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GLOSSARY 

Accuracy    The quality of being correct (Moayedi & Mosavi, 2021) 

Atmosphere    A mixture of gases surround the earth (Yoro & Daramola, 2020) 

Classification    Putting into categories with the same qualities (Mao et al., 2021) 

Coefficient    A numerical value that multiplies a variable (Huang & Li, 2021) 

Continuous    A data that can take any value (Scanagatta et al., 2019) 

Correlation  A mutual relationship between two or more things (Campagna & 

Fiorito, 2022) 

Dependent variable  A variable whose value depends on another variable (Irfan & Ramlie, 

2021) 

Derivation    Developing of something from an origin (Goliatt et al., 2018) 

Dry bulb temperature   Ambient air temperature (Liu et al., 2023) 

Efficiency  The ratio of useful work to the total expected work (Moayedi & 

Mosavi, 2021) 

Glazing    Windows (Prasetiyo et al., 2019) 

Greenhouse Gas   Atmosphere gases that traps heat (Zhang et al., 2023) 

Hypothesis  A proposed explanation made on basis of reasoning (Barros et al., 

2018) 

Independent Variable A variable whose value does not depends on another variable (Irfan 

& Ramlie, 2021) 

Linear Relationship  A straight line relationship between two variables (Kardani et al., 

2021) 

Machine Learning  A techniques that teaches computers to learn from experience 

(Tsoka et al., 2022) 

Meteorological Year  A standardized period of 12 consecutive months that meteorologists 

used for statistical and climatological purposes (Yan & Liu, 2020) 

Optimization    Making the best use of a resource (Gianniou et al., 2018) 

Shapash    A python library (Shapash, n.d.) 

Variable    Not consistent (Irfan & Ramlie, 2021) 
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Wilcoxon-rank-sum test A test to compare two independent samples by comparing medians 

(Barros et al., 2018) 
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ABSTRACT 

The International Energy Agency (IEA) estimates that residential and commercial 

buildings consume 40% of global energy and emit 24% of CO2. A building's design parameters 

and location significantly impact its energy usage. Adjusting the building parameters and 

features in an optimum way helps to reduce energy usage and to build energy-efficient buildings. 

Hence, analyzing the impact of influencing factors is critical to reduce building energy usage. 

Towards this, artificial intelligence applications, such as Explainable Artificial 

Intelligence (XAI) and machine learning (ML) identified the key building features to reduce 

building energy. This is done by analyzing the efficiencies of various building features that 

impact building energy consumption. For this, the relative importance of input features 

impacting commercial building energy usage is investigated. Also analyzed is the parametric 

analysis of the impact of input variables on residential building energy usage. Furthermore, the 

dependencies and relationships between the design variables of residential buildings were 

examined. Finally, the study analyzed the impact of location features on cooling energy usage in 

commercial buildings. 

For the purpose of energy consumption data analysis, three datasets, named the 

Commercial Building Energy Consumption Survey (CBECS) datasets gathered in 2012 and 

2018, University of California Irvine (UCI) energy efficiency dataset, and Commercial Load 

Data (CLD) were utilized. For this, Python and WEKA were used. Random Forest, Linear 

Regression, Bayesian Networks, and Logistic Regression predicted energy consumption using 

datasets. Moreover, statistical tests, such as the Wilcoxon-rank sum test were analyzed for the 

significant differences between specific datasets. Shapash, a Python library, created the feature 

important graphs. 

The results indicated that cooling degree days are the most important feature in predicting 

cooling load with contribution values 34.29% (2018) and 19.68% (2012). Also, analyzing the 

impact of building parameters on energy usage indicated that 50% of overall height reduction 

achieves a reduction of heating load by 64.56% and cooling load by 57.47%. Also, the 

Wilcoxon-rank sum test indicated that the location of the building also impacts energy 

consumption with a 0.05 error margin. The proposed analysis is beneficial for real-world 

applications and energy-efficient building construction. 
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CHAPTER 1 . INTRODUCTION 

1.1 Importance of analyzing building energy 

The impact of climate change are profound and affect every living thing on the planet 

(Osman et al., 2022 ;Rodríguez et al., 2020). Global warming is a component of climate change, 

representing the elevation in the earth’s surface average temperature (Rodríguez et al., 2020). 

Increased electrical energy consumption is one of the major causes of emitting greenhouse gases, 

which supports global warming (Mastrucci et al., 2021; Campagna & Fiorito, 2022). Carbon 

dioxide (CO2) stands as the most notable greenhouse gas influencing global warming, with its 

emissions showing a steady increase over the years (Al-Ghussain, 2019; Yoro & Daramola, 

2020). For example, emissions of CO2 from the global atmosphere in 2019 were 45% higher than 

those between 1980 and 1990 (Yoro & Daramola, 2020). Furthermore, doubling the CO2 amount 

would increase global temperatures by 3.8°C (Al-Ghussain, 2019). 

The three main economic sectors are buildings, transportation, and industry. The building 

sector consumes considerable portion of energy among the three sectors (Chou & Bui, 2014; 

Prasetiyo et al., 2019). International Energy Agency (IEA) estimates, buildings consumes for 

40% of total energy with 24% of CO2 global emissions (Zhang et al., 2023; Prasetiyo et al., 

2019). The building sector comprises 41% of the overall energy usage, whereas industry and 

transportation consume only 30% and 29%, respectively, in the United States (Choi & Bui, 

2014). Therefore, reducing building energy consumption is crucial. 

Buildings have two different types. The types are residential and commercial. 

Commercial buildings include types of offices, malls, hospitals, hotels, and many other 

buildings. As for the US Department of Energy, both residential and commercial buildings 40% 

emitted 40% greenhouse gasses by 2010 (Ahmad & Zhang, 2020). Moreover, as of 2016, 

commercial buildings have used over 60% of the energy only for electricity (Lokhandwala & 

Nateghi, 2018). Identifying the factors that influence commercial building cooling energy 

consumption is therefore important to achieve higher sustainability and less environmental 

impact.  
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1.2 Building energy usage impacting factors 

Many factors impact building energy usage (Tsanas & Xifara, 2012; Aqlan et al., 2014; 

Invidiata et al., 2018). A few impacting factors are heating, ventilation, and air conditioning 

(HVAC), population growth, longer time spent in buildings, and climate. Furthermore, weather 

conditions, i.e., dry, cold, and seasonal weather, dry bulb temperature, thermal properties of 

building materials and number of floors also impact the building energy usage (Araújo et al., 

2023; Bekkouche et al., 2017). Also, building characteristics play a major role in controlling 

building energy usage, and proper design strategies could reduce the building energy demand 

(Tsanas & Xifara, 2012). 

Investigating building characterizing impacts on building energy efficiency is vital, 

because inadequate building design and structure have led to a 40% increase in CO2 emissions 

from building energy usage (Xu et al., 2012). Heating load (HL) and cooling load (CL) are the 

two suitable parameters for analyzing building energy usage (Tsanas & Xifara, 2012; Irfan & 

Ramlie, 2021). 

Climate location is another factor that impacts building energy consumption (Timmons et 

al., 2016; Renuka et al., 2022). The climates have different conditions such as hot, cold, humid, 

and dry (Phan & Lin, 2014). Therefore, the requirements of building energy also vary with the 

climate conditions in specific locations. For example, buildings use less cooling energy in cold 

areas than in hot climates (Phan & Lin, 2014). 

1.3 Explainable Artificial Intelligence and its advantages 

Artificial Intelligence (AI) is computers simulating human knowledge and training to 

take decisions based on human behaviors (Zhang & Lu, 2021). Image processing and intelligent 

robots are applications of AI. Explainable Artificial Intelligence (XAI) is a subset of Artificial 

Intelligence which is used to explain the dataset in detail using visualization techniques such as 

feature importance graphs (Zhang & Lu, 2021). XAI is useful technique to understand the 

decision or prediction made by the AI and identify which variables in the dataset have more 

impact on the predictive outcomes by supervised machine learning models (Kim et al., 2020; 

Angelov et al., 2021). Shapash is one of the popular XAI methods, which is a Python library that 

helps to make machine learning easily understandable and interpretable. The Shapash library 
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generates a visualization dashboard to implement machine learning model outputs. (Shapash, 

n.d.; Molnar, n.d.; Amin et al., 2022). Shapash displays precise results using plots to help users 

understand the models using a web app that allows them to switch between global and local 

explainability, without difficulty. Model explainability at the global level focuses on the features 

that have the most significant impact on outcomes, while it focuses on individual decisions at the 

local level. Shapash outputs include graphs depicting feature importance, contribution, and local 

explanations (Saboni et al., 2022) 

1.4 Machine Learning and its advantages 

Machine learning is a viable approach for analyzing with a high performing speed and 

easy implementation (Dogan & Birant, 2021). Machine Learning is a subfield of AI, which uses 

algorithms to make predictions using a training dataset (Xie et al., 2022). Machine learning is a 

popular model because of its easy identification of trend and patterns. It can review complex and 

large data and identify trends and patterns that are difficult for humans if do manually 

(Khanzode, 2020). Furthermore, ML is capable of handling multidimensional data in dynamic 

environments. The study used ML to identify patterns of energy related data, but due to its wide 

applications, many areas can use ML, such as healthcare (Dahiya et al., 2022). Specifically, 

supervised machine learning uses a labelled dataset for the predictions (Wang et al., 2021). The 

models use two testing conditions: train-test split and k-fold cross validation. Partitioning the 

data into k subsets or folds is the method of k-fold cross validation, with each fold taking its turn 

as the test data where other folds serves as the training data, and it is a reliable testing method 

(Chou & Bui, 2014).  

Tsanas and Xifara (2012) used machine learning to model random forest, and iteratively 

reweighted least squares to predict HL and CL of a building. Moreover, Aqlan et al., (2014) 

predicted HL and CL using artificial neural networks and cluster analysis. 

1.5 Statement of the Problem 

Increasing building energy efficiency plays a significant part in reducing energy 

consumption, which, in turn, leads to reduced greenhouse gas emissions. One of the basic 

measurements to calculate the energy usage of a building is to measure heating load and cooling 
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load. Studies developed methods to identify the best machine learning algorithm with high 

accuracy and impact from input variables for predicting HL and CL. The problem was the need 

to identify the input variable's positive and negative impact on output variables and the 

relationship between design parameters. Also, the study was needed to analyze the relative 

importance of building characteristics and to analyze how the location feature impact building 

energy usage. 

1.6 Objectives  

The residential and commercial building sector consumed 41.10% of total energy 

consumption and emitted 40% of greenhouse gasses (Ahmad & Zhang, 2020). Reduced energy 

consumption helps to increase building energy efficiency. Therefore, the study analyzed methods 

to increase building energy efficiency using machine learning models.  

Towards this, the objectives of the research are: 

1. To study the positive and negative impacts of building design variables on energy usage. 

2. To study building energy efficiency using the association of input variables. 

3. To identify most important input features on building energy usage. 

4. To analyze the impact of building features on energy consumption. 

5. To reduce building energy usage and hence to reduce CO2 emissions. 

1.7 Research Questions 

 The following research questions guide this study. 

1. What is the relative importance of input features/ variables impacting commercial 

buildings energy usage?  

2. What design input variables impact the residential building heating and cooling energy 

usage positively and negatively?  

3. What are the relationships and dependencies between design variables concerning 

residential building energy efficiency?  

4. How impactful is the location feature to building cooling energy usage?  
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1.8 Importance of the Study 

The results of this study will significantly contribute to improving living conditions for 

everyone. By reducing building energy usage, it is possible to reduce CO2 emissions, which play 

a crucial role in today's global environmental challenges. The goal of the study is to identify the 

direction, magnitude of the impact, and relationships between building design parameters that 

can reduce energy consumption. Moreover, a clear understanding of the relative importance of 

features makes it easier to decide which one to prioritize. An architect or building designer can 

incorporate energy-saving features into the design of a new building by understanding how 

location impacts energy consumption. The practical value of the findings is significant since they 

can apply to real-world building projects, resulting in the creation of more energy-efficient 

structures. The study, in turn, can help reduce the world's energy demand and promote better 

living conditions for people everywhere. 

1.9 Assumptions 

The following assumptions are being made: 

1. The UCI dataset (UCI Machine Learning Repository, n.d.) used is an adequate 

representation of real world data. 

2. Parameters i.e., climate, number of occupants, and comfort levels are constant when 

analyzing impact from building parameters. 

3. The weather data of Indianapolis and Lafayette, both located in the state of Indiana, are 

the same. 

4. The building cooling energy usage of the city represents the whole state cooling energy 

usage. 

1.10 Limitations 

The following limitations are being made:  

1. The UCI dataset considers only 12 building shapes. 
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2. Machine Learning model Bayesian networks used are applicable for smaller number of 

variables. 

3. Random Forest produces ineffective predictions with larger number of trees. 

1.11 Delimitations 

The following delimitations are being made:  

1. The data collection was not performed as part of the research process. 

1.12 Chapter Summary 

The introduction indicates that it is important to analyze building energy usage to reduce 

greenhouse gas emissions. The building design parameters are the most controllable factor in 

building energy-efficient structures. Identifying the most impacting features and the influence of 

building location is also important in analyzing energy efficiency. Due to pattern recognition 

capabilities, machine learning is a viable approach to analyzing energy data. The study includes 

four research questions to help with improving energy efficiency. 
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CHAPTER 2 . REVIEW OF LITERATURE 

Chapter two provides a summary of recent literature in the research area of analyzing 

building energy efficiency using statistical techniques. 

2.1 Overview of Building Energy Efficiency 

Global warming, the increasing in average surface temperature, is a major challenge and 

a serious issue around the world caused by human activity (Al-Ghussain, 2019). The issue affects 

not only the human population but every living thing as well. Global warming is mainly due to 

greenhouse gas emissions, such as water vapor, methane, carbon dioxide, and nitrous oxide, that 

cause global warming. Among greenhouse gasses, carbon dioxide (CO2) is the most prominent 

influencing gas, contributing 76% of emissions (Al-Ghussain, 2019). 

Residential and commercial buildings accounts for more than 41% of energy 

consumption in US (Chou & Bui, 2014). The energy consumption of buildings is impacted by 

factors, such as design parameters, population density, and urbanization (Aqlan et al., 2014). 

Moreover, building energy consumption has been on the rise in recent years, driven by several 

factors, such as population growth, increased demand for building services, climate, and building 

characteristics (Zhang et al., 2023; Aqlan et al., 2014). Proper design of architectural parameters 

is a prominent energy- saving technique in buildings (Kim & Suh, 2021; Sarkar & Bardhan, 

2020). By fine-tuning and enhancing these design parameters, it becomes feasible to lower 

energy consumption. The building design is one of the primary factors influencing energy usage 

(Chung & Rhee, 2014). Location is also a major factor impacting building energy consumption, 

since the weather and climate impacting the building depends on its location. By building 

structures with optimized energy design depending on its locations can increase building energy 

efficiency (Ascione et al., 2019).  

