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A B S T R A C T   

Multiple industries have been revolutionized by the incorporation of data science advancements into intelligent 
environment technologies, specifically in the context of smart grids. Smart grids offer a dynamic and efficient 
framework for the management and optimization of electricity generation, distribution, and consumption, thanks 
to developments in big data analytics. This review delves into the integration of Smart Grid applications and Big 
Data analytics by reviewing 25 papers screened with PRISMA standard. The paper matter encompasses critical 
domains including adaptive energy management, canonical correlation analysis, and novel methodologies 
including blockchain and machine learning. The paper emphasizes contributions to energy efficiency, security, 
and sustainability by means of a rigorous methodology.   

1. Introduction 

Information and communication technologies (ICT) are ubiquitous in 
virtually every aspect of contemporary society [1]. As the reliance of the 
healthcare system on technology increases, health science students are 
required to enhance their ICT proficiency [2]. ICT facilitates the 
implementation of innovative learning materials and approaches, 
allowing for increased student collaboration and the concurrent acqui-
sition of technological expertise [3]. Notwithstanding the absence of a 
universally accepted definition, ICT is generally understood to encom-
pass all hardware, software, systems, and applications that enable or-
ganizations and individuals to communicate in the digital realm [4]. The 
consequential increase in data volumes, both within governmental or-
ganizations and private enterprises, has presented researchers with 
multifaceted challenges. Key among these challenges is the need to 
develop effective solutions for the manipulation and analysis of large 
datasets, as well as the establishment of mechanisms to seamlessly 
transmit these data from one site to another. 

The interconnection of these technologies generates an automated 
ecosystem in which data is collected by the Internet of Things (IoT) 
devices and subsequently processed and analyzed through the utiliza-
tion of big data analytics and artificial intelligence algorithms [5,6]. By 
transforming enormous data sets from diverse origins, such as the IoT, 
into a coherent structure, big data analytics enables businesses to ac-
quire valuable insights and formulate decisions based on data [7,8]. The 
IoT, which is comprised of sensors and interconnected devices, is a 

crucial enabler of intelligent environments by enabling the collection of 
real-time data that can be analyzed to detect trends and patterns [9,10]. 
In, particular, smart cities benefit from the utilization of big data ana-
lytics to detect resource waste, optimize resource consumption, and 
enhance energy management. As a result, residents enjoy greater effi-
ciency, sustainability, and a higher standard of living [11–13]. The 
application of ICT in the energy sector transformed the current grid in 
the era of Industry 4.0 [14]. 

Several studies examine advancements in data science as they 
pertain to intelligent environment technologies. To automate city sys-
tems, Sarker [15] emphasized the significance of extracting valuable 
knowledge from city-data. Ullah et al. [16] examined the significance of 
data in driving innovation and development and the role of machine 
learning and the IoT in realizing a data-centric smart environment. The 
article by Grossi et al. [17] discussed the capacity of data science to 
bring about disruptive innovation in diverse sectors, such as energy and 
environment. It did so by facilitating the collection of high-resolution 
data and augmenting the beneficial effects on the environment. Ati-
tallah et al. [18] described how data acquisition and processing utilizing 
a variety of technologies, including IoT and deep learning, can benefit a 
smart city. As a whole, these papers offer valuable perspectives on the 
application of data science and associated technologies to foster ad-
vancements in intelligent environment technologies, with a specific 
focus on smart cities and environmental sustainability. 

The examination of practical applications of data science in the 
establishment of environmentally sustainable smart cities, the 
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integration of big data, artificial intelligence, and IoT technologies to 
tackle climate change and sustainability issues, the creation of data- 
driven models for automated city systems, and the investigation of 
data science’s potential to support unified approaches are all areas of 
research that require further investigation when undertaking a review of 
data science innovations in smart environment technologies [15,17, 
19–21]. The aforementioned gaps underscore the criticality of con-
necting progress in data science theory to practical implementations in 
smart environment technologies to tackle urgent environmental and 
societal issues. 

This article examines the most recent advancements in the applica-
tion of big data to smart grids. It concludes with a systematic literature 
review of big data analytics and its critical role in determining the tra-
jectory of smart grid technologies in the future. A comprehensive anal-
ysis of established research methodologies, significant discoveries, and 
discussions comprise the systematic review, which provides an all- 
encompassing glimpse into the present state of knowledge in this field. 

2. Literature background 

2.1. Data science in modern societies 

The influence of data science on contemporary societies is substan-
tial, as supported by an assortment of scholarly articles. Data science is a 
composite field of study that has the potential to enhance scientific 
research, government administration, business decision-making, and 
innovation in industry, science, and policy [17,22]. The importance of 
data science in addressing societal issues such as climate change, urban 
planning, and healthcare is emphasized, as it enables the creation of 
data-driven solutions to complex problems [15,21,23]. Data science is 
depicted as a transformative force capable of introducing disruptive 
innovations across multiple spheres of society [17]. 

Data science is an all-encompassing and interdisciplinary paradigm 
that combines various models and theories to convert data into knowl-
edge (and value). In addition to validating established theories and 
models, experiments and analyses conducted on enormous datasets 
facilitate the identification of patterns that emerge from the data. Such 
insights can assist scientists in developing more accurate theories and 
models, ultimately leading to a more comprehensive comprehension of 
the intricate nature of social, economic, biological, technological, cul-
tural, and natural phenomena. When accessible data is reinterpreted for 
analysis, the outcomes of data science are not in line with the initial 
motivations that drove data collection. The aforementioned elements 
are collectively influencing a transformation in the scientific method, 
research, and societal decision-making processes [24]. 

Data science is founded upon three confirming facts: the emergence 
of big data, which offers a substantial quantity of real-world examples 
from which to learn; the progressions in data analysis and learning 

methodologies that enable the derivation of predictive models and 
behavioral patterns from big data; and the developments in high- 
performance computing infrastructures that facilitate the ingestion, 
management, and execution of intricate analyses on big data [25]. 
Through the use of deep learning and reinforcement learning tech-
niques, artificial intelligence offers practical solutions for optimal de-
cision making on a global scale [26]. 

Data science is a dynamic and multidisciplinary discipline that 
emerges from the convergence of mathematics, statistics, information 
theory, computer science, and social science (Fig. 1). By integrating 
these disciplines, a solid and mutually beneficial framework is estab-
lished to tackle the difficulties that arise from handling extensive and 
intricate datasets. Data scientists develop exhaustive methodologies, 
models, and algorithms by capitalizing on the respective merits of 
computer science, mathematics, statistics, information theory, and so-
cial science. The interdisciplinary character of data science not only 
guarantees technical expertise but also takes into account the wider 
societal framework, rendering it a potent instrument for furthering 
knowledge and catalyzing constructive transformations in various fields. 

