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ABSTRACT Bidirectional wireless communication is employed in various smart grid components such
as smart meters and control and monitoring applications where security is vital. The Trusted Third Party
(TTP) and wireless connectivity between the smart meter and the third party in the key management-
based encryption techniques for the smart grid are expected to be totally trustworthy and dependable. In a
wired/wireless medium, however, a man-in-the-middle may seek to disrupt, monitor and manipulate the
network, or simply execute a replay attack, revealing its vulnerability. Recognizing this, this study presents a
novel authenticationmanagement (model) comprised of two layer security schema. The first layer implements
an efficient novel encryption method for secure data exchange between meters and control center with the
help of two partially trusted simple servers (constitutes the TTP). In this setting, one server handles the data
encryption between themeter and control center/central database, and the other server administers the random
sequence of data transmission. The second layer monitors and verifies exchanged data packets among smart
meters. It detects abnormal packets from suspicious sources. To implement this node-to-node authentication,
One class support vector machine algorithm is proposedwhich takes advantages of the location information as
well as the data transmission history (node identification, packet size, and data transmission frequency). This
schema secures data communication, and imposes a comprehensive privacy throughout the system without
considerably extending the complexity of the conventional key management scheme.

INDEX TERMS Advanced Metering Infrastructure (AMI), artifical intelliigence, data security, authentica-
tion, smart grids.

I. INTRODUCTION

THE term ‘‘smart grid’’ equates to the advanced power
system that incorporates bidirectional communication,

ubiquitous computer capabilities, and intelligent technology
to enhance reliability, control, efficiency, and safety within
the distribution system. The Advanced Metering Infras-
tructure (AMI) serves as a fundamental component at the
distribution level. It comprises a vast number of intercon-
nected meters organized in a hierarchical or mesh or hybrid
networking configuration. Wireless technology is used by the
meters to connect with the control center. The commonly
employed communication protocols for AMI encompass
ZigBee, WiFi, and LTE [1], [2]. Among these diverse com-
munication standards, ZigBee has attracted considerable

attention [3], [4]. However, the short transmission range of
ZigBee hinders the feasibility of transferring data directly
from smart meters to the control center leading to cooperative
transmission. Within the cooperative framework, each smart
meter is responsible for gathering and retaining real-time
energy consumption data. This information is subsequently
transmitted at regular intervals to the control center by relay-
ing it through adjacent nodes. The data packet continues to be
forwarded until it reaches the data collector, at which point the
aggregated packet data is dispatched to the control center [5],
[6], [7].
Due to the utilization of wireless connection and hop-

to-hop data aggregation and forwarding, security concerns
emerge as a significant challenge for AMI. By analyzing use
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patterns, an adversary or thief may be able to anticipate the
whereabouts of targeted customers within their residences,
so posing a potential risk to their personal safety and privacy.
Additionally, via the analysis of detailed energy consump-
tion data, home appliance firms are able to get insights into
consumers’ lifestyles and habits and the energy usage of
their household equipment. Hence, rival firms companies
might want to eavesdrop in the hop-to-hop communication
and can use this valuable information in their businesses.
Consumers would want to tamper with consumption data to
reduce their electricity bill. The most crucial thing is that the
opponent/hacker might jam or take over the AMI network
by sending a false signal to meters on an unsecured system,
which may cause a wide area power outage along with an
imbalance in the demand generation model.

The main obstacle for implementing AMI security scheme
is the tightly bounded memory and low computation capa-
bility of the smart meters which calls for a lightweight
and resilient security scheme. The key management-based
encryption approach has been recognized in the literature as a
notable security system for the smart grid, which incorporates
a Trusted Third Party (TTP) [8], [9], [10], [11], [12], [13].
Almost all TTP management solutions make the premise that
the TPP can be entirely trusted. However, the TTP, the meters,
and the communication linkages between the TTP and the
meters might all be breached.

Taking into account semi-trusted servers and untrustwor-
thy/unreliable communication channels, this paper presents
an authentication management consists of two-layer secu-
rity scheme. The first layer boosts the security of the data
transmissions between the Smart Meter (SM) node and the
control center/Metering Data Management Service (MDMS)
by data encryption as well as randomized packet transmis-
sion. As mentioned in our early work [14], the scheme
consists of two separate servers. Secure communication using
public-private key management between every smart meter
and MDMS is handled by the master server. On the other
hand, the auxiliary server manages the transmitted sequence
of the data packet (using a public key received from the
master server). The private key associated with the public
key and generated random sequence are used to retrieve
the data at the MDMS. This paper extends [14] by using
One Class Support Vector Machine (OCSVM) and Received
Signal Strength (RSS) techniques for authentication in node-
to-node links. OCSVM is used to detect malicious packets
from unknown sources considering data transmission history
like transmission frequency, data packet size, and distance
between sender and receiver. RSS algorithm is applied to
localize meters via the RSS from its neighbor meters. In
the prevision version of work [14], only RSSI based distance
was used on node authentication algorithm. On the other
hand, on OCSVM based node-to-node authentication, we use
three features which makes the node-to-node authentication
more robust. And the main motivation for selecting OCSVM
for node authentication is because of its memory efficiency,
effectiveness in small and medium-sized datasets, robustness

to over fitting, various Kernel options, and global optimiza-
tion advantage.