Among many factors influencing building energy usage, it is important to understand 

which features are most important. Identifying the most influential features or factors that affect 

building energy usage allows designers to prioritize their efforts and investments in energy 

efficiency (Medal et al., 2021).  
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2.2 Impact from Building design variables 

Heating and cooling loads are the basic parameters that define the environmental 

condition, representing the energy per unit time that needs be added or removed from the 

building (Chou & Bui, 2014; Shanthi & Srihari, 2018). Calculating building HL and CL is 

crucial in determining the necessary equipment to maintain a controllable indoor temperature, 

while ensuring economic and environmental viability (Abediniangerabi et al., 2022; Gong et al., 

2020). Studies have used UCI energy efficiency dataset to analyze the building energy usage 

using eight input design variables i.e., relative compactness, surface area, wall area, roof area, 

overall height, orientation, glazing area, and glazing area distribution. The two output variables 

in UCI dataset are heating load and cooling load (UCI Machine Learning Repository, n.d.). 

Several studies have used these input variables to forecast heating and cooling loads. 

Aqlan et al., (2014) identified RC, wall area, surface area, roof area, overall height, and glazing 

area as the most important factors for predicting HL and CL. Aqlan et al., identified that overall 

height significantly impacts the building heating and cooling energy. The study by Tsanas & 

Xifara, (2012) to identify influential variables of HL and CL, RC, wall area, and roof area have 

more influence on energy loads than other input variables. 

Furthermore, Irfan and Ramlie (2021) conducted a study on the role of input variables 

concerning two output variables: HL and CL. Their research demonstrated that orientation does 

not significantly affect changes in HL and CL. However, overall height, wall area, and surface 

area have a notable impact on both energy loads. The study by Nazir et al., (2020) identified that 

the most important factors influencing heating and cooling load prediction are RC, overall 

height, wall area, glazing area, surface area, and roof area. The study did not delve into the 

negative or positive impact of independent variables or explore linear relationships between 

independent and dependent variables. 

2.3 Explainable Artificial Intelligence 

Artificial Intelligence (AI) is the simulation of human intelligence and the training of 

computers to learn human behaviors, including learning, judgment, and decision-making (Zhang 

& Lu, 2021). Artificial intelligence is used in many applications such as image processing, and 

intelligent robots (Zhang & Lu, 2021; van der Velden et al., 2022).  
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Explainable Artificial Intelligence (XAI) is a technique that improves the explainability 

of machine learning models. The aim of XAI is to give a better understanding of machine 

learning outputs (Machlev et al., 2022). The XAI tools gives a better understand on influence of 

input variables on the output (Tsoka et al., 2022). XAI also explains the procedure of decision 

are made by Artificial models increasing the confidence in the model (Ersoz et al., 2022). XAI 

helps researchers to understand the workings of ML models with high accuracy and performance 

(Machlev et al., 2022). 

Previous studies have used XAI to give accurate predictions with better understanding. 

For example, a study by Zhang et al., (2023) used XAI using Light Gradient Boosting Machine 

integrated with SHapley Additive exPlanations (SHAP). Zhang et al., predicted the influence 

form different characteristics on building energy consumption quantitatively. A study by Tsoka 

et al., (2022) analyzed whether the building can achieve an energy performance certificate (EPC) 

using an artificial neural network classification model. However, Tsoka et al., used XAI tools 

such as Local Interpretable Model-Agnostic Explanation (LIME) and SHAP for the 

classification. According to the results of XAI, it is possible to remove not important input 

features without significantly affecting the accuracy of the ANN classification models. 

2.4 Machine Learning 

The use of machine learning is a viable approach to predicting energy efficiency data to 

get accurate results (Fathi et al., 2020). Machine learning is a subset of artificial intelligence 

(Pruneski et al., 2022). Machine learning is a computational method that uses available training 

data to make accurate predictions (Guo & Li, 2023). Machine learning divides into different 

categories, such as supervised, unsupervised, and semi supervised (Xie et al., 2022; Yu et al., 

2023). The category depends on labeled and unlabeled training data (Guo & Li, 2023).  

Supervised learning uses a labeled dataset (Karatzas & Katsifarakis, 2018). Supervised 

learning enables future predictions and classifications (Pruneski et al., 2022). Supervised 

machine learning includes algorithms such as regression, support vector machine, random forest, 

and neural networks (Guo & Li, 2023; Pruneski et al., 2022). Supervised learning has two 

models: regression and classification. Regression is predicting a continuous value using an 

existing training dataset. Some of the regression algorithms are Linear regression, Bayesian 

Ridge Regression, and Support Vector Regression (SVR) (Liapikos et al., 2022). Classification 
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algorithms predict a discrete or binary output (Matheus). Random Forest, Logistic Regression, 

and Support Vector Machine are a few of classification machine learning algorithms(Hassan et 

al., 2022). Unsupervised learning uses unlabeled input data to predict associations and patterns 

between them. Clustering methods help to predict the patterns (Hernandez-Matheus et al., 2022; 

Z. Huang et al., 2022). Semi supervised learning methods also work on analyzing high-

dimensional data such as clustering and dimensionality reduction (Guo & Li, 2023). Because of 

these advantages, many studies have used machine learning to analyze building energy usage and 

efficiencies (Goliatt et al., 2018; Mokeev, 2019). 

The two ways to divide data for machine learning predictions are test- train split and k-

fold cross-validation. The ML model acquires knowledge about variables by training on a 

labeled dataset (Mishra et al., 2022). Subsequently, the model is put to the test and validated 

using the results obtained from test data. Test-train split divides the data randomly into two sets 

considering proportions (Boudjella & Boudjella, 2021a). A common percentage is training 75% 

and test 25% (Boudjella & Boudjella, 2021b). However, in k-fold cross validation, the dataset is 

divided into k folds (Chou & Bui, 2014). k-fold cross-validation is a reliable data-dividing 

method compared to train-test split (Abediniangerabi et al., 2022). 

2.5 Prediction Algorithms 

Studies have used many machine learning algorithms to predict building HL and CL 

using UCI dataset.  

• Aqlan et al., (2014) used K-means clustering method and artificial neural networks 

(ANN) to analyze UCI HL and CL data. The results indicated combination of ANN and 

cluster analysis effectively predicted HL and CL with high accuracy.  

• Tsanas & Xifara, (2012) utilized Random Forest (RF) and iteratively reweighted least 

square (IRLS) methods to estimate the association between variables. Results indicated 

RF out-performed IRLS.  

• Goliatt et al., (2018) employed four regression models, which are Support Vector 

Regression (SVR) Gaussian process, Multi-Layer Perceptron, Neural Networks (MLP), 

and RF to predict building energy efficiency. They evaluated the performance using five 

metrics: Mean Absolute Error (MAE), R-squared (R2), Root Mean Square Error 
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(RMSE), Mean Absolute Percentage Error (MAPE), and Synthetic Index (SI). The results 

indicate that the Gaussian process is a viable and effective method for prediction of 

heating and cooling loads in buildings. 

• Moayedi et al., (2021) utilized genetic algorithm (GA) and imperialist competition 

algorithm (ICA) to enhance the artificial neural network performance to predict HL and 

CL. The study’s findings revealed that incorporating an optimization algorithm 

significantly improved the model's performance, with ICA outperforming GA in this 

context. 

• Chou & Bui, (2014) developed predictions of heating load (HL) and cooling load (CL) 

using five single models: artificial neural networks (ANNs), support vector regression 

(SVR), classification and regression tree (CART), chi-squared automatic interaction 

detector (CHAID), and general linear regression (GLR), along with ensemble models. 

They conducted a comparison of these models' performance and identified that SVR had 

predicted HL with the best performance, while SVR+ANN ensemble model precited CL 

with the best performance.  

• Permai & Tanty (2018) conducted a study on the impact of the Frequentist method and 

Bayesian approach on linear regression for predicting HL and CL. The results indicated 

that the Bayesian approach combined with linear regression yielded better results for 

Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean 

Absolute Deviance (MAD) compared to the Frequentist method. 

• Nazir et al., (2020) analyzed heating and cooling loads predictions using artificial neural 

networks. Results indicated that overall height, surface area, relative compactness, wall 

area, roof area, and glazing area are the most impacting factors for heating and cooling 

loads. 

• Boudjella & Boudjella (2021a) compared the cooling load prediction result with the 

actual class result using the K Nearest Neighbor model. 

Previous studies have primarily focused on predicting heating load (HL) and cooling load 

(CL) using supervised and unsupervised machine learning models. However, none of these 

studies have specifically analyzed the linear model coefficients to explore the relationship 
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between building parameters and various levels of energy efficiency for HL and CL. Our study 

aims to bridge this gap by analyzing model coefficients and establishing the relationship between 

input building parameters and five energy efficiency levels for heating and cooling loads. To 

achieve this, the study predicted model coefficients using linear regression and logistic 

regression, and Bayesian network was utilized to model the relationships.  

2.6 Feature Importance 

The CBECS 2018 and 2012 datasets analyzed the feature importance in the study. 

However, only a few limited studies used the CBECS 2018 data since the microdata in year 2018 

was released in December 2022 (Administration, n.d.). 

However, many studies used the CBECS 2012 dataset. The study by Lokhandwala & 

Nateghi (2018) identified the main predictors for predicting cooling load intensity of CBECS 

2012. According to their results, the key predictors are climate and building types. Lokhandwala 

and Nateghi (2018) used Random Forest as the machine learning model for prediction since it 

obtained the highest R2 of 0.86 and the lowest in-sample mean standard error (MSE) of 15.27%. 

They analyzed the importance of variables based on the percentage reduction of prediction 

accuracy by excluding each variable from the dataset. The results identified that cooling degree 

days, percentage of building cooled, principle building activity and the census division as the 

topmost important variables in both 2003 and 2012. 

The study conducted by Deng et al., (2018) delved into the statistical relationship 

between continuous and categorical building characteristics. They found that SVM and RF 

exhibited superior performance in predicting energy usage intensity.  

Indeed, numerous studies have been dedicated to identifying important variables within 

datasets for predicting the target variable. Casalicchio et al., (2019) introduced a local feature 

importance measure to idenitfy individual observations. They proposed visual tools, such as 

partial importance (PI) and individual conditional importance (ICI) plots, to demonstrate the 

impact from each feature on the model's performance. 

Similarly, A study by Yan & Liu, (2020) developed a model for predicting cooling 

energy usage in residential buildings using air conditioners. They underwent a feature selection 

engineering process to select the most correlated and significant input features for energy usage 
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prediction. After evaluating different models, they concluded that XGBoost performed the best 

in predicting cooling energy use due to its reduced complexity and reduced risk of overfitting. 

From the above it can be seen that no studies have been performed using explainable AI 

to identify the important features to predict energy usage using CBECS 2018 and 2012 data. 

Towards this, Shapash, a recent explainable ML library identified important features related to 

commercial building energy usage. 

2.6 Impact of the location  

The weather differences significantly impact building energy consumption (Santamouris 

et al., 2015; Delgarm et al., 2016). The climate and weather influencing the building's energy 

consumption depend on its location. Therefore, studies analyzed the impact of weather and 

climate parameters such as humidity, solar radiation, and wind speed on energy consumption 

(Santamouris et al., 2015).  

The climate has different types. Timmons et al., (2016) studied the relationship between 

urban location and carbon emissions from residential buildings. The results of Timmons' study 

indicated a significant difference in residential energy between urban and nonurban areas due to 

factors such as population density.  

A study by Santamouris et al., (2015) noted that the temperature elasticity of electricity 

demand is different for countries with warm, mild, and cold climates. Santamouris et al., 

indicated that the parameter considered varies by climate and location: 1.7% for warm climates, 

0.54% for mild climates, and 0.51% for cold climates.  

Furthermore, a study by Cao et al., (2016) explained that energy-saving techniques differ 

for different climate conditions based on their location. For example, thermal insulation and 

passive solar heat gain are well suited to cold climates, while solar shading and ground cooling 

are best suited to tropical climates.  

The above studies focused on the climate parameter mostly, not the location. Therefore, it 

is important to identify the relationship between location on building energy consumption to 

building energy-efficient structures suitable for the location.  
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2.7 Chapter Summary 

The review of literature indicated that factors such as population growth, climate, and 

building characteristics increase building energy consumption. Explainable Artificial Intelligence 

is a useful method to give accurate prediction results with more details. Machine Learning is a 

viable approach to predict building energy consumption, using many algorithms categorized into 

regression and classification. The studies mentioned in the review of literature focused on 

improving the accuracy of machine learning algorithm predictions. Therefore, identifying 

relationships between building input features to energy consumption is important. Furthermore, 

analyzing the most important features is needed to increase building energy efficiency. 

Analyzing the impact from the location on building energy consumption is also important to 

increase energy efficiency. 
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CHAPTER 3 . RESEARCH METHODOLOGY 

3.1 Explainable Artificial Intelligence 

3.1.1 Explainable Artificial Intelligence – Shapash  

Explainable Artificial Intelligence (XAI) is a useful technique to understand the decision 

or prediction made by the AI and identify which variables in the dataset have more impact on the 

predictive outcomes by supervised machine learning models (Kim et al., 2020; Angelov et al., 

2021). Shapash is one of the popular XAI methods, a Python library that helps make machine 

learning easily understandable and interpretable. The study uses Shapash to analyze the most 

important input features impacting cooling energy usage of buildings. 

The Shapash library generates a visualization dashboard to implement machine learning 

model outputs. Visualization outputs display explicit labels to easily comprehend a model's 

summary (Shapash, n.d.; Molnar, n.d.). Shapash displays precise results using plots to help users 

understand the models using a web app that allows them to switch between global and local 

explainability easily. Model explainability at the global level focuses on the features that have 

the most significant impact on outcomes, while it focuses on individual decisions at the local 

level. The library results in three graphs showing the feature importance, feature contributions, 

and local explanation graph for each data ID (Ghosh et al., 2022). Shapash library supports 

predictions with many machine learning models, including Catboost, XGboost, Random Forest, 

LightGBM, Support vector machine (Ghosh & Sanyal, 2021). 

