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 16 

Highlights 17 

 A variety of bacteria have been described as fish-borne zoonoses in humans. 18 

 Genetic evidence fails to link many supposed piscine zoonoses to human infections. 19 

 Three species and one genus of bacteria are supported as fish-borne zoonoses: 20 

Mycobacterium spp., Clostridium botulinum, Streptococcus iniae, Vibrio vulnificus. 21 

 22 

 23 

Abstract 24 

Human contact with and consumption of fishes presents hazards from a range of 25 

bacterial zoonotic infections. Whereas many bacterial pathogens have been presented as fish-26 

borne zoonoses on the basis of epidemiological and phenotypic evidence, genetic identity 27 

between fish and human isolates is not frequently examined or does not provide support for 28 

transmission between these hosts. In order to accurately assess the zoonotic risk from 29 

exposure to fishes in the context of aquaculture, wild fisheries and ornamental aquaria, it is 30 

important to critically examine evidence of linkages between bacteria infecting fishes and 31 

humans. This manuscript reviews bacteria typically presented as fish-borne zoonoses, and 32 

examines the current strength of evidence for this classification. Of bacteria generally 33 

described as fish-borne zoonoses, only Mycobacterium spp., Streptococcus iniae, Clostridium 34 

botulinum, and Vibrio vulnificus appear to be well-supported as zoonoses in the strict sense. 35 

Erysipelothrix rhusiopathiae, while transmissible from fishes to humans, does not cause 36 

disease in fishes and is therefore excluded from the list. Some epidemiological and/or 37 

molecular linkages have been made between other bacteria infecting both fishes and humans, 38 

but more work is needed to elucidate routes of transmission and the identity of these 39 

pathogens in their respective hosts at the genomic level. 40 
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Introduction 43 

Bacterial zoonoses of fishes have received increasing attention as new bacterial 44 

pathogens have been identified and improved microbiological and molecular methods have 45 

enabled identification of fish pathogens in human hosts. Bacterial zoonoses of fishes have 46 

been reviewed previously (Ghittino, 1972; Shotts, 1987; Nemetz and Shotts, 1993; Lehane 47 

and Rawlin, 2000; Boylan, 2011; Haenen, 2013). Rather than focusing on ground covered by 48 

this previous body of work, the present manuscript will examine what is known about the 49 

nature of zoonotic associations between bacterial pathogens of humans and fishes, and the 50 

evidence for their connections. 51 

 52 

The term ‘zoonosis’ is generally defined as an infection transmissible from animals to 53 

humans. The World Health Organization makes a further distinction that zoonosis in its strict 54 

sense should be used to describe cases in which vertebrate animals are necessary for 55 

maintaining infections in nature, and humans are accidental hosts (PAHO, 2001). This latter 56 

definition is contrasted with ‘infections-in-common’, in which pathogens are acquired by 57 

animals and humans from common environmental sources or non-vertebrate organisms. It is 58 

not uncommon for infections-in-common, including foodborne infections, to be classified as a 59 

form of zoonosis (Haenen et al., 2013), but this to some degree obscures the biology and true 60 

epidemiological connections of an infectious association. Many bacteria generally considered 61 

as fish zoonoses are facultative pathogens with an environmental niche and often it is not 62 

possible to differentiate between infections-in-common and strict zoonoses. The present 63 

review will detail what is known about the nature of infections with various bacterial agents in 64 

humans and fishes, as well as their transmission routes. 65 

 66 

Page 4 of 37



When drawing linkages between human and fish infections it is important to 67 

determine whether they are caused by the same organism. Most of the existing literature is 68 

limited to phenotypic/biochemical descriptions of isolates from fishes and humans, and there 69 

is a paucity of information as to whether infections in fishes and humans are caused by the 70 

same strains, serotypes, or in some cases, species of bacteria. Use of molecular techniques has 71 

improved our ability to determine whether human infections have arisen directly from 72 

infected fishes, environmental sources, or through exposure to transiently colonized or 73 

contaminated fish products (Table 1). Most bacteria identified as piscine zoonoses by 74 

previous authors will be covered in this review, with the addition of Lactococcus garvieae, 75 

which has not been discussed in previous reviews. 76 

 77 

Gram positive bacteria 78 

Clostridium botulinum 79 

Clostridium botulinum is commensal in the intestines of marine and freshwater fish 80 

species worldwide, and can also be found in environmental sediments and decaying organic 81 

matter. A potent paralytic neurotoxin is produced by this bacterium that induces descending 82 

paralysis in human beings (Bean and Griffin, 1990). Of the seven recognized botulinum toxin 83 

types (A-G), type E is involved in most cases of human disease related to fish consumption, 84 

although types A and B are occasionally implicated (Barrett et al., 1977). Disease in fishes 85 

due to C. botulinum is uncommon and occurs when fishes feed on decaying carcasses that 86 

have become anaerobic and thus support growth of the bacterium. The disease is known as 87 

‘bankruptcy disease’ in earthen pond culture of salmonids (Roberts, 2001) and has also been 88 

documented as ‘visceral toxicosis’ of catfish in south eastern USA (Khoo et al., 2011). 89 

