
Trends in

TRECAN 00872 No. of Pages 14
Cancer
Review
Big data and artificial intelligence in cancer
research
Xifeng Wu,1,2,* Wenyuan Li,1,3 and Huakang Tu1,4
Highlights
The integration of big data and artificial
intelligence (AI) is transforming precision
oncology from early diagnosis to person-
alized treatment, and innovativemethod-
ologies. We provide a comprehensive
overview of advances in the application
of big data and AI technologies in cancer
research.

We discuss key challenges in data
curation and utilization for cancer re-
search, offering strategic solutions.
The field of oncology has witnessed an extraordinary surge in the application of
big data and artificial intelligence (AI). AI development has made multiscale and
multimodal data fusion and analysis possible. A new era of extracting informa-
tion from complex big data is rapidly evolving. However, challenges related to ef-
ficient data curation, in-depth analysis, and utilization remain. We provide a
comprehensive overview of the current state of the art in big data and computa-
tional analysis, highlighting key applications, challenges, and future opportuni-
ties in cancer research. By sketching the current landscape, we seek to foster
a deeper understanding and facilitate the advancement of big data utilization in
oncology, call for interdisciplinary collaborations, ultimately contributing to im-
proved patient outcomes and a profound understanding of cancer.
We detail the role and application of AI
methodologies in processing cancer big
data, with a special emphasis on multi-
modal data fusion analysis.

We introduce a framework formultiomics
analysis, outlining its potential appli-
cations in identifying new biomarkers,
understanding mechanisms, and de-
veloping therapies.

We propose a machine learning based
intelligent service platform, designed to
integrate cancer big data and employ AI
algorithms for personalized health
management.
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Introduction to big data and AI
In 2020, approximately 19.3 million new cancer cases were reported globally, and nearly 10 million
cancer-related deaths [1]. Over the past few decades, cancer prevention and targeted therapy
have made progress in controlling and managing the disease. However, the heterogeneity and
complexity of cancer types still pose enormous challenges. Cancer heterogeneity refers to the
genetic, molecular, and phenotypic diversity within a single tumor or among different tumors of
the same type, resulting in individual differences in environmental exposure reactions, suscep-
tibility, treatment responses, and clinical outcomes. It is therefore imperative to adopt the pre-
cision medicine approach, which essentially pertains to the efficient collection and utilization of
big data. Advances in laboratory technology, unique population-based studies, and clinical
practices based on electronic health records (EHRs) (see Glossary) have accumulated an
enormous number of various types of data. In the past, it would be difficult and even practically
impossible to link these data and extract meaningful information. Now, with artificial intelli-
gence (AI) becoming reality, big data and AI have shown superior advantages in our efforts
to conquer cancer.

The alliance of big data and AI holds immense promise for revolutionizing our understanding
of cancer, from its genesis to screening, diagnosis, treatment, response, toxicity, recur-
rence, and survival [2]. AI has been highly integrated into many aspects of cancer research
such as standardizing large datasets and biobanks, clarifying the roles of modifiable risk fac-
tors, discovering new biomarkers or drug targets, creating prediction models and knowl-
edge graphs, and establishing novel service platforms. These essential components
pertain to the efficient collection and utilization of cancer big data. However, many challenges
remain in areas including harmonization, missing data handling, and management (Table 1).
This review aims to emphasize the transformative impact of big data and AI in oncology, out-
line the framework of collecting and utilizing big data in precision oncology, highlight current
challenges and solutions, and review the application of these technologies, propelling ad-
vances in precision oncology.
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Table 1. List of challenges and potential solutions to the efficient curation and utilization of big data

Challenges Explanations Solutions

Data
acquisition

Volume and complexity: the sheer volume
and complexity of data, including genetic,
clinical, and lifestyle information, can be
overwhelming to process and analyze.

Implementing scalable computational
infrastructure and using advanced algorithms.

Data quality variation: variations in data
ranges from meticulous quality control in some
datasets to potential inaccuracies in others.

Instituting standardized data quality
assessment procedures.

Quality and standardization: inconsistencies
in data quality and lack of standardization due to
diverse variable definitions, measurements, and
temporal fluctuations arising from changes in
clinical guidelines and data recording practices
can lead to unreliable results.

Establishing clear variable definitions and
measurements, implementing dynamic
algorithms to address temporal variability, and
adopting universal standards for data
collection.

