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Abstract—The optimal capacity estimation and allocations of 

Distributed Generation (DG) units along with appropriate 

placement of Electric Vehicle charging stations (EVCS) makes 

a substantial contribution in curtailing power losses and 

improving the voltage stability of a system. In this regard, this 

paper formulates a multi-objective function to minimize the 

power losses and voltage deviation of buses in the distribution 

network. The optimization problem is solved using three 

different types of optimization algorithms, namely Particle 

Swarm Optimization (PSO), Grey Wolf Optimization (GWO), 

and Hybrid Particle Swarm Grey Wolf Optimization 

(HPSOGWO). To simulate the practical situation, voltage-

dependent load and various electric vehicle (EV) charging 

patterns based on the location of EVCS are considered in this 

study. Solar photovoltaic, wind turbine, and diesel generator-

based DGs are taken into account in this study. The proposed 

algorithm is tested on an IEEE 33 bus network considering 

different scenarios.  The results obtained show that HPSOGWO 

provides the most optimal solution among all the considered 

algorithms, with the least power loss and voltage deviation for 

all scenarios.  

Keywords—Optimal allocation, Capacity estimation, 

Electric Vehicle charging stations, Distributed Generation, 

Hybrid Particle Swarm Grey Wolf Optimization  

I. INTRODUCTION  

The small-scale power generation systems, connected 
close to consumer loads are known as Distributed Generation 
unit (DG). In recent years, the integration of DGs to the 
conventional grid has increased rapidly due to its advantages 
in technical, environmental, and economic aspects. 
Photovoltaic, Wind turbines, biomass, microturbines, fuel 
cells are the distributed energy resources that come under 
Distributed Generation. It is mentioned in [1], that in the 
upcoming days DG would contribute around 20% of total 
power generation.  Along with DG, electric vehicles (EVs) 
are also getting popular as a potential alternative to fossil-
fuel-driven transportation. The penetration of EVs in the 
network increases the system’s total load which is a challenge 
for the current distribution system [2]. It is observed that 
power loss and voltage stability of an electrical network is 
dependent on DG’s sizing, EVs charging load, location of 
DGs, and EVs charging stations (EVCS) in a network. 
Therefore, if the sizing of DGs and their integration with 
EVCS are planned optimally and strategically in a network 
then they are always committed to reduce the network’s 
power losses, enhancement of voltage stability margin, 
improvement of voltage profile, improvement of power 
quality of supplied power and system reliability [3].  

In the past few years, many algorithms have been 
formulated for optimal placement and capacity of DG for 
minimizing overall power losses in the distribution network 