This comprehensive approach has, to the best of our
knowledge, never been introduced in the literature previously.
The utilization of two separate servers for key management,
together with the implementation of randomly sequenced
packet transmission, enhances the level of security resilience
in an untrusted communication links and servers. Further-
more, node to node authentication based on OCSVM secures
inter-node communication without the considerable over-
head, and limited resource requirement makes it a suitable
technique for a trusted node to node communication. Addi-
tionally. The usual data traffic flow between the meters and
control center is unaffected by the communication between
the meters and servers, which happens once for each session
of data transfer. Therefore, our approach provides significant
improvement in conventional key management based system
by two level security- data security and node authentication.
Additionally, by prudent design of cluster of meters served
by a TTP (a master and an auxiliary serve) we can make this
approach scalable.

The subsequent sections of the paper are structured in the
following manner. Section II provides an overview of the
existing literature pertaining to the security techniques that
have been suggested for the AMI. In Section III, the archi-
tecture of the suggested model is presented. In Section IV,
we provide a discussion on the theoretical foundations of
RSS-based localization, OCSVM, and entropy of data packet
in relation to our suggested system. Section V of this paper
provides a detailed analysis of the implementation of the
security strategy, as well as the communication flow between
smart meters, servers, andMDMS. The analysis of simulation
results and the theoretical security strength of a data packet
is conducted in Section VI. In conclusion, this paper presents
the final thoughts in Section VII.

II. LITERATURE REVIEW
Security challenges in AMI have received a substantial
attention in recent years from a variety of communities,
including electrical engineers, computer scientists, and IT
specialists [15], [16], [17]. We can divide the works from the
literature into major two categories: (1) non key management
system based schemes and (2) key management system based
schemes.

In non key management system based security schemes,
few diverse approaches have been proposed for reinforc-
ing the security in the AMI. In [18], randomization of the
AMI configuration is proposed to make its behavior unpre-
dictable to the hacker, whereas the behavior is predictable
to the control center. In [19] and [20], authors introduced
anonymization of data by randomizing node identity using
a TTP. But, communication overhead may be increased due
to the need for the TTP to communicate with all nodes simul-
taneously. In [21] and [22], homomorphic encryption has
been introduced. Though it requires minimal calculation at
data retrieval, but it may be complicated for a large network.
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In [23], the authors introduce a blockchain-based lightweight
solution that utilizes a received signal strength indicator
(RSSI) for localization and provenance through blockchain.
The adversarial nodes can be identified with the variation
of RSSI. The paper [24] presents an approach that aims to
ensure privacy preservation during authentication and data
aggregation in a smart grid system utilizing fog computing
technology. The authors propose to employ the techniques of
short randomizable signature and blind signature to establish
a system of anonymous authentication. In addition, the smart
meter readings are consolidated using the homomorphic Pail-
lier cryptosystem.

On the other hand, in case of key management system
based schemes, vast works can be found in the literature.
The key management system based security schemes can
be categorized into four major categories [16]: (1) Key
graph based scheme, (2) Authentication based scheme, (3)
PUF based scheme, and (4) Hybrid scheme. In addition
to introducing Information-Centric Networking (ICN) in
AMI systems, the authors in [11] introduce a key graph-
based key management system for numerous smart meters.
In the proposed ICN-AMI structure, a key graph consists of
the user key, the group key, and the root key for unicast,
multicast, and broadcast purposes. This approach addresses
the confidentiality and integrity of data, but it does not
address authentication. In [25], the authors propose Multi-
Group Key Graph (individual and batch rekeying) based
Versatile and Scalable key management scheme for AMI
(VerSAMI) and VerSAMI+ which supports unicast, multi-
cast, and broadcast communications. It addresses the packet
overhead and does not address the node/packet authentica-
tion. In order to secure the smart metering network, the
paper [26] introduces a sophisticated hybrid encryption sys-
tem which combines public and symmetric key encryptions.
The foundational components for the suggested scheme are
the Elliptic Curve Integrated Encryption Scheme (ECIES)
and Advanced Encryption Scheme (AES). A precomputation
approach that offers quicker encryption and decryption is
given in order to reduce the computational cost of ECIES.
In [27], the author introduces a simple anonymous authenti-
cation and key agreement approach for the smart grid, which
enables the service provider and the smart meter to establish a
shared session key and authenticate one another. In compari-
son to current smart grid authentication systems, it ensures
the anonymity and untraceability of the smart meter while
achieving quick mutual authentication between the service
provider and the smart meter.

In [28], event driven asset centric key management is pro-
posed where key management (i.e. key generation, refresh-
ment, revocation, etc.) is orchestrated automatically based on
events from assets or nodes. In [29], public key management
has been proposed for smart grid based on elliptic curve
public key cryptography and Needham Schrouder symmetric
key authentication. Even though, scalability and simplic-
ity are two advantages of this approach, it does not come

with experimental proof. In [30], symmetric key establish-
ment mechanism is proposed based on X.1035 standard
which reduces data delivery time up to 75%. In [31], group
key management with three-tier network model is proposed
which requires moderate key storage. The paper [32] intro-
duces a novel authentication protocol that incorporates a
key establishment mechanism. The system enables service
providers to securely commence communication with mul-
tiple smart meters, facilitating the dynamic update of power
consumption data. The protocol under consideration has
been formally verified for correctness using GNY logic.
In the paper [33], the authors proposes a novel quantum-
defended lattice-based anonymous mutual authentication and
key-exchange (MAKE) protocol for secure group (SG) sys-
tems. The suggested technique has the capability to achieve
resilient conditional identity anonymity and key management
through the utilization of small integer solutions and inhomo-
geneous small integer solutions lattice hard assumptions. This
eliminates the need for additional complex cryptographic
primitives.