Integration: integrating various types of data
from multiple sources, such as genomic,
imaging, and EHRs, is a complex task.

Developing integrative platforms and
employing interoperable data models.

Data
management

Privacy: ensuring the privacy and security of
sensitive patient data is a major concern.

Implementing robust encryption techniques
and strict privacy policies.

Collaboration: barriers in data sharing between
institutions can hinder the overall progress in
cancer research.

Establishing data-sharing consortiums and
collaborative agreements.

Ethics: navigating the complex regulatory
landscape and ethical considerations
surrounding the use of patient data can be
difficult.

Clear guidelines, ethical oversight, and regular
consultation with legal experts.

Model
interpretation

Understanding: lack of metadata and
advanced data analysis methods may lead to
uninterpretable models or poor robustness.

Utilizing comprehensive metadata standards
to enhance data context, combining AI with
expert knowledge, and employing
interpretable models.

Application: AI interpretations need to
seamlessly fit into the existing clinical workflow.

Developing user-friendly interfaces and
providing real-time decision support.

Algorithmic bias: algorithms adopt biases from
training data may result in unjust or inaccurate
outcomes.

Employing diverse training datasets,
assessing regularly and adjusting algorithms
for equitable results.

Trends in Cancer

Glossary
Artificial intelligence (AI): computer
systems that can perform tasks typically
requiring human intelligence, such as
understanding language, recognizing
patterns, and making decisions.
Blockchain: a decentralized, secure
digital technology that provides secure,
transparent, and auditable data
transactions and storage.
Convolutional neural network
(CNN): a specialized deep learning
architecture employing convolutional
layers to automatically learn hierarchical
features, enabling tasks like image
recognition, classification, and object
detection.
Deep learning (DL): a subset of
artificial intelligence technologies using
neural networks to process and learning
from vast data for image recognition,
and decision-making.
Distributed and federated learning:
distributed learning uses various devices
to collectively train a centralized model.
Federated learning, a subset, enables
devices to train locally and share
updates without sharing raw data.
Electronic health records (EHRs):
digitalized collections of individuals’
health information, including patient
demographics, clinical history, and
treatment processes.
Framingham Heart Study (FHS): a
project that investigates cardiovascular
disease trends and risk factors over
generations, contributing extensively to
heart health knowledge.
Genome-wide association studies
(GWASs): analyze genetic variations
across a population to identify links
between specific genetic markers and
traits.
Knowledge graph: a structured
representation of information, linking
entities and their relationships.
National Institutes of Health (NIH): a
US federal agency that funds and
conducts biomedical and health
research.
Natural language processing (NLP):
a field of artificial intelligence that focuses
on the interaction between computers
and humans, involving tasks like
language understanding, sentiment
analysis, and language generation.
Virtual screening (VS): a technique
using computer simulations to identify
potential drug compounds for testing,
accelerating the drug discovery process.
Big data curation and management
Data curation generally involves data acquisition, quality control, and validation to ensure that the
data are accurate, complete, and reliable, compliant with legal and ethical requirements. Despite
the absence of a uniform definition, cancer big data typically refers to the vast amounts of data
derived from multiple sources.

Data sources and types
Sources of big data include epidemiology questionnaires, EHRs, imaging data, omics data, and
mobile health device data. Epidemiological questionnaires typically include questions regarding
demographics, medical history, lifestyle factors (dietary pattern, alcohol intake, smoking, physical
activity, and sleep, etc.), environmental exposure, family history, medication use, disease out-
come, psychological and cognitive function, reproductive information, and quality of life. EHRs
constitute comprehensive repositories encompassing patient demographics, clinical history,
medication records, laboratory outcomes, treatment plans, progress notes, billing data, and re-
ferrals, serving as fundamental references for clinicians. Imaging data are generated through var-
ious types of imaging modalities, such as magnetic resonance imaging (MRI), computed
tomography (CT), and positron emission tomography (PET). These data provide rich visual
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insights into different aspects of tumors, including their growth, spread, and response to treat-
ments. Omics data encompass extensive datasets derived from diverse omics technologies,
including genomics, transcriptomics, proteomics, microbiomics, and metabolomics. These
datasets are derived from diverse biological samples and collectively provide a comprehensive
perspective on the molecular constituents of cells, tissues, or organisms, enabling a holistic com-
prehension of the intricate biological processes underlying cancer. Mobile health device data
come from wearable devices and mobile health applications, which offer real-time monitoring of
patients’ vital signs, activity levels, symptoms, and even treatment responses. They have the
potential to enhance cancer therapy adherence, manage treatment-related symptoms, boost
physical activity levels, and offer insights into behavior patterns. The landscape of data types
has significantly expanded, encompassing datasets from chronic disease surveillance, cancer
screening records, routine physical examinations, andmedical insurance details. Their integration
undeniably amplifies the precision of risk prediction models and propels the advancement of
cancer research.