[4][5][6][7][8]. In [4] the authors proposed an analytical 
technique to calculate the optimal location and size of 
Distributed Energy Resources (DERs). In [5] authors utilize 
an artificial bee colony algorithm to estimate the optimum 
location, power factor, and size of a DG unit. The study in [6] 
was focused on optimal allocation and sitting of photovoltaic 
PV cells in radial distribution systems based on the Ant Lion 
optimizer algorithm. The multi-objective function is 
formulated for the optimization problem but the authors did 
not present any information regarding the efficiency of the 
algorithm compared with other optimization algorithms. In 
[7]  optimal allocation of DG units is done using a hybrid 
particle swarm optimization algorithm (HPSO). To place DG 
at a suitable position, loss sensitivity analysis is performed 
and for optimum sizing HPSO algorithm is used and results 
obtained are compared with other optimization algorithms. 
The work in [8] applied a hybrid method based on loss 
sensitivity factors and Moth-Flame optimization to determine 
the optimal placement and size of DG units. The loss 
sensitivity factors are used to estimate the candidate bus for 
DG allocation and Moth-Flame optimization is used to 
determine optimal size and placement of solar and wind-
based DG units. Further, the authors of [9] aim to cut-down 
the total investment value by optimal placement of wind-
based DG and battery storage system (BESS). The cost of 
investment for BESS and DG is taken to be proportional to 
their size. It is reported in [10], Hybrid Grey Wolf 
Optimization (HGWO) is suitable to solve the discrete, non-
convex problems. Also, there is considerable reduction in loss 
and improvement in voltage profile. The results are compared 
with various metaheuristic algorithms and shows that the 
HGWO algorithm outshines all the other algorithms. The 
authors in [11] utilize grasshopper optimization (GOA) 
technique to determine the optimal place and size of DG 
units. The multi-objective function is formulated to minimize 
the active power losses and to improve voltage profile of the 
system. The voltage dependent electric load demand, and 
seasonal variations of wind and solar based DGs are 
considered but didn’t take into account impact of electric 
vehicle charging load demand and optimal placement of 
electric vehicle charging stations. A genetic algorithm-based 
optimization problem is formulated in [12] to determine the 
optimal site and size of electric vehicle parking lots. The 
optimization problem considers the distribution system’s 
reliability and power losses along with investment cost. 
However, this article didn’t consider the renewable DG units 
and various electric vehicle charging patterns based on 
location of parking lots in the system. Further, an approach 
for simultaneous optimal allocation of renewable energy 
sources and EVCS in smart grids is proposed in [13]. A multi-
objective optimization problem is formulated to reduce 
power losses, charging and demand supplying costs, and 
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voltage fluctuations. A hybrid genetic algorithm and particle 
swarm optimization are used to solve this multi-objective 
optimization problem but authors didn’t discuss the impact of 
different electric vehicle charging patterns. 

By the conducted literature survey, we remark that the 
researchers did not focus on optimal capacity estimation and 
allocations of DG units together with appropriate placement 
of EVCS simultaneously, and considering different charging 
patterns and voltage-dependent load. To investigate these 
issues, this paper formulates a multi-objective function with 
a purpose to determine the optimal capacity and location of 
multiple DGs along with EVCS, to reduce power losses and 
voltage fluctuations in the system. The considered test system 
includes voltage-dependent load models, renewable energy-
based DG units, and different electric vehicle charging 
patterns.  

The paper is organized as follows. Section II discusses the 
distributed generation units and load modelling. Electric 
vehicle charging load modelling is detailed in Section III. The 
objective function and operational constraints are formulated 
in Section IV. The results for the considered case study are 
presented in Section V. Lastly, Section VI concludes the 
paper. 

II. DISTRIBUTED GENERATION UNITS AND LOAD MODELLING 

The DG units are usually modeled as a constant power 
factor model.  Power electronic and synchronous generator-
based DGs are referred to as controllable DGs [14]. In this 
study, all DGs are modelled as constant power factor model 
having a power factor of 0.9 lagging. The details of modelling 
of various DG units and electric load are discussed below. 

A. Solar Photovoltaic (PV) as DG 

The power output of a photovoltaic array is a function of 
solar insolation and its relation is shown in (1) [15].  

���� = ����	 ∗ �������� ∗ ��	��	���                     (1) 

where � stands for perpendicular irradiance falling on the 
PV array surface in �/��, ��	��	���  represents the converter 
efficiency of PV arrays which is assumed to be 95%. 
Moreover,  ��������  is the rated value of the power of each PV 
array and ���	 is the solar irradiance at standard test 
condition (STC), which are considered to be 5 �� and 1000 �/�� respectively.  