Human botulism has been associated with consumption of contaminated fish products, 90 

notably smoked fish in arctic and northern temperate regions (Hielm et al., 1998; Fagan et al., 91 
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2011). Pulsed-field gel electrophoresis (PFGE) and random amplified polymorphic DNA 92 

(RAPD) analysis reveal considerable genetic diversity among C. botulinum (Hielm et al., 93 

1998) and PFGE has demonstrated links between food and C. botulinum genotypes involved 94 

in individual outbreaks (Leclair et al., 2006). 95 

 96 

Erysipelothrix spp. 97 

Erysipelothrix spp. include Erysipelothrix rhusiopathiae, E. tonsillarum (Takahashi et 98 

al., 1987) and E. inopinata (Verbarg et al., 2004). In non-human animals, the disease caused 99 

by E. rhusiopathiae is properly known as ‘erysipelas’, while in humans the disease is referred 100 

to as ‘erysipeloid’; ‘erysipelas’ in humans is caused by Streptococcus spp., primarily S. 101 

pyogenes and S. agalactiae. Human infections with E. rhusiopathiae occur via contamination 102 

of cutaneous wounds and typically result in localized, painful, self-limiting cellulitis, with 103 

purple discoloration and edema (‘fish rose’) (Reboli and Farrar, 1989; Wang et al., 2010). 104 

Systemic infections with E. rhusiopathiae in humans are uncommon, but are often associated 105 

with endocarditis (Reboli and Farrar, 1989). Among animals, erysipelas is of greatest 106 

significance in pigs, in which it causes ‘diamond skin disease.’ E. rhusiopathiae colonizes the 107 

mucous coating of fishes, apparently as a commensal, as it has not been reported to cause 108 

disease. Zoonotic transmission of E. rhusiopathiae to humans occurs among fisheries workers 109 

(‘fish-handlers disease’) (Reboli and Farrar, 1989). Takahashi et al. (2008) performed DNA-110 

DNA hybridization on Erysipelothrix spp. from various sources, mainly to classify E. 111 

rhusiopathiae and E. tonsillarum, rather than to examine host specificity. Despite the absence 112 

of genetic evidence, the link between skin lesions in humans and handling of fishes colonized 113 

by E. rhusiopathiae support the contention that this bacterium is a zoonotic agent. However, 114 

fishes could also be regarded as a mechanical vector, since E. rhusiopathiae does not appear 115 

to cause disease in fish hosts. 116 
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 117 

Lactococcus garvieae 118 

Among previously described ‘group D streptococci’, Lactococcus garvieae is the most 119 

significant fish pathogen and has recently been described as a human pathogen, causing 120 

endocarditis, cholecystitis and diskospondylitis (Chan et al., 2011; Kim et al., 2013). L. 121 

garvieae was first isolated from cases of bovine mastitis, initially as Streptococcus garvieae 122 

(Collins et al., 1983), and has been described from warm water fishes, initially as 123 

Enterococcus seriolicida, which was subsequently demonstrated to be a junior synonym for L. 124 

garvieae (Teixeira et al., 1996). L. garvieae causes serious disease in cultured warm water 125 

fishes, typically manifesting as acute hemorrhagic septicemia, with mortality and reduced 126 

growth (Vendrell et al., 2006). Human infection with L. garvieae has been associated with 127 

ingestion of raw seafood (Chan et al., 2011; Kim et al., 2013), seasonal peaks in L. garvieae 128 

infection in cultured fishes (Wang et al., 2007) and occupational fishery exposure (Aubin et 129 

al., 2011). 130 

 131 

RFLP typing demonstrated considerable diversity among L. garvieae associated with 132 

outbreaks of disease in fishes and lack of similarity between piscine and bovine strains (Eldar 133 

et al., 1999). Using PFGE, Vela et al. (2000) observed high genotypic diversity among 134 

isolates from fishes, cattle, humans and water, with higher similarities among strains from a 135 

given host. There was no similarity between isolates from fishes, including amberjack 136 

(Seriola spp.) and ‘trout’, and a range of other species (cattle, pigs, cats, dogs and horses) by 137 

PFGE (Kawanishi et al., 2006), nor between isolates from fish and dairy products by RAPD 138 

or amplified fragment length polymorphism (AFLP) analysis (Foschino et al., 2008). 139 

Comparative genomics of L. garvieae isolates did not reveal clear linkages between strains 140 

from fishes and other sources (Ferrario et al., 2013), whereas several differences (e.g. adhesin 141 
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genes) potentially contributing to host specificity have been identified (Miyauchi et al., 2012). 142 

The available genetic information points towards separation of human and fish strains, and 143 

there is limited epidemiological evidence to support transmission of L. garvieae between 144 

fishes and humans. Therefore, the status of L. garvieae as a fish-borne zoonosis is 145 

questionable. 146 

 147 

Staphylococcus spp. 148 

Staphylococcus spp., specifically S. epidermidis and S. aureus, have been isolated 149 

from cultured fishes during disease outbreaks (Kusuda et al., 1976; Baxa et al., 1985), but 150 

their pathogenic role is unclear and these bacteria are not generally discussed as agents of fish 151 

disease. Nemetz and Shotts (1993) mention a potential human health threat from 152 