The feature importance graph identifies the relative importance of input variables. The 

feature importance graph is a bar graph that gives results of the top 20 features identified based 

on their impact (Amin et al., 2022). The length of the bar represents the contribution of each 

feature. Shapash calculates the contribution using Shapley value (Molnar, n.d.). The fundamental 

concept involves quantifying the feature contribution value to the model's prediction relative to 

the average prediction of the target variable. By understanding how much each feature influences 

the model's output compared to the overall average prediction, it is possible to assess the relative 

importance of different features in making accurate predictions. For that, Shapash uses linear 

regression for simple models. For more complex models, Shapash uses other methods, such as 

cooperative game theory, to calculate Shapley values. Equation 3.1 shows the mathematical 
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formula to calculate Shapley value, as proposed by Štrumbelj & Kononenko (2014) using 

Monte-Carlo sampling. Here, let M represent the number of iterations. 𝑓(𝑥+𝑗
𝑚 ) refers to the 

prediction for x, where a random data point z replaces the random number of values of features, 

excluding feature j value. Similarly, 𝑥−𝑗
𝑚  is the same as 𝑥+𝑗

𝑚 , but with the replaced values of j 

feature (Molnar, n.d.).  

 

∅̂𝑗 =  
1

𝑀
 ∑ (𝑓(𝑥+𝑗

𝑚 ) − 𝑓(𝑥−𝑗
𝑚 )) 𝑀

𝑚=1   (3.1) 

 

Equation 3.2 is a derivation of equation 3.1, assigning that ∅𝑗
𝑚 =  𝑓(𝑥+𝑗

𝑚 ) −  𝑓(𝑥−𝑗
𝑚 ). 

Equation 3.2 gives the averaging process of making the samples a probability distribution of x. 

Repeating the procedure can obtain the Shapley values for all input features (Molnar, n.d.).  

 

∅𝑗(𝑥) =  
1

𝑀
 ∑ ∅𝑗

𝑚𝑀
𝑚=1     (3.2) 

 

The feature importance graph uses the SHAP, based on the game theory-based optimal 

Shapley values. The feature importance graph considers all the features; therefore, it is a global 

explainability. SHAP calculates the average absolute Shapley values per feature across the data 

to calculate the global importance of features, as shown in equation 3.3 (Molnar, n.d.). 

 

𝐼𝑗 =  
1

𝑛
 ∑ |∅𝑗

(𝑖)
|𝑛

𝑖=1     (3.3) 

 

The value of 𝐼𝑗 is the x axis value or the contribution of a feature. Therefore, SHAP 

feature importance (feature contribution) measures the mean absolute Shapley value (Molnar, 

n.d.; Lundberg & Lee, 2017). The interpretation of the Shapley values is that feature X changes 

the predicted absolute Y probability on an average by k×100% points, assuming the input feature 

X obtained a mean absolute Shapley value of k for predicting Y. 

Random Forest implemented XAI to analyze the feature importance impacting building 

cooling energy consumption.  
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3.1.2 Random Forest Regressor 

A Random Forest trains several decision trees which is an ensemble method (Biau & 

Scornet, 2016). A decision tree is a data classification process based on decision nodes, branches, 

and leaf nodes. A decision node passes a test, and a branch contains the outcome. A class label 

appears at the end of each leaf node (Li et al., 2020). The decision tree stops if the tree reaches 

the maximum number of levels or contains fewer observations than a predefined number.  

Random Forest generates multiple decorrelate decision trees by randomly sampling a 

subset of features for each tree. When constructing each tree, the training sample set contains 

75% randomly selected training samples. The other 25% uses as the test dataset to calculate the 

prediction error (Xie et al., 2021). Random Forest calculates the average values of predictions 

from all the trees as the final decision, and it is the decision with majority votes for 

classifications (Li et al., 2018; Singh et al., 2016). Random forest predictions are fast, scalable, 

robust to noise, have no overfitting, and have easy interpretation. However, the prediction speed 

decreases with the ensemble model's increasing number of decision trees (Abediniangerabi et al., 

2022). 

Two Commercial Buildings Energy Consumption Survey (CBECS) datasets interpreted 

the results using Random Forest in this study.  

3.1.3 CBECS Datasets 

The Commercial Buildings Energy Consumption Survey (CBECS) is dataset that gathers 

information on energy consumption and consumption patterns of commercial buildings in the 

United States (Administration, n.d.). The CBECS datasets include a wide range of building 

types, such as schools, hospitals, correctional facilities, religious facilities. These buildings are 

located in all 50 states and the District of Columbia. 

CBECS 2018 and CBECS 2012 datasets are named according to the year collected in the 

study. CBECS 2018 dataset includes the data of 6436 buildings, representing 5.9 million US 

commercial buildings, which consumed 6.8 quadrillion of BTU energy in 2018 (Administration, 

n.d.). The CBECS 2012 dataset contains 6720 records, where each data is associated with 1119 

attributes (Tian et al., 2019). 
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Cooling energy used in buildings is the output variable in research question 1. Energy 

used for cooling a building depends on many factors, and among them, this study used 21 input 

variables from CBECS 2018 and 2012 (Lokhandwala & Nateghi, 2018). The 21 input variables 

include five categories. The categories are climate, cooling features, building usage, 

construction, appliances and other features. Table 3.1 shows the summary of input variables. 

Table 3.1 includes the categories, name, label, and variable type. According to Table 3.1, the 

value ranges and categories are the same for CBECS 2018 and 2012 for some input features, 

such as CENDIV, MAINT, WKHRS, and MONUSE. However, input features like CDD65, 

MAINCL, and HWRDCL have different value ranges and categories in the two datasets. 

Table 3.1. Summary of CBECS 2018 and 2012 input variables 

Category Input variable 

Input 

variable 

label 

Variable type  

Climate 

Cooling degree days (base 65) CDD65 Number (days) 

Census division CENDIV 
Character 

 

Cooling features 

Percent cooled COOLP Number (%) 

Main cooling equipment MAINCL Character 

Regular maintenance for HVAC system MAINT Characters 

How cooling reduced in a 24-hour cycle HWRDCL Character 

Building usage 

Total hours open per week WKHRS 
Number 

(Hours) 

Months of year the building was in use MONUSE 
Number 

(Months) 

Total occupancy percent TOTOCPP Number (%) 

Number of businesses NOCC Number 

Number of workers NWKER Number 

Principle building activity PBA Character 

Percent lit when open LTOHRP Number (%) 

Building 

construction 

Floor to ceiling height FLCEILHT Number (feet) 

Glass percent in building GLSSPC Character 

Appliances and 

other features 

Laboratory equipment LABEQP Character 

Area of data center or server farm DCNTRSFS Character 

Linear accelerators LINACC Character 

Number of Xray machines XRAYN Number 

Cost of Electricity ELCOST 
Number  

($.k-1 Btu-1) 

Number of computers PCTERMN Number 
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Total occupancy percent (TOTOCPP) and cost of electricity (ELCOST) variables are 

derivatives of the original CBECS datasets. Equations 3.4 and 3.5 show the formulas for 

generating TOTOCPP and ELCOST. To calculate the two variables, percentage occupancy 

(OCCUPYP), lodging room percent occupancy (LODOCCP), annual electricity expenditures 

(ELEXP), and annual electricity consumption (ELBTU) were considered. 

 

TOTOCPP (%) = OCCUPYP (%) + LODOCCP (%) (3.4) 

 

ELCOST ($k-1Btu-1) = ELEXP ($) / ELBTU (kBtu)  (3.5) 

 

The output variable of CBECS datasets is the electrical energy usage intensity (EUI), 

labeled as ELCLPERSQFT (electricity used for cooling per square feet). Equation 3.6 shows the 

formula to calculate EUI (Lokhandwala & Nateghi, 2018). 

 

EUI (kBtu.ft−2) = ELCLPERSQFT =  
Eelectricity used for Cooling (kBTU)

Building area (square feet)
 = 

ELCLBTU

SQFT
  (3.6) 

 

Table 3.2 summarizes the cooling EUI of CBECS 2018 and 2012 datasets. According to 

Table 3.2, the cooling EUI of 2018 buildings ranges from 0 to 139.6 kBtu, and it was 0 to 787.5 

kBtu in 2012. Additionally, the mean and median also have a lower value in 2018 (7.9 and 4.7, 

respectively) than in 2012 (9.8 and 4.9, respectively). Table 3.2 indicates that buildings in 2018 

used less cooling EUI than 2012 buildings. 

Table 3.2. Statistics of cooling EUI in CBECS 2018 and 2012 datasets 

 CBECS 2018 / kBtu.ft−2 CBECS 2012/ kBtu.ft−2 

Minimum 0.0 0.0 

Maximum 136.6 787.5 

Q1 2.1 1.9 

Median 4.7 4.9 

Q3 9.5 11.5 

Inter quartile range (IQR) 7.4 9.6 

Mean 7.9 9.8 
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3.1.4 Workflow for identifying feature importance. 

Figure 3.1 shows the workflow of research question 1, which is to identify the most 

important features to predict commercial buildings cooling energy usage. Random Forest 

predicted cooling EUI using 21 input variables from CBECS 2018 and 2012 datasets separately. 

Random Forest ran the predictions ten times to get the results using the train (75%)-test (25%) 

split. The Random Forest prediction created feature importance graphs for CBECS 2018 and 

2012 using Shapash. Then, the study identified the most important features of the two datasets 

separately and compared them in terms of each feature’s contribution and importance order. 

 

Figure 3.1. Workflow for identifying feature importance. 

3.2 Machine Learning Applications 

3.2.1 Machine Learning Algorithms 

The two types of machine learning algorithms are Regression and classification 

algorithms. One regression model, i.e., Linear Regression and two classification models: Logistic 

Regression and Bayesian Networks are used in the study.  
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3.2.1.1 Linear Regression 

Linear regression is a regression machine learning model which explains the linear 

relationship between one dependent (output/ response) variable and independent 

(input/explanatory) variables (Deng et al., 2018; Xie et al., 2021). Linear regression predicts the 

continuous variables (Srihari, 2018). Equation 3.7 shows the general Linear regression model, 

where 0 = intercept, i = model coefficients, and ɛ is the random error (Pandit et al., 2021). Y is 

the dependent variable, where 𝑋𝑖 are independent variables. The model coefficient of an input 

variable is proportional to the input feature contribution. For example, an input feature with a 

higher coefficient contributes more and have a higher influence on the output variable (Srihari, 

2018). 

Y= 0 + 1𝑋1 + 2𝑋2 + …. + k𝑋𝑘 + ɛ   (3.7) 

 

Linear regression has two types: Simple Linear Regression (SLR) and Multiple Linear 

Regression (MLR) (Pandit et al., 2021; Goyal et al., 2020). If the model contains one 

independent variable (i =1), then it is a simple linear regression model. Therefore, SLR model 

includes one output variable (Y) and one input variable (X), and finds a correlation between 

input and output (Gianey & Choudhary, 2018). When there are multiple input variables (i ≥ 2), it 

is a MLR model (X. Xie et al., 2021).  

The Linear regression minimizes the residual sum of squares between the observation 

(𝑦𝑖) and predicted output (𝑦𝑖_𝑝𝑟𝑒𝑑) (Deng et al., 2018). Equation 3.8 shows the Linear regression 

objective function, where n is the number of data points and p is the number of input variables 

(Deng et al., 2018). 

 

 Min ∑ (𝑦𝑖 −  𝑦𝑖_𝑝𝑟𝑒𝑑)
2𝑛

𝑖=1  where 𝑦𝑖_𝑝𝑟𝑒𝑑 =  ∑ (𝑥𝑖𝑗𝑗
− 

0
)𝑝

𝑗=1   (3.8) 

3.2.1.2 Logistic Regression 

Logistic regression solves classification problems where the output variable is 

dichotomous (Gianey & Choudhary, 2018). Logistic regression predicts the output by fitting a 

logistic function/curve to the dataset (Sala et al., 2021; Singh et al., 2016). 
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The classification process of Logistic regression calculates z as the summation of input 

data X (𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛) where each feature is multiplied by a regression coefficient W 

(𝑤0, 𝑤1, 𝑤2, … , 𝑤𝑛). Equation 3.9 shows the formula to calculate z (Zou et al., 2019). 

 

𝑧 =  𝑤0𝑥0 + 𝑤1𝑥1 +  𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛    (3.9) 

 

Then, Logistic regression model calculates probabilities based on z, since a conditional 

probability distribution represents the fitted model. Equation 3.10 shows the conditional 

probability distribution of Logistic regression (Li et al., 2020). P(Y=1|X) is the probability of the 

output variable Y taking the value 1 (or success) and given the independent variables X and a set 

of coefficients W. (Y=0|X) is the probability of Y taking the value 0 (or failure). 

 

𝑃(𝑌 = 1|𝑋) =  
exp (𝑍)

1+exp (𝑍)
 and 𝑃(𝑌 = 0|𝑋) =  

1

1+exp (𝑍)
 (3.10) 

 

The objective of logistic regression is estimating coefficients (W) that best fit the 

observed data, and then use these coefficients to predict the probability. 

When dealing with more than two classes, logistic regression transforms into Multiclass 

Logistic Regression (MLR) (De Loera & Hogan, 2020). The most common approach for MLR is 

the one-vs-rest method. Each classifier determines whether an example belongs to a specific 

class (De Loera & Hogan, 2020). The MLR model can handle multiple classes and make 

predictions accordingly using this one-vs-rest method. 

3.2.1.3 Bayesian Networks 

The Bayesian network (BN) is based upon Bayes' theorem, which is a supervised ML 

model (Tian et al., 2019). Bayesian network utilizes a directed acyclic graphical model to 

classify data, taking into account the dependencies among different attributes. Bayesian networks 

identify relationships between variables by analyzing their dependencies and independence, or 

they represent the causality of variables. This study focused on the two aspects of Bayesian 

Network (1) Bayesian network components and (2) model hyperparameters. 
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The Bayesian network consists of (a) the graph structure and (b) the table of numerical 

conditional probabilities (S. Huang et al., 2018). 

3.2.1.3. a Graph structure 

Bayesian network graph's nodes represent variables. The two types of nodes are parent 

nodes and child nodes. Parent nodes have an impact on child nodes. The arrows in the graph 

represent the relationships between connected nodes, pointing from the parent node to the child 

node, indicating the direction of influence.  

Figure 3.2 illustrates the Bayesian network model with six nodes (S. Huang et al., 2018). 

Here, Xf is a parent node since it influences Xb, as indicated by the arrow direction from Xf to 

Xb. However, Xb acts as both parent and child nodes: it is the parent of Xc and the child of Xf. 

This configuration represents the dependencies and influences among the variables in the 

Bayesian network. 

 

Figure 3.2. Bayesian network model (Huang et al., 2018) 

Below equations show that a node can represent as a function of its parents (Huang et al., 

2018). 