In [34], a security scheme is proposed for smart meters
applying digital signatures that a trusted third party can sign
and timestamp. Additionally, data hashing using SHA-256
ahead of applying the signature adds a layer of security. For an
end-to-end communication solution, [35] proposes Identity-
Based Signcryption (IBS) with zero configuration encryption
and authentication. In [10], encryption of node-to-node links
using a secret key has been proposed. However, in large
networks, packet overhead might be increased for both IBS
and node-to-node authentication. In [36], Diffie-Hellman key
protocol based message authentication is proposed in addi-
tion to Hash based message authentication. This approach
provides higher scalability, lower memory utilization and less
delay for decryption. Four broad countermeasures to thwart
attacks on smart meters have been proposed in [37]: (1)
authentication and strong encryption of communication that
deals with HAN and NAN and buses within smart meters, (2)
secure keymanagement which form the critical backbone to a
secure AMI, (3) securing the firmware to avoid being manip-
ulated by the attackers or mistakenly by authorized personnel,
and (4) security-driven firmware development cycle that con-
ducts frequent walkthroughs and security assessments.

The protocol proposed in the paper [38] utilizes a physi-
cally unclonable function (PUF) and incorporates a one-time
pad mechanism. This approach offers a notable advantage
by eliminating the need for the Diffie-Hellman key setup
protocol. The cryptographic key utilized in this scenario is
derived from a genuine random source known as a Phys-
ical Unclonable Function (PUF), which is included within
the secure module’s (SM) hardware. In [39], authentica-
tion between smart meter and utility server along with low
overhead key management has been proposed. The mutual
authentication consists of four steps whereas the key man-
agement is founded on ID based public/private key pair
model with lower transmission overhead for key refreshment.
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The paper [40] presents an authentication mechanism called
Anonymous Secure Authentication mechanism for the SG
environment (ASAP-SG). ASAP-SG is capable of achieving
authentication and key agreement between smart meters and
service providers through the utilization of elliptic curve
cryptography and physical unclonable function. The pro-
posed approach minimizes the computational cost for both
smart meters and service providers, resulting in reduced
communication overhead. The author in [41] presents a key
establishment protocol for secure group communication that
possesses several desirable characteristics such as a high level
of anonymity, resilience against well-known attacks with per-
fect forward secrecy, and efficiency in terms of computational
and communication costs. It eliminates the need for a Public
Key Infrastructure (PKI) and the number of necessary mes-
sages for mutual authentication is reduced to merely two.

To distribute the keys and manage the network, a wireless
sensor network based Public Key Management Infrastruc-
ture (PKI) has been proposed in [12] and [42]. However,
it requires to generate a large numbers of unique keys for a
large networks. In [43], a Key Management System (KMS)
has been introduced based on DLMS/COSEM standard pro-
viding two main information security features: data access
security and data transport security. Since DLMS/COSEM is
an open standard and allows a number of variations in the
protocol implementation, it might increase the complexity
in the client side. In the study [44], a security architecture
consisting of two layers was presented to ensure the security
of communication between the meter and the Data Con-
centrator (DC), as well as between the DC and the control
center. The recommended approach for encrypting the meter-
to-DC communication is based on the IEC 62056 standard.
Similarly, for the DC to control center communication, the
use of a public Key Management System (KMS) has been
suggested. However, it is necessary to conduct encryption and
decryption twice in each time step.

In contrast to previous research in the literature, our pro-
posed approach offers enhancements in the AMI systems.
In our approach, we use randomization of data transmis-
sion and node-to-node authentication methods to address
the challenges posed by unreliable communication scenarios.
Additionally, we leverage a machine learning technique to
enhance the effectiveness of our proposed method. The use
of data packet randomization and the utilization of machine
learning for node authentication enhances the robustness of
the schema without incurring additional costs.

III. ARCHITECTURE OF THE PROPOSED SECURED AMI
The proposed AMI is similar to a typical AMIwhich is a web-
like network with millions of meters except it has two extra
servers as shown in Fig. 1. Two mechanisms are proposed
for the encryption of each data packet and authenticate the
communication among meters.

A detailed description of the components of proposed AMI
is provided here.

FIGURE 1. An AMI architecture comprising a control center, data
concentrator, and cluster of mesh- or hybrid-connected meters.

• Smart meter: It is a solid state device responsible for
collecting, storing and sending data to MDMS using
wireless communication in a fixed interval time less than
1 hour.

• Home Area Network (HAN): All home appliances are
connected to a smart meter by a network, forming HAN.

• Neighborhood Area Network (NAN): The meters are
connected to each other through a mesh or hierarchical
or hybrid wireless network termed as NAN. In our archi-
tecture, we assume that NAN utilizes ZigBee protocol.

• Data Collector/concentrator: The head end of the NAN
is the data concentrator or gateway which collects data
from NAN and forwards those to MDMS by a dedicated
wired or wireless connection (e.g., optical fiber, a cellu-
lar network, etc.).

• Metering Data Management Service (MDMS) /control
center: The MDMS receives the consumption data from
the AMI network, and calculates bills based on them.
Having fine-grained collected data, MDMS also mon-
itors, manages, and optimizes power generation and
electricity distribution in the grid.