Staphylococcus spp. due to enterotoxin synthesis in spoiled food; however, to date there have 153 

been no reports of zoonotic fish-borne infections with Staphylococcus spp. 154 

 155 

Streptococcus spp. 156 

Infection with Streptococcus spp. in fishes typically involves Lancefield group B 157 

organisms (Streptococcus agalactiae) or Streptococcus iniae, which does not express 158 

Lancefield antigens. S. agalactiae is an agent of mastitis in cows and neonatal sepsis in 159 

humans. Infection with group B Streptococcus spp. has been reported from a wide variety of 160 

temperate and warm-water fishes, presenting with hemorrhagic septicemia and, often, 161 

neurological signs (Evans et al., 2006). Evans et al. (2008) reported genetic similarity among 162 

human neonatal, and piscine and dolphin isolates of S. agalactiae from Japan and Kuwait, 163 

respectively. However, Pereira et al. (2010) failed to find genetic identity among S. agalactiae 164 

isolates from humans, fishes and cattle, so currently there is little genetic evidence to 165 

implicate Group B streptococci as fish-borne zoonoses. 166 
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 167 

Streptococcus iniae, originally isolated from the Amazon river dolphin, Inia 168 

geofrensis (Pier and Madin, 1976), has been reported in a variety of piscine hosts (Evans et 169 

al., 2006).  Weinstein et al. (1997) identified zoonotic infection with S. iniae in a disease 170 

outbreak in Toronto, Canada, involving nine humans with cellulitis related to handling raw 171 

fish (tilapia or unknown species); one patient also had endocarditis, meningitis and arthritis. 172 

The PFGE pattern demonstrated an identical strain of S. iniae in all nine human patients 173 

matching isolates from tilapia in local fish markets, as well as from an outbreak of disease in 174 

tilapia in Virginia, USA, in 1993. Two additional human cases were identified retrospectively 175 

in Texas, USA, in 1991 and Ottawa, Canada, in 1994 (Weinstein et al., 1997). Zoonotic 176 

infections with S. iniae have been reported in Southeast Asia, Canada and Hong Kong, and 177 

are primarily associated with processing and handling live fishes (Lau et al., 2003; Koh et al., 178 

2004). 179 

 180 

Acid-fast bacteria 181 

Mycobacterium spp. 182 

Mycobacteria are the best known zoonotic fish-borne bacterial pathogens, causing 183 

granulomatous inflammation of the skin and, occasionally, deeper tissues in humans, known 184 

as ‘fishermans finger’, ‘fish tank granuloma, ‘fish-fanciers finger’ and other similarly 185 

descriptive terms. Lesions of this type were first described by Nordén and Linell (1951) and 186 

attributed to ‘Mycobacterium balnei’ (now Mycobacterium marinum) by Swift and Cohen 187 

(1962). Disease from fish- or water-borne mycobacterial infection in humans generally takes 188 

the form of superficial granulomatous inflammation, usually of the extremities, but may 189 

involve deeper tissues, resulting in tenosynovitis, bursitis, arthritis and osteomyelitis (Lahey, 190 

2003). Both localized and ‘sporotrichoid’ forms of the disease are described; the former 191 
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presents with nodular or ulcerated lesions, while the latter is associated with lymphatic spread 192 

(Lewis et al., 2003). The incubation period in humans is variable, but can be protracted, 193 

taking weeks to months before symptoms are manifested (Jernigan and Farr, 2000). 194 

 195 

In rare cases, usually associated with immunocompromised patients and/or 196 

corticosteroid therapy, disseminated infections may arise, with cutaneous, pulmonary or 197 

visceral involvement (King et al., 1983; Ho et al., 2001; Streit et al., 2006). This is of 198 

particular concern, since aquatic mycobacterial infections may present symptoms that mimic 199 

arthritis or autoimmune disorders, prompting the use of corticosteroids (Barton et al., 1997). 200 

Disseminated M. marinum infection has also been observed in immunocompetent individuals 201 

(Vazquez and Sobel, 1992). Fatalities, although rare, have been reported (Tchornobay et al., 202 

1992; Gould et al., 2004). Antibiotic therapy is generally effective for aquatic mycobacterial 203 

infections in humans, although surgical excision of lesions may be required (Lewis et al., 204 

2003; Petrini, 2006). 205 

 206 

In addition to their direct effects, M. marinum and other non-tuberculous mycobacteria 207 

(NTM) can induce cross-reactivity to skin tests based on purified protein derivative (PPD) of 208 

M. tuberculosis and M. avium (Jolly and Seabury, 1972; Lewis et al., 2003). Interferon release 209 

assays have been developed to circumvent false positivity in PPD skin tests, but exposure to 210 

some NTM, including M. marinum, may generate false positive results with these assays 211 