Xb = f (Xf) 

Xd = f (Xc, Xe) 

Xc = f (Xa, Xb, Xe) 
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3.2.1.3. b Conditional probability tables 

Each node in the Bayesian network graph consists of a conditional probability table. The 

conditional probability table defines how each variable behaves in the presence of its parent 

nodes. The conditional table includes semi ranges of each variable. Table 3.3 provides prototypes 

of these split sections for variables Xc and Xe in Figure 3.2. The assumed ranges of Xc and Xe 

span between [Xc,L, Xc,H] and [Xe,L, Xe,H], where Xc,L is the minimum and Xc,H is the maximum 

value for variable Xc, and similarly, Xe,L is the minimum and Xe,H is the maximum value for 

variable Xe. Variables Xe and Xc have m and n sections, respectively, reflecting the partitioning 

of their respective total ranges. These sections help define the conditional probabilities and 

dependencies of each variable with its parents in the Bayesian network. 

Table 3.3. Semi ranges in a conditional probability table 

Variable 
Range Number of Sections Sections 

Xe [Xe,L , Xe,H] m 

E1 = [Xe,L , Xe,1 ] 

. 

. 

Em = [Xe,m-1 , Xe, H] 

 

Xc [Xc,L ,Xc,H] n 

C1 = [Xb,L , Xb,1 ] 

. 

. 

Cn = [Xc,n-1 , Xc, H] 

 

 

 Equation 3.11 expresses the conditional probability of node Xd (parents: Xc and Xe) in 

Figure 3.2 (Huang et al., 2018). 

 

P(
𝑋𝑑=𝑥𝑑,𝑖

𝑋𝑐𝐶𝑗  𝑋𝑒𝐸𝑘 
) = P (Xd = xd, i  Xc  Cj  Xe  Ek) / P (Xc  Cj  Xe  Ek) (3.11) 

 

P (Xd = xd, i  Xc  Cj  Xe  Ek) is the probability of Xd = xd, i when the of Xc and Xe is 

within {Xc  Cj, Xe  Ek} set and P (Xc  Cj  Xe  Ek) is probability of Xc and Xe is within {Xc 

 Cj, Xe  Ek}. 

Combining these conditional probabilities results in the creation of conditional 

probability tables for each node in the Bayesian network. The tables play a crucial role in 
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identifying the relationship between child nodes and their parent nodes. The table is organized to 

consider all possible combinations of variable ranges for the parent nodes and the specific child 

node. By accounting for all these combinations, the conditional probability table quantifies how 

the child node's probability is affected by its parent nodes across various scenarios.  

The model hyperparameters used in the study are (c) search algorithm and (d) number of 

parents.  

3.2.1.3. c Search algorithm  

Various types of Hillclimbing and general-purpose search algorithms were employed for 

structure learning of the Bayesian network in this study (Scanagatta et al., 2019). The 

Hillclimbing network search algorithms used included Hillclimber, LAGD Hillclimber, K2 and 

Repeated Hillclimber. On the other hand, the general-purpose network search algorithms 

considered were Tabu Search, Simulated Annealing and Tree Augmented Naïve (TAN) 

classifier. 

Each algorithm follows a distinct approach in ordering variables for network structure 

learning. For instance, the Hillclimber algorithm changes arrows without an order until it reaches 

a good network (Bouckaert, 2004; Scanagatta et al., 2019). Tabu Search, on the other hand, 

follows the principle of using Hillclimbing until a local optimum is achieved and then selecting 

the most suitable candidate in the neighborhood (Bouckaert, 2004). These different search 

algorithms contribute to the exploration of various network structures during the learning process 

of the Bayesian network. 

3.2.1.3. d Number of parents  

The number of parents (NP) serves as an upper bound on the number of parents of each 

node in the learned Bayesian network. NP plays a crucial role in influencing the prediction 

accuracy of the Bayesian network model.  

For the purpose of identifying the impact of input variables on output variables, the study 

utilized results from Linear Regression and Logistic Regression. These regression analyses 

allowed the researchers to understand how the input variables contribute to the variation in the 

output variables. Then, results from the Bayesian Network prediction were analyzed to identify 
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the relationships between input and output variables. For the visualization of the model 

coefficients obtained, the study employed Word-Clouds.  

3.2.2 Visualization 

Word-Cloud is a visualization method commonly used to provide a visual summary of 

the main themes and recurring terms within a text document. Word-Cloud includes the distinct 

words of a text. Generally, the font size of each word is linearly proportional to its occurring 

frequency within the document (Heimerl et al., 2014). Larger font sizes indicate more frequent 

occurrences, while smaller font sizes represent less frequent ones. The different colors can 

highlight the other aspects of Word-Cloud.  

Figure 3.3 displays the Word-Cloud of the SCOPUS database. The database includes the 

keywords from 893 publications (Cristino et al., 2022). The Word-Cloud highlights that words 

like "building," "energy," and "efficiency" have larger font sizes compared to other words, 

indicating their higher frequency of occurrence among the keywords. Notably, "building" stands 

out with the largest font size, suggesting it appears most frequently. 

 

 

Figure 3.3. Word-Cloud of the SCOPUS database (Cristino et al., 2022) 

 University of California Irvine (UCI) dataset has been used to interpret data using 

machine learning algorithms and visualization.  
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3.2.3 UCI Dataset  

Dataset from the University of California Irvine (UCI) Machine Learning Repository 

contains the energy loads of buildings (UCI Machine Learning Repository, n.d.). UCI dataset 

includes the energy loads of 12 different building shapes. Combining 18 cubes of 3.5 × 3.5 × 3.5 

m3 dimension generated the simulated building shapes using Ecotect software (Tsanas & Xifara, 

2012). All buildings have the same volume of 771.75m3, but consist of distinct surface areas and 

dimensions. The material used for all 18 cubes are the same and selected maintaining the lowest 

U-value. The U-values for building characteristics are 1.780 (walls), 0.860 (floors), 0.500 

(roofs), and 2.260 (windows) – these were the default values used by Tsanas and Xifara (2012) 

to create the dataset.  

The location of the buildings is in Athens, Greece. The simulation assumed that each 

building had seven residents and 70 W of sedentary activity. According to the design 

specifications, the interior conditions were as follows: clothing: 0.6 Clo, humidity: 60%, air 

speed: 0.30 m/s, and lighting level: 300 Lux. The buildings had set the internal gain to sensible 

(5) and latent (2 W/m2). The infiltration rate set value was 0.5 for a 0.25 air change per hour. The 

thermal properties of the buildings were mixed mode (95% efficiency), 19-24 ◦C (66.2 -75.2 ◦F) 

thermostat range, and 15-20 hours of operation (Tsanas & Xifara, 2012). 

UCI dataset includes data of 768 buildings with eight input variables and two output 

variables. The input variables and their ranges are X1: Relative Compactness (0.62 - 0.98), X2: 

Surface area (514.5 - 808.6) m2, X3: Wall are (245 - 416.5) m2, X4: Roof area (110.25 - 220.5) 

m2, X5: Overall height (3.5 -7) m, X6: Orientation (2 -5), X7: Glazing are (0 - 0.4), and X8: 

Glazing are distribution (0 - 5). The two output variables are Y1: Heating Load (6.01 - 43.1) 

kWh/m2, and Y2: Cooling Load (10.9 – 48.03) kWh/m2. 

The dataset of 768 buildings used by Tsans & Xifara (2012) comprises a combination of 

input and output variables that contribute to the characterization of various building scenarios. 

Firstly, there are 12 distinct types of building shapes, each representing different architectural 

designs and layouts. Secondly, the dataset includes three different glazing area options, 

specifically 10%, 25%, and 40% of the floor area, which reflects variations in the amount of 

glass used in the building's exterior. Additionally, for each glazing area, there are five 

distribution scenarios that determine how the glazing is distributed on each side of the building. 

These scenarios include uniform distribution (25% on each side), as well as specific distributions 
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on the north, east, south, and west sides (55% on one side and 15% on each of the other sides). 

Finally, the dataset accounts for the rotation of buildings to align with four cardinal points, 

namely North, East, South, and West. 

The data mentioned yields a total of 720 distinct buildings, which is the result of 

multiplying 12 buildings for three sections (m) and five sections (n) in the data (12 × 3 × 5 × 4). 

Additionally, considering 12 buildings for four orientations without glazing created 48 buildings 

(12 × 4). Therefore, the total number of buildings is 768. 

The 12 building shapes have different RC values. Equation 3.12 is the mathematical 

formula for RC (Chou & Bui,2014), including volume (V m3) and surface area (A m2) of a 

building. Surface area is the addition of roof area, wall area, and floor area.  

 

𝑅𝐶 =  
6 𝑉

2
3

𝐴
   (3.12) 

 

Figure 3.4 shows the building shapes and their RC values (Chou & Bui, 2014). 

According to Figure 3.4, RC values of the building shapes are 0.98, 0.90, 0.86, 0.82, 0.79, 0.76, 

0.74, 0.714, 0.69, 0.66, 0.64, and 0.62.  

 

 

Figure 3.4. Building shapes of UCI dataset according to their Relative Compactness values 

(Chou & Bui, 2014) 
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To create the energy efficiency classes needed for classification algorithms, the 

discretization process was used.  

3.2.4 Data Discretization 

The output variables of research questions 2 and 3 are energy efficiency classes of 

buildings. Therefore, discretizing UCI dataset created energy efficiency classes. The 

discretization process involves two main steps, as described below.  

1) Arrange the data in ascending order 

2) Divide the data into five classes with equal ranges (Aqlan et al., 2014)  

Since the UCI dataset has two outputs: HL and CL, discretization process applied for 

both outputs separately. The purpose of dividing output loads into five classes is to increase the 

scope of energy efficiency. 

The same procedure was used to create three energy efficiency classes for the results 

comparison.  

3.2.5 Workflow  

3.2.5.1 Identifying the impact of input variables on output variables 

Figure 3.5 shows the workflow of research question 2 to identify the impact of input 

variables on HL and CL. Figure 3.5 shows that Linear regression predicted the HL and CL, 

analyzed using RMSE and MAE. Then the Logistic regression predicted the HL and CL energy 

efficiency classes using the discretized data. Accuracy was the evaluation metric for Logistic 

regression predictions. Testing condition were10-fold cross-validation. Finally, model 

coefficients obtained from Linear and Logistic regression were analyzed and visualized.  
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Figure 3.5. Workflow for identifying the impact of input variables on output variables 

3.2.5.2 Analyzing relationship between input and output variables 

Figure 3.6 shows the workflow of the procedures in research question 3, which is 

analyzing the relationship between input and output variables. The Bayesian network classifier 

used the discretized UCI dataset with five energy efficiency classes to test predictions with 10-

fold cross-validation. Accuracy evaluated the prediction results. Research question 3 analyzed 

the Bayesian network graphical structures by analyzing the impact of model hyperparameters. 

Finally, the study analyzed the conditional probability tables of nodes. Finally, the same 

procedure used three discretized classes for the results comparison. 

 



45 

 

Figure 3.6. Workflow for Analyzing relationship between input and output variables 

3.3 Impact of location on energy consumption 

3.3.1 Mann-Whitney-Wilcoxon rank sum test 

The Wilcoxon rank sum test is a statistical test that does not assume data is normally 

distributed (nonparametric test) (Barros et al., 2018). The test uses to determine whether the two 

independent samples come from the same distributed populations by comparing dataset medians. 

Therefore, Wilcoxon rank sum test is equivalent to two-sample t-test (Doorn et al., 2020; Jiang et 

al., 2020).  

Independent samples with continuous, non-normal distribution can apply the Wilcoxon-

rank sum test (Barros et al., 2018). The null and alternative hypothesis of the test are as below 

(Barros et al., 2018).  

• Null hypothesis: Two samples have the same distribution. 

• Alternative hypothesis: Two samples do not have the same distribution. 
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The test statistic of the Wilcoxon test is U and calculate using summing rx or ry and 

subtracting 
𝑛𝑥(𝑛𝑥+1)

2
 or 

𝑛𝑦(𝑛𝑦+1)

2
 respectively, where 𝑟𝑖

𝑥is the rank of xi, and 𝑟𝑖
𝑦
 is the rank of yi. 

The test checks the difference between two groups by comparing U with the values correspond 

to no difference (Perolat et al., 2015). 

Wilcoxon- rank sum test checks whether there is a difference between building cooling 

energy usage between states cities and Lafayette. The U value considered to check no difference 

is 0.05. Commercial Load Data (CLD) was used to interpret the results using Wilcoxon rank-sum 

test. 

3.3.2 CLD Dataset 

Commercial Load Data (CLD) (Ong & Clark, 2022) contains hourly load profiles for 

both commercial and residential buildings across all Typical Meteorological Year 3 (TMY3) 

locations in the United States. The dataset was initially created around 2012 to support various 

solar water heating and photovoltaic analyses. 

The CLD dataset comprises weather data, commercial load profile data, and residential 

load profile data. However, in the study being referred to, only the commercial load profile data 

was utilized.  

Weather data from 10 states, representing one each from nine census divisions and 

Indiana as the reference state were selected. Building cooling usage for electricity (kWh) was the 

weather data variable selected in two different building types: midrise apartments and 

supermarkets. 

Table 3.4 summarizes the CDL dataset of midrise apartments. Table 3.4 includes the 

states and their symbols, cities considered in each city, minimum, maximum, median, and mean 

values of building cooling usage for electricity. 
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Table 3.4. Summary of CLD dataset – Midrise apartments 

State Symbol City Min 

(kWh) 

Max (kWh) Median 

(kWh) 

Mean 

(kWh) 

Indiana IN Lafayette 0 532.722  19.746 80.792 

Indianapolis  0  543.634  22.424 88.433 

Illinois IL Willard 0 583.947 17.405 85.409 

California CA San Francisco 1.995 177.380 42.794 49.149 

Arizona AZ Tucson 0 548.267  128.500 180.678 

Texas TX Austin 0 579.475 150.794 204.081 

South Dakota SD Brookings 0 445.307 8.083 54.675 

Tennessee TN Knoxville 0 460.722 45.125 113.209 

North Carolina NC Durham 0 463.705  62.086 119.996 

New York NY Rochester 0 403.692  7.604 63.451 

Massachusetts MA Boston 0 478.348 11.898 62.159 

 

Similarly, Table 3.5 shows the summary of supermarkets in CDL dataset. Table 3.5 

contains the state, symbol, city, minimum, maximum, median, and mean values of building 

cooling usage for electricity. 