• Master server: Master server generates a pair of pri-
vate and public keys for a SM ahead of each session.
The public key is unicasted by the master server to
be used in encryption. On the other hand, the unicas-
ted private key is received at the Auxiliary server and
MDMS for decryption. In the proposed architecture, the
connection between the Master server and NAN is via
untrusted wireless communication whereas the Master
andAuxiliary server are connected toMDMS by reliable
communication (such as optical fiber, 5G).

• Auxiliary server: Ahead of data encryption using the
public key received from the Master server, the smart
meter creates a random sequence. This sequence is
encrypted by public key and sent to the Auxiliary
server. The Auxiliary receives the random sequence then
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TABLE 1. Symbol notations and definitions.

authenticates it using the private key of the smart meter
before forwarding it to MDMS for final decryption.

Since in our model, a cluster of meters is supported by a
Master and an Auxiliary server, our scheme can be scalable
by prudent design of clusters.

A. BASIC NOTIFICATIONS AND DEFINITIONS
The notifications and definitions used in the presented
algorithm and data flow scheme are stated in Table 1.
Let, SM = {SMi}

N
i=1 denotes the set of participating smart

meters connected as a network in our system. Also, let graph
G = (SM ∪ {AP},L1 ∪ L2 ∪ L3) represents the network
topology of smart meters where:
• AP represents the data concentrator,
• L1 denotes the set of ZigBee connections connecting
neighboring smart meters together,

• L2 represents the set of ZigBee connections connecting
the data collector AP to a few nearby smart meters (see
Fig. 1 for illustration)

• L3 is untrusted communication links (such as ZigBee,
WiMax etc.) between the Master sever TTPM / Auxiliary
sever TTPA and every smart meter in SM,

• Both the TTPM and TTPA are connected to MDMS via a
dedicated network. Additionally, they are connected by
a trusted connection.

It is worth mentioning that each SM has a unique ID which
is stored in the data packet, TTPM and TTPA. TTPM and
MDMS exchange the corresponding private key based on this
ID. They both stored the corresponding private keys of the
SM in their internal databases to retrieve at the time of packet
arrival for decryption purpose.

For a node-to-node authentication of data packets,
a machine learning algorithm is proposed to run in each smart

FIGURE 2. Training and application of OCSVM model in smart
meters.

meter. The proposed algorithm explores all the incoming data
packets in real time and identifies whether it is reliable or
spiteful based on the three features of the packet including
1) the distance of the packet sender which is estimated by
RSS-based localization algorithm, 2) time intervals that a
packet is received in destination, and 3) packet size. Based
on the decision of the algorithm, the packet is accepted and
forwarded to the next SM in the grid, otherwise the packet
will be discarded. Fig. 2 illustrates the mechanism.

IV. RSS ALGORITHM, OCSVM AND ENTROPY OF A
DATA PACKET
As mentioned earlier, packet data is circulated among the
meters in the path reaching the destination AP. To point
out the malicious packet data from an unauthorized source,
the content of the data packet should be screened carefully
before delivery and dispatch to the next node in the grid.
One class classification, or concept learning in the absence
of counter examples, has the potential to tackle these kinds of
problems. Among different implementations of the Support
Vector Machine (SVM), one class classification algorithm
(OCSVM) is selected in this work and the performance is
compared with another anomaly detection algorithm: Isola-
tion Forest [45], [46]. Appropriate features of the packet data
should be extracted and fed into the OCSVM for training and
later on for testing the new packet. Location (i.e. distance)
of the sender, which is an informative feature for detecting
the unauthorized source, is not directly defined in the data
packet. To extract this feature, RSS algorithm is utilized. RSS
can pinpoint the location of neighboring meters based on the
received electromagnetic signals. Other features of the data
packet such as packet size, and transmission frequency are
relatively simple to capture or infer. In the following part, the
RSS and OCSVM algorithm are discussed in details.

A. RECEIVED SIGNAL STRENGTH (RSS) BASED
LOCALIZATION
Let’s assume an unknown positioned meter at a location
(x, y) accompanied by somewhat dispersed meters of known
position at locations (xl, yl), where 1 ≤ l ≤ n. The received
signal strength at location (xl, yl) from the unknown position

1Unless or otherwise specified, node and meter are same thing in the rest
of the study.
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meter can be denoted by ψl [7], [47], [48].

ψl = c− 10γ log(dl)+ wl, (1)

Such that c is an unknown constant that depends on transmis-
sion power, frequency, etc., and γ is the path loss exponent.
Path loss exponent defines the decay rate of electromagnetic
signal. In our model, γ = 2.93 is used regarding a residential
area. The parameter dl represents euclidean distance between
the known and unknown position meter defined as follows:

dl =
√
(x − xl)2 + (y− yl)2, (2)

and wl is the zero mean randomGaussian noise with standard
deviation σl . The value of σl ranges from 6 to 12 dBm.

Let us define, the θ and ψ as θ = [x, y, z]T and ψ =
[ψ1, ψ2, . . . . . . ., ψn]T , where z is the reference transmission
power.