Data harmonization
Having outlined the diverse sources fromwhich cancer big data can be collected, the subsequent
challenges cannot be overlooked. Challenges stem from the heterogeneity of data sources, in-
consistencies in formats, and variable data quality. These issues are compounded by semantic
differences, temporal variability, and ethical constraints. To tackle these challenges, we propose
a few key strategies including standardizing protocols, using advanced algorithms for missing
data, ensuring secure and compliant data sharing, and implementing version control and
cloud-based solutions.

The issue of missing data arises from incomplete records, inconsistent data entry, and gaps in
longitudinal studies. These challenges are amplified by the high dimensionality of the data, the
need for time-sensitive analyses, and ethical considerations. To mitigate these issues, potential
strategies may include robust data validation checks, machine learning for imputing missing
values, secure protocols for data handling, and real-time monitoring systems. EHRs can also
be used for cross-verification.

Compared with traditional data, the advent of big data poses new challenges due to the rapid
speed of data generation and updates, necessitating the development of pioneering storage sys-
tems. The main components of a data storage system may include various components such as
data dictionaries, ID tracking and consent data, epidemiological data, biospecimen data, clinical
data, biomarker modules, genetic modules, query tools, and reporting tools. Also, the volume of
the database is increasing substantially. For example, the UK Biobank contains over 11
petabytes of data and is expected to exceed 40 petabytes by 2025. To effectively manage the
substantial data volumes, distributed storage systems like the Hadoop Distributed File System
(HDFS) can disperse data across multiple servers or nodes to ensure high availability and scalabil-
ity. In addition, distributed structured query language (SQL) databases such as Google Spanner
and NoSQL databases such as MongoDB are also utilized to manage structured and semistruc-
tured data respectively, offering additional layers of flexibility and efficiency. The application of
data compression techniques and the optimization of storage structures can also be helpful in
mitigating storage resource consumption.

The aggregation of extensive patient data amplifies concerns over data security and privacy
(Table 1). These challenges are further complicated by the need for secure sharing and legal com-
pliance. A multilayered approach including using distributed and federated learning for local
data training [3,4], integrating blockchain for secure transactions [5], establishing robust
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governance for data access and compliance [6], and implementing real-time monitoring with reg-
ular security audits may be helpful.

Multimodal data analysis
Medical imaging
The convergence of medical big data with AI is revolutionizing radiomics and digital pathology.
Deep learning (DL) algorithms excel in image analysis and pattern recognition, often surpassing
human performance. Radiomics uses advancedmathematical algorithms such as a gray level co-
occurrence matrix, histogram-based features, and support vector machines for quantitative anal-
ysis of high-dimensional features in MRI, CT, and PET scans. It adopts a comprehensive
workflow that includes image acquisition, preprocessing, tumor segmentation, feature extraction,
and ultimately, model validation. These algorithms enable the identification and quantification of
various textural, shape-based, and intensity-based features within the images, providing a com-
prehensive understanding of tumor heterogeneity, severity, and other clinically relevant feature.
Digital pathology, the gold standard for tumor diagnosis, is also evolving due to AI. Unlike tradi-
tional pathologic methods, AI-enhanced digital pathology mitigates human biases by enabling
digital capture and comprehensive analysis of specimens at both the cell and regional levels, re-
fining the diagnostic process but also alleviating the workload of the pathologist. The fusion of AI
with radiomics and digital pathology is thus creating a synergistic effect that holds considerable
promise for the advancement of diagnostic accuracy and efficiency in oncology.

Fusion analysis
The multiscale, multimodal, and high-dimensional data can be harnessed through fusion analysis
[7,8]. Commonly used algorithms are illustrated in Figure 1. The IRENEmodel [9] uses embedding
layers to convert images, unstructured text, and structured clinical data into visual and text
tokens, then uses bidirectional blocks with both intramodal and intermodal attention to learn ho-
listic representations, outperforming traditional and image-only models in identifying pulmonary
disease and predicting outcomes. By using various fusion strategies, DL-fused histopathology
images with gene expression profile models outperformed single-data models and identified
more relevant biological pathways in glioma patients [10].