Table 3.5. Summary of CLD dataset – Supermarkets 

State Symbol City Min Max Median Mean 

Indiana IN Lafayette 0 85.391 0 2.967 

Indianapolis  0 77.235 0 3.158 

Illinois IL Willard 0 86.596 0 3.329 

California CA San Francisco 0 17.712 0 0.259 

Arizona AZ Tucson 0 84.271 0 8.946 

Texas TX Austin 0 85.897 1.458 10.246 

South Dakota SD Brookings 0 63.487 0 1.788 

Tennessee TN Knoxville 0 64.272 0.047 4.463 

North Carolina NC Durham 0 68.892 0.115 4.783 

New York NY Rochester 0 56.788 0 2.054 

Massachusetts MA Boston 0 51.983 0 1.943 

3.3.3 Workflow for analyzing impact of location on energy consumption 

 Research question 4 follows the following steps for analysis. 

1. Selected 11 different cities in the US in ten states. 

2. Divided data according to four seasons.  

3. Performed Wilcoxon- rank-sum test for all the data and for four seasons separately. 

4. Compare the U value with the error margin. 
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3.4 Data Split 

Two different data splitting techniques for predictions were used in this study. The g 

techniques are train-test split and k-fold cross validation.  

Research questions 2 and 3 used10-fold cross-validation. For research question 1, the 

data splitting technique was train-test split. The training data included 75% of the total data, and 

25% was testing data. 

3.5 Data Evaluation Metrics 

 The evaluation metrics are accuracy, mean absolute error (MAE), and root mean squared 

error (RMSE). Equations 3.13, 3.14, and 3.15 show the mathematical formulas for evaluation 

metrics (Li et al., 2021; Kabir et al., 2017; Roostaei et al., 2021). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 × 100%  (3.13) 

𝑀𝐴𝐸 =  ∑
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡−𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡|

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
   (3.14) 

𝑅𝑀𝑆𝐸 = 𝑆𝑞𝑟𝑡 ( ∑
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡−𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡|2

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
)  (3.15) 

3.6 Software Implementation 

The study used Waikato Environment for Knowledge Analysis (WEKA) workbench 

(Holmes et al., 1994) for data analysis. The workbench is a popular and powerful data mining 

and machine learning software that provides a comprehensive set of tools and algorithms for data 

analysis. The WEKA workbench encompasses a large number of machine learning models, 

making it a versatile tool for various data analysis tasks. These algorithms include classification, 

regression, clustering, and association rule mining, among others. Researchers can use these 

algorithms to build predictive models, discover patterns in the data, and gain valuable insights. 

Python is the programming language used to predict and get explainable artificial 

intelligence outputs using the Shapash library and to run Wilcoxon-rank-sum test. 
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3.7 Chapter Summary 

Three datasets were used to analyze the impact of building features on energy 

consumption. Linear Regression, Random Forest, Logistic Regression, and Bayesian Networks 

predicted energy consumption using input features. Data discretization and statistical tests such 

as Mann-Whitney- Wilcoxon rank sum test made it possible to obtain accurate results. Python 

and WEKA implemented the data analysis, and finally, the chapter includes the workflow for 

four research questions.  

  



50 

CHAPTER 4 . RESULTS  

4.1 Explainable Artificial Intelligence 

4.1.1 Feature Importance  

Running the Random Forest regressor resulted in a feature importance graph that 

visualized the order of the feature's importance and their contributions. Figure 4.1 shows the 

feature importance graph and contributions from each feature for predicting cooling EUI using 

CBECS 2018 dataset. All ten runs with Random Forest obtained the same feature importance 

graphs as Figure 4.1. 

 

Figure 4.1. Shapash CBECS 2018 dataset feature importance graph and contributions for 

predicting cooling EUI 

The results indicate that for the CBECS 2018 dataset, cooling degree days (CDD65) is 

the topmost important feature, with a contribution of 0.3429, which means that cooling degree 

days change the predicted values of absolute cooling EUI probability by 34.29% on average. The 

second most important feature is principle building activities (PBA), and the third is cooling 

percentage (COOLP). Features WKHRS, ELCOST, TOTCPP, NWKER, GLSSPC, PCTERMN, 
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FLCEILHT, MAINCL, CENDIV, LABEQP, LTOHRP, HWRDCL, NOCC, XRAYN, 

MONUSE, MAINT, and LINACC have the importance orders from 4th to 20th respectively. 

Since Shapash shows only 20 inputs, the least important feature to predict cooling EUI using 

CBECS 2018 data is the area of the data center or servers (DCNTRSFC). 

The first two important features, cooling degree days and principle building activity 

contribute to 54.79% of the impact to predict cooling EUI in the CBECS 2018. When 

considering the first five features, cooling degree days, principle building activity, cooling 

percentage, cost of electricity, and total occupancy, made an 82.89% contribution. 

Figure 4.2 shows the feature importance graph and contributions from each feature for 

predicting cooling EUI using CBECS 2012 dataset. The feature importance graphs are the same 

for all ten runs with Random Forest.  

 

 

Figure 4.2. Shapash CBECS 2012 dataset feature importance graph and contributions for 

predicting cooling EUI 

According to Figure 4.2, cooling degree days (CDD65) is the topmost important feature 

with a contribution of 0.1968. The results indicate that cooling degree days change the absolute 

cooling EUI probability predicted on average by 19.68%. The second important feature is the 

percent cooled (COOLP) with a 0.1378 contribution, and the third is the total hours open per 
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week (WKHRS) with a contribution value of 0.1113. These results indicate that cooling degree 

days, percent cooled, and total hours open per week are the top three important features for 

predicting cooling EUI. DCNTRSFC, ELCOST, TOTOCPP, CENDIV, GLSSPC, NWKER, 

PCTERMN, XRAYN, MAINCL, LTOHRP, NOCC, LINACC, LABEQP, FLCEILHT, 

HWRDCL have the feature importance order numbers from 4th to 20th respectively. The feature 

importance order indicates that the importance of predicting cooling EUI decreases from the area 

of data centers or servers (DCNTRSFC) to how cooling is reduced in a 24-hour cycle 

(HWRDCL). The 20th feature in the order is the months of the year the building was in use 

(MONUSE) with a 0.006 contribution. The results indicate that MONUSE can change the 

absolute cooling EUI probability predicted on average by 0.6%. However, Shapash shows only 

the top 20 input features in the feature importance graph. Since Figure 4.2 does not include the 

variable MAINT and the dataset has only 21 input features, regular maintenance of HVAC 

system (MAINT) has the least order number, which is 21. 

However, adding cooling degree days, cooling percentage, total hours open per week, and 

principle building activity contributes 0.5214, indicating that four features contribute to almost 

50% of cooling EUI. The first two most important features only contribute to 33.46%. Moreover, 

the first nine features contribute to 81.17% of cooling EUI. 

4.1.2 Comparison of Feature Importance 

Figure 4.3 shows the heatmap comparing each feature's importance order obtained with 

CBECS 2018 and 2012. The yellow color represents the obtained order number for each feature 

for CBECS 2018 dataset, and it is in blue for CBECS 2012. If the importance order is the same 

for both years, points are in red on the heat map.  
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Figure 4.3. Heatmap of feature importance order from CBECS 2018 and 2012 

As shown in Figure 4.3, cooling degree days (CDD65) and LTHORP (percent lit when 

open) have the same order numbers, 1 and 14, in 2018 and 2012. Cooling degree days have the 

importance number 1, indicating that it is the most important feature in predicting cooling EUI in 

both 2018 and 2012. CDD65 estimates the energy required for cooling during a warm season. 

The cooling degree days directly reflect a building's cooling load. A building's cooling system 

has to work harder when the outside temperature is high to maintain a comfortable indoor 

temperature (Santamouris, 2016). Other factors, such as the cooling equipment (MAINCL), 

months in use (MONUSE), and number of businesses (NOCC) can also impact energy usage. 

However, these factors are more static and typically don't vary as much daily as CDD65. 

Therefore, CDD65 is the most important feature in predicting cooling EUI in both 2018 and 

2012. Furthermore, the percentage of buildings that are illuminated when they are open has an 

impact on building cooling usage, but it has the importance number 14th in both years. 

However, cooling percentage (COOLP), total hours open per week (WKHRS), area of 

data center or server farm (DCNTRSFC), census divisions (CENDIV), number of Xray machines 

(XRAYN), number of businesses (NOCC), linear accelerators (LINACC) obtained a lower 

importance in 2018 compared to 2012, in predicting cooling EUI. 
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Cooling percentage has the importance numbers 3 in 2018 and 2 in 2012. The change in 

importance can be attributed to the increased usage of energy-efficient windows and improved 

building insulation, which reduces heat transfers (Amirifard et al., 2019; Khatibi et al., 2023). 

Total hours open per week also has importance numbers 4 in 2018 and 3 in 2012. As remote 

work has increased and automated systems have developed, such as turning off lights in 

unoccupied buildings, this could contribute to reducing the importance in 2018 (Aste et al., 

2017). Furthermore, the area of data centers or servers achieved 21st in 2018 and 5th in 2018 as 

importance. Data centers or servers had a less significant impact on cooling EUI in 2018, 

possibly due to the reduced server density and the increased use of cloud computing. Because 

data centers needed more physical space, cloud computing recently helped reduce cooling EUI 

by using off-site data centers (Pradhan et al., 2016; Riahi, 2015). Census divisions may have had 

different climates during times due to climate change. Also, building codes and standards in 

census divisions have been updated to reduce energy usage (Levinson, 2016). Therefore, 

possibly due to these factors, census division was the 12th important feature to predict cooling 

EUI in 2018 and 8th in 2012. Number of Xray machines has the importance of 17 and 12 in 2018 

and 2012. The change in XRAYN can be due to recent efficient X-ray machines and shifting to 

digital X-ray systems which reduces the number of machines needed. The number of businesses 

has an importance of 16 in 2018 and 15 in 2012. Since there could be more commercial activities 

in the buildings which produce more heat in 2012, buildings might have used more cooling 

energy. As for linear accelerators, their importance number in 2018 is 20, down from 16 in 2012, 

might be due to the development of energy-efficient linear accelerators, which reduce energy 

usage. 

According to Figure 4.3, principle building activity (PBA), cost of electricity (ELCOST), 

total occupancy percent (TOTOCPP), number of workers (NWKER), glass percentage 

(GLSSPC), number of computers (PCTERMN), floor-to-ceiling height (FLCEILHT), main 

cooling equipment (MAINCL), laboratory equipment (LABEQP), how cooling reduced in a 24-

hour cycle (HWRDCL), months of the year the building was in use (MONUSE), regular 

maintenance for HVAC systems (MAINT) obtained a higher importance number in 2018 than 

2012 . 

The increased complexity of buildings, such as their size, number of occupants, and 

urbanization, can be reasons to increase the principle building activity importance to 2 in 2018 
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from 4 in 2012 (Delzendeh et al., 2017; Cao et al., 2016). Also, the increasing temperature with 

climate change created a rise in air conditioning which can lead to higher electricity consumption 

and cooling cost of electricity (Andrić et al., 2021). Total occupancy has more importance in 

predicting cooling EUI in 2018 than 2012. Increasing population growth may have contributed to 

this by increasing the use of space in modern buildings, resulting in more people per square foot 

(Cao et al., 2016). Moreover, with the increase in flexible working hours, many people are 

working longer than in the past, increasing the cooling time period. 

With the growth of the service sector, the number of people working in buildings has 

increased. For example, in the CBECS 2018 dataset, the NWKER range is 0-7500, and 0-6500 in 

CBECS 2012. Compared to 2012, NWKER has a greater importance in 2018 due to an increase 

in the number of workers requiring more space and, therefore, a greater need for cooling. 

Modern buildings increasingly feature extensive glass facades, with the increased use of glass. 

Glass allows natural light into the building and increases its openness. However, glasses also 

allow more heat to enter, increasing the building's cooling load (Alam & Islam, 2017). Compared 

to 2012, people used more computers in 2018, and they generate heat. Not just the computers 

installed in buildings generate heat; personal laptops also increase cooling energy consumption. 

Aside from this, today's computers are more likely to generate heat than their predecessors, 

especially high-performance computers used in data centers. 

Considering the building sizes, generally, buildings in 2018 could be taller than in 2012 

and often feature higher ceilings to create a more open and spacious feel. Maintaining a 

comfortable indoor temperature needs more space to cool and more air to cool (Senarathne et al., 

2022). Therefore, higher FLCEILHT increases the cooling energy. Therefore, FLCEILHT is the 

10th most important feature in 2018 and 18th in 2012. 

Figure 4.3 shows that cooling reduced in a 24-hour cycle obtained an importance of 19 

and 15 in 2018 and 2012, respectively. The result is that earlier, the buildings controlled its 

cooling systems by turning them on and off using a simple switch. However, modern buildings 

may use more advanced systems that adjust cooling levels throughout the day based on 

occupancy and external conditions (Amirifard et al., 2019). The advancements allow for precise 

control and reduce cooling energy usage. Main cooling equipment has more options in 2018 than 

in 2012. For example, MAINCL did not include modern cooling equipment, such as split 

systems and fuel/oil/kerosene thrillers, in CBECS 2012. Also, with the global temperature rise, 
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cooling equipment needs to supply more energy to maintain the required temperature increasing 

its impact on cooling EUI. The increased impact from laboratory equipment to cooling EUI in 

2018 can be with the use of more laboratory machines and research facilities with the 

development of science. Additionally, modern laboratory equipment, such as freezers and 

incubators require significant energy to operate, which increases the impact of cooling EUI. The 

number of months the building was in use also has a higher importance in 2018 than in 2012, 

because with the temperature changes, buildings need more cooling energy to maintain 

requirements (Campagna & Fiorito, 2022). Therefore, even if the building used the same number 

of months in both years, more cooling energy is needed in 2018 with the high energy 

requirement. 

Regular maintenance is essential to ensure optimal equipment performance. However, 

when it comes to building cooling energy usage, regular maintenance of equipment may have the 

least impact because there are several other factors, such as building layout that have a more 

significant effect on energy usage. Even with well-maintained equipment, the cooling system is 

inefficient if the building is not properly insulated. Due to the development of well-insulated 

buildings, MAINT has a lower impact on cooling EUI in 2018 than in 2012. Therefore, MAINT 

has important numbers 21 and 19 in 2018 and 2012.  

4.1.3 Comparison of feature contributions 

Figure 4.4 compares contributions from each input feature to predict cooling EUI, in 

2018 and 2012. Here, the features are arranged from left to right using the feature importance in 

2018. The reason for arranging it as 2018 is that CBECS 2018 is the most recent dataset, which 

could be more accurate. Of all the 21 inputs, four features have contributed more than 5% in both 

years. The features are CDD65, PBA, COOLP, and WKHRS. According to the results, overall, 

the most important features impacting cooling EUI in commercial buildings are cooling degree 

days, principle building activity, cooling percentage, and total hours open per week.  
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Figure 4.4. Contributions from features in CBECS 2018 and 2012 to predict cooling EUI 

However, according to a contribution comparison of features, such as cost of electricity, 

total occupancy percentage, number of workers, glass percentage, number of computers, main 

cooling equipment, laboratory equipment, and months of usage, they contributed less in 2018 

than in 2012. However, they have a higher importance in 2018 compared to 2012. The 

observation is because of the comparison of two independent datasets, and their calculated 

contribution is relative to the specific dataset. 