The likelihood function of θ for a given RSS measurement
ψ , f (θ |ψ) is given by

f (θ |ψ) = c1 exp
{
−

n∑
l=1

{ψl − c+ 10γ log(dl)}2

2σ 2
l

}
, (3)

where c1 is a constant.
The Maximum Likelihood (ML) estimate of θ , denoted by θ̂ ,
can be found from the following equation

θ̂ = argmax f (θ |ψ)

= argmin
{
−

n∑
l=1

{ψl − c+ 10γ log(dl)}2

2σl2

}
, (4)

The equation presented above is an optimization problem.
A range of optimization approaches, including differential
evolution, dynamic relaxation, and Particle SwarmOptimiza-
tion (PSO), can be employed for the purpose of solving (4).
In the current problem, PSO is used to solve the non-linear
optimization problem. Finally, the ML estimator yields the
location (x, y) and reference power z of the unknown posi-
tioned meter

(x, y, z) = {θ̂(1), θ̂ (2), θ̂ (3)}. (5)

Now the distance between any two meters SMi and SMj is

dij =
√
(xi − xj)2 + (yi − yj)2. (6)

where (xi, yi) and (xj, yj) are derived positions of meter SMi
and SMj respectively. The distance dij is used as a feature in
OCSVM algorithm.

Since GPS doesn’t work in some places such as inside the
multi-stored building, hilly areas, forests, etc., we used RSS
based localization over GPS. Additionally, GPS reveals exact
position of meters/consumers which we want to avoid. On the
other hand, RSS technique will build a local map for meters.

B. OCSVM ALGORITHM
One class SVM classifier is motivated by the SVM classi-
fier [49], [50]. The one class classification problem allows to
find the hyperplane to separate the training distributions from
the origin of the feature space.

OCSVM maps the input vector to feature dimension
according to the kernel function, and separates it from the
origin with maximum margin.

Let us consider, a set of training data I = (i1, i2, . . . .., in) ∈
I, and � be the feature map I −→ H such that the dot
product ofH is computed by kernel k

k(i, i′) =< �(i), �(i′) >H (7)

The regular family for the data set

Cm
w,ρ = {i|fw,ρ(i) > 0} (8)

where fw,ρ(i) = sgn(< w,8(i) > −ρ) and (w, ρ) is the
vector to offset parameterizing a hyperplane in the feature
space associated with kernel.
fw,ρ is estimated by minimizing regularization

Rreg[f mw,ρ(·)] = Remp[f mw,ρ(·)]+
1
2
||f mw,ρ(·)||H (9)

Outliers are penalized via slack variables ξ operating in the
objective function to control the trade-off from empirical risk
and regularizes the penalty.

The quadratic programming minimization function

min
w,ξi,ρ

1
2
∥w∥2 +

1
vn

∑
i=1

nξi − ρ (10)

such that (w ·8(xi)) ≥ ρ − ξi,

and ξi ≥ 0, i = 1, 2, 3, . . . ., n. (11)

where 8 is the kernel function for mapping, ξi is the slack
variables, v ∈ (0, 1] is a fixed constant, and ρ contains
decision value it determines if a given point is inside the
estimated high density region. Thus the decision function
f mw,p(x) is of the form

f (x) = sgn(w∗T8(x)− ρ∗) (12)

where ρ∗ and w∗ are the values of w and ρ solving from the
equation (10).

In OCSVM, C is the smoothness operation and v is char-
acteristic of the solution [51]:
• Symbol v determines an upper bound on the outliers.
• It is the lower bound for amount of training samples for
use as support vectors.

C. ENTROPY OF A DATA PACKET
Entropy is a metric for analyzing the robustness of an encryp-
tion methodology [14]. In other word, entropy demonstrates
the feasibility degree of capturing the lock by chance. The
more certain about a value, the more diminished the entropy.

The entropy for a sequence S
H (S) =

∑
x P(S = x) log2 P(S = x)
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Such that, P(S = x) is the probability of taking S a
value x.

If the size of a random variable or packet generated by
a meter is n bit, then the entropy and security strength of
the data packet are n and 2n, respectively. The higher the
entropy, the harder the decryption process. For analyzing the
performance of the proposed encryption schema, this metric
is selected.

V. PRIVACY SCHEME IMPLEMENTATION AND DATA
TRAFFIC FLOW
In this section, the privacy scheme implementation and the
data flow process are described in details to clarify how each
layer of the schema affects the grid security. In the data flow
architecture, the following assumptions exist:

• The Master and Auxiliary servers are semi-trusted
and independent. However, they might physically be
the same machine however virtually divided into two
servers.

• The wireless communication links between servers and
meters are not fully reliable.

• The meters have small memory and computation
capability.

• The control center/MDMS has the adequate computa-
tional ability.

• The meters keep the records of the position of neighbor-
ing meters, the frequency of transmission, packet size,
and node identity. The frequency of transmission, node
identity, and packet size are extracted from the packet
header. The node position is derived from electromag-
netic signals using RSS based localization as explained
in previous section IV-A.

• Every meter transmits data at a constant transmission
power.

• The data packet size is constant for every meter, and
is 128 KB in the studied grid.

• After installing a new meter, it starts to record the
position of the neighbor meters, frequency of data trans-
missions, node identity, and packet size.

• We assume that AMI network use high penetrating fre-
quency bands such as 2.4 GHZ and 3.5 GHZ and the
smarts are equipped with advanced signal processing
techniques.

• The communication links among Master and Auxiliary
servers and MDMS are fully trusted.

• It is noted that the security scheme adds latency to
data communication. However, the delay is much less
than expected data communication timeline of AMI,
as energy bills and household privacy and ‘ping’ for
on demand data have lower requirements in terms of
timeline.