B. Wind turbine Generator (WTG) as DG 

The power output of a wind turbine generator (���) is 
a function of wind speed and is expressed by (2) [15].  ����

=
⎩⎪
⎨
⎪⎧

0 ;      �& ≤  �(), , �& ≥  �(,,                                                  
�-./01��� ∗ 2�& − �()�- − �() 43 ;  �() < �& ≤  �-                         (2)

�-./01��� + 9�(,��� − �-./01���
�(, − �- : ∗ (�& − �-);  �-  < �& < �(,

 

where �;�<  is the active power output of  ���. Also, �=>;�<  and  �����;�<  represents the active power output of  ��� 
at cut-out and rated wind speed respectively. Furthermore, �? , �� , �=@  and �=> are measured, rated, cut-in, and cut-out 
wind speeds in � A0(⁄  respectively. The specifications of the 
considered ���, including rated, cut-in, and cut-out wind 

speeds are 12.5 � A0(⁄ , 3.5 � A0(⁄ , 25 � A0(⁄  respectively. 
The WTG (Bonus 150/30) having a specified rated power of 
150 �� is considered in this study [16]. 

C. Diesel Generator (DEG) as DG 

The diesel generator having a constant power factor of 0.9 
lagging is considered in this paper. 

D. Electric Load Modelling 

In a practical distribution system, the load is continuously 
changing. Therefore, this study considers voltage-dependent 
load i.e., residential, commercial, and industrial load models 
to simulate the practical scenario. In load flow problems, the 
here considered exponential-based static load modeling is 
more appropriate with respect to dynamic load modeling 
[17]. In the static load model, load behavior is represented as 
an algebraic function of voltage magnitude [17]. In the case 
of exponential load, the mathematical relation between the 
load parameters and voltage magnitude is shown in (3) & (4) 
[18].  

�C,.1 ) = �C0D@EF      ) = 1,2, … . . IJ                (3) 

KC,.1 ) = KC0D@EL     ) = 1,2, … . . IJ                  (4) 

where, N� and NO are active and reactive power exponents 
which vary according to different load classes i.e., residential, 
commercial, and industrial respectively.  �P>�� @ and KP>�� @ 
refers to real and reactive power load at )Q bus, while �PR and KPR  are the values of active and reactive power load at initial 
working conditions, respectively. D@ is the magnitude of the 
voltage at the )Q  load bus. Table I shows the exponent values 
corresponding to different load types. In this paper, a winter 
day is considered and load type on buses is mentioned in 
Table II.  

III. ELECTRIC VEHICLE CHARGING LOAD MODELLING 

The stochastic behavior of EVs charging load is a result 
of several factors, such as the number of vehicles, battery 
capacity, time at which it is plugged in or plugged out, 
charging speeds, charging patterns, and daily distance 
traveled by an EV [19]. Moreover, various types of vehicles 
like private, public, buses behave differently which increases 
uncertainty in EV charging load. In this paper, EVs charging 
load is modelled using few parameters such as the number of 
vehicles, daily distance traveled by an EV, time at which it is 
plugged in i.e., arrival time or plugged out, i.e., departure 
time. The Monte Carlo simulation technique is used to 
estimate parameters such as daily distance, arrival, and 
departure time of EVs from their respective probability 
density functions. 

It is assumed that EVs considered in this study are private 
vehicles. It is also assumed; the charging of EVs will start as 
soon as they reach their residence/workplace until the battery 
is fully charged. These EVs are charged according to the 
behaviors of three different charging station/parking nodes 
i.e., residential (STU), commercial (TTU), and 
industrial (VTU) charging stations. At STU, the EV charging 
starts at 4:00 pm after the owner arrives at the residence, 
whereas, for TTU it begins at 8:00 am when the owner arrives 
at the workplace. Usually, industrial employees have three 
kinds of working shifts therefore for VTU, at morning 6:00 am 
first shift’s EV charging starts, similarly, the second shift and 
the third shift start at 2:00 pm and 10:00 pm respectively. The 
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duration of charging (�	,E) for each NQ EV can be obtained 
from (5)[20]. 

�	,E = WE �XRRYZ
100 �	,EYZ  �	YZ     ∀N ∈ I�                        (5) 

where �XRRYZ  refers to the energy consumption per hundred 
kilometers in ��ℎ/100 ��; �	YZ represents the charging rate 
of EVs in ��; �	YZis the charging efficiency of EVs. I� 
represents the total no. of EVs. The departure/end time (��E�,E) of EVs can be further calculated using (6) [20]. 