2.2. Domains within data science 

Data Science is an interdisciplinary domain that incorporates meth-
odologies and concepts from numerous other fields, thereby enhancing 
its holistic approach to data management and insight extraction [27,28]. 
Domain knowledge and statistics, computer science, and programming 
are instrumental in the development and implementation of techniques 
for efficient data analysis. Data scientists analyze data sets utilizing an 
array of statistical and analytic methods, such as classification, regres-
sion, anomaly detection, and others [29]. Data analysts have access to a 
variety of data analysis techniques, such as sentiment analysis, cohort 
analysis, cluster analysis, and time series analysis [30–33], as the 
discipline of data science expands at an accelerated rate. 

The systematic extraction of knowledge from data, also known as 
data science, has garnered considerable interest in recent times [34]. As 
one might expect, data science is at the forefront of a paradigm shift in 
science [35]. In numerous fields of study, its epistemological assump-
tions, challenges, and opportunities have been examined [36,37]. Con-
cerns remain, however, as to whether this represents the resurgence of 
empiricism a genuine fourth paradigm of science [38], or merely an 
expansion of established paradigms accompanied by novel instruments 
and approaches to scientific investigation [39]. 

Approaching is the fourth industrial revolution. At present, a 
considerable number of enterprises are adopting Industry 4.0, capital-
izing on nascent developments in automation, the industrial IoT, big 
data, and cloud computing [40]. The emergence of the industrial IoT has 
facilitated the real-time collection of an unprecedented volume of data 
by sensors integrated into networked physical devices. This data 

Fig. 1. Disciplines in data science.  
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empowers manufacturing operations, processes, and systems to attain 
notable improvements in productivity, efficiency, and self-management 
[41,42]. Proficiency in machine learning, artificial intelligence, and 
data analytics techniques is essential in the manufacturing sector 
[43–45]. ρReveal, a novel Big Data Analytics (BDA) scheme for pre-
dicting energy prices in Smart Grids, was introduced by Kumari and 
Tanwar [46]. It makes use of Spark-based analytics for load reduction 
techniques and an artificial intelligence-based Bidirectional Long 
Short-Term Memory (BiLSTM) model for precise price forecasting. In 
terms of data security and prediction accuracy (RMSE, MAE, and 
MAPE), Reveal performed better than previous methods. 

2.3. Smart grid management and operation 

Demand-side management techniques, such as demand-response 
control in smart grids, specify how the demand side responds to price 
strategies or incentive actions from a power unit [47,48]. 
Supply-demand balance can be promoted and cost-effective, high--
quality, customized services can be provided to demand-side consumers 
with the help of demand-response management [49]. 

By analyzing historical and real-time consumption patterns, utilities 
can improve their demand response strategies to meet consumer and 
grid needs. Better load forecasting, demand-side management, and 
consumer participation can result. The emergency demand response 
(EDR) pilot in southwestern China during a heatwave was successful. 
The study found that incentive-based EDR policies like time-of-use 
(TOU) pricing can reduce peak loads and demand significantly. The 
study also found that smart thermostats and home automation systems 
improve price-based demand responses [50]. 

To enable proactive maintenance and minimize downtime, predic-
tive maintenance employs data and analytics to forecast when a 
component in an actual system is likely to fail [51]. In the context of 
Industry 4.0, where technical system complexity is constantly 
increasing, this approach is especially helpful [52]. It is especially 
helpful in anticipating unplanned deterioration, which enables opera-
tors to take preventative measures and stop malfunctions before they 
happen [53]. 

The large amount of data generated by smart grids will help utilities 
understand customer conservation, consumption, and demand, track 
downtime, and power failures. This will be difficult for utilities without 
the systems and data analysis skills to handle these data. Therefore, 
utilities now aim to manage high-volume data and use advanced ana-
lytics to turn data into knowledge and actionable plans [54]. 

The capacity of big data analytics to absorb, process, and analyze 
massive amounts of data in almost real-time is one of its main advan-
tages for smart grids. Real-time data collection is made possible by Su-
pervisory Control and Data Acquisition (SCADA) technologies, which 
also allow for remote grid performance monitoring, control, and anal-
ysis to increase operational dependability and efficiency. Automation of 
the grid depends on SCADA and Distribution Management Systems 
(DMS), which integrate sophisticated algorithms and analytics to 
manage grid assets, identify faults, and optimize energy flow for stable 
and balanced power distribution. Energy Management Systems (EMS) 
are crucial to grid automation because they facilitate load management 
and grid balancing, regulate and optimize energy resources, and monitor 
energy generation, consumption, and storage. With EMS technologies, 
grid operators can optimize energy use, integrate renewable energy 
sources, and improve stability for a dependable power supply [55,56]. 

Distributed Energy Resources, a product of technological advance-
ment, has raised consumer involvement in energy generation and 
management within the Smart Grid system [57]. There are additional 
difficulties in integrating big data analytics with smart grids, such as 
privacy and cyber security concerns. Ensuring the security and privacy 
of this data is becoming more and more crucial as the volume of data 
produced by smart grids increases [58]. End users can benefit from a 
multitude of services provided by a smart grid system, including energy 

trading (ET), load forecasting, and load management. Since data in an 
SG environment moves between various devices via an open chan-
nel—the Internet—security and privacy are perpetually difficult prob-
lems. Despite the fact that there are numerous solutions to this issue in 
the literature, they are insufficient to address security, privacy, latency, 
or real-time ET settlement [59]. For peer-to-peer trading in smart grid 
systems, Kumari et al. [59] proposed ET-DeaL, a Secure Energy Trading 
scheme based on Smart Contracts. ET-DeaL surpasses conventional 
systems in performance metrics by utilizing IPFS and Ethereum smart 
contracts to manage energy loads efficiently in the residential, indus-
trial, and electric vehicle sectors while addressing security, privacy, and 
latency concerns. 

3. Theoretical concepts 

The utilization of High-performance computing has become preva-
lent across numerous scientific and practical domains. High- 
performance computing techniques comprise technologies and 
methods used to accelerate the execution of complex computational 
processes. Hardware accelerators, parallel processing, cloud computing, 
distributed computing, multi-core processing, and cluster computing are 
all prevalent high-performance computing techniques. These types of 
systems frequently comprise numerous computing nodes and are 
frequently linked via a high-bandwidth network. By effectively man-
aging vast quantities of data, decomposing complex problems into 
smaller components, and concurrently resolving each component, high- 
performance computing systems achieve overall processing times that 
are considerably quicker. Extremely complex problems in the domains 
of aerospace [60], Fintech [61], chemistry [62], biology [63], physics 
[64], and others could be resolved with the assistance of 
high-performance computing techniques. The integration of modeling, 
algorithm development, software construction, and computational 
simulation through the application of high-performance computing has 
emerged as an indispensable foundation in the realm of cutting-edge 
fundamental science research. 