(Kobashi et al., 2009). 212 

 213 

The thermal tolerance of Mycobacterium spp. is likely to be involved in their limited 214 

ability to infect humans and spread to deeper tissues. Growth of M. marinum is restricted to 215 

temperatures below 37 °C, limiting most human infections to the distal extremities (Kent et 216 
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al., 2006). This issue of temperature tolerance is also of relevance to mycobacteria producing 217 

mycolactone toxin (MPM), including the human pathogen Mycobacterium ulcerans and the 218 

closely related fish pathogen Mycobacterium pseudoshottsii (Rhodes et al., 2005). Most MPM 219 

do not grow at 35 °C and often grow poorly above 30 °C (Ranger et al., 2006), which likely 220 

limits transmission to humans. However, apparent zoonotic infections due to MPM have been 221 

reported (Chemlal et al., 2002; Williamson et al., 2014). 222 

 223 

Mycobacteriosis affects a wide range of fish species worldwide and most frequently 224 

manifests as chronic granulomatous inflammation in viscera and muscles, as well as 225 

ulcerative skin lesions (Gauthier and Rhodes, 2009). Piscine mycobacteriosis, historically 226 

associated with M. marinum, Mycobacterium fortuitum and Mycobacterium chelonae, is also 227 

linked to infections with a wide variety of other mycobacterial species, including 228 

Mycobacterium shottsii and Mycobacterium pseudoshottsii (Rhodes et al., 2003, 2005), and 229 

Mycobacterium salmoniphilum sp. nov., nom. rev. (Whipps et al., 2007). Mycobacteriosis has 230 

a significant impact on aquaculture and ornamental aquaria; with the exception of limited 231 

reports of antibiotic treatment, the only treatment option is destruction of infected animals and 232 

decontamination of holding facilities. 233 

 234 

Human infections with fish-pathogenic mycobacteria are generally contracted through 235 

exposure of wounds and skin abrasions to contaminated water; the disease occurred relatively 236 

frequently in users of swimming pools before the widespread use of chlorination (Petrini, 237 

2006).  Currently, most cases are associated with exposure to aquaria (Aubry et al., 2002), as 238 

well as injuries contracted during seafood processing or preparation (Clark et al., 1990; 239 

Lawler, 1994). 240 

 241 
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There are substantial genetic differences between M. marinum isolates from fishes and 242 

humans (Ucko and Colorni, 2005). Zebrafish (Danio rerio) develop acute disease when 243 

inoculated with human isolates of M. marinum, but chronic infection when inoculated with 244 

fish isolates (van der Sar et al., 2004). Fish isolates of M. marinum are infectious for mice, 245 

producing footpad and deep tissue infections (Kent et al., 2006). Mycobacterial interspersed 246 

repetitive unit (MIRU) typing generally supports the separation of human and piscine isolates 247 

of M. marinum, but this genetic structuring is not absolute, with some overlap between host 248 

groupings (Broutin et al., 2012). Genetic linkages between human infections with M. 249 

marinum and fish sources have been demonstrated using PFGE (Tsai et al., 2007; Slany et al., 250 

2013) and AFLP (Doedens et al., 2008); however in one case, it is likely that exposure was to 251 

waterborne M. marinum inoculated via a fish spine injury (Tsai et al., 2007). 252 

 253 

A wide range of other NTM reported in humans has also been reported from fishes, 254 

especially M. fortuitum, M. chelonae, and Mycobacterium abscessus (Piersimoni, 2009; 255 

Kothavade et al., 2013), but also Mycobacterium peregrinum (Pagnoux et al., 1998), 256 

Mycobacterium scrofulaceum (Ishii et al., 1997) and Mycobacterium haemophilum (van 257 

Coppenraet et al., 2007). Mycobacterium spp. are often presumptively traced back to 258 

aquarium or aquarium fish sources using either phenotypic species identification or 259 

identification based on housekeeping genes (Pate et al., 2005; Beran et al., 2006; Slany et al., 260 

2012). However, this level of resolution is insufficient to confirm relationships between 261 

human and fish infections, given considerable infra-species diversity among the mycobacteria 262 

and the high degree of conservation among housekeeping genes. For example, mycobacteria 263 

in the M. marinum clade, which are > 99% similar to one another at the commonly sequenced 264 

16S rRNA locus, include such phenotypically diverse species as the human pathogen M. 265 

ulcerans, extremely slow-growing fish pathogens M. shottsii and M. pseudoshottsii, and the 266 
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relatively rapidly growing generalist M. marinum. Furthermore, the phenotypically distinct 267 

species Mycobacterium gastri and Mycobacterium kansasii are 100% identical at this locus. 268 

Analysis of additional genes, such as hsp65 and rpoB, allows differentiation of species in 269 

most cases, but caution is still necessary in attributing human infections to fish sources based 270 

even on multi-locus sequence typing (MLST). This is exemplified by a study in which 271 

Myctobacterium szulgai was isolated from a human patient, and both aquarium water and fish 272 

in the patient’s home; PFGE revealed identity between water and human isolates, but the fish 273 

isolate was markedly different (Abalain-Colloc et al., 2003). 274 

 275 

Nocardia spp. 276 

Infection with Nocardia spp. in humans is primarily attributed to Nocardia asteroides 277 

and the closely related species Nocardia farcinica, Nocardia brasiliensis and Nocardia 278 

otitidiscaviarum. Nocardiosis in humans manifests in a variety of ways, primarily pneumonia, 279 

cutaneous ulcers and wound infections, and occurs more frequently in immunocompromised 280 

patients (Lederman and Crum, 2004). Nocardial infections are also observed in fishes, and are 281 

attributed to N. asteroides (Roberts, 2001) or Nocardia seriolae (previously Nocardia 282 

kampachi) (Kudo et al., 1988). To date, no information is available on epidemiological or 283 

genetic linkages between piscine and human nocardiosis, and therefore evidence of zoonosis 284 

is lacking. 285 

 286 

Gram negative bacteria 287 

Aeromonas spp. 288 

Aeromonas spp. occur in freshwater habitats worldwide and are implicated in 289 

community-acquired and nosocomial infections of humans (Janda and Abbott, 2010). Human 290 

infections demonstrate seasonality, with most cases reported in spring and autumn, possibly 291 
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mirroring increased numbers of pathogenic Aeromonas spp. in aquatic environments 292 