A. ATTACK MODEL
A simplified attack model for the system model shown in
Fig. 1 is discussed here. Man-in-the-Middle (MITM) and

FIGURE 3. Data flow among various components of AMI.

replay are two of the most common attacks conducted in
the AMI. While MITM leverages the vulnerabilities in the
communication medium to intercept, swap, corrupt or steal
sensitive data, the replay attacks simply capture a copy of
legitimate information and replay it in the future, posing to
be the same legitimate user. To this end, it is assumed in
this paper that the attacks can happen only in L1, L2 or L3,
but not between TTPM , TTPA and MDMS. It is noted that
other kinds of attacks such as compromised nodes and puppet
attacks [15], [52] are out of scope in this study.

A critical assumption of this attack model is that the
attacker’s targets are solely on the communication channel
between the devices, but not the devices themselves. It is
assumed that the smart meter nodes, TTPM , AP, TTPA and
MDMS are not compromised by the attacker, but only the
links L1, L2 or L3 are. The incentive for the attacker could be
offsetting energy consumption to achieve lower bills, stealing
sensitive information to monitor energy consumption profile
and through that spy on consumer behavior, or corrupting
encrypted data packets in L1 or L2. The proposed encryption
scheme relies on the strength of the secret key sk , hence
falling under the category of Public Key Encryption (PKI).

B. DATA TRAFFIC FLOW
The data flow among the meters, servers, and MDMS (as
shown in Fig. 3) is explained below in details.
STEP 1: Initialization
SMi sends a request Reqi for a public key pki to the Master

Server TTPM . The Master server generates a public key-
private key pair, (pki, ski), upon receiving the request. While
pki is unicasted to SMi for data encryption, ski is sent to
the Auxiliary server TTPA and MDMS. Key generation by
asymmetric algorithm:

AE i = (Ki, Ei,Di), i ∈ [1, n] (13)

Ki −→ (pki, ski), i ∈ [1, n] (14)
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STEP 2: Encryption
The SMi generates a random sequence (Rti ) for timestamp

instance t . It encrypts both the sequence and the timestamp
using pki to generate a ciphertext, Si, and sends it to TTPA.
This server receives Si and decodes it using ski. It then per-
forms two steps to validate the sequence. To safeguard against
the replay attacks, TTPA ensures if the timestamp instance t is
received within a stipulated limit predefined for ‘‘freshness’’
of data. If it is within that limit, it considers the request, else it
rejects the packet. To ensure whether the sequence was sent
by a legitimate SMi, the server re-encrypts the sequence it
decoded along with the timestamp instance t using the pki
it received from TTPM . It compares the ciphertext it created
with the one it initially received. A discrepancy between the
two ciphertexts prompts TTPA to reject the packet. A match
indicates the packet is indeed legitimate. In this way, data
transmitted from SMi is verified. After that, TTPA sends the
sequence Rti to MDMS. At the same time, SMi encrypts its
consumption data by the following method:

Ci←− E({Mi, t}, pki) (15)

STEP 3: Data transmission
The encrypted data Ci is segmented into n packets of equal

size, zti .

(c1, c2, c3, · · · , cn)←− Ci (16)

Then, the packets are ordered based on sequence Rti for
transmission.

(c3, c1, c4, · · · , cn)
Rti
←− (c1, c2, c3, · · · , cn) (17)

The transmitting algorithm is explained in Algorithm 1:
STEP 4: Hop to hop data aggregation and forwarding
At first, meter SMi is verified by SMi+1 using the node

ID that is perceived from packet header. Afterwards, based
on the history (i.e. previous data receiving history) of sender
node’s distance (dxy), the frequency of data received (fj) and
packet size (zj)- the node SMi+1 verifies source node SMi and
forwards data to the next node SMi+2. OCSVM algorithm
is used to authenticate in this process. The data aggrega-
tion and forwarding algorithm pseudocode is tabulated in
Algorithm 2:

STEP 5: Data retrieval
The MDMS receives the randomized and encrypted pack-

ets and decodes them by the secret key pki and random
sequence Rti .
Reordering the data:

(c1, c2, c3, · · · , cn)
Rti
←− (c3, c1, c4 · · · , cn) (18)

Message unification:

Ci←− (c1, c2, c3, · · · , cn) (19)

Decryption:

{Mi, t} ←− D(Ci, ski) (20)

Algorithm 1 Transmitting Algorithm
1: Initialization:
2: Get ith meter’s data packet Ci, i ∈ {1, 2, . . . ,N } and

random sequence Rti = {rj}, j = {1, 2, 3, · · · , n}, ∀t ∈ T
and |Rti | ∈ N

3: if Rt−1i = Rti then
4: Go to step 2
5: else
6: Proceed to next step
7: end if
8: Segment packet C = {cj} ←− Ci, j = {1, 2, 3, · · · , n}

and |C| = |Rti |
9: Set index set JC = {l}, l = 1, 2, 3, · · · , n where f :
l −→ C is the particular enumeration of C

10: Update f −1(cj) = rj, j = {1, 2, 3, · · · , n}.
11: Calculate transmission probability, P = {pj} where pj =

1
rj
=

1
f −1(cj)

, j = {1, 2, 3, · · · , n}.
12: Set index set KP = {k}, k = 1, 2, 3, . . . n where g :

k −→ P is the particular enumeration of P
13: Sort index l = f −1(cj) = g−1(max

pj∈P
pj)

14: Transmit packet f (l) indexed packet
15: Update C = C − {f (l)}
16: if C ̸= 8 then
17: Go to step 9
18: else
19: End process
20: end if
21: End

FIGURE 4. Meter positions in Manhattan grid.