The use of high performance computing resources has been shown to 
lead to shorter runtimes across all categories, demonstrating its consis-
tent trend in enhancing computational efficiency [65]. Furthermore, 
high performance computing is described as having computing power 
that meets the needs of an intelligent society and serves as infrastructure 
like water and electricity [66]. These findings underscore the signifi-
cance of advanced algorithms customized to the unique attributes of 
smaller, intricately structured datasets, which enable instantaneous 
processing and enhance the nuanced nature of problem-solving. 

The capability of high-performance computing to process lesser 
datasets in real time is a critical attribute for applications including 
scientific simulations, engineering scenarios, and financial modeling. 
The algorithms have been meticulously optimized to capitalize on the 
intrinsic structure of the data, delivering results and insights virtually in 
real time. Due to its remarkable flexibility, high-performance computing 
is an essential resource in both scientific research and industrial appli-
cations that require precise curation of datasets. High-performance 
computing is a preferred instrument in material science [67], drug dis-
covery [68], and computational fluid dynamics [69], demonstrating its 
adaptability and effectiveness when confronted with smaller, highly 
structured datasets. This can be observed in various studies and appli-
cations, such as designing high-performance computing and big data 
converged systems, also referred to as High-Performance Data Analytics 
(HPDA), which is a hard task requiring careful placement of data [70]. 

One notable attribute of high-performance computing is its heavy 
reliance on substantial computation. Standard computing platforms may 
find it impracticable or overly time-consuming to process large datasets, 
implement complex mathematical models, and conduct simulations. For 
these tasks, high-performance computing architectures are meticulously 
designed. The prioritization of substantial computation holds particular 
significance in domains including financial modeling, molecular 
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dynamics simulations, weather prediction, and other applications that 
demand substantial computational resources. Efficient and precise 
computations are necessary in these domains to extract significant in-
sights, facilitate well-informed decision-making, and simulate real- 
world phenomena precisely [71]. 

Within the domain of data science and the wider realm of techno-
logical advancement, the interdependence of data processing and high- 
performance computation becomes conspicuous. High-performance 
computing enables data scientists and researchers to extract valuable 
insights from extensive datasets, thereby promoting progress in diverse 
domains such as engineering simulations, scientific inquiry, and ma-
chine learning. The necessity for computational capacity to manipulate, 
analyze, and derive meaningful patterns from these enormous datasets 
becomes ever more critical as their size and complexity continue to in-
crease [72]. 

3.1. Emergence of data science 

The advent of Data Science has brought about substantial changes in 
the way we confront the difficulties presented by the growing depen-
dence on ICT. Conventional High-Performance Computing techniques, 
which were previously indispensable for smaller, structured datasets, 
encountered constraints when confronted with prodigious, unstructured 
data. The article by Barakat et al. [73] highlighted the significance of 
Data Science in tackling the difficulties associated with conditions such 
as ARDS. This article examined a range of Data Science methodologies, 
such as mechanistic modeling, deep learning, and time series analysis, 
with a particular emphasis on the integration of High-Performance 
Computing to facilitate efficient algorithmic support. 

The paper by Mellone et al. [74] presented a paradigm shift in 
environmental research by addressing the changing demands of the field 
through the implementation of High-Performance Cloud-Native 
Computing. This methodology took advantage of scalable 
high-performance computation in the cloud, showcasing its advantages 
in terms of resource conservation and enhanced performance. An 
additional article by Oujja et al. [75] emphasized the critical nature of 
ICT instruments utilized to analyze genomic data, with a specific 
emphasis on SARS-CoV-2. It introduced a data science-driven high--
performance computing-based instrument, emphasizing the importance 
of computational capability in the context of RNA clustering for virus 
mutation analysis. 

The integration of data science and high-performance computing is 
apparent in numerous fields, including healthcare, as elaborated in the 
article by Courneya and Mayo [76]. By bridging the distance between 
computational infrastructure and wet lab setups, this article offers bio-
informatics and high-performance computing support to researchers. 
Moreover, Belov et al. [77] demonstrated this convergence also benefits 
the educational sector. They examined the characteristics and attributes 
of high-performance computing platforms that are employed in educa-
tional procedures, with a particular focus on the significance of having 
access to suitable tools and resources for data science and parallel pro-
gramming instruction. 

A fundamental attribute of Data Science is its emphasis on extracting 
insights and knowledge from enormous datasets, thereby revealing 
patterns, trends, and valuable information that may remain concealed 
when utilizing conventional analytical methods. This paradigmatic 
change has not only resulted in the redefinition of data management 
methodologies, but has also fostered the development of innovative 
theories and techniques that contribute to the progress of numerous 
scientific, industrial, and governmental sectors. The papers that discuss 
the domain-spanning collaborative impact of high-performance 
computing and data science are listed in Table 1. 

The management of unstructured datasets is a critical aspect of Data 
Science, presenting both a substantial challenge and an opportunity in 
the current data landscape. Unstructured data encompasses diverse 
formats, including sensor-generated information, text, images, and 
videos. To navigate unstructured datasets and extract meaningful in-
formation, Data Science employs a range of sophisticated techniques 
such as machine learning algorithms, natural language processing, 
computer vision, and deep learning. These advanced methods enable 
Data Science to uncover valuable insights from unstructured data, 
turning what might seem like disorder into a source of hidden patterns 
and knowledge [31,82,83]. 

Furthermore, the ability of Data Science frameworks to scale facili-
tates the effective manipulation of enormous datasets. Through the 
utilization of Big Data technologies, distributed computing, and parallel 
processing, Data Scientists are empowered to manage and analyze 
enormous volumes of data that surpass the capabilities of conventional 
computing systems. Scalability is an essential factor in effectively 
managing the complexities presented by the exponential increase in data 
produced by contemporary technologies such as the IoT and inter-
connected smart environments. Table 2 presents an extensive assort-
ment of methodologies and applications, thereby offering valuable 
insights into the intricate convergence of data science, big data, and 
intelligent environments. 

3.2. Processes and approaches for knowledge extraction 

Knowledge extraction is the process of extracting relevant and 
meaningful information from unstructured or structured data sources, 
such as text, documents, images, and relational databases [93,94]. The 
process includes identifying patterns and relationships, transforming 
them into actionable knowledge [95]. Techniques like named entity 
recognition [96], text mining [97], natural language processing [97], 
information retrieval [98], and machine learning [99], including deep 
learning [100], rule-based systems [101], decision trees [102], and 
neural networks [103], contribute to this extraction. 

Knowledge extraction has various applications, including sentiment 
analysis, text summarization, and information retrieval [104]. The 
resulting knowledge needs to be in a machine-readable and 
machine-interpretable format and needs to be able to be queried. Fig. 2 
depicts a closed-loop knowledge extraction process with implementa-
tion tips, covering data collection to actionable insights. 

Table 1 
Impact of data science on high-performance computing.  