(Khardori and Fainstein, 1988). Aeromonas spp. infections arising from wound exposure have 293 

been associated with handling seafood, particularly opening shellfishes (shucking) (Flynn and 294 

Knepp, 1987). Aeromonas salmonicida is a major pathogen of fishes, causing furunculosis in 295 

salmonids and cyprinids, but this species is not reported to be a human pathogen. 296 

 297 

Weir et al. (2012) cite Aeromonas spp. as the most common zoonotic bacterium 298 

isolated from ornamental fishes; however, among these reports, only a single case study 299 

indicated a linkage to human disease, and this was not confirmed by biochemical or genetic 300 

testing (Cremonesini and Thomson, 2008). Sukroongreung et al. (1983) examined isolates 301 

from outbreaks of disease due to Aeromonas spp. in fishes and concomitant cases of diarrhea 302 

in humans; most fish isolates were Aeromonas sobria, whereas most human isolates were A. 303 

hydrophila, and there was little overlap in biochemical typing between Aeromonas isolates of 304 

the same species originating from the two hosts. 305 

 306 

Edwardsiella spp. 307 

The three species recognised in the genus Edwardsiella are Edwardsiella ictaluri, 308 

Edwardsiella tarda (synonym Edwardsiella anguillimortifera) and Edwardsiella hoshinae. A 309 

further fish-pathogenic species, Edwardsiella piscicida, has been proposed (Abayneh et al., 310 

2013). E. ictaluri is a serious pathogen of catfishes (Ictalurus spp.), causing enteric 311 

septicemia (Hawke et al., 1981), but is not known to infect humans. E. hoshinae is typically 312 

isolated from reptiles and birds and, although it has been isolated from human feces, its role 313 

as an animal or human pathogen is questionable (Janda et al., 1991). 314 

 315 
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Human infections with E. tarda are characterized primarily by bacterial 316 

gastroenteritis, although wound infections and systemic conditions, such as septicemia and 317 

meningitis, are also observed, as are extraintestinal infections (Clarridge et al., 1980; Janda 318 

and Abbott, 1993).  E. tarda may be found in the feces of asymptomatic people (Janda and 319 

Abbott, 1993).  Risk factors for disease include exposure to aquatic environments, as well as 320 

to fishes, reptiles and amphibians.  E. tarda causes hemorrhagic and necrotic disease in 321 

marine and freshwater fishes, including Edwardsiella septicemia in a variety of species, and 322 

‘red disease’ in eels (Wakabayashi and Egusa, 1973). 323 

 324 

There are few reports linking E. tarda from fishes directly to human infections. E. 325 

tarda in a Belgian infant was identical in API (bioMerieux)
 
biotype and antibiotic 326 

susceptibility to isolates from an angelfish (Pterophyllum scalare) in an aquarium in the same 327 

home (Vandepitte et al., 1983). Presumed infection originating from a pet turtle was reported 328 

by Nagel et al. (1982), although culture or molecular data supporting the linkage was not 329 

provided. Molecular analysis of human and fish isolates of E. tarda generally show clear 330 

differences (Nucci et al., 2002; Abayneh et al., 2012; Yang et al., 2013). Genomic analysis 331 

has indicated that E. tarda genotype group EdwGI is most closely related to E. ictaluri and 332 

contains most fish pathogenic strains, whereas EdwGII contains human and a limited number 333 

of fish isolates (Yang et al., 2012). Whole genome comparisons of E. tarda from various 334 

sources revealed a clear divergence between fish and environmental isolates, but also 335 

horizontal gene transfer of a human enteropathogenic virulence factor to a fish isolate 336 

(Nakamura et al., 2013). 337 

 338 

Other Enterobacteriaceae 339 
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Enterobacteriaceae are ubiquitously distributed in a variety of environmental niches 340 

and animal hosts, and a variety of species have been isolated from fishes, including 341 

enteropathogenic Escherichia coli (Shotts, 1987) and Salmonella spp. (Minette, 1986). 342 

Isolation generally occurs from intestinal contents or mucous; therefore, it appears that while 343 

fishes can transiently harbor a variety of enterobacteria, true infections are not common. 344 

Outbreaks of salmonellosis associated with aquaria have been reviewed by Weir et al. (2012). 345 