VI. SIMULATION RESULTS AND PERFORMANCE
ANALYSIS
In this section, we present the performance of RSS and
OCSVM in our proposed AMI architecture. We also discuss
about the security strength of our scheme and compare the
performance of the OCSVM algorithm with another state of
the art anomaly detection algorithm named Isolation Forest.
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Algorithm 2 Data Aggregation and Forwarding
1: Training:
2: For any two meters {SMx , SMy} ∈ SM and time

instant l, get regular data I lxy = (d lxy, f
l
x , z

l
x), x ∈

{1, 2, · · · ,N }, y ∈ {1, 2, · · · ,N }
3: For data set I lxy, define a family/boundaryCm

x through (8)
4: Meter/Packet authentication:
5: For time instant t , get relative distance d ti(i+1) between

source meter SMi and data receiving meter SMi+1
through (6)

6: Calculate data transmission frequency f ti and packet size
zti for packet from meter i

7: For new data I ti(i+1) = (d ti(i+1), f
t
i , z

t
i ), get decision

by (12)
8: if I ti(i+1) ∈ C

m
i then

9: The data is within the boundary, forward to next
meter SMi+2

10: else
11: Reject data from source SMi which is flagged by

algorithm as anomaly
12: end if
13: End

TABLE 2. Mean square error (MSE) in localization for different
noise variances.

A. THE PROPOSED ALGORITHM’S PERFORMANCE
To get insights into the localization of meters, we consider,
Manhattan grid building topology [53] in which the distance
between two meters (i.e. house) is 30m. We consider an area
of interest (AOI) of 30m× 30m where a new meter is located
at (1,−1) position surrounded by known position meters as
illustrated in Fig. 4. For optimization problem in localization,
PSO [54] was used whereas residential path loss model was
considered for path loss calculation. The transmission power
of eachmeter is 10 dBm, and iteration number and population
size of PSO are 100 and 30, respectively. The simulation
results of position and power of an unknown positioned meter
surrounded by 4 known positioned meters and environment
with path loss constant 3 are tabulated in Table 2.

With an increase in the number of neighboring meters,
the Mean Square Error (MSE) from the exact position of
the meter decreases. This means that for the more number
of neighboring meters, localization error for a meter will
be lower. Secondly, for the increase of noise variance, MSE
also increases. This implies that localization error for a meter
is higher for the increased interference or noise. These are
illustrated in Fig. 5(a). For the increase of both neighboring
meters and path loss exponent, the MSE decreases from the

TABLE 3. Smart meter real world data sample.

exact position of meter which is reflected in Fig. 5(b). Path
loss exponent (decaying rate of signal) is associated with the
obstacle in the path of electromagnetic signal propagation.
Therefore, for the presence of buildings, walls, trees, etc., the
error in determining the location of meters will be higher.
Furthermore, asmeters aremounted on a stationary pole/wall,
and in good conditions the environment around them is stable,
the error for a meter by RSS based localization technique will
be nearly uniform.

In the second part of the simulation, OCSVM is imple-
mented in Python using scikit-learn library [55]. As a power
system is a critical national infrastructure, it is very hard to get
real-world power system data, especially cyber attack data.
Since there is no appropriate public dataset for our simulation
and obtaining the real data is not feasible, we generated a
synthesized dataset simulating/mimicking the normal data
packet structure due to the scarcity of the malicious pack-
ets and the unknown structure of the attacks. One of the
important features of OCSVM is that if it is trained with the
normal dataset, it can classify anything as malicious if it fails
outside of the normal behavior. The structure of the normal
packets and their transmission behavior is generated based
on the defined standard of the network with a small variation.
Regarding the current network standard, each packet data was
generated with the following information: meter’s position,
the frequency of transmission, and the packet size. Some real-
world data transferring from two smart meters in an AMI
network of a local utility company is illustrated in Table 3.

Based on the real world utility data (referred to Table 3),
we defined data transmission frequency equal to one hour.
The distance between two meters is assumed to be 30m con-
sideringManhattanGrid. The packet size is directly estimated
upon the delivery of packet, and the standard packet size
is considered 128KB based on the network topology. The
training data is generated with 3 degrees of standard deviation
from normal distribution of meter distance, data transmission
frequency, and data packet size where the mean of meter
distance, data transmission frequency, and packet size are
30m, one hour, and 128KB, respectively.

The OCSVM model was trained on the 70% of the data
and the model was tuned on the validation set, 10% of the
remaining data, with an exhaustive grid search, resulting in
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FIGURE 5. (a) Mean square error for different number of nodes and noise variances. (b) Mean square error for different number
of nodes and path loss exponent.

FIGURE 6. Anomaly Detection with a) One Class SVM and b) Isolation Forest Algorithms.

the RBF (Guassian) kernel with ν and γ both equal to 0.01.
The model was tested by the rest of the data. The mapped
decision boundaries of the OCSVM with the best parameter
settings is shown in Fig. 6. Red lines show the decision
boundaries and yellow dots are the packets from unauthorized
sources. The training error2, false positive rate3 and false
negative rate4 of OCSVM are 4/200, 3/20, and 2/20, respec-
tively. On the other hand, the training error, false positive rate
and false negative rate for Isolation Forest are 16/200, 6/20,
and 1/20, respectively. Therefore, it can be conceived that
OCSVM can discriminate the authorized and unauthorized

2The training error is the ratio between the number of normal data that
falls outside of the boundary erroneously and total number of data.