��E�,E = �_��,E + �=,E − 1    ∀N ∈  I�                     (6) 
where �_��,E represents the time at which EV charging 

begins. However, by accumulating the charging power of 
each period, the total charging load �P>��YZ_ (/) can be 
calculated.   It is noted that EV charging periods are 
independent of each other, therefore, using (7) the daily load 
profile of a large number of EV charging can be calculated. 

  �P>��YZ_ (/) =  a �	,EYZ
bc 

EdX
(/)                          (7) 

where �	,EYZ  is the charging power of NQ vehicle. 
Figure 1 shows the daily charging load profile of 65 EVs 

at residential (STU), commercial (TTU), and industrial (VTU) 
charging stations. Table III shows the parameters of electric 
vehicles considered in this work. The peak load of each EV 
charging load pattern is considered for determining optimal 
locations of four EVCS. 

TABLE I.  THE EXPONENT VALUES CORRESPONDING TO DIFFERENT 
LOAD TYPES[18] 

Load Type 
Residential Commercial Industrial fgh fih fgj fij fgk fik 

Summer 
Day 0.72 2.96 1.25 3.5 0.18 0.6 

Night 0.92 4.04 0.99 3.95 0.18 0.6 

Winter 
Day 1.04 4.19 1.5 3.15 0.18 0.6 

Night 1.3 4.38 1.51 3.4 0.18 0.6 
Constant Power 0 0 0 0 0 0 

TABLE II.  DIFFERENT LOAD TYPES ON VARIOUS BUSES 

Load Type  Bus No. 

Constant Power  2,3,4,5,6,7 

Residential Load 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 

Industrial Load 23,24,25 

Commercial Load 26,27,28,29,30,31,32,33 

TABLE III.  PARAMETERS OF EV 

PHEV Parameters  Value 

 �XRRYZ  (kWh/100km) 12 TEYZ (kWh) 24 UlTEm�n/UlTEm@E (%) 100/20 

�	,EYZ/��,EYZ,m�n (kW) 3 

�	YZ 85% 

IV. OBJECTIVE FUNCTION FORMULATION AND OPERATIONAL 

CONSTRAINTS 

In order to formulate the objective function, power flow 
calculation is an initial step. Conventional power flow 
algorithms such as Gauss-Seidel, Newton Raphson are 
incompetent for distribution network as it has low X/R ratio. 

 
Fig. 1 Charging load profile of 65 number of EVs at residential (STU), 
commercial (TTU) and industrial (VTU) charging station 

Hence, the Backward-Forward sweep power flow 
algorithm is mainly used for distribution networks for fast 
and accurate results [21]. Consider a radial distribution 
network shown in Fig. 2.  Buses r & s are connected through 
a line having a total impedance o�_ . 

 
Fig. 2 Radial distribution network 

o�_ = S�_ + pq�_                                       (8) 
 

Active power loss for the line between r & s can be written 
as: 

s�C(�_) = S�_ 9 ��_� + K�_�
D�� :                       (9) 

The total active power loss (TAPL) can be computed by: 

�s�C = a s�C(�_)                             (10)
buv

_dX
 

where Iw� is the total number of branches present in the 
network, - = 1: Iw and Iw is the number of buses. 

An important function of the voltage deviation (VD) is to 
determine the weak buses in a network. It is a measure of 
voltage stability margin in the power system network to 
maintain voltage within the permissible limits after the 
occurrence of disturbance. Total voltage deviation (TVD) is 
given by: 

�DW = a|1 − D�|                           
bu

�dX
(11) 

where, D�  is the voltage at bus r, - = 1: Iw. 
In this paper, two objective functions (OF) are formulated 

to minimize active power loss & minimize voltage deviation 
index. i.e., Minimize lz1 = s�z and Minimize  lz2 = TVD. 