In several instances, identical isolates have been recovered from human and tank water 346 

sources, although the role of fishes in maintaining Salmonella spp. in contaminated aquaria is 347 

unclear. Contamination of fishes and fish products with enterobacteria is a widespread 348 

concern in food handling and hygiene practices, and both Salmonella spp. and E. coli have 349 

been linked to foodborne illness, with freshwater fishes or fish products likely serving as a 350 

vehicle (Piérard et al., 1999; Terajima et al., 1999; McCoy et al., 2011). However, evidence 351 

for these bacteria as strict zoonoses is limited and cases where human infections are linked to 352 

fish consumption generally do not provide evidence that infections originated with the fishes 353 

and not from another source during food handling. 354 

 355 

Bacteremia due to Klebsiella pneumoniae has been reported in conjunction with hand 356 

fishing (Reagan et al., 1990); however, plasmid typing of the organism isolated from the 357 

blood did not indicate similarity with K. pneumoniae in the water where the infection was 358 

presumably contracted, and fishes were not sampled in this study. Infection with Serratia 359 

marcescens, a pathogen of humans (Hejazi and Falkiner, 1997), has been reported in white 360 

perch (Morone americana) (Baya et al., 1992) and a bonnethead shark (Sphyrna tiburo) 361 

(Camus et al., 2013). However, no association between piscine and human infections with S. 362 

marcescens has been demonstrated. 363 

 364 
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Francisella spp. 365 

Francisella tularensis causes tularemia in humans and the related bacterium 366 

Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) has been isolated from 367 

cases of human disease (Hollis et al., 1989; Wenger et al., 1989). In view of the high 368 

similarity in housekeeping genes, literature concerning the naming of Francisella spp. is 369 

somewhat confusing and species with standing in nomenclature are in flux (Birkbeck et al., 370 

2011). The current literature appears to have converged on naming fish pathogenic 371 

Francisella spp. as Francisella noatunensis in cold water and Francisella noatunensis 372 

orientalis (syn. Francisella asiatica) in warm water species. Human infections with these 373 

species have not been reported, and F. tularensis or other human-infecting strains likewise 374 

have not been isolated from fishes. Since F. noatunensis does not survive above 30 °C 375 

(Hawke and Soto, 2013), the zoonotic potential of Francisella fish pathogens is not supported 376 

at present. 377 

 378 

Leptospira spp. 379 

Fishes may be infected experimentally with Leptospira spp. (Davis et al., 2009; 380 

Maestrone and Benjaminson, 1962), but natural infections have not been reported. 381 

Leptospirosis has been associated with occupations involving fish handling and, especially, 382 

fish farming. However, it is probable that, rather than being a fish-borne zoonosis, human 383 

infections are attributable to exposure to urine from rodent pests on fish farms, and/or 384 

exposure to contaminated water (Gill et al., 1985; Douglas, 1995). 385 

 386 

Plesiomonas shigelloides 387 

Plesiomonas shigelloides has been isolated from a wide range of terrestrial and marine 388 

mammals, reptiles, amphibians, birds, fishes and shellfishes (Jagger, 2000). The bacterium 389 
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appears to be a normal or transient part of intestinal biota in fishes; however, septicemia has 390 

been reported (Shotts and Teska, 1989). In two outbreaks of diarrhoea in humans due to P. 391 

shigelloides in Japan, there was limited overlap with serovars collected from environmental 392 

sources. Arai et al. (1980) isolated P. shigelloides from 10.2% of freshwater fishes and some 393 

isolates were the same serovars as found in diarrheic human beings by Tsukamoto et al. 394 

(1978).  The same serovars were also found in local dogs and cats.  Although P. shigelloides 395 

can infect (or colonize) fishes, evidence for it being a true fish-borne zoonotic is tenuous. P. 396 

shigelloides is frequently isolated from aquaria, and at least one case of human infection has 397 

been associated with exposure to aquarium water (CDC, 1989). Hori et al. (1966) linked P. 398 

shigelloides infection in humans with consumption of salted fish. Raw or undercooked 399 

shellfish have been implicated in diarrhoea associated with P. shigelloides in humans 400 

(Brenden et al., 1988; Holmberg et al., 1986; Jagger, 2000), although this may be confounded 401 

with concomitant ingestion of local water (Kain and Kelly, 1989). 402 

 403 

Pseudomonas spp. 404 

Pseudomonas spp. are motile aerobic rod shaped bacteria that are common inhabitants 405 

of soil and water worldwide. Pseudomonas fluorescens is an agent of necrotic and 406 

hemorrhagic disease in a variety of freshwater and marine fishes (Austin and Allen-Austin, 407 

1985) and is an uncommon agent of human disease (Gershman et al., 2008). Pseudomonas 408 

aeruginosa is a well-known agent of human pneumonia, especially in conjunction with other 409 

conditions such as cystic fibrosis, and has been isolated in association with fish viscera 410 

(Leung et al., 1992). Zoonotic transmission of these agents from fishes to humans has not 411 

been documented. 412 

 413 

Vibrio spp. 414 
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Vibrio spp. are widely distributed in marine and estuarine environments and are often 415 

referred to as the marine equivalent of aeromonads. A variety of Vibrio spp. cause serious 416 

disease in wild and cultured fishes, including Vibrio anguillarum, the agent of ‘red pest’ in 417 

eels (Roberts, 2001), Vibrio ordalii, which causes septicemia in Pacific salmonids (Schiewe et 418 

al., 1981), Vibrio salmonicida, which causes cold water vibriosis in Atlantic salmon and other 419 

fishes (Egidius et al., 1986), and Vibrio viscosus and Vibrio wodanis, the causative agents of 420 