4.2 Machine Learning Applications 

4.2.1 Discretized UCI dataset 

Figure 4.5 shows the histogram created for heating load by the discretization process with 

five classes using UCI dataset. In Figure 4.5, class 1 includes 207 buildings data and 192 for 

class 2. Classes 3, 4, 5 include 98, 166, and 105 building data respectively. 
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Figure 4.5. Heating load classes for UCI dataset 

Figure 4.6 shows the histogram for cooling load with five classes. As of Figure 4.6, class 

1 to 5 in cooling load has 322, 90, 167, 154, and 35 building data respectively. 

 

 

Figure 4.6. Cooling load classes for UCI dataset 

Table 4.1 shows the names of the five classes, their ranges, and the count of building data 

in each class for heating and cooling.  

For example, Class 1 is named "very high-energy efficiency" and includes the lowest 

range of heating (6.01 - 13.428 kWh/m2) and cooling loads (10.9 - 18.326 kWh/m2). Buildings in 

this class require a relatively small amount of energy to achieve the desired indoor temperature, 
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making them highly efficient in their energy usage. On the other hand, Class 5 is named "very 

low-energy efficiency" and comprises the highest ranges of heating (35.682 – 43.1 kWh/m2) and 

cooling loads (40.604 – 48.03 kWh/m2). Buildings in this class need a higher amount of energy to 

regulate temperature when there are outdoor temperature changes, indicating low efficiency in 

their energy consumption. 

Table 4.1. Summary of discretized data - UCI dataset (five classes) 

Class 
HL class range 

kWh/m2 
HL count 

CL class range 

kWh/m2 
CL count 

Very high energy efficiency 6.01 - 13.428 207 10.9 - 18.326 322 

High energy efficiency 13.428 - 20.846 192 18.326 - 25.752 90 

Medium energy efficiency 20.846 - 28.264 98 25.752 - 33.178 167 

Low energy efficiency 28.264 - 35.682 166 33.178 - 40.604 154 

Very low energy efficiency 35.682 - 43.1 105 40.604 - 48.03 35 

 

Table 4.2 shows the discretized UCI data for three classes and their ranges. The purpose 

of creating 3 classes is to compare the results.  

Table 4.2. Summary of discretized data - UCI dataset (three classes) 

Class  HL class range (kWh/m2) CL class range (kWh/m2) 

Very high energy efficiency 6.01 – 18.373 10.9 – 23.276 

Medium energy efficiency 18.373- 30.736 23.276 – 35.653 

Very low energy efficiency 30.736 - 43.1 35.653 - 48.03 

4.2.2 Impact of building design variables on energy usage 

4.2.2.1 Linear Regression 

Equations 4.1 and 4.2 represent the linear equations derived from Linear Regression. 

Each equation consists of input variables along with their corresponding model coefficients, 

which determine the impact of each variable on the output (HL or CL). The magnitude of each 

coefficient represents its impact on the output variable HL. Larger coefficients indicate a higher 

impact, while smaller coefficients indicate a smaller impact. For example, the highest coefficient 
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is for Relative Compactness (64.77), which is negative, indicating that increasing Relative 

Compactness by one unit will decrease the heating load by 64.77 units. Conversely, a decrease in 

Relative Compactness by one unit will increase the heating load by 64.77 units. 

X2 and X4 have negative coefficients, where X3,X5,X7,and X8 have positive 

coefficients for predicting HL. Orientation (X6) is not included in the equation, suggesting that it 

does not impact the HL prediction. 

 

𝑌1 = −64.77𝑋1 − 0.043𝑋2 + 0.016𝑋3 − 0.09𝑋4 + 4.17𝑋5 + 19.93𝑋7 + 20.38𝑋8 + 83.93  

(4.1) 

 

Equation 4.2 shows that X1, X2, and X4 have negative coefficients, indicating that 

increasing these variables decreases the predicted cooling load. On the other hand, X5 and X7 

have positive coefficients, meaning that an increase in these variables will result in an increase in 

the predicted cooling load. However, X3, X6, and X8 have coefficients of zero, indicating that 

these variables do not have any impact on the prediction of cooling load. Relative compactness 

has the highest (70.79) coefficient for predicting cooling load in a negative direction. If relative 

compactness increases by one unit, the cooling load will decrease by 70.79 units. 

 

𝑌2 = −70.79𝑋1 − 0.04𝑋2 − 0.09𝑋4 + 4.28𝑋5 + 14.82𝑋7 + 93.76 (4.2) 

 

Figure 4.7(a) represents the Word-Cloud visualization of the coefficients obtained from 

predicting the heating load using Linear Regression. The visualization highlights the positive 

coefficients (X3, X5, X6, X8) using a dark color and the negative coefficients (X1, X2, X4) in a 

light color. The largest magnitude among the negative coefficients in Figure 4.7 (a) is for X1 

(Relative Compactness), indicated by the largest font size in light color. The results indicate that 

Relative Compactness impacts the HL most compared to other variables.  

Figure 4.7(b) shows the Word-Cloud of the Linear Regression model coefficients for 

predicting the cooling load, with negative (X1, X2, X4) and positive (X5, X7) coefficients. 

The comparison between Figures 4.7(a) and 4.7(b) shows that increased values of X1 

(Relative Compactness), X2 (Surface Area), and X4 (Roof Area), as well as decreased values of 
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X5 (Overall Height) and X7 (Glazing Area Ratio), result in reduced energy usage for both 

heating and cooling in buildings. 

 

 

Figure 4.7. Word-Cloud for Linear regression model coefficients 

Figure 4.8 (a) shows the changes in HL and CL with overall height. According to Figure 

4.8 (a), HL and CL increase with the overall height. For example, for a fixed dataset, HL and CL 

are 22.6 and 26.08 for X5 =7m and 8.00 and 11.09 for X5= 3.5m. Figure 4.8 (b) shows the 

energy reduction percentage with the reduction percentage of overall height. Figure 4.8 (b) 

shows that a 50% overall height reduction results in 64.56% HL reduction and 57.47% CL 

reduction. 

 

 

Figure 4.8. Changes of heating and cooling loads with overall height (a) Overall height vs 

Energy load (b) Overall height percentage reduction vs Energy load percentage reduction 
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Similarly, Figure 4.9 (a) shows the energy loads change with Glazing area ratio, where 

HL and CL are proportional to glazing area ratio. For example, X7 values of 0.4 and 0.1 obtained 

30.57, 24.59 (HL), and 32.01, 26.08 (CL). Figure 4.9 (b) shows the percentages of energy 

reduction to glazing area ratio reductions. As of Figure 4.9 (b), 75% of glazing area ratio creates 

a 19.5% reduction in HL and 13.88% in CL. 

 

 

Figure 4.9. Changes of heating and cooling loads with glazing area ratio (a) Glazing area ratio vs 

Energy load (b) Glazing area ratio percentage reduction vs Energy load percentage reduction 

Figure 4.10 (a) shows the impact of relative compactness on HL and CL. However, 

unlike overall height and glazing area ratio, energy loads decrease with the increase of relative 

compactness. Figure 4.10 (b) shows how much HL and CL increase with the reduction of RC. 

According to the figures, a 36.73% reduction of RC creates a 103.16% increase in HL and 

97.68% in CL. 
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Figure 4.10. Changes of heating and cooling loads with relative compactness (a) RC vs Energy 

load (b) RC percentage reduction vs Energy load percentage reduction 

Table 4.3 shows the evaluation metrics (RMSE and MAE) of Linear regression 

predictions. According to Table 4.3, input variables predicted heating load with 2.95 (RMSE) 

and 2.09 (MAE) values. For cooling load predictions, metrics values were 3.23 (RMSE) and 2.27 

(MAE). 

Table 4.3. Evaluation metrics for Linear Regression predictions for HL and CL 

 RMSE/ kWh/m2 MAE / kWh/m2 

Heating load  2.95 2.09 

Cooling load  3.23 2.27 

4.2.2.2 Logistic Regression 

Table 4.4 shows the model coefficients from Logistic Regression for predicting HL. 

Table 4.4 includes coefficients for five energy efficiency classes. 

  



64 

Table 4.4. Model Coefficients for Logistic Regression HL classes predictions 

Y1 X1 X2 X3 X4 X5 X6 X7 X8 Constant 

Very high efficiency 0 0 0.01 -0.01 -1.31 0 8.33 -0.22 0 

High efficiency -0.63 -0.01 -0.02 0.01 1.52 0 -8.61 0.17 0 

Medium efficiency 0 -0.01 -0.01 -0.02 1.01 -0.02 2.89 0.09 0 

Low efficiency 0 0.01 -0.04 0.08 -0.76 -0.01 -18.14 0.04 0 

Very low efficiency -17.09 -0 0.01 -0.02 1.6 -0.01 6.68 -0.02 0 

 

Table 4.5 shows the model coefficients for CL predictions and includes coefficients for 

five energy efficiency classes. 

Table 4.5. Model Coefficients for Logistic Regression CL classes predictions 

Y2 X1 X2 X3 X4 X5 X6 X7 X8 Constant 

Very high efficiency 0 0 0.01 -0.01 -0.56 -0.05 -1.87 -0.07 0 

High efficiency 0 -0.01 -0.03 0.01 1.92 -0.05 -1.85 0.04 0 

Medium efficiency -5.13 0 0.02 -0.05 0.53 0.02 4.56 0.09 -1.21 

Low efficiency 0 0 -0.03 0.06 -1.01 -0 -0.13 -0.1 0 

Very low efficiency -3.39 -0 0 -0.01 0.5 0 0.24 -0.01 -1.55 

 

Table 4.6 is the Word-Cloud visualization for coefficients from Tables 4.4 and 4.5. Table 

4.6 includes the model coefficients for five energy efficiency classes predicting HL and CL.  

According to Table 4.6 the common observations compatible with linear regression 

results are X5, and X1. Considering X5, in very high energy efficiency class, it acts as a negative 

variable. However, X5 acts as a positive impacting variable and X1 (RC) as a negative impacting 

variable in very low energy efficiency class. 
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Table 4.6. Word-Cloud for Logistic Regression model coefficients 

Range HL CL 

Very high energy 
efficiency 

  

High energy 
efficiency 

  

Medium energy 
efficiency 

  

Low energy 
efficiency 

  

Very low energy 
efficiency 

  

 

Figure 4.11 (a) shows the changes of the probability of success in very high energy 

efficiency class with overall height. According to Figure 4.11 (a), the probability of success in 

very high energy class decreases with the overall height. For example, X5 =3.5 obtained 0.012 of 

probability and 0.00013 for X5=7 for HL. Figure 4.11 (b)shows the increase of probability 

percentage with a reduction percentage of overall height. According to Figure 4.11 (b), a 50% 

overall height reduction resulted in a 9.5×103 (HL) and 5.17×102 (CL) probability percentage 

increase. 
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Figure 4.11. Changes of probability with overall height - Very high energy efficiency class (a) 

Overall height vs Probability (b) Overall height percentage reduction vs probability percentage 

increase 

Figure 4.12 (a) shows the changes of probability of success in very low energy efficiency 

class with the overall height. The aim within the class is to reduce the probability of success. 

Therefore, according to Figure 4.12 (a), increasing overall height decreases the probability of 

success. Figure 4.12 (b) shows the percentage reduction in the probability of success with the 

percentage reduction of overall height. According to Figure 4.12.(b), 50% of overall height 

reduction reduces the probability by 99.51% (HL) and 81.04% (CL). 

 

 

Figure 4.12. Changes of probability with overall height -Very low energy efficiency class (a) 

Overall height vs Probability (b) Overall height percentage reduction vs probability percentage 

reduction 
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However, RC performs differently than overall height in very low energy efficiency 

class. Figure 4.13 (a) shows the variation in the probability of success with the RC. According to 

Figure 4.13 (a), probability in very low energy efficiency class decreases with RC. Figure 4.13 

(b) shows the reduction of probability with the increased percentage of RC. According to Figure 

4.9.(b), 36.73% increase in RC reduces the probability of success by 7.1×103%(HL) and 

1.98×102 %(CL).  

Therefore, Logistic Regression predictions results that decreased overall height and 

increased RC, increases the probability of including in a high energy efficacy class.  

 

 

Figure 4.13. Changes of probability with RC- Very low energy efficiency class (a) RC vs 

Probability (b) RC percentage increase vs probability percentage reduction 

Table 4.7 shows the evaluation metric (Accuracy) to analyze Logistic regression. Table 

4.7 includes the accuracy values for predicting HL and CL. A Logistic Regression model 

predicted heating energy efficiency classes with an accuracy of 76.30% and cooling energy 

efficiency classes with an accuracy of 73.17% according to Table 4.7. 

Table 4.7. Evaluation metrics for Logistic Regression. 

 Accuracy 

Heating Load (Y1) 76.30% 

Cooling Load (Y2) 73.17% 
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4.2.3 Relationships and dependencies between design variable 

4.2.3.1 Effect of Bayesian Network Number of Parents 

Figures 4.14(a) and 4.14(b) show the graphical structures of Bayesian networks from 

Hillclimber algorithm for heating load (HL) and cooling load (CL), using discretized data with 

five classes. The number of parents (NP) is set to 1.  

Figure 4.14(a) shows that the variable Y1 acts as a parent for eight input nodes (X1 to 

X8). Each input node has only one arrow directed toward it from Y1, adhering to the upper 

bound of the number of parents. The absence of arrows between the X input nodes indicates that 

they are independent of each other, or there is no causal relationship between them. For example, 

the structure of Figure 4.14 (a) shows that Y1 can influence the selection of X1 and X2 

individually, but X1 and X2 are not dependent on each other. 

Similarly, in Figure 4.14(b), the variable Y2 serves as the parent for all the input nodes 

(X1 to X8). Each input node has only one arrow coming from Y2, again satisfying the NP value 

of 1. As with Figure 4.14(a), there are no arrows connecting the X input nodes in Figure 4.14(b), 

indicating their independence from each other. For instance, Figure 4.14(b) demonstrates that Y2 

influences X3 and X4 individually, without any connection between X3 and X4. 

 

 

Figure 4.14. Bayesian network for Hillclimber algorithm (NP = 1) 

Figures 4.15 (a, b) show the Bayesian networks from Hillclimber algorithm, for 

predicting HL and CL, where NP =3.  