Study Collaboration of two 
concepts 

Healthcare 
Applications 

Environmental 
Modeling 

Bioinformatics and 
-omics 

Genomic Data 
Analysis 

Educational 
Processes 

Quantum Computing 
Integration 

[78] ✓       
[73] ✓ ✓  ✓    
[74] ✓  ✓     
[76] ✓ ✓  ✓    
[75] ✓    ✓   
[79] ✓ ✓      
[80] ✓       
[77] ✓     ✓  
[81] ✓      ✓  
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4. Methodology for systematic review 

The search strategy involves employing a comprehensive set of 
keywords and search terms, including terms related to Big Data, Smart 
Grids, and associated technologies, such as "Big Data" AND "Smart Grid". 
The search was conducted across Scopus and Web of Science database. 
This strategy aims to capture studies focusing on the integration of Big 
Data in Smart Grid technologies.  

• Research Questions (RQs) for the Review: 

RQ1How do different big data analytics approaches contribute to the 
optimization and efficiency of smart grid technologies? 

RQ2What are the challenges and solutions related to data security 
and privacy in the integration of big data analytics in smart grids? 

RQ3How do machine learning and artificial intelligence techniques 
enhance decision-making processes in smart grid applications? 

RQ4What role does blockchain technology play in ensuring secure 
and transparent transactions within the context of energy smart grids? 

4.1. Inclusion and exclusion criteria 

The criteria for selecting relevant studies include a publication 
timeframe between 2019 and 2023 to ensure currency, with a specific 
focus on the impact of Big Data in Smart Grid technologies. Only English 
articles will be considered for inclusion. Exclusion criteria encompass 
reviews, book chapters, conference papers, and books, aiming to prior-
itize primary research articles that directly contribute to the under-
standing of the integration, challenges, and outcomes of Big Data in the 
context of Smart Grids. 

4.2. Data extraction 

The data extraction process will be systematic and transparent, 
employing a standardized data extraction form. Key variables to be 
extracted include study design, methodologies utilized, and key find-
ings. Additionally, variables relevant to Smart Grid technologies and 
their interaction with Big Data will be identified. The extraction form 
will be designed to capture essential information from each included 
study, ensuring consistency in the retrieval of data. 

4.3. Data synthesis 

The synthesis of data involved a systematic collation of findings from 
the included studies. A structured approach will be employed to present 
key themes and trends emerging from the literature. The data synthesis 
will encompass a narrative summary of study designs, methodologies 
employed, and key outcomes, with a specific focus on the interaction 
between Big Data and Smart Grid technologies. 

4.4. Data selection 

Following the initial search on December 28, 2023, 444 articles were 
identified. After applying inclusion and exclusion criteria, 32 papers 
were retained. Following a detailed review of abstracts and scopes, 24 
papers remained. An additional paper was found through further search, 
resulting in a final selection of 25 papers for the systematic review 
(Fig. 3). 

5. Results 

A total of 24 studies related to various aspects of smart grids, big data 
analytics, and related technologies were identified. The studies cover a 
range of topics, including canonical correlation analysis, adaptive en-
ergy management, post-evaluation systems, big data collection and 
utilization in smart factories, integration of big data and blockchain, 
demand response management, electricity theft detection, energy con-
sumption prediction, big data compression, outlier rejection for load 
forecasting, fog computing, differentially private clustering, non- 
technical loss fraud detection, evaluation of big data frameworks, 
anonymous batch verification, optimal big data processing, temporal- 
functional-spatial big data computing, and robust big data analytics 
for electricity price forecasting. 

The keyword cloud from our selected articles as shown in Fig. 4, 
indicates a strong focus on integrating Big Data analytics into Smart Grid 
technologies. Terms like "Big Data," "Smart Grid," and "Smart Power 
Grids" underscore the core areas of research. Additionally, there is a 
growing interest in leveraging "Data Analytics," "Data Mining," and 
"Internet of Things (IoT)" for extracting insights from Smart Grid data. 
The keywords "Fog Computing," "Green Computing," and "Energy Effi-
ciency" suggest a trend toward exploring innovative computing para-
digms and sustainable practices. The recurring focus on "Electricity 
Theft Detection," "Data Privacy," and "Security and Privacy" highlights 
the rising importance of securing Smart Grids and ensuring data 
confidentiality. 

The distribution of subject areas among the 25 papers reflects a 

Table 2 
Exploration of data science and big data applications in smart environments.  

Study Technologies/ 
Frameworks 

Application Evaluation 

[84] IoT, Intrusion 
Detection, Security 
Protocol 

Real-time security 
system, Communication 
protocol 

Security analyses, 
Efficiency 
evaluation 

[85] IoT, AllJoyn, 
MongoDB, Storm 

Monitoring, 
Management, Big Data 
analytics 

Experimental 
results, Performance 
evaluation 

[86] Blockchain, 
Decentralized 
Auditing 

Ensuring integrity and 
auditability of big data 

Theoretical analysis, 
Experimental 
evaluation 

[87] VRGIS, TIN Data 
Model 

Intelligent tourism 
service system, VRGIS 
applications 

Experiment results, 
User experience 

[88] Spark, Hadoop Real-time processing, 
Smart transportation 
planning 

Throughput, 
Validation with 
authentic data 

[89] Kalman Filter, 
Weighted Hybrid 
Recommender System 

Enhanced living 
environment, User 
behavior prediction 

Recall and precision 
rates 

[90] MapReduce, Partial 
Order Reduction 

Attribute reduction for 
power systems, 
Simulation examples 

Performance 
observed through a 
Hadoop platform 

[91] Fuzzy Logic, Multi- 
Fuzzy Agent-based 
WSN 

Noise reduction, Smart 
data extraction 

Simulation results 

[92] Blockchain, PKI/CA 
Security System 

Decentralized trust 
service system, Smart 
City development 

Evaluation model, 
Vertical comparison  

Fig. 2. Iterative knowledge extraction loop: implementation tips.  
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predominant focus on Computer Science, comprising 76 % of the 
research output (Fig. 5). This emphasis underscores the significance of 
computational methods, algorithms, and data analytics in the 

exploration of smart grids and related technologies. Engineering follows 
closely as the second most represented subject area, constituting 48 % of 
the papers, indicating a strong applied orientation with a focus on the 

Fig. 3. PRISMA literature search methodology flowchart.  

Fig. 4. Cloud of selected article keywords (created by www.wordclouds.com.  
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development and implementation of technologies within the smart grid 
domain. The inclusion of subject areas such as Decision Sciences, En-
ergy, Mathematics, and Materials Science reveals a multidisciplinary 
approach, acknowledging the diverse challenges inherent in the study of 
smart grids. The presence of papers in Energy suggests a concentrated 
consideration of energy-related aspects, while the representation of 
Decision Sciences and Mathematics implies a quantitative and analytical 
approach to problem-solving. Although less prevalent, the inclusion of 
Materials Science underscores the importance of materials in the context 
of smart grids, possibly pertaining to advancements in energy storage or 
grid infrastructure. 