This multi-objective problem is solved using the weighted 
sum approach and the overall objective function (OOF) is 
defined in (12). llz =  &X ∗ �s�C + &� ∗ �DW            (12) 

where &X and &� are the weights of  lz1 & lz2 
respectively. The values considered for &X and &� are 0.7 and 
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0.3 respectively.  The objective function in (12) is minimized 
with respect to the following constraints. 

Power Balance Constraints 

�P>��YZ_ + �P>�� + �P>__ =   ��<_ + ���@�       (13)  
where ���@� , �P>__  and ��<  are the active power of the 

electrical grid, active losses of the network, and power output 
of all DGs respectively. 

KP>�� + KP>__ =   K�<_ + K��@�             (14) 

where K��@� , KP>__  and K�<_  are the reactive power of the 
electrical grid, reactive losses of the network, and power 
output of all DGs respectively. 

 Voltage limits of the bus 

D@m@E < D@(/) < D@m�n   ) = 1,2, … . . Iw           (15) 

where, D@m@E and D@m�n are the minimum and maximum 
bus voltage limits, having values 0.95 and 1.05 respectively. D@   is the voltage magnitude at bus ) in pu. 

Power limits of DERs 

��<,mm@E < ��<,m < ��<,mm�n  ∀� ∈ �              (16) 
K�<,mm@E < K�<,m < K�<,mm�n  ∀� ∈ �             (17) 

where, ��Y�,mm@E  and ��Y�,mm�n  are the minimum and 
maximum limits on the active & reactive power output of the �Q DER, respectively. 

A. Algorithm for capacity estimation of DG, allocation of 

DG and EVCS 

In this paper, 3 optimization techniques are adopted to 
estimate the optimal capacity and placement of DG along 
with suitable placement of EVCS for minimizing both 
objective functions. The flow chart of the proposed method is 
shown in Fig. 3. In order to set the lower and upper limits of 
control parameters for optimization certain pre-assumptions 
are made:   

• For the scenarios in which DGs are integrated into the 
test system, the total load of the system is fulfilled 
only by DGs which means that the power taken from 
the grid is zero. Further, the sum of capacities of all 
DGs present in the network is less than or equal to the 
total connected load on the system to restrict the over-
sizing of DGs. 

• DGs are permitted to be located at any bus except the 
grid-connected bus i.e., bus number 1. 

• The total four EV charging stations are considered in 
this system for optimal location. Two charging 
stations  (STU 1 & STU 2) are assigned to locate for 
residential buses. However, for a commercial and 
industrial group of buses, one charging station (TTU & VTU) is allocated to each group. 

1) Hybrid Particle Swarm Grey Wolf Optimzation 

(HPSOGWO) : This algorithm is developed by Şenel, F.A., 
Gökçe, F., Yüksel, A.S. et al. [22]. It utilizes the GWO 
algorithm to support the PSO algorithm in order to reduce the 
possibility of falling PSO into a local minimum [23]. The 
flowchart of the HPSOGWO algorithm is shown in Fig. 4. 
The optimal results obtained from HPSOGWO are discussed 
in Section V.  

Input Load 

and Line 

Data

Initialize optimization parameters 

such as population size, iteration 
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Start

Update the system data using values 

obtained from optimization 

algorithm 

Execute power flow and evaluate 

initial fitness using multi-objective 

function

Constraints 

Satisfied

Update DG parameters and EVCS 

location based on updated 

optimization parameters

Yes

Execute power flow and update 

new fitness using multi-objective 

function

Add penalty factor 

to objective 

function

No

Check for maximum no. of 

iterations
i= i+1

Print optimal results

No

Yes

 
Fig. 3 Flow chart of the proposed method 
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Fig. 4 Flowchart of HPSOGWO algorithm 