Knowledge graph
A knowledge graph integrates interconnected data from multiple sources to provide a compre-
hensive view of entities like genes, proteins, and patient outcomes, offering a navigable snap-
shot of individual health status. REMAP [11], a multimodal machine learning approach for
extracting disease relations from both structured knowledge graphs and unstructured text,
improved accuracy and F1 score by aligning multimodal data sources, and outperforms
graph-based methods in recommending new disease relationships. Another work applied mul-
timodal reasoning by reverse-hyperplane projection based on structure, category and descrip-
tion embeddings, and demonstrated the versatility of embedding models in classifying
biomolecular interactions [12]. A recommendation system integrating preclinical, clinical, and
literature data was built on a heterogeneous biomedical knowledge graph to addresses the
challenge of resistance to epidermal growth factor receptor (EGFR) inhibitors in non-small
cell lung cancer [13]. The system successfully narrows down potential resistance markers
from >3000 genes to 57.

Multiomics analysis
Data sets of different omics groups such as genomics, transcriptomics, epigenomics, proteo-
mics, microbiomics, and metabolomics, can be combined during analysis. The heterogeneity
of data types and high dimensionality require substantial computational resources and
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Figure 1. Common machine-learning models and fusion strategy. (A) Multilayer perceptron is a deep learning model that utilizes multiple fully connected layers to
obtain feature vectors, and it finds application in cancer research for data mining and classification tasks. (B) Convolutional neural networks operate by using cascading
layers of convolution and pooling to progressively extract features from medical images, thereby facilitating enhanced diagnostic and prognostic capabilities in the context
of cancer risk assessment for patients. (C) Short-term memory is a recurrent neural network designed to capture sequential dependencies in data and is commonly used
for time-series analysis of patient data to help predict disease progression and treatment outcomes. (D) Graph neural networks operate on graph-structured data, allowing
them to model relationships and interactions; they can integrate information about different treatments, including efficacy, risks and individual patient characteristics, to
assist physicians and patients in making more informed treatment choices. (E) Transformer architecture features a self-attention mechanism that facilitates the capture
of contextual information from data and can be used in cancer research to analyze genome sequences and gene expression patterns, thereby improving our understand-
ing of cancer biology and potential therapeutic targets. (F) According to the communication and aggregationmechanism between different modalities, feature fusion can be
principally categorized into early fusion, middle fusion, and late fusion. Abbreviations: C, sequence’s element; FC, fully connected layer; L, network’s layer; SM, SoftMax
activation function.
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specialized algorithms. We have illustrated a framework for multiomics analysis in Figure 2. Histo-
pathology images have been leveraged to predict multi-omics aberrations and prognoses in can-
cer patients [14]. Utilizing weakly supervised DL models, integrative multiomics–histopathological
analysis for breast cancer classification explores the link between histopathological images and
genetic statuses [15]. Employing the Multi-omics Multicohort Assessment platform, a study
identified interpretable pathology patterns predictive of gene expression profiles, microsatellite
instability status, and clinically actionable genetic alterations [16]. Shifting to transcriptomics, by
combining a CRISPR interference (CRISPRi) screen with orthogonal multiomics approaches,
the long noncoding RNA, DARS1-AS1, was shown to play a pivotal role in glioblastoma [17].
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Figure 2. Framework for multiomics analysis and application. Abbreviations: CTC, circulating tumor cells; ctDNA, circulating tumor DNA; EHR, electronic health
record.
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Throughmachine-learning algorithms, specific patterns or biomarkers within the microbiome that are
associated with different types of cancer can be discovered [18]. Integrating single-nucleus RNA se-
quencing and spatial transcriptomics has unveiled the complex cellular architecture of breast cancer
tissues and potential therapeutic strategies [19]. Single-cell multiomics analysis generates a compre-
hensive transcriptional and epigenomic landscape, revealing key transcription factors mediating
tumor cell-specific regulatory programs [20]. In a comprehensive approach spanning multiple
omics fields, including metabolomics, transcriptomics, proteomics, epigenomics, and genomics,
circulating cell-free DNA genomic signatures were integrated, enhancing early-stage lung cancer
diagnosis and the detection of minimal residual disease [21].
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EHR analysis
Natural language processing (NLP) assists in the extraction and interpretation of unstructured
textual data from EHR, medical literature, and clinical notes. PheCAP, a semisupervised system,
uses NLP to extract valuable information from EHRs, speeding up phenotyping and enhancing
healthcare decision-making [22]. The Multiview Incomplete Knowledge Graph Integration
(MIKGI) algorithm combines embeddings from medical code co-occurrence patterns and se-
mantic embeddings from textual strings and synthesizes these into harmonized semantic
vectors, thereby achieving high accuracy in tasks like detecting similar or related entity pairs
and mapping medical codes across institutions [23]. Federated learning has emerged as a key
solution for maintaining data privacy in collaborative model development, allowing institutions to
train local models without centralizing patient-level data [24]. This approach not only ensures
data security but also improves collective model performance, facilitating cross-institutional re-
search. Advanced techniques like sparse embedding regression efficiently select relevant fea-
tures from EHRs, offering performance comparable with manually curated features [25].