Table 3 serves as a quick reference for understanding the method-
ologies, datasets, and outcomes of diverse research efforts in the field of 
Smart Grids and Big Data analytics. 

6. 6. discussion 

RQ1. How do different big data analytics approaches contribute to the 
optimization and efficiency of smart grid technologies? 

The effectiveness and productivity of smart grid technologies are 
notably impacted by a multitude of big data analytics methodologies, as 
supported by an extensive research body. Canonical correlation analysis 
is employed by scholars including Jiang et al. [105] to investigate the 
interrelationships between gas consumption, electricity consumption, 
and climate change. This method yielded significant insights into pat-
terns of consumption. Comparing data processing methods, Gupta and 
Chaturvedi [106] examined Adaptive Energy Management in Smart 
Grids, placing particular emphasis on the dependable linear regression 
method, which achieves an impressive accuracy rate of 98 %. The 
integration of these methodologies aids in the comprehension of con-
sumer behaviors and the resolution of energy management challenges. 

By virtue of integrating big data analysis and microservice frame-
works, Wang et al. [128] presented a post-evaluation platform for 
intelligent grid electricity generation in wind farms. This platform ex-
emplifies the pragmatic implementation of big data in enhancing the 
efficacy of energy generation by assessing the operational status of wind 
farms and providing technical assistance. Furthermore, the TOTEM 
framework, which Jose et al. [109] put forth, merges blockchain tech-
nology with big data to facilitate the management of energy smart grids. 
This framework enhances data security and privacy while providing a 
reliable platform for energy transactions. The aforementioned studies 
underscore the significance of big data analytics in the context of secure 
energy management and post-evaluation systems. 

Akram et al. [111] directed their attention towards novel method-
ologies in the realm of electricity theft detection. They demonstrated the 

efficacy of enhanced RUSBoost classifiers, which achieve accuracy rates 
of 91.5 % and 93.5 %, respectively. In the interim, Kumari et al. [110] 
presented a demand response management strategy that makes use of 
the Prophet model to illustrate the efficacy of energy consumption 
forecasting in smart grids. The aforementioned studies underscore the 
significance of big data analytics in augmenting security protocols and 
precisely forecasting energy requirements. An optimal singular value 
decomposition (SVD)-based large data compression approach for smart 
grids is proposed by Hashemipour et al. [113], which showcases effec-
tive compression levels. Intelligent optimization determines optimal 
values, improving data quality and compression ratio. Comparative 
analysis shows superior compression levels to existing SVD rank 
reduction methods, emphasizing the need for application-specific opti-
mization for reliable performance. 

The studies offer quantifiable metrics that can be utilized to assess 
the efficacy of big data analytics methodologies. Quantitative measures 
such as accuracy percentages, area under the curve (AUC), F1-score, 
precision, and recall are employed to evaluate the dependability and 
efficacy of these methodologies. For example, Gupta and Chaturvedi 
[106] provide accuracy percentages for different data processing 
methods, whereas Javaid et al. [114] evaluate the performance of their 
deep siamese network using AUC, F1-Score, precision, and recall. They 
presented an adaptive synthesis approach for electricity theft detection 
utilizing an imbalanced big data set and a deep siamese network. The 
utilization of these quantitative metrics provides a strong basis for 
analyzing the effects of big data analytics on the optimization of smart 
grid technologies, with a particular focus on the accuracy and depend-
ability attained across diverse implementations. The accuracy rates of 
various big data analytics models for a variety of smart grid applications 
are compared in Table 4. 

Boosting methods such as RUSBoost BSA and RUSBoost MRFO 
exhibit superior performance compared to SVM (71 %) and LR (63 %). 
CNN achieves an accuracy of 85.1 %, while boosted models can attain as 
high as 93 %. When combined with a CNN-LSTM deep siamese network, 
the ADASYN method achieves an accuracy of 95.3 %–83.9 % across a 
variety of training ratios. When ELF strategies and HORM are combined 
for outlier rejection, accuracy increases significantly from 87 % to 95 %. 
Moreover, feature selection techniques such as FBFS and FSSO4 
contribute to improvements in precision, with the latter attaining 93 %. 
Linear regression demonstrates the highest degree of accuracy (98 %), 
surpassing logistic regression (96 %) and K-NN (92 %), among con-
ventional methods. The GA-LSTM approach, which is founded on the 
Genetic Algorithm, attains a moderate level of accuracy, specifically 
80.27 %–82.42 %, which is notably higher than that of random methods. 
In addition, the accuracy of hybrid feature selectors utilizing DE-based 
SVM classifiers surpasses 90 %. Although not directly associated with 
accuracy, innovative frameworks present encouraging improvements in 
efficiency, including a 95 % convergence ratio and 81 % bandwidth 
enhancement. 

The progress made in accuracy has a direct influence on the effi-
ciency of smart grid operations, guaranteeing enhanced dependability in 
the areas of load forecasting, energy management, and electricity theft 
detection. Proving the capability of robust big data analytics to optimize 
smart grid performance, the incorporation of sophisticated techniques 
such as hybrid feature selectors and Genetic Algorithm-based models 
further improves precision. Innovative computing frameworks specif-
ically engineered for expansive smart grids not only enhance computa-
tional efficacy but also facilitate bandwidth conservation, thereby 
emphasizing the far-reaching consequences of precision advancements 
on the overall performance and dependability of the system. 

RQ2. What are the challenges and solutions related to data security 
and privacy in the integration of big data analytics in smart grids? 

The incorporation of big data analytics into smart infrastructure 
presents a range of complex obstacles, with data security and privacy 
being of particular significance. Significantly, the research conducted by 

Fig. 5. Subject area distribution of selected papers.  
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Table 3 
Methods, datasets, and metrics of big data insights in smart grids.  

