) ; Saxena & Bhakar (2019) ; Zhang et al. (2016b) . Others are

ased on the fact that DR can not only be used to delay invest-

ents, but it can also be used to manage the system balance in 

he presence of renewable generation, such as in Anjo et al. (2018) ;

badamosi & Nwulu (2020) ; Khodaei et al. (2012) ; Zhang et al. 

2016a) . 

The work in Khodaei et al. (2012) examines the reliability of the 

rid after applying the proposed expansion plan. In this specific 

odel, the reliability is measured using the loss of load expecta- 

ion (LOLE) that must remain within given limits. 

In some cases, the impact of the DR resources in the proposed 

xpansion plan is analyzed in the daily operation after applying 

hat plan, such as in Zhang et al. (2016b) . More precisely, the idea

s to analyze the impact on the peak load and the adequacy of the 

roposed expansion plan for grid operation. 

Besides that, the problem of the optimal location and siting of 

R resources in the power grid is also taken into consideration by 

 few models, such as in Guerra et al. (2016) ; Jenabi et al. (2013) . 

In Guerra et al. (2016) ; Unsihuay-Vila et al. (2011) there is also 

 preoccupation with regards to the environmental impacts when 

roposing an expansion plan. To mitigate those impacts, CO 2 emis- 

ions constraints are used as well as carbon capture technologies. 

Furthermore, DR is sometimes integrated through an aggrega- 

or, such as in Hamidpour et al. (2019) , which facilitates the pro- 

urement of DR resources by the system operator. 

Finally, we note that DR is generally directly represented us- 

ng a specific variable when modelling this type of joint expansion 

lanning, as we can see in Gbadamosi & Nwulu (2020) ; Guerra 

t al. (2016) ; Hamidpour et al. (2019) ; Jenabi et al. (2013) ; Khodaei

t al. (2012) ; Unsihuay-Vila et al. (2011) ; Zhang et al. (2016a,b) .

owever, this is not always the case, and Saxena & Bhakar (2019) is 

 good example of that. 

.4. Expansion planning under uncertainty 

.4.1. Stochastic programming 

Similar to what happens for operation planning, most authors 

odel uncertainty as a single (deterministic) stochastic program- 

ing problem containing all the scenarios, such as in Asensio et al. 

2017, 2016) ; Domínguez & Carrión (2019) ; Marañón Ledesma & 

omasgard (2019) ; Zheng et al. (2018) . However, because of the 

omputational performance issues of that approach, some authors 

se a scenario reduction technique to keep only the most repre- 

entative scenarios, such as in Jin et al. (2013) ; Qiu (2018) . 

In order to consider more scenarios and larger problems, some 

apers rely on decomposition algorithms. In Qaeini et al. (2019) ; 

iu (2018) ; Zeinaddini-Meymand et al. (2019) , the authors use the 

D algorithm to solve their proposed models. Because BD has per- 

ormance issues, enhancements to this method are employed in ar- 

icles such as in Li et al. (2015) , where the authors use an improved

D algorithm, which they call hierarchical BD (HBD). It works by 
408 
olving, in a first phase, a relaxed version of the original problem, 

nd then in a second phase, solving the original problem with the 

enders cuts generated in the first phase. In Lohmann & Rebennack 

2017) , the authors also propose the use of BD to solve a mixed- 

nteger non-linear optimization designed for expansion planning. 

owever, instead of using generalized BD (GBD), they propose to 

ynamically overestimate the linear relaxation of the subproblems, 

voiding the need to use GBD. Because the relaxed subproblem can 

e hard to solve in some cases, the authors further propose the 

se of nested Benders decomposition (NBD) to solve the subprob- 

em. In short, BD coupled with NBD is used to solve the proposed 

odel. 

Some authors propose multi-objective stochastic programming 

odels, which are often solved with heuristics. Hajebrahimi et al. 

2015) ; Hejeejo & Qiu (2017) employ the nondominated sorting ge- 

etic algorithm to solve their models, while Qiu et al. (2016) use 

he multi-objective evolutionary algorithm MOEA/D. 

Finally, because risk is often misrepresented in stochastic pro- 

ramming problems from a practical perspective, some approaches 

ake into consideration risk measures, as we can see in Qiu (2018) ; 

iu et al. (2017b) . In Qaeini et al. (2019) , the authors use CVaR as

 risk measure in order to generate risk-averse solutions. 

.4.2. Robust optimization 

In the first step to use a RO approach, one only needs to de- 

ign an uncertainty set, find its robust counterpart and solve it. 

his is the SRC approach that can be seen in Löschenbrand (2021) . 

owever, under uncertainty, investment decisions will impact fu- 

ure decisions. In this case, we face a multi-stage problem and an 

RC formulation can be used to solve it, as in Dai et al. (2019) ;

uang et al. (2019) . Because these problems can be hard to solve, 

ecomposition methods are often used, such as in Zheng et al. 

2019) . it is also often the case that one has information about the 

istribution of the uncertainty that could be used in a stochastic 

ptimization approach, but the knowledge of this distribution is 

ncomplete. In these case, one can use the Distributionally Robust 

ptimization (DRO) approach, as seen in Zheng et al. (2019) . 

. Conclusion 

This survey has presented a review of operation and expansion 

lanning models integrating DR resources. For operation planning, 

R can be used for different purposes, such as mitigating the fluc- 

uations in renewable energy generation and mitigating transmis- 

ion congestion. For expansion planning, the main objective of us- 

ng DR is to mitigate the need for building new power plants or 

ew transmission lines. However, DR is often also used to support 

ncillary operational objectives. 

In most cases, the transmission system is modelled using 

COPF or it is not considered at all. An ACOPF model is seldom 

mployed in either operation or expansion planning models. Al- 

hough this is understandable due to the fact that ACOPF makes 

he models computationally challenging to solve, this choice may 

ead to optimistic solutions. Considering that there are now high- 

uality convex relaxations for ACOPF, such as in Bingane et al. 

2018) and Coffrin et al. (2015) , it would be worthwhile to use 

hese to find more accurate solutions. 

With respect to DR modelling, we note that aggregators are 

ften not considered, which may cause issues when tackling 

arge-scale grids with many DR resources. It would be interesting 

o explore the impacts of aggregators on large-scale grids and 

ow they can facilitate the integration and optimal use of DR. 

oreover, in most expansion planning models, the impact of DR 

oupled with the expansion schedule is not analyzed from a daily 

perational perspective. Considering that the impact of using DR 
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s more perceptible in day-ahead operation, it would be important 

o analyze how DR might impact expansion decisions. 

Uncertainty is growing in importance for operation and expan- 

ion planning, and while there are several models that account of 

t in some way, this survey highlights the fact that only a few of 

hem employ decomposition techniques, and, even in these cases, 

ost of them do not consider any enhancement methods to im- 

rove the performance of those decomposition methods. Given 

hat such methods are practically the only means to solve large- 

cale models of realistic sizes, a promising path for future research 

s to optimize the performance of these techniques specifically 

or these classes of models, as was done recently for hydropower 

aintenance models in Rodríguez et al. (2021) . This would allow 

o apply the models to real-world power grids. 

Finally, with regards to RO, we can observe that it is sparsely 

sed to address uncertainty. It would be expecially interesting to 

xplore the potential of applying the recently developed method 

f DRO to operation and expansion planning modelling. 
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