V. CASE STUDY AND RESULTS 

 The IEEE 33-bus radial distribution system is 
considered. During the analysis, the base voltage and base 
MVA considered are 12.66 kV and 100 MVA respectively. 
The test system consists of 33 buses and 32 branches as 
shown in the single-line diagram depicted in Fig. 5. It is 
assumed that the initial total real and reactive power loads on 
the system (apart from EV charging load) are 3715 kW and 
2300 kVAr, respectively. In this study, five scenarios are 
considered i.e., a test system without DG and EVCS; without 
DG but with EVCS; with a PV as DG and EVCS; with a PV 
and WTG as DG and EVCS and a test system with all the 
three DGs, PV, WTG, DEG, and EVCS. In scenario 2, 
optimum allocations of EVCS are determined using all three 
optimization algorithms. Moreover, for scenarios 3,4, and 5 
the optimum capacity and allocations of DGs and allocations 
of EVCS are obtained using all three optimization algorithms. 
These results are summarized in Table IV. 
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TABLE IV.  RESULTS OBTAINED FROM VARIOUS OPTIMIZATION TECHNIQUES IN ALL THE CONSIDERED SCENARIOS 

Different Cases 

Different 

Optimization 

Techniques 

Optimal Bus 

No. locations of 

DG 

Capacity of DG 
Optimal EVCS Bus No. 

locations 

Min value of 

TAPL 

(kW) 

Maximum Voltage 

Deviation 

Base Scenario 1 –  

Without DG and 

EVCS 

N.A. N.A. N.A. N.A. 165.7162 0.0839 at 18th bus 

Scenario 2 – 

Without DG but with 

EVCS 

PSO N.A. N.A. 
STUXat 8, STU�at 20 TTU at 26, VTU at 24 

202.22 0.0913 at 18th bus 

GWO N.A. N.A. 
STUXat 8, STU�at 22 TTU at 26, VTU at 23 

203.75 0.0913 at 18th bus 

HPSOGWO N.A. N.A. 
STUXat 8, STU�at 19 TTU at 26, VTU at 23 

201.07 0.0913 at 18th bus 

Scenario 3 – 

 With PV as DG and 

EVCS 

PSO 26 (PV) 4.52 MW 
STUXat 8, STU�at 21 TTU at 26, VTU at 24 

123.11 0.0301 at 26th bus 

GWO 26 (PV) 4.6 MW 
STUXat 15, STU�at 22 TTU at 26, VTU at 25 

135.40 0.0313 at 26th bus 

HPSOGWO 26 (PV) 4.52 MW 
STUXat 8, STU�at 19 TTU at 26, VTU at 23 

119.7 0.03 at 26th bus 

Scenario 4 – 

With PV and WTG 

as DG and EVCS 

PSO 
24 (PV) 1.6 MW (PV) STUXat 8, STU�at 20 TTU at 29, VTU at 24 

66.52 0.0377 at 18th bus 
26 (WTG) 2.82 MW (WTG) 

GWO 
24 (PV) 2 MW (PV) STUXat 18, STU�at 22 TTU at 33, VTU at 25 

90.75 0.0423 at 18th bus 
26 (WTG) 3 MW (WTG) 

HPSOGWO 
24 (PV) 1.6 MW (PV) STUXat 8, STU�at 19 TTU at 26, VTU at 24 

61.69 0.0377 at 18th bus 
26 (WTG) 2.81 MW (WTG) 

Scenario 5 – 

With PV, WTG, and 

DEG as DG and 

EVCS 

PSO 

13 (PV) 1.05 MW (PV) STUXat 13, STU�at 22 TTU at 30, VTU at 23 
32.45 0.0125 at 13th bus 30 (WTG) 1.57 MW (WTG) 

24 (DEG) 1.8 MW(DEG) 

GWO 

33 (PV) 1.5 MW (PV) STUXat 18, STU�at 22 TTU at 33, VTU at 25 
47.93 0.0238 at 33rd bus 13 (WTG) 1.2 MW (WTG) 

24 (DEG) 1.8 MW(DEG) 