Study Methods Dataset Size Analysis Techniques Key Findings Performance Metrics 

[105] Canonical Correlation Analysis, 
Consumer Segmentation, 
Preprocessing 

3 datasets (24 values/day, 1- 
year period) 

Canonical correlation, 
Consumer segmentation, 
Comparison analysis 

Overview, Typical patterns, 
Comparison on climate zones and 
locations 

Not specified 

[106] Linear Regression, Logistic Regression, 
K-Nearest Neighbors 

50,000 instances (smart meters), 
10,000 attributes 

Comparison of linear 
regression, logistic 
regression, K-Nearest 
Neighbors 

Linear regression: 98 %, Logistic 
regression: 96 %, K-Nearest 
Neighbors: 92 % 

Accuracy percentage 

[107] Microservice Framework, Big Data 
Analysis 

Not specified Evaluation of wind farms, 
Technical support, 
Visualization 

Tested and proven for processing 
and analyzing massive data 

Not specified 

[108] Apache Kafka, Big Data Ecosystem Data from geographically 
remote, independent networks 

Data gathering, Data 
convergence, Data analysis 

Stable and effective exchange and 
collection of data using Apache 
Kafka 

Not specified 

[109] TOTEM Framework (Token for 
Controlled Computation), Blockchain, 
Machine Learning 

Not specified Data analysis without 
moving data, Data security, 
Privacy of prosumers 

TOTEM framework for analyzing 
data without moving it, Ensuring 
data security and privacy 

Not specified 

[110] Prophet Model, ARIMA Two datasets Demand response 
management, Forecasting 

Effectiveness of Prophet model in 
demand response management 

Various evaluation 
metrics 

[111] CNN with RUSBoost MRFO and 
RUSBoost BSA models 

Not specified Electric power theft detection Accuracy of proposed approaches: 
RUS-MRFO: 91.5 %, RUS-BSA: 
93.5 % 

Accuracy 
percentages 

[112] GA-LSTM (Genetic Algorithm - Long 
Short Term Memory) 

Pennsylvania-New Jersey- 
Maryland Interconnection (PJM) 
energy consumption data 

Genetic Algorithm, Long 
Short Term Memory 

Better performance compared to 
existing benchmarks 

Various 
performance 
evaluation metrics 

[113] Optimal Singular Value 
Decomposition (SVD), Intelligent 
Optimization Methods 

Wide range of data types Data compression, Retrieval 
quality, Compression ratio 

Compression level dominates 
existing SVD rank reduction 
methods 

Compression level 

[114] Deep Siamese Network (DSN), 
Adaptive Synthesis (ADASYN) 

Real-time smart meters’ data Imbalanced class problem, 
Feature extraction 

Effective in resolving imbalanced 
class problem 

AUC, F1-Score, 
Precision, Recall 

[115] IoT, Cloud Computing IMWSNs measurements during 
events monitoring and control 

Channel detection, Channel 
assignment, Packets 
forwarding 

Useful for designing algorithms 
for real-time events monitoring 
and control 

Not specified 

[116] Fuzzy Logic, Genetic Algorithm Not specified Fuzzy logic, Genetic 
algorithm 

Optimal values for maximizing 
profit and predicting future power 
demands 

Not specified 

[117] Fog Computing, Cloud Computing Exemplary SG network Planning and Placement of 
Fog computing in smart Grid 
(PPFG) 

Optimization of FCN location, 
capacity, and number 

Response delay, 
Energy consumption 

[118] Differentially Private Clustering, 
Infinite Gaussian Mixture Model 
(IGMM) 

Not specified Privacy-preserving cluster 
analysis 

Privacy-preserving, Efficient Security analysis, 
Performance 
evaluation 

[119] Hybrid Outlier Rejection Methodology 
(HORM) 

Not specified Outlier rejection for load 
forecasting 

Outperforms recent methods in 
terms of accuracy, precision, 
recall, F1-measure 

Accuracy, Precision, 
Recall, F1-measure 

[120] Edge Computing, Big Data Analytics Not specified Non-Technical Loss fraud 
detection 

Efficient detection of non- 
technical loss frauds 

Detection speed 

[121] Hadoop-Hbase, Cassandra, 
Elasticsearch, MongoDB 

Large scale smart grid data 
generator 

Data analysis techniques Performance benchmark for 
different frameworks 

Not specified 

[122] Big Data Anonymous Batch 
Verification, Edge Computing, 
Certificateless Aggregate Signature 
(CL-AS) 

Not specified Batch-verifiable 
authentication, Privacy 
preservation 

Efficient detection of power 
injection without exposing private 
information 

Not specified 

[123] Hybrid MDM/R Architecture, 
MapReduce, Massive Parallel 
Processing Database 

Not specified Scheduling of workloads, 
Energy consumption, RE 
integration 

Modification of supply-following 
algorithm, New hybrid 
architecture 

Not specified 

[124] Temporal, Functional, Spatial Big Data 
Computing 

Large-scale smart grid Data extraction, Computing 
efficiency 

Promising computing efficiency, 
Bandwidth savings 

Convergence ratio, 
Improvement ratio 

[125] Fiber-Wireless (FiWi) Enhanced Smart 
Grid 

Not specified Data acquisition under 
failures 

Constrained optimization 
problem, OERA, GARA, HGRA 

Not specified 

[126] Cloud Computing, Grid Computing Not specified Information management, 
Data storage 

Business intelligence architecture, 
Multivariable, Multi-dimensional 
analysis 

Not specified 

[127] Fog Computing, Cloud Computing Not specified Electrical load forecasting 3-tiers architecture, Data pre- 
processing, Load prediction 

Precision, Recall, 
Accuracy, F-measure 

[128] Random Forest, Relief-F, Grey 
Correlation Analysis, Kernel PCA, 
Differential Evolution, Support Vector 
Machine 

Not specified Feature selection, Feature 
extraction, Price forecasting 

Hybrid feature selector, 
Dimensionality reduction, DE- 
SVM classifier 

Price forecasting 
Performance 

[129] Cloud Computing, Power Big Data Not specified Power efficiency analysis Business intelligence architecture, 
Multivariable, Multi-dimensional 
analysis 

Not specified  
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Rabie et al. [127] and Nivedha et al. [126] emphasized the need for a 
comprehensive data privacy framework, recognizing the potential risks 
that ongoing data collection via smart meters and sensors may pose to 
sensitive consumer information. Rabie et al. [127] highlighted the 
importance of implementing a fog-based load forecasting approach by 
proposing a three-tier structure that improves the acquisition, process-
ing, and retention of smart metre data prior to its transmission to the 
cloud. Due to the sensitive nature of the data involved, this strategy 
requires meticulous deliberation regarding privacy issues. This is 
consistent with the wider difficulties presented by data privacy within 
the smart grid domain. 

In light of the obstacles encountered, Guan et al. [118] proposed that 
differential privacy techniques be integrated into cluster analysis as a 
means of safeguarding the confidentiality of smart grid data. The algo-
rithm they suggest, IDPC, integrates differential privacy with nonpara-
metric Bayesian techniques, providing a solution that takes into account 
the dynamic characteristics of clustering while maintaining privacy. 
Furthermore, the research conducted by Han and Xiao [120] presented 
the notion of edge computing-enabled non-technical loss fraud detec-
tion, underscoring the criticality of safeguarding big data analytics at the 
periphery in order to avert fraudulent activities. These proposed solu-
tions are in line with the wider requirement for secure edge computing 
infrastructure and privacy-preserving analytics. They underscore the 

importance of sophisticated frameworks and techniques in mitigating 
security issues related to large-scale data in smart grids. It is critical to 
confront encryption obstacles, as demonstrated by research such as the 
one proposed by Kamil and Ogundoyin [122] for an anonymous bulk 
verification scheme for big data. By integrating highly efficient certifi-
cateless aggregate signature algorithms, their methodology guarantees 
the authentication of power offers transmitted through vehicular net-
works and 5G smart grid slices in a secure manner. 