Integrated big data platform
Cohort, consortium, and omics databases are among the best approaches when integrating big
data in cancer (see supplemental information online). Commonly used computer programs to
support big data analysis can be found in Table 2.
Table 2. List of commonly used computer programs for big data analysisa

Package Accessibility Capacity Advantages Disadvantages

SimpleITK Open-source; Python
and C++

Medical image
processing

Comprehensive APIs for different
medical image formats (DICOM, NiFti
etc.)

Limited to analytical functions

Nibabel Open-source; Python Neuroimaging
data processing

Basic operations on common
neuroimaging file formats; Pythonic
interface

Focus on data structure transformation for
neuroimaging and Python proficiency

OpenCV Open-source;
multiple languages

Computer vision
and image
processing

Real-time optimized Computer Vision
library; cross-platform

Not specialized for medical data; multiple
programming languages based, requires user
to select and combine algorithms adapted to
medical imaging

MONAI Open-source; Python Medical image
analysis

DL-based medical image processing
library; PyTorch-based

Python-based, may require DL foundation and
Python proficiency

scikit-learn Open-source; Python Machine learning
(ML)

General-purpose ML library; extensive
community support

Not specialized for medical data; limited to
traditional ML

Bioconductor Open-source; R Bioinformatics
and genomics

Rich set of packages for genomics; R
community integration

R-based, may require knowledge of genomics;
not for all data

mixOmics Open-source; R Multi-omics data
integration

Integrates multiomics data effectively;
statistical methods

R-based, may have a learning curve for
beginners

TCGA-Assembler Open-source; R TCGA data
integration

Simplifies TCGA data integration; R
community integration

Focused on TCGA data; limited to cancer
genomics

ImageJ Open-source; Java Image analysis
and processing

Wide range of plugins; extensive user
community

May require Java proficiency; GUI-based

DeepPathology Not specified; likely
open-source

Pathology image
analysis

Specialized for pathology image
analysis; DL

Accessibility and features may vary; relatively
new

PathAI Commercial Pathology image
analysis

AI-assisted pathology diagnostics;
commercial support

Paid subscription required; proprietary

HistomicsTK Open-source; Python
and Django

Digital pathology
image analysis

Extensive toolkit for digital pathology;
web-based interface

Setup and deployment complexity; learning
curve for web-based

aAbbreviations: API, application programming interface; GUI, graphical user interface; TCGA, The Cancer Genome Atlas.

Trends in Cancer, Month 2023, Vol. xx, No. xx 7

CellPress logo


Trends in Cancer
Large-scale cohort studies are viewed as the best approaches for obtaining high-standard, high-
quality, cross-scale, multimodal big data and biological samples. These studies collect not only
baseline data like questionnaires, biomarkers, clinical and phenotypic data but also conduct
long-term follow-up. The Framingham Heart Study (FHS), launched under the direction of
the US National Institutes of Health (NIH) in 1948 [26], enrolled >15 000 people of varying
ages and backgrounds, and published >3698 research articles by 2018. The All of Us research
program, initiated by the NIH in 2018, aims to build a large-scale cohort of at least 1 million par-
ticipants [27], and collects genome data, including whole genome sequencing and genotyping. It
also collects data on lifestyle factors and EHRs, such as physical activity, nutrition, heart rate, and
sleep. The UK Biobank, established in 2006, is a large biomedical database, involving over half a
million UK participants aged 40–69 years [28] that contains genetic information, blood samples,
imaging data, lifestyle and environmental exposure data, and tracks health records that have
been regularly updated overtime.