‘winter ulcer disease’ in Atlantic salmon (Lunder et al., 2000). 421 

 422 

 Among Vibrio spp. that cause disease in humans, Vibrio cholerae is of paramount 423 

worldwide health significance, particularly strains which produce cholera toxin. Toxin-424 

producing strains largely belong to the O1 serogroup, but non-O1/O139 serogroup strains 425 

may also produce toxins and disease. Non-O1/non-O139 (Farama et al., 2008) and O1 (Blake 426 

et al., 1980) strains of V. cholerae have been implicated in human disease outbreaks 427 

associated with consumption of shellfish and V. cholerae has been reported in water used to 428 

house or transport ornamental fishes (Smith et al., 2012). However, V. cholerae is rarely 429 

reported as a disease agent in fishes (Reddacliff et al., 1993) and its role as a fish-borne 430 

zoonotic is questionable. 431 

 432 

The most common non-cholera human vibrioses are caused by Vibrio vulnificus and 433 

Vibrio parahemolyticus. These infections are associated with gastroenteritis, septicemia and 434 

wound infections in humans, and are of particular concern because of their high case fatality 435 

rate (3.6%) relative to other enteric bacteria (Weis et al., 2011). V. parahemolyticus causes 436 

food-borne illness associated with consumption of shellfish (Drake et al., 2007), but is 437 

reported rarely in fishes (Austin and Austin, 2007). RAPD profiling of V. parahemolyticus 438 

from fish in markets demonstrated overlap with isolates from shellfish sources (Yang et al., 439 
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2008); thus, it is unclear whether the V. parahemolyticus were derived from fish products or 440 

from cross-contamination. 441 

 442 

 Vibrio vulnificus causes disease in eels (Tison et al., 1982) and other fishes (Li et al., 443 

2006), and has been isolated from the intestinal tract of bottom-feeding fishes (DePaola et al., 444 

1994). Three biotypes of this species are described; biotype 1 is isolated mainly from water 445 

and humans, and biotype 2 is isolated mainly from fishes and humans (Amaro and Biosca, 446 

1996). Specific polymorphic variants of the type IV pilus gene pilF are strongly associated 447 

with resistance to human serum and thus potential for human infectivity in all biotypes (Roig 448 

et al., 2010). Cohen et al. (2007) demonstrated two major clades of V. vulnificus using MLST; 449 

most biotype 1 clinical isolates belonged to one clade and also possessed a 33 kb genomic 450 

island that may be associated with higher pathogenicity and/or environmental persistence. 451 

Pathogenicity for fishes in biotype 2 strains is related to the presence of a 68-70 kb virulence 452 

plasmid (Roig and Amaro, 2009). Biotype 2 is further separated into serovars A, E, and I, 453 

which are infectious for fishes, but of which only serovar E appears to have zoonotic potential 454 

(Fouz et al., 2007). Biotype 3 has been isolated from humans with septicemia and wound 455 

infections in Israel and has been postulated to be a hybrid between biotypes 1 and 2 (Bisharat 456 

et al., 1999, 2005), although this has been questioned by Cohen et al. (2007). 457 

 458 

V. vulnificus biotype 2 septicemia has been reported in a person who had handled eels 459 

(Veenstra et al., 1992), and sequencing of virulence genes (vvhA and vvp) demonstrated 460 

overlap between human and eel biotype 2 isolates (Wang et al., 2008). Human isolates of V. 461 

vulnificus biotype 2, serovar E carry identical plasmid profiles to fish strains, including the 462 

68-70 kb virulence plasmid (Roig and Amaro, 2009).  Linkages between fish and human 463 

clinical biotype 3 isolates have also been demonstrated with Variable Number Tandem Repeat 464 

Page 20 of 37



(VNTR) analysis (Broza et al., 2009). MLST typing of fish isolates in Bangladeshi 465 

aquaculture demonstrated close similarity, but not identity of fish and clinical isolates 466 

(Mahmud et al., 2010). 467 

 468 

The current body of literature on genetic similarity between human and fish isolates of 469 

V. vulnificus is better developed than many other presumptive bacterial zoonoses of fishes, 470 

and transmission between fishes and humans appears to be supported, although it is apparent 471 

that infections may also be contracted from environmental sources. 472 

 473 

 Vibrio damsela (Love et al., 1981), now Photobacterium damselae comb. nov. (Smith 474 

et al., 1991) was first isolated from skin ulcers in damselfish (Chromis punctipinnis) and has 475 

since been isolated from other fishes, including turbot (Scophthalmus maximus), yellowtail 476 

(Seriola quinqueradiata) and sea bream (Pagrus auriga) (Austin and Austin, 2007). P. 477 

damselae infection in humans is primarily associated with skin wounds, leading to necrotizing 478 

fasciitis that can be fatal (Morris Jr. et al., 1982; Clarridge and Zighelboim-Daum, 1985; 479 