RQ3. How do machine learning and artificial intelligence techniques 
enhance decision-making processes in smart grid applications? 

Machine Learning and Artificial Intelligence are instrumental in 
transforming the decision-making process. The challenges presented by 
the expanding intricacy of data produced by smart grids are motivating 
the growing dependence on these technologies. This is evident in 
research endeavors like Jiang et al.’s [105] investigation into the 
application of Canonical Correlation Analysis in comprehending elec-
tricity consumption patterns. Integration of machine learning and arti-
ficial intelligence techniques was motivated by the need to resolve issues 
pertaining to the manipulation and analysis of large datasets, the 
transmission of data efficiently, and the utilization of diverse data 
sources effectively. 

Load forecasting has exhibited potential for machine learning tech-
niques, specifically supervised learning, as Gupta and Chaturvedi [106] 
illustrated in their study on Adaptive Energy Management. The study by 
Park and Huh [108] on Apache Kafka serves as an illustration of how 
unsupervised learning enhances the efficiency of data collection and 
utilization in distributed manufacturing networks. Centralized systems, 
such as ESB or EAI, which are used for data collection in manufacturing 
traditionally, have problems integrating data from different networks in 
factories. Data collection across distributed or autonomous networks is 
inefficient and vulnerable to security breaches due to this centralized 
approach. The goal of implementing Kafka was to facilitate user analysis 
and utilization of data across various manufacturing networks. In 
addition, research by Kumari et al.’s [110] approach to Demand 
Response Management emphasized how Reinforcement Learning opti-
mizes decision-making processes through the acquisition of knowledge 
from interactions in dynamic environments. 

Artificial intelligence techniques, including Knowledge-Based Sys-
tems for grid optimization and Expert Systems for defect detection, 
improve decision-making. The incorporation of rule-based methodolo-
gies and machine learning, as demonstrated in the research conducted 
by Jose et al. [109] concerning the integration of blockchain and big 
data, enhances the security and reliability of energy management. The 
insights provided by these artificial intelligence techniques are crucial 
for ensuring the security and dependability of smart grid operations. 

It is evident that machine learning and artificial intelligence work in 
tandem in ensemble learning and hybrid models. The optimization SVD 
method proposed by Hashemipour et al. [113] illustrates how inte-
grating distinct models improves both data compression and analysis. 
An instance of ensemble learning strategies in action is the one exam-
ined by Wang et al. [128] in their investigation of electricity price 
forecasting. A novel model for forecasting electricity prices was created 
to overcome the difficulties in managing large amounts of price data in 
smart grids. It combined three modules: feature extraction using a 
combination of Principle Component Analysis and Kernel function for 
dimensionality reduction, a hybrid feature selector utilizing Random 
Forest and Relief-F algorithm based on Grey Correlation Analysis, and a 
price classification forecast using a Support Vector Machine classifier 
based on differential evolution. The suggested model outperformed 
other approaches, as evidenced by numerical results, and this made it an 
efficient solution for smart grids’ efficient forecasting of electricity 
prices. 

When considering issues related to data quality, privacy, interoper-
ability, and integration, these studies emphasize the need for a holistic 
strategy when integrating machine learning and AI. Practical 

Table 4 
Accuracy comparison of big data analytics in smart grids.  

Study Methodology Accuracy 

[111] Novel CNN with RUSBoost MRFO 
and RUSBoost BSA models. 
Accuracy: rus-MRFO 91.5 %, rus- 
BSA 93.5 %. SVM accuracy 71 %, LR 
63 %. Smote algorithm for balancing. 
Boosting techniques outperform. 

SVM: 71 %, LR: 63 %, CNN: 85.1 
%, rus-MRFO: 90 %, rus-BSA: 93 % 

[114] ADASYN handles imbalance. CNN- 
LSTM integrated deep siamese 
network. High AUC, mAP, precision, 
recall, MaP, accuracy, and F1-Score. 
Maintains performance for different 
training ratios. Simulation results 
validate effectiveness. 

SDN: AUC 0.93 %, mAP 0.9 %, 
Accuracy (60 %: 0.839, 70 %: 
0.844, 80 %: 0.953) 

[119] ELF strategy with DP2 and LP2 
phases. Proposed HORM for outlier 
rejection, outperforms recent 
methods. Experimental results show 
higher accuracy, precision, recall, 
and F1-measure. 

’All Data’: 87 %, HORM: 95 % 

[127] ELF strategy with DP2 and LP2 
phases. FBFS for feature selection. 
Experimental results show improved 
efficiency in terms of precision, 
recall, accuracy, and F-measure. 

FSSO2: 0.80, FSSO4: 0.93 

[106] Comparison of linear regression, 
logistic regression, and K-Nearest 
Neighbors. Linear regression gives 
highest accuracy (98 %). 

Linear Regression: 98 %, Logistic 
Regression: 96 %, K-NN: 92 % 

[112] GA-LSTM method based on Genetic 
Algorithm. GA-LSTM outperforms 
existing benchmarks. Multi-threaded 
environment for increased 
convergence speed. Results validated 
on PJM energy consumption data. 

GA: 82.42 (daily), 80.27 (weekly), 
Random Approach: 51.26 (daily), 
48.22 (weekly) 

[124] Novel framework for large-scale 
smart grid. Functional and spatial 
dimensions considered. Promising 
computing efficiency (95 % 
convergence ratio) and bandwidth 
savings (81 % improvement ratio 
over benchmarks). 

Computing Efficiency: 95 % 
convergence ratio, Bandwidth: 81 
% improvement ratio 

[128] Hybrid feature selector (RF + Relief- 
F + GCA), KPCA for dimensionality 
reduction, DE-based SVM classifier. 
Superior performance compared to 
other methods. 

HSEC: >90 %, Frameworks A, B, C, 
and HSEC show improvement in 
accuracy  
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applications of real-world case studies, such as the research conducted 
by Rabie et al. [119] regarding anomalous rejection methodologies, 
offer valuable insights into surmounting obstacles and attaining efficient 
decision-making within the ever-evolving domain of smart grid tech-
nologies. The integration of machine learning and artificial intelligence 
into smart grids is anticipated to yield advantages that will propel 
progress in grid resilience and significantly influence the trajectory of 
energy management in the coming years. 

RQ4. What role does blockchain technology play in ensuring secure 
and transparent transactions within the context of energy smart grids? 