Figure 4.15(a) shows that the nodes have parents where three parents is the maximum, 

satisfying the NP value. Below shows the relationships between nodes. 

1. Y1 is the only parent for Nodes X5, X6, and X8, indicating that these variables are 

independent of each other since there are no arrows between them. 
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2. The arrows between X1, X2, X3, and X4 indicate their dependencies, showing the 

relationship between relative compactness (X1) and surface area (X2) as defined in 

Equation 1.  

3. X4 and X7 have three parents, indicating that these variables are affected by three other 

variables.  

The relationships between the nodes are similar in Figure 4.15(b) satisfying the 

relationship of Equation 3.1.  

 

 

Figure 4.15. Bayesian network for Hillclimber Algorithm (NP = 3) 

The comparison of Figures 4.14 and 4.15 highlights the differences in the Bayesian 

network structures when using different search algorithms and the same NP, where NP = 1. For 

example, the number of parents for variable X2 varies between the two figures. X2 has only one 

parent (Y1) in Figure 4.14 (a), while in Figure 4.15 (a), it has two parents (Y1 and X5). 

Similarly, the number of parents for variable X3 is different between the two figures, with X3 

having one parent in Figure 4.14 (a) and three parents in Figure 4.15 (a). 

The same observation applies to the comparison of Figures 4.15 and 4.16, where the 

Bayesian network structures generated by the Tabu search algorithm (NP = 3) are compared. The 

connections of some variables, such as Y1, X1, X2, X5, X6, X7, and X8, are similar between 

Figure 4.15 (a) and Figure 4.16 (a). Similarly, X4 has three parents in Figure 4.16 (a) and two 
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parents in Figure 4.15 (a). The same differences can be observed when comparing Figure 4.15 

(b) and Figure 4.16 (b) for variable X3. 

The comparisons indicate that different search algorithms can lead to distinct graphical 

structures in Bayesian networks, even when the upper bound of number of parents (NP) is the 

same. This variation is due to the different learning methods and strategies employed by the 

search algorithms to explore and identify the relationships and dependencies between the 

variables in the dataset.  

 

Figure 4.16. Bayesian network for Tabu Search (NP = 3) 

4.2.3.2 Effect of Bayesian Network Search Algorithm  

Figure 4.17 (a-g) presents the Bayesian network graphical structures generated by seven 

search algorithms for predicting HL, with NP = 3. Each subfigure (a-g) corresponds to a specific 

search algorithm. Figures 4.17 (a-e) represent the networks from Hillclimber, K2, LAGD 

Hillclimber, Repeated Hillclimber, and Tabu search algorithms, respectively, while Figures 4.17 

(f, g) depict the networks generated by Simulated annealing and TAN algorithms. Simulated 

annealing and TAN generate general structures and do not have an NP parameter. 

The seven networks demonstrate varying structures due to the differences in the 

connections between nodes in each network. For example, in Figures 4.17 (a, c, d), variable X4 

has variables X1, X2, and X3 as its parents. However, in Figures 4.17 (b, d, e, f), the parents of 

variable X4 are different. Additionally, Figures 4.17 (a, c) show similar connections for the X4 

node but have different parents for the X1 node. 
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Figure 4.17 suggests that each search algorithm uses a different learning approach and 

method to build the model. The choice of search algorithm significantly influences the resulting 

Bayesian network, impacting its predictive performance and the relationships it captures between 

the input variables.  

 

 

Figure 4.17. Bayesian networks from search algorithms for predicting HL (NP = 3) 

Figure 4.18 shows the graphical structures for predicting cooling load using search 

algorithms. Each subfigure (a-g) corresponds to a specific search algorithm. Figures 4.18 (a-e) 

represent the networks generated by Hillclimber, K2, LAGD Hillclimber, Repeated Hillclimber, 

and Tabu search algorithms, respectively, with NP = 3. On the other hand, Figures 4.18 (f, g) 

illustrate the networks generated by Simulated annealing and TAN algorithms. 

The figure clearly demonstrates that different search algorithms result in distinct learning 

methods. For instance, Figures 4.18 (a, c, d, e) indicate that variables X1, X2, and X5 act as 

parents for the X4 node, while in Figure 4.18 (b), X1, X2, and Y2 are the parents for the same 

node. Furthermore, in Figures 4.18 (f) and (g), the parents of node X4 are Y2 and X2, 

respectively.Similarly, the number of parents for node X2 varies across Figures 4.18 (a, d). In 

one network, X5 and Y2 are parents of X2, while in the other, Y2 is the only parent.  
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Figure 4.18. Bayesian networks from search algorithms for predicting CL (NP = 3) 

Figure 4.19 presents a stacked bar chart summarizing the prediction accuracies (%) of 

Bayesian network search algorithms. The chart includes results for Hillclimber, K2, LAGD 

Hillclimber, Repeated Hillclimber, and Tabu search algorithms for NP values of 1, 2, and 3. The 

maximum NP value recorded is 3 because, for these algorithms, the accuracies (%) obtained 

didn’t change after NP = 3. 

For visualizing purposes, the counted maximum number of parents in Simulated 

annealing is represented as NP = 3 in Figure 4.17, whereas the actual value is 4 and NP= 3 in 

Figure 4.18. Similarly, in both Figures 7 and .18, TAN is shown to have NP = 2. 
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Figure 4.19. Bayesian networks accuracies for search algorithm with NP values 

According to the results from Figure 4.19, accuracy tends to increase with a NP value, 

indicating that more complex models with more dependencies among variables lead to better 

predictions. The trend holds true, except for CL predictions form K2 and HL predictions from 

Repeated Hillclimber. 

Comparing the predictions, Tabu search achieved the highest accuracy for HL (82.81%) 

and CL (81.77%) predictions. 

Comparing the algorithms Simulated annealing and TAN, Simulated annealing 

outperformed TAN for both HL and CL predictions with 82.68% and 81.38% accuracy 

respectively. 

4.2.3.3 Analyzing Bayesian Network Conditional Probability Tables 

Generally, conditional probability table includes the semi ranges of input variables to 

create the table. For example, below are the few semi ranges of the input nodes of Tabu search 

Bayesian network. For X1 the ranges were 0.62-0.63, 0.63-0.75, 0.65-0.75, 0.75-0.805, 0.805-
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0.84, 0.84-0.98, and for X5 it was 3.5-5.25, 5.25-7. However, the ranges might vary depending 

on the specific search algorithm used in the analysis. 

Table 4.8 presents the conditional probability table for node X2 using the Tabu search 

algorithm, which is used for predicting HL. The table shows the probabilities associated with 

different combinations of values for X2 (surface area) and Y1 (energy efficiency class) in the 

UCI dataset. 

The observation form the table is that the highest conditional probability of 0.855 is 

obtained for the Y1 in (6.01-13.428) kWh/m2, when X2 falls within the range of (673.75–

771.75) m2 and X5 (overall height) falls within the range of (3.5–5.25) m. This indicates that to 

achieve very high-energy efficiency in heating load, the surface area (X2) of the building should 

be in the range of (673.75–771.75) m2, and the overall height (X5) should be in the range of 

(3.5–5.25) m for the given dataset. 

Similarly, the highest probability of 0.875 is obtained for the Y1 in (35.682-43.1) 

kWh/m2 class, when X2 falls within the range of (624.75–673.75) m2 and X5 falls within the 

range of (5.25–7) m. This indicates that for a building to have very low-energy efficiency in 

heating load, the surface area (X2) should be in the range of (624.75–673.75) m2, while having 

overall height (X5) in the range of (5.25–7) m for the given dataset. 
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Table 4.8. Conditional probability table of X2 for predicting HL (Five classes) 

Class 
Y1 

(kWh/m2) 

X5 

(m) 

Ranges of X2 (m2) 

514.5-600.25 600.25-624.75 624.75-673.75 673.75-771.75 771.75-796.25 796.25-808.6 

Very high energy 

efficiency 

6.01-13.428 3.5-5.25 0.002 0.002 0.002 0.855 0.021 0.117 

6.01-13.428 5.25-7 0.167 0.167 0.167 0.167 0.167 0.167 

High energy 

efficiency 

13.428-20.846 3.5-5.25 0.003 0.003 0.003 0.431 0.336 0.225 

13.428-20.846 5.25-7 0.639 0.25 0.028 0.028 0.028 0.028 

Medium energy 

efficiency 

20.846-28.264 3.5-5.25 0.167 0.167 0.167 0.167 0.167 0.167 

20.846-28.264 5.25-7 0.52 0.421 0.045 0.005 0.005 0.005 

Low energy 

efficiency 

28.264-35.682 3.5-5.25 0.167 0.167 0.167 0.167 0.167 0.167 

28.264-35.682 5.25-7 0.701 0.109 0.18 0.003 0.003 0.003 

Very low energy 

efficiency 

35.682-43.1 3.5-5.25 0.167 0.167 0.167 0.167 0.167 0.167 

35.682-43.1 5.25-7 0.106 0.005 0.875 0.005 0.005 0.005 
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Table 4.9 presents the conditional probability table for node X2 in the Tabu search 

algorithm, which is used for predicting CL (cooling load). 

From the table, it can be observed that the surface area (X2) of the building should be in 

the range of (673.75–771.75) m2, and the overall height (X5) should be in the range of (3.5–5.25) 

m for the given dataset to achieve very high energy efficiency. Similarly, for a building to obtain 

very low energy efficiency in cooling load, the surface area (X2) should be in the range of 

(624.75–649.25) m2, while overall height (X5) in the range of (5.25–7) m for the given dataset. 
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Table 4.9. Conditional probability table of X2 for predicting CL (Five classes) 

Class 
Y2 

(kWh/m2) 

X5 

(m) 

Ranges of X2 (m2) 

514.5-

600.25 

600.25-

624.75 

624.75-

649.25 

649.25-

673.75 

673.75-

771.75 

771.75-

796.25 

796.25-

808.6 

Very high 

energy 

efficiency 

10.9-18.326 3.5-5.25 0.002 0.002 0.002 0.002 0.782 0.014 0.198 

10.9-18.326 5.25-7 0.143 0.143 0.143 0.143 0.143 0.143 0.143 

High 

energy 

efficiency 

18.326-25.752 3.5-5.25 0.008 0.008 0.008 0.008 0.038 0.924 0.008 

18.326-25.752 5.25-7 0.46 0.46 0.016 0.016 0.016 0.016 0.016 

Medium 

energy 

efficiency 

25.752-33.178 3.5-5.25 0.143 0.143 0.143 0.143 0.143 0.143 0.143 

25.752-33.178 5.25-7 0.666 0.284 0.015 0.026 0.003 0.003 0.003 

Low 

energy 

efficiency 

33.178-40.604 3.5-5.25 0.143 0.143 0.143 0.143 0.143 0.143 0.143 

33.178-40.604 5.25-7 0.403 0.016 0.206 0.365 0.003 0.003 0.003 

Very low 

energy 

efficiency 

40.604-48.03 3.5-5.25 0.143 0.143 0.143 0.143 0.143 0.143 0.143 

40.604-48.03 5.25-7 0.065 0.013 0.792 0.091 0.013 0.013 0.013 
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To decide which node’s conditional probability tables to analyze, the nodes directly 

connected to the output nodes Y1, and Y2 in the Bayesian network obtained from the search 

algorithms were analyzed. The process repeated for both HL and CL predictions. The purpose of 

selecting nodes that were connected directly to the outputs is to understand the influence of input 

parameters on the output variables HL and CL. The most connected nodes to Y1 (HL) and Y2 

(CL) were X2 (surface area), X6 (orientation), X5 (overall height), X7 (glazing area ratio), and 

X8 (glazing area distribution), therefore, the study analyzed selected nodes. 

Table 4.10 presents the ranges of input nodes (X2, X5, and X7) that obtained the highest 

conditional probabilities for each class. The table includes ranges for predicting HL using five 

energy efficiency classes.  

The results indicate that X2 achieved very high-energy efficiency when X2 in (673.75–

771.75) m2 for HL. Similarly, dataset achieved very low energy efficiency when X2 in (624.75– 

673.75) m2, which was consistent across all algorithms.  

Regarding node X5 (overall height), the highest conditional probabilities for very high-

energy and high-energy efficiency classes were achieved when X5 in (3.5–5.25) m, which was 

true for all algorithms. X5 in (5.25–7) m resulted in the highest conditional probabilities for 

medium-energy efficiency, low-energy efficiency, and very low-energy efficiency classes, across 

all search algorithms. The results indicate that increased overall heights are associated with lower 

energy efficiency of a building. 

For node X7 (glazing area ratio), X7 in (0–0.175) achieved the highest conditional 

probabilities for predicting very high-energy efficiency of HL, while using X7 in (0.325–0.4) led 

to very low-energy efficiency, consistently across all algorithms. These results suggest that lower 

glazing areas increase building energy efficiency, as lower glazing areas reduce the heat transfer 

through buildings. The findings align with a study by Alwetaishi (2019) that recommends a 

glazing to wall ratio of 10% for both hot and dry and hot and humid climates. The selected value 

of 10% as the recommended glazing area corresponds to the lower percentages of 5%, 10%, 

20%, 40%, and 50%. 
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Table 4.10. Highest ranges of nodes X2, X5 and X7 for HL (Five classes) 

Node 
Y1 range 

(kWh/m2) 

Algorithm 

Hillclimber K2 
LAGD 

Hillclimber 

Repeated 

Hillclimber 
Tabu Search 

Simulated 

Annealing 
TAN 

X2 

(m2) 

Very high energy 

efficiency 
673.75-771.75 673.75-771.75 673.75-771.75 673.75-771.75 673.75-771.75 673.75-771.75 673.75-771.75 

High energy 

efficiency  
514.5-600.25 673.75-771.75 514.5-600.25 514.5-600.25 514.5-600.25 771.75-796.25 673.75-771.75 

Medium energy 

efficiency 
514.5-600.25 514.5-600.25 514.5-600.25 514.5-600.25 514.5-600.25 514.5-600.25 514.5-600.25 

Low energy 

efficiency 
514.5-600.25 514.5-600.25 514.5-600.25 514.5-600.25 514.5-600.25 514.5-600.25 514.5-600.25 

Very low energy 

efficiency 
624.75-673.75 624.75-673.75 624.75-673.75 624.75-673.75 624.75-673.75 624.75-673.75 624.75-673.75 

X5 

(m) 

Very high energy 

efficiency 
3.5-5.25 3.5-5.25 3.5-5.25 - 3.5-5.25 - 3.5-5.25 

High energy 

efficiency  
3.5-5.25 3.5-5.25 3.5-5.25 - 3.5-5.25 - 3.5-5.25 

Medium energy 

efficiency 
5.25-7 5.25-7 5.25-7 - 5.25-7 - 5.25-7 

Low energy 

efficiency 
5.25-7 5.25-7 5.25-7 - 5.25-7 - 5.25-7 

Very low energy 

efficiency 
5.25-7 5.25-7 5.25-7 - 5.25-7 - 5.25-7 

X7 

Very high energy 

efficiency 
0-0.175 0-0.175 0-0.175 0-0.175 0-0.175 0-0.175 0-0.175 

High energy 

efficiency  
0.325-0.4 0-0.175 0.325-0.4 0.325-0.4 0.325-0.4 0-0.175 0.325-0.4 

Medium energy 

efficiency 
0-0.175 0-0.175 0-0.175 0-0.175 0-0.175 0-0.175 0-0.175 

Low energy 

efficiency 
0-0.175 0.375-0.4 0.325-0.4 0-0.175 0-0.175 0.325-0.4 0.325-0.4 

Very low energy 

efficiency 
0.325-0.4 0.325-0.4 0.325-0.4 0.325-0.4 0.325-0.4 0.325-0.4 0.325-0.4 
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The procedure was repeated for CL predictions and obtained the ranges for nodes X2 and 

X5, which achieved the highest probabilities for predicting cooling load (CL) using different 

search algorithms. The results indicate that the highest conditional probability is achieved when 

X2 is within (673.75–771.75) m2, and X2 range is (624.75–649.25) m2, for very high and very 

low energy efficiency classes respectively. The results are consistently observed across all 

algorithms. The results obtained for X2 matches for both HL and CL. 