Hundenborn et al., 2013). Two cases of V. damsela septicemia in humans have been 480 

associated with ingestion of raw fish (Shin et al., 1996; Kim et al., 2009). However, 481 

genotypes of human and fish isolates have not been compared, and the degree to which 482 

human V. damsela infections originate from fishes remains to be determined. 483 

 484 

 Additional Vibrio spp., including Vibio hollisae (Grimontia hollisae comb. nov.; 485 

Thompson et al., 2003), Vibrio alginolyticus, Vibrio fluvialis, Vibrio furnissii, Vibrio harveyi 486 

(syn. Vibrio carchariae), Vibrio metschnikovii and Vibrio mimicus, are associated with 487 

disease in fishes and shellfishes, and are also occasionally isolated from cases of human 488 

disease, particularly gastroenteritis and wound infections (Austin, 2010). However, direct 489 
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connections between fish and human infections are tenuous and most cases appear to derive 490 

from contamination of wounds with seawater, spoilage of consumed fish and shellfish, or 491 

ingestion of raw shellfish. 492 

 493 

Yersinia spp. 494 

Several members of the genus Yersinia cause human disease, including Yersinia 495 

enterocolitica, Yersinia pseudotuberculosis and, most notably, Yersinia pestis, the cause of 496 

bubonic plague. Yersinia ruckeri causes enteric redmouth disease (ERM) of salmonids, which 497 

is associated with significant aquaculture losses worldwide (Austin and Allen-Austin, 1985; 498 

Tobback et al., 2007). A single human case of infection with Y. ruckeri, of uncertain clinical 499 

significance, has been reported (Farmer et al., 1985).  Several other Yersinia spp. have been 500 

isolated from both fishes and humans, including Yersinia frederiksenii and Yersinia 501 

intermedia (Sulakvelidze, 2000), but evidence of fish-borne zoonosis in this group is lacking. 502 

 503 

Conclusions 504 

A variety of bacteria have been reported as potential fish-borne zoonotic agents, but 505 

evidence for zoonotic potential is limited for many of these organisms and few molecular 506 

genetic analyses of fish and human strains have been performed. The existing literature 507 

supports classification of C. botulinum, S. iniae, Mycobacterium spp. and Vibrio vulnificus as 508 

fish-borne zoonoses in the strict sense, i.e. there is substantial epidemiological and molecular 509 

evidence for linkages between infections in both hosts. Epidemiological associations suggest 510 

zoonotic risks for other fish-associated bacteria; however, some do not cause disease in fishes 511 

(e.g. Erysipelothrix rhusiopathiae) and more work will be required to link human and fish 512 

infections with other bacteria (e.g. Aeromonas spp., E. tarda, L. garvieae, P. shigelloides and 513 

V. damsela). Other bacterial species either lack significant evidence for epidemiological 514 
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connections between fishes and humans, have more plausible transmission routes not 515 

involving fishes, or are most likely to be transmitted through contamination of food. Further 516 

molecular studies examining isolates from fishes and human disease outbreaks would be 517 

fruitful in defining epidemiological connections and in determining the zoonotic risk from 518 

bacterial fish pathogens. 519 
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Table 1 Summary of potential agents of fish-borne zoonosis. 1188 

 1189 

Organism Type Transmission 

route 

Epidemiological 

evidence 

Molecular 

evidence 

Clostridium botulinum G(+) Ingestion + + 

Erysipelothrix rhusiopathiae G(+) Inoculation +
 a
 - 

Lactococcus garvieae 

(Enterococcus seriolicida) 

G(+) Inoculation 

Ingestion 

+ - 

Staphylococcus spp. G(+) NA - - 

Streptococcus agalactiae G(+) NA - (+)
 b
 

Streptococcus iniae G(+) Inoculation + + 

Mycobacterium spp. AF Inoculation + + 

Nocardia spp. AF NA - - 

Aeromonas spp. G(-) Inoculation 

Ingestion 

+ - 

Edwardsiella tarda G(-) Inoculation 

Ingestion 

+ - 

Other Enterobacteriaceae G(-) Ingestion + - 

Francisella spp. G(-) NA - - 

Leptospira spp. G(-) Ingestion +
 c
 - 

Plesiomonas shigelloides G(-) Ingestion + - 

Pseudomonas spp. G(-) NA - - 

Vibrio damsela G(-) Inoculation 

Ingestion 

+ - 

Vibrio vulnificus G(-) Inoculation 

Ingestion 

+ + 

Yersinia ruckeri G(-) NA (+)
 d
 - 

 1190 

Strong evidence or evidence from multiple sources is indicated by ‘+’, weak or single reference evidence is 1191 

indicated by ‘(+)’ and no evidence (or evidence to the contrary) is indicated by ‘-’. Epidemiological evidence 1192 

includes identification of bacteria by phenotypic/biochemical methods, whereas molecular evidence refers to 1193 

demonstration of genetic identity/strong similarity between isolates from human and fish infections. Staining 1194 

characteristics are given as Gram positive or negative, G(+) or G(-), respectively, or acid-fast (AF). 1195 
a
 E. rhusiopathiae is not known to cause disease in fishes, but is a commensal in skin mucus. 1196 

b
 Single report (Evans et al., 2008). 1197 

c
 Zoonotic transmission via hosts other than fishes appears most likely in this instance. 1198 

d
 Single report (Farmer et al., 1985). 1199 
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