Countries worldwide are increasingly investing in constructing cohorts to identify modifiable risk
factors and novel biomarkers of cancer, formulate individualized strategies for cancer screening,
diagnosis, treatment, and management, and build intelligent service platforms. However, many
cohorts enrolled cancer patients or high-risk individuals only, and had relatively small sample
sizes. The establishment of consortia provided a solution. These consortia facilitate the harmoni-
zation and integration of collected omics data with clinical phenotypic data and other data types.

The formation of several large databases also provided support for precision medicine. The
Cancer Genome Atlas is a landmark collaborative project that has played a pivotal role in advanc-
ing our understanding of cancer on a molecular level [29]. It was launched in 2005 by the US
National Cancer Institute and the National HumanGenome Research Institute in order to compre-
hensively catalog and analyze the genomic alterations that drive various types of cancer.

Successful use of big data and AI application in cancer research
Discovery of modifiable risk factors
Cancer development is intricately tied to a spectrum of modifiable risk factors; aggregating and
analyzing diverse datasets provides the statistical power and robustness necessary for unraveling
complex interactions between modifiable risk factors. Studies have consistently revealed positive
links between traffic-related air pollution and elevated lung cancer risk in diverse populations [30].
With machine-learning algorithms, researchers were able to construct robust aging biomarkers
and explore their contribution to cancer susceptibility. In the UK Biobank, associations of discre-
tionary screen time, Mediterranean lifestyle, physical activity, a composite healthy lifestyle score,
and other factors with susceptibility to cancer have been highlighted [31–34]. The pivotal role of
nutrition is elucidated through studies examining dietary habits, particularly the consumption of
ultraprocessed foods, red meat, and processed meat [35]¸ and iron intake [36,37]. Conversely,
research focusing on exercise and cancer risk [38], utilizing large prospective cohorts, demon-
strates the potential benefits of resistance training in mitigating cancer susceptibility, notably for
bladder and kidney cancers [39]. These findings, derived from extensive cohort studies, illumi-
nated the considerable influence of modifiable risk factors on cancer.

Discovery of biomarkers
Biomarkers of susceptibility
Identifying individuals at higher risk for certain diseases based on their genetic profiles, enables
medical practitioners to implement personalized preventive measures at an early stage, reducing
the overall disease burden. Genome-wide association studies (GWASs) provide a new way
to identify genetic risk factors associated with tumors [40]. Over the past two decades, GWASs
8 Trends in Cancer, Month 2023, Vol. xx, No. xx
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have identified approximately 40 sites associated with lung cancer susceptibility [41–43], >160
common loci associated with prostate cancer susceptibility [44], and 48 sites associated with
breast cancer susceptibility [45]. Establishing polygenic models and helping to calculate poly-
genic risk scores in cancer can improve the prediction of genetic diseases [46]. A risk prediction
model was developed using data from 16 633 prostate cancer families [47]. This model offers
personalized validated predictions of prostate cancer risk by considering known intermediate-
and high-risk pathogenic variants, low-risk common genetic variants, and a well-defined family
history of cancer.

Biomarkers for diagnosis and prognosis
Diagnostic and prognostic biomarkers can be molecular, histological, radiographic, or physiolog-
ical characteristics that indicate the presence of cancer. Molecular biomarkers have become cru-
cial in the prevention and diagnosis of cancer, as they enhance our understanding of its causes
and improve the accuracy of diagnosis and prognosis. RNA sequencing and methylation have
contributed to the identification of new biomarkers for various types of cancer, such as esopha-
geal [48], colorectal [49], gastric [50], and pancreatic [51] cancer. The advancement of imaging
technology has also played a significant role in the discovery of these biomarkers [52]. Specific
gut microbiome signatures are identified to predict lung cancer and colorectal cancer, assisting
doctors in detecting cancer at an earlier stage and thereby improving treatment success rates
[53,54]. By combining the interpretations of radiologists, pathological factors, imaging metrics,
and machine learning techniques, higher diagnostic accuracy were achieved, which greatly ben-
efits patient management [55]. Some studies have established connections between the charac-
teristics of medical images and molecular phenotypes, giving rise to a new field known as
radiogenomics [56].