3The false positive rate is the ratio between the number of negative events
wrongly categorized as positive (false positives) and the total number of
actual negative events (regardless of classification).

4The false negative rate is the ratio between the number of positive events
wrongly categorized as false (false positives) and the total number of actual
negative events (regardless of classification).

(malicious) packets almost precisely in comparison to it’s
counterpart Isolation Forest algorithm.

To evaluate themodel’s performance, confusionmatrix and
receiver operating characteristic (ROC) curve [56], [57] are
provided. The statistics of true negative, true positive, false
positive, and false negative of OCSVM and Isolation Forest
are illustrated in Fig. 7. Referred to the figure, the overall
accuracy of OCSVM is ( 37+1860 )×100 = 91.6%. On the other
hand, the accuracy of Isolation Forest is ( 34+1960 ) × 100 =
88.33%.

Receiver Operator Characteristic (ROC) curve plots the
true positive rate (TPR) against the false positive rate (FPR)
at various threshold. ROC for this experiment with different
tweaked parameters is shown in Fig. 8. It is noted that the
area under the curve slightly changes based on the different
hyper parameter setting, and for γ = 0.01 and ν = 0.01,
the maximum area of 0.95 is achieved; therefore the afore-
mentioned parameters are selected as the best setting for the
model.
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FIGURE 7. Confusion Matrix for a) One Class SVM, and b) Isolation Forest.

FIGURE 8. ROC curve for OCSVM with different parameter
settings. (Nu = ν; Gamma = γ ).

B. SECURITY STRENGTH ANALYSIS OF A DATA PACKET
Let us assume, a meter generates a consumption unit packet
of size 128KB (10243 bit) which is divided into 4000 blocks
with each block size of 256 bit. If each block is encrypted by
256 bit public/asymmetric key and transmitted according to a
random sequence, then the entropy of each block is 256. The
security strength of the data block is 2256.

Furthermore, the security strength of a 256 bit public key
is 2256/2.

So, for 4000 random sequenced packets and 256 bit public
key,

Total security strength of the 128KB meter data = 4000 ∗
(2256 + 2256/2)
Hence, a hacker needs maximum 4000 × (2256 + 2256/2)

number of iterations (tries) to decrypt a message, which is
impractical.

VII. CONCLUSION
In our security scheme, a novel authentication management
model comprised of two-level security method has been pro-
posed with data encryption and node authentication. In the

data encryption level, encryption by asymmetric keys and
randomization of data packets have been proposed. In the
conventional key management system, only data encryption
is used. On the other hand, in our scheme, randomization of
packets along with data encryption ensures enhanced data
security. Another contribution of our scheme is the intro-
duction of node-to-node authentication by OCSVM, which
utilizes three features- frequency of data reception from a
specific meter, packet size, and meter position. The features
of data frequency and packet size can easily be extracted from
the packet’s header. To capture the last feature which detects
the position of the sender of the packet, RSS model is used.
In the case of authorized source this value would be very close
or identical but in the case of attack, it varies.

For TTP-to-smart meter communication, we use a bi-
directional communication similar to meter data communica-
tion of conventional AMI network. As communication from
meters and servers occurs once per every session initialization
between meter and control center, the data traffic of the
normal meter data flow from meter to control center is not
hampered. Furthermore, since a random sequence along with
the asymmetric key is used to retrieve data in the control
center, it also helps to authenticate data incoming from the
smart meter. Additionally, being a cluster of meters is served
by a TTP (a Master and an Auxiliary server), prudent design
of clusters can make our approach scalable easily.

By integrating Supervisory Control and Data Acquisi-
tion (SCADA) data with AMI systems, utilities can gain
deeper insights into their infrastructure’s performance and
optimize resource allocation in real-time. However, integrat-
ing SCADA with AMI comes with inherent risks that need
careful consideration. One significant risk is the potential
for cybersecurity threats and vulnerabilities. When SCADA
systems, which control critical infrastructure, are intercon-
nected with AMI, which gathers sensitive consumption data,
the attack surface for cyber threats expands. Hackers could
exploit vulnerabilities in one system to gain unauthorized
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access to the other, potentially disrupting operations, manip-
ulating data, or causing physical damage. Another risk is
the complexity of integration between SCADA and AMI.
SCADA and AMI systems may use different communication
protocols, data formats, and security standards. Additionally,
there is a risk of operational disruption during the integration
process. To mitigate these risks in integrated SCADA and
AMI, the utility should adopt a comprehensive approach
to cybersecurity, including regular risk assessments, threat
monitoring, employee training, and the implementation of
industry best practices and standards such as NERC CIP
(North American Electric Reliability Corporation Critical
Infrastructure Protection) for the energy sector.

Additionally, a collaboration between smart meters and
the distribution dispatching center is essential for ensuring
the security and reliability of the power grid. The utilities
can implement comprehensive and proactive approaches that
encompass both technological solutions and robust cyber-
security protocols, including encryption and authentication,
intrusion detection systems, secure firmware updates, and
collaborative defense strategies to resist attack signals.
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