Analyzing the node X5 obtained for very high-energy and high-energy efficiency classes 

of CL, the best range for X5 is (3.5–5.25) m, and the result holds true for all algorithms. For the 

remaining three classes, the best range for X5 is in (5.25–7) m, consistent across all search 

algorithms. 

The results consistently conclude that reducing the overall height (X5) of a building can 

led to higher energy efficiency. These results align with the findings of Aqlan et al., (2014) 

which identified X5 (overall height) as the most crucial factor for reducing heating and cooling 

requirements, suggesting that engineers should focus on reducing the overall height of buildings 

to achieve higher energy efficiency. 

Regarding nodes X7 (glazing area) for CL and X6 (orientation) and X8 (glazing area 

distribution) for both HL and CL, the obtained probability values are consistent across all ranges. 

Therefore, it is difficult to draw specific conclusions about the range that leads to certain 

conditional probabilities for these three parameters. 

The results obtained for the three classes correlated with the results obtained with five 

classes. The results obtained only for the K2 and TAN algorithms, as they are the only ones 

which connected directly with the class and input node. 

For the K2 and TAN algorithms, the highest conditional probabilities were achieved 

when X5 in (3.5–5.25) m for the very high-energy efficiency class. For both the medium and 

very low-energy efficiency classes X5 was in (5.25–7) m.  

Similarly, when analyzing the results for node X2 with three classes, the findings also 

correlate well with the results from the five-class analysis for most of the search algorithms. For 

example, the very high-energy efficiency class obtained the best range as X2 in (673.75–771.75) 

m2, while the very low-energy efficiency class had the highest probability when X2 in (624.75–

673.75) m2. These ranges for X2 are consistent with the five-class analysis for both predictions. 
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However, there were slight changes in the results for the K2 and Simulated annealing 

algorithms when considering X2 ranges for HL. The X7 ranges obtained from the three-class 

analysis correlated well only for the very low-energy efficiency class and the best range was X7 

within (0.325-0.4), and this result was consistent across all algorithms. 

Similarly, the highest conditional probability ranges were obtained for CL predictions 

using three classes, for X5 and X2 nodes. The results for X5 in predicting CL are similar to the 

results observed for HL classes. The very high-energy efficiency class for CL obtained the 

highest conditional probability when X5 is in (3.5–5.25) m and X2 are (673.75–771.75) m2, 

while the medium and very low-energy efficiency classes had the highest probabilities when X5 

in (5.25–7) m and X2 in (624.75–673.75) m2. 

4.3 Impact of location on energy consumption 

Table 4.11 shows the Wilcoxon rank sum test U values for mid-rise apartments of ten 

states. The U values are calculated compared to Lafayette, Indiana. According to Table 4.11, 

Indianapolis in Indiana and Illinois obtained U values larger than 0.05 in all cases (all year, 

spring, summer, fall, and winter).  

The results indicate that the two samples have the same distribution, meaning cooling 

usage for electricity in mid-rise apartments has the same distribution in Indianapolis and Illinois. 

However, other states, i.e., CA, AZ, TX, SD, TN, NC, NY, and MA, obtained that the two 

samples have a different distribution. The results indicate that cooling usage for electricity in 

mid-rise apartments does not have the same distribution in the mentioned states. The results 

obtained 100% accuracy for states except CA (80%), SD (80%), NY (60%), and MA (40%). 

Therefore, the results of Table 4.11 indicate that location factor impacts the cooling usage for 

electricity in mid-rise apartments.  
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Table 4.11. Wilcoxon rank sum test results for mid-rise apartments relative to Indiana -Lafayette 

City/State All year Spring Summer Fall Winter 

Indiana (Indianapolis)  0.678 0.0915 0.327 0.787 0.792 

Illinois 0.802 0.790 0.316 0.822 0.678 

California  9.700 × 10−5 0.122 2.480 × 10−24 1.17 × 10−11 4.057 × 10−30 

Arizona  2.216 × 10−26 3.604 × 10−10 1.184 × 10−22 1.857 × 10−16 2.904 × 10−27 

Texas 2.237 × 10−26 2.738 × 10−17 1.025 × 10−25 2.744 × 10−17 3.071 × 10−16 

South Dakota  0.0033 0.030 1.577 × 10−7 0.040 0.091 

Tennessee  1.611 × 10−5 0.0009 3.409 × 10−5 7.814 × 10−6 0.0006 

North Carolina  1.953 × 10−8 1.895 × 10−6 0.0003 1.056 × 10−6 3.927 × 10−11 

New York 0.021 0.285 4.773 × 10−5 0.109 0.0275 

Massachusetts  0.069 0.000 0.006 0.840 0.271 

 

Table 4.12 shows the U values of Wilcoxon rank sum test for supermarkets in the ten 

states. For supermarkets, Indianapolis and Illinois obtained U values larger than 0.05, indicating 

the two samples have the same distribution. Other eight states obtained that the cooling usage for 

electricity is different relative to Lafayette, Indiana. The results' accuracy is 100% for CA, AZ, 

TX, TN, and NC. The accuracy for SD, NY, and MA is 60%. 

Table 4.12. Wilcoxon rank sum test results for supermarkets relative to Indiana -Lafayette 

City/State All year Spring Summer Fall Winter 

Indiana (Indianapolis)  0.739 0.078 0.612 0.94 0.362 

Illinois 0.642 0.8366 0.338 0.728 0.667 

California  5.55 × 10−28 9.16 × 10−19 1.49 × 10−30 4.59 × 10−7 0.0495 

Arizona  1.03 × 10−13 3.76 × 10−10 1.95 × 10−22 9.16 × 10−6 0.002 

Texas 1.14 × 10−35 1.68 × 10−21 8.16 × 10−26 7.466 × 10−22 1.22 × 10−19 

South Dakota  0.007 0.241 3.99 × 10−7 0.045 0.119 

Tennessee  4.32 × 10−8 2.05 × 10−6 3.614 × 10−5 5.705 × 10−7 3.902 × 10−7 

North Carolina  8.45 × 10−11 7.17 × 10−10 0.00016 4.607 × 10−8 1.59 × 10−11 

New York 0.027 0.432 5.66 × 10−5 0.385 0.0048 

Massachusetts  0.043 0.00165 0.00051 0.925 0.318 

 

Figure 4.20 (a- e) shows the climate data of the ten states over the 2012 year. Figure 4.20 

(a- e) shows the precipitation, heating degree days, cooling degree days, solar radiation intensity, 

and average temperature, respectively. According to Figure 4.20, Indiana and Illinois have a 

closer relationship than the other eight states. Therefore, Indiana and Illinois have a similar 

climate, while the other eight states have a different climate compared to Indiana. 

The climate of the state changes with the location. Therefore, the results indicate that 

location features impact the cooling usage for electricity in commercial buildings.
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Figure 4.20. Climate data of US states over 2012 
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4.4 Chapter Summary 

Discretized UCI dataset created five and three energy efficiency classes to analyze the 

input feature relation with the energy efficiency. Shapash, created feature important graphs to 

identify the most important feature impacting commercial buildings cooling energy usage. 

Feature importance graph for CBECS 2018 dataset indicated that the first two features, i.e., 

cooling degree days and principle building activity contribute to 54.79% to predict cooling EUI. 

The four topmost important features to predict cooling EUI are cooling degree days, cooling 

percentage, total hours open per week, and principle building activity. 

Linear Regression and Logistic Regression analyzed the direction of the input feature's 

impact on building energy consumption. Predictions indicated that reduced overall heights and 

increased relative compactness reduce heating and cooling loads. The reduction of overall height 

by 50% reduces the heating load by 64.56% and cooling load by 57.47%. Logistic Regression 

predictions identified that reduction of overall height by 50% in very high energy class increases 

the probability of success percentage by 9.5×103% (HL) and 5.17×102% (CL). 

Bayesian networks identified the relationships and dependencies between input and out 

features using the structure of the networks and conditional probability tables. Tabu search with 

NP =3 obtained the highest accuracy results for heating (82.81%) and cooling load (81.77%).  

Finally, Wilcoxon -rank sum test analyzed that the location of the building impacts its 

cooling energy usage for electricity. The results indicated that two cities in Indiana, i.e., 

Indianapolis, and Illinois, did not differ significantly with Lafayette - Indiana with a 0.05 error 

margin. However, California, Arizona, South Dakota, Texas, Tennessee, North Carolina, New 

York, and Massachusetts obtained a significant difference in distributions relative to Lafayette-

Indiana. 
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CHAPTER 5 . SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Conclusions 

The aim of this study is to increase residential and commercial building energy efficiency 

by analyzing impacting factors on heating and cooling energy usage. The chapter presents the 

conclusions of this research. 

1. The study analyzed the residential and commercial buildings' heating and cooling energy 

usage using machine learning algorithms and statistical techniques. Identifying the 

impact of building parameters on its energy consumption is important to increase the 

building's energy efficiency by reducing energy usage. 

2. The importance of features impacting commercial buildings, their importance orders, and 

contributions to cooling energy usage intensity (EUI) of commercial buildings were 

analyzed.  

3. Random Forest predicted the cooling EUI using CBECS 2018 and 2012 datasets with a 

25% test and 75% training data. Explainable ML Shapash, generated the feature 

importance graphs for datasets included with feature importance order and contributions 

from each input feature. 

4. Feature importance graph for CBECS 2018 dataset indicated that the first two features, 

i.e., cooling degree days and principle building activity contribute to 54.79% to predict 

cooling EUI. The four topmost important features in CBECS 2012 to predict cooling EUI 

are cooling degree days, cooling percentage, total hours open per week, and principle 

building activity. The four features contribute to 52.14% of predictions.  

5. Considering each feature contribution to predicting cooling EUI in both 2018 and 2012, 

four out of 21 inputs, i.e., cooling degree days, principle building activity, cooling 

percentage, and total hours open per week, each contributed more than 5% in both years. 

Cooling degree days obtained the highest contribution in both 2018 and 2012, being the 

topmost important feature to predict cooling EUI. 
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6. The findings can be used in the real world for identifying the most important features and 

to decide which feature should be given more priority before and after building 

construction. 

7. The common observations of Linear Regression predictions are that the overall height 

and glazing ratio has positive coefficients, whereas relative compactness has a negative 

coefficient. The reduction of overall height by 50% reduces the HL by 64.56% and CL by 

57.47%. The decrease of glazing area ratio by 75% reduces HL and CL by 19.5% and 

13.88%. However, a 36.73% reduction of RC increases HL by 103.16% and CL by 

97.68%. 

8. The common observations of Logistic Regression predictions that were compatible with 

Linear regression results were overall height and relative compactness. The reduction of 

overall height by 50% in very high energy class increases the probability of success 

percentage by 9.5×103% (HL) and 5.17×102% (CL). Overall height reduction by 50% 

decreases the probability of success by 99.51%(HL) and 81.04%(CL) in very low energy 

class. The probability of success in very low energy efficiency class decreases with RC 

such that 36.73% increase in RC reduces the probability of success by 7.1×103%(HL) 

and 1.98×102 %(CL).  

9. The Logistic Regression prediction accuracy of discretized data are 76.30% (HL) and 

73.17% (CL).  

10. Different Bayesian network search algorithms generate different networks. The upper 

bound of the number of parents impacts the network design. 

11. The prediction accuracy increased with the increase of number of allowed parents per 

node. Tabu search with NP =3 gave the best accuracy results for heating (82.81%) and 

cooling load (81.77%).  

12. The results indicate that reduced overall height and glazing are ratio has a high energy 

efficiency for energy loads. The results obtained using five and three energy classes were 

the same. 

13. Identifying whether the location impacts the building's energy consumption is important 

to design suitable buildings optimized for the specific climate.  
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14. The Wilcoxon rank sum test calculated the U values to identify whether commercial 

building cooling usage for electricity impacted from the location. The Wilcoxon rank 

sum test analyzed the cooling energy used for electricity for ten states relative to Indiana 

for two commercial building types of mid-rise apartments and supermarkets.  

15. The results indicated that two cities in Indiana, i.e., Indianapolis, and Illinois, did not 

differ significantly with Lafayette - Indiana with a 0.05 error margin. However, 

California, Arizona, South Dakota, Texas, Tennessee, North Carolina, New York, and 

Massachusetts obtained a significant difference in distributions relative to Lafayette-

Indiana. Therefore, according to the results, the location feature impacts the building 

energy usage.  

5.2 Recommendations  

1. Using Shapash, running the Random Forest identified the relative importance of features 

impacting cooling energy usage of commercial buildings. But, using other algorithms 

which support Shapash, such as XGBoost, Catboost, and Support Vector Machine could 

be done to compare the results for different algorithms.  

2. Linear Regression and Logistic Regression identified the impact from input design 

variable on heating load and cooling load of residential buildings in machine learning 

applications. However, using other algorithms, such as Artificial Neural Networks could 

provide more insights.  

3. Only one test i.e., Wilcoxon- rank sum test identified whether the location impacts the 

cooling energy usage of commercial buildings. However, using the other state-of-the-art, 

sophisticated statistical tests, such as anova test, t-test could provide additional insights.  
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