Drug discovery and repurposing
AI is overcoming limitations of traditional techniques such as virtual screening (VS) and molec-
ular docking, specifically in improving drug–target interaction, structure-based VS, and toxicity
characterization [57,58], enhanced drug design and mass-production capabilities. Computa-
tional pipelines can predict new drug interactions within heterogeneous networks [59]. Addition-
ally, deep generative models have shown promise in designing molecules that inhibit specific
receptors with favorable pharmacokinetics [60]. AI has also been instrumental in streamlining
drug–target interaction prediction, expanding opportunities in drug reuse and combination ther-
apies [61]. One study used a systems biology approach using genome-wide microarray data and
machine learning models to identify potential molecular drugs for diseases [62]. Deep neural net-
work models, along with experimental approaches, have identified new drug combinations for
diseases like leukemia, increasing the therapeutic options [63].

Biomarkers for therapeutic response and adverse events
A predictive biomarker is a tool used to predict the outcome of a specific therapeutic intervention,
including both therapeutic benefits and possible side effects of chemotherapy, radiotherapy, and
immunotherapy. Although immunotherapy has proven to be effective against many cancer types,
the presence of primary or secondary resistance still leaves most immunotherapy-eligible patients
without significant benefits. Therefore, the tumor microenvironment needs to be assessed with
appropriate biomarkers to determine the best therapy to use in a specific patient population
and predict resistance. Analysis of tumor tissue samples [64] (such as tumor mutation burden
and tumor immune microenvironment), gene expression [65], gut microbiome features [66],
and noninvasive plasma-derived biomarkers such as α-fetoprotein (AFP) can provide information
on tumor biology in order to assess the response of cancer patients to immunotherapy [67]. How-
ever, overactivation of the immune system caused by immunotherapy often leads to a range of
Trends in Cancer, Month 2023, Vol. xx, No. xx 9
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toxicities, namely immune-related adverse events (irAEs). It is therefore critical to investigate
appropriate biomarkers to timely detect and manage irAEs. Most studies to date have used
many biological specimens for biomarker discovery, such as peripheral blood (serum, plasma,
or whole blood) and stool samples [68]. Gut microbes in stool samples were also found to be
associated with irAEs [66].

Drug dose adjustment
By integrating patient-specific factors such as age, weight, genetics, and kidney/liver function,
describing how drugs are absorbed, distributed, metabolized, and eliminated in different patient
groups, pharmacokinetic models can be developed to guide the calculation of optimal drug or ra-
diation doses tailored to each patient. In a case involving metastatic castration-resistant prostate
cancer, the AI-guided dosing was both effective and well tolerated, significantly reducing
prostate-specific antigen concentrations [69]. In radiation therapy, AI can consider variances in
tumor biology and the geometric relationships between tumors and nearby organs, predict
tumor radiation sensitivity, and formulate optimal dose prescriptions, tailored to the unique
aspects of the tumor and surrounding organs [70,71].

Medical imaging
The application of AI through radiomics image analysis has seen outstanding advances. Some
machine-learning models have been crafted for gland segmentation and tumor classification,
demonstrating remarkable detection and grading accuracies [72]. Computer-aided detection
systems were utilized in a study to detect flat polyps on CT images, with a high success rate
[73]. Studies have predicted risks and constructed radiology scores for prognosis in various can-
cers [74,75]. There have also been explorations into the relationship between radiological features
and tumor transcriptomics [76], and platforms that integrate multi-omics data to aid in decision-
making in patients with lung cancer [77].

Risk prediction modeling
Population risk stratification
DL models are being increasingly used for risk prediction to provide more accurate risk scores
for cancers, resulting in a shift towards more personalized and precise cancer risk stratification
[78–80]. MeScore, a machine-learning-based prediction model developed by a binational study
between Israel and the UK, have achieved promising results for detecting high-risk patients
[81]. Machine learning methodologies are being extended to predict cancer risk from different
modalities like chest X-rays and MRIs, and some models are designed to provide detailed visual
insights, such as heatmaps, to indicate where cancer is most likely to develop.