HPSOGWO 

30 (PV) 1.43 MW (PV) STUXat 11, STU�at 19 TTU at 30, VTU at 24 
27.98 0.0111 at 11th bus 11(WTG) 1.2 MW (WTG) 

24 (DEG) 1.8 MW(DEG) 

All three optimization algorithms are iterated for 200 
iterations with 70 population sizes for every scenario. 
Further, Fig.6, 7 and 8 shows the convergence characteristics 
for scenario 3, 4 and 5 respectively considering all the three 
optimization algorithms. In base scenario 1, the value of 
TAPL is lower than scenario 2 as in this case EV charging 
load is also considered. As observed in Table IV,  for 
scenarios in which DG gets integrated into the test system, 
HPSOGWO is providing an optimal solution with the lowest 
TAPL and voltage deviation as compared to PSO and GWO.  
In scenario 3, the optimal location and capacity of DG are 26th 
bus and 4.52 MW respectively. It indicates that in this case 
approximately 904 PV arrays are required to fulfill the total 
load demand. The value of TAPL and maximum VD 
observed at these optimal solutions is 119.7 kW and  0.03 on 
the 26th bus respectively.  

 
Fig. 5. IEEE 33 bus modified test system 

Similarly, in scenario 4, 1.6MW rated PV allocated on the 
24rd bus and 2.81 MW rated WTG on the 26th bus are the 

optimal solutions obtained by HPSOGWO. It means,  320 PV 
arrays and  19 WTGs are required in this scenario. The TAPL 
and maximum VD values observed in this case are 61.69 kW 
and 0.0377 on the 18th bus respectively. However, in scenario 
5 the optimal locations and rated capacities of PV, WTG, and 
DEG are 30th bus with 1.43MW, 11th bus with 1.2MW, 24th 
bus with 1.8MW respectively. This implies that the test 
system requires approximately 286 PV arrays, 8 WTGs and a 
diesel generator of 1800kW to fulfill the total load demand. 
The TAPL and maximum VD value in this scenario come out 
to be lowest among all scenarios i.e., 27.98 kW and 0.0111 
on the 11th bus.  It is evident that as the number of DGs is 
increasing in the test system the value of TAPL is decreasing. 
Fig.9 shows the voltage profile in all the scenarios. It is 
significant from Fig.9 that the most stable voltage profile is 
observed for Scenerio 5 with minmum voltage deviation at 
each bus. 

 

Fig. 6 Convergence characteristics for Scenario 3 considering HPSOGWO, 
GWO, and PSO. 
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Fig. 7 Convergence characteristics for Scenario 4 considering HPSOGWO, 
GWO, and PSO. 

 

Fig. 8 Convergence characteristics for Scenario 5 considering HPSOGWO, 
GWO, and PSO. 

 
Fig. 9 Voltage profile of buses for all scenarios  

VI. CONCLUSION 

This paper proposed a method to estimate the optimal 
capacity and placement of multiple DGs along with EVCS 
optimal allocation in a practical distribution system by using 
various meta-heuristics optimization algorithms. The multi-
objective function is employed to lower the power losses and 
improve voltage stability. The proposed method is tested on 
a modified IEEE 33 bus network having DGs based on solar 
photovoltaic (PV), wind turbine (WTG), and diesel generator 
(DEG) with voltage-dependent load models such as 
residential, commercial, and industrial load types. In this 
study, various electric vehicle charging load patterns are 
formulated using Monte Carlo simulations. Further, the 
optimal allocation of three types of Electric vehicle charging 
stations (EVCS), namely, Residential Charging Station 
(RCS), Industrial Charging Station (ICS), and Commercial 
Charging Station (CCS) is determined. The results show that 
HPSOGWO outperforms all the other algorithms for all the 

considered scenarios. It is also noticeable from the results that 
as the number of DGs is increasing in the test system the total 
power loss is decreasing and voltage profile is improved. 
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