Models for response
Precise response prediction is of great clinical importance for providing evidence for clinical deci-
sion on choosing the appropriate treatment, and precluding the need for surgery. A recent study
applied DL models to pairs of ultrasonography images to predict response to neoadjuvant che-
motherapy (NAC) in breast cancer [82]. Another study innovatively built a DenseNet model to as-
sess programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer [83], enabling
noninvasive prediction of response to immunotherapy.

Models for recurrence
Estimating recurrence is central to cancer staging and treatment planning. Current models utilize
various clinical parameters such as age, gender, cancer stage, genetic alterations, circulatingmo-
lecular markers, and a multitude of histology risk factors [84,85]. However, higher-level features
also carry prognostic information, like the spatial arrangement of lymphocytes and chromatin
10 Trends in Cancer, Month 2023, Vol. xx, No. xx
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texture. A previous study [86] developed a nomogram for predicting recurrence after
nonmetastatic colorectal cancer surgery, and convolutional neural network (CNN) models
using PET/CT data were applied to predict local tumor recurrence, demonstrating better predic-
tive ability compared with traditional models [87].

Models for survival
Survival predictive models have become essential tools in cancer prognosis, aiding clinicians in
evaluating the prognosis and tailoring individualized interventions [84,85,88]. AI presents a prom-
ising alternative, potentially harnessing this datamore effectively for estimating patient viability and
survival time. Recent studies have showcased the ability of CNN to automate the extraction of
prognostic factors. A CNNwas trained on >100 000 hand-delineated image patches from 86 co-
lorectal cancer tissue slides, achieving a nine-class accuracy of >94% on an independent
dataset, and generated a deep stroma score that served as an independent prognostic factor
for overall survival [88].

Intelligent service platform
There is a demand to develop an intelligent service platform specifically tailored to clinical scenar-
ios and patient needs, integrating various forms of data. The platform (Figure 3) will feature
embedded risk prediction models for cancer screening, diagnosis, treatment, recurrence, and
survival, and will generate personalized health profiles using big data visualization techniques. It
will provide individuals with risk scores, healthy lifestyle recommendations, and real-time updated
screening and treatment plans derived from reinforcement learning algorithms. For health promo-
tion, individuals will receive recommendations regarding modifiable risk factors including
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Figure 3. Artificial intelligence (AI) assistant-based platform.
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Outstanding questions
Multiomics data are inherently complex
and diverse. How can we address this
challenge and develop accurate and
reliable AI models that cover the con-
tinuum of cancer?

The sheer volume of cancer big data,
including high-resolution medical images
and complex genomic sequences, re-
quires substantial computational power
and storage capacity. What strategies
can be employed to overcome these limi-
tationsand facilitate efficient data analysis?

Incomplete or missing data can
significantly impact the quality of AI
models, leading to inaccurate predic-
tions and compromising findings.
How can we develop a unified frame-
work for handling missing data?

With the integration of various data
types, ensuring data privacy and security
becomes increasingly challenging. What
are the best practices for maintaining
data privacy and security, especially when
data is sourced from multiple institutions?

Cancer data often include time-series el-
ements, such as longitudinal patient re-
cords and real-time monitoring data.
These pose unique challenges in data in-
tegration and analysis. How can these
challenges be effectivelymanaged to en-
hance predictive modeling in oncology?

These different types of data have their
own unique formats and structures,
making it challenging to create a
unified representation for analysis.
smoking, drinking, dietary intake, and sleep habits. An AI assistant, backed by advanced large
language models, will be integrated into the platform. To facilitate this, a secure, distributed mul-
timodal biomedical database is essential. The platform will also include a section for researchers,
providing resources and guidelines to encourage future collaborations. Additionally, the service
platform can be compatible with smartphone apps and wearable devices. It uses automated pro-
cesses to aid physicians in patient care and boosts patients’ self-management capabilities,
aligning with health management and cost control goals. The platform is also scalable, with the
capacity to extend its services to support clinical decision-making systems and manage other
diseases, thereby setting a robust foundation for future health management efforts.

Concluding remarks
The integration of big data and AI in cancer research offers unprecedented discovery and
application in precision oncology practices. However, this transformation is not without its hurdles
(see Outstanding questions). These challenges demand robust solutions, which can be achieved
through interdisciplinary collaborations among researchers, clinicians, data scientists, and policy-
makers. By maintaining a focus on innovation considerations, there is promise for more precise,
effective, and individualized cancer treatment, ultimately improving patient outcomes and contrib-
uting to a deeper understanding of the disease.
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