Numerous studies provide evidence that blockchain technology has 
emerged as a revolutionary influence in safeguarding the confidentiality 
and visibility of transactions within energy smart grids. The significance 
of blockchain technology in establishing a decentralized and immutable 
ledger to safeguard energy transactions was emphasized by Jiang et al. 
[105]. The blockchain employs cryptographic methods to bolster secu-
rity measures, thereby ensuring that unauthorized modifications are 
thwarted. The integration of cryptographic techniques with this decen-
tralized and secure ledger enhances the dependability of transactions, 
which is consistent with the conclusions drawn by Hashemipour et al. 
[113]. Highlighting the significance of data integrity, their research il-
lustrates the most effective utilization of SVD for the compression of 
large amounts of data within smart grids. The cryptographic mecha-
nisms of the blockchain are consistent with these discoveries, thereby 
enhancing security. 

The incorporation of smart contracts into blockchain technology 
enhances the automation and security of transactions, thereby dimin-
ishing the necessity for intermediaries, as evidenced by research con-
ducted by Jose et al. [109] and Akram et al. [111]. Jose et al. [109] 
underscored the importance of smart contracts in the secure manage-
ment of data and the assurance of reliable transactions. In a similar vein, 
the efficacy of smart contracts supported by blockchain technology in 
enhancing the precision of prediction analysis for large-scale data within 
smart grids is illustrated by Akram et al. [111]. Because electric power 
theft has proven difficult to combat with Advanced Metering Infra-
structure (AMI), researchers are looking to machine learning algorithms 
for solutions. The significance of blockchain in automating and securing 
transactions, thereby reducing the hazards linked to human involve-
ment, is highlighted by these results. 

It has been demonstrated that decentralized energy trading plat-
forms, enabled by blockchain technology, improve peer-to-peer trans-
actions while reducing the influence of centralized authorities. This is 
consistent with the findings of Kamil and Ogundoyin’s [122] research, 
in which the authors advocate for an anonymous bulk verification 
scheme for big data, with an emphasis on the significance of safe-
guarding the privacy of users. To protect user privacy while authenti-
cating large power bids from electric vehicles (EVs) on vehicular 
networks and 5G smart grid slices, a novel method utilizing the certifi-
cateless aggregate signature (CL-AS) algorithm is suggested. While 
maintaining participant privacy, this approach guarantees 
batch-verifiable authentication, with security reliant on the Discrete 
Logarithm Problem’s (DLP) intractability. Performance analyses 
demonstrated that it is more efficient than comparable schemes, indi-
cating improved acceptability and fairness in the energy market. 

7. Implications for future research 

Despite the increasing amount of research on smart grids and big 
data analytics, many issues still need to be addressed before this tech-
nology can be widely used. One of the main obstacles to data exchange 
and access is the lack of standard formats and system compatibility. 
Most studies are conducted with ideal data conditions, which can limit 
progress in research due to privacy concerns. The complexity of smart 
grid analytics makes it imperative that specialists from different do-
mains work together interdisciplinary. Only then can its full potential be 

realized. Given these challenges, it is clear that smart grid research 
needs to focus on software and hardware availability, interoperability, 
data privacy, regulatory compliance, computing, scalability, and opti-
mization algorithms if we want them to work effectively and last. 
Improving grid resilience and dependability requires leveraging het-
erogeneous data sources, fusing analytics with real-time control, and 
developing computational algorithms. 

Several important areas are covered by the suggestions for future 
research that aim to improve the efficiency and real-world application of 
data science advancements in smart environment technology. Priori-
tizing privacy and security assessments, we will delve into advanced 
encryption methods and secure computation techniques to safeguard 
sensitive consumer data while we extract meaningful insights. Other 
areas of focus will include integrating diverse data analytics techniques 
to explore the potential of hybrid models and fostering collaborations 
with smart grid operators for real-world implementation studies. 

Contributing to a thorough understanding and successful imple-
mentation of big data innovations in smart grids while considering social 
and environmental impacts, this project investigates the integration of 
blockchain technology to improve data integrity and transparency, 
builds decision support systems and user-friendly interfaces to help 
stakeholders understand and use analytics insights, investigates inter-
operability standards, assesses analytics solutions’ resilience, and con-
ducts cost-benefit analyses. 

The field of smart environment technologies presents a plethora of 
real-world applications that might revolutionize the data science field. 
Demand response management is one of the most common applications. 
Here, state-of-the-art data analytics methods such as genetic algorithms 
and machine learning may be used to better forecast and manage energy 
demand, maximizing the supply-demand balance in smart grids. Ma-
chine learning techniques like Convolutional Neural Networks (CNN) 
and Long Short-Term Memory (LSTM) can be used in conjunction with 
big data analytics to develop dependable systems that detect and pre-
vent power theft. Another practical use is the development of intricate 
systems for the detection of fraudulent activity. Fog computing’s 
incorporation into smart grids offers practical answers to problems with 
latency and energy consumption. The network’s intentional deployment 
of fog computing nodes allows for real-time processing and decision- 
making. This results in much shorter reaction times and improved per-
formance for smart grid applications. 

8. Conclusion 

The present systematic review investigates the intersection of ad-
vancements in data science and smart environment technologies, with a 
particular focus on smart utilities. The objective is to clarify significant 
developments, obstacles, and consequences associated with the incor-
poration of big data analytics in influencing the trajectory of energy 
management. With the growing need for energy solutions that are both 
efficient and sustainable, the convergence of data science and smart 
infrastructure assumes a more critical role. 

This exhaustive analysis of 25 research papers focuses on the 
convergence of big data analytics and smart grids, offering insights into 
the various applications and challenges that exist within this domain. 
The research papers present successful methodologies for canonical 
correlation analysis and adaptive energy management, as well as novel 
platforms, techniques for responding to demand, and approaches for 
achieving optimal compression. The significance of big data analytics in 
tackling critical challenges in smart grids is underscored by inquiries 
into load forecasting, energy efficiency, electricity theft detection, and 
predictive modeling. These investigations emphasize the contributions 
of big data analytics in areas such as energy efficiency, privacy protec-
tion, and predictive modeling. 

The implications of these findings extend to future energy land-
scapes. The application of machine learning algorithms to demand 
response management and larceny detection studies demonstrates the 
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potential for enhanced security measures. Future investigations into 
smart grids should place emphasis on the improvement of machine 
learning models, the advancement of predictive analytics, and the 
enhancement of data processing efficiency. This all-encompassing syn-
opsis establishes the incorporation of big data analytics as a paradigm 
shifter in tackling obstacles and guiding intelligent power systems to-
wards a future characterized by enhanced resilience and adaptability. 

To improve the accuracy of predictive analytics in smart grid man-
agement, future research should concentrate on developing advanced 
machine learning algorithms. These algorithms should include deep 
learning neural networks as well as reinforcement learning. Investi-
gating distributed and edge computing architectures for processing data 
in real-time is necessary to address scalability issues. It is necessary to 
conduct research into blockchain-based frameworks for secure data 
sharing and transaction verification to integrate blockchain technology 
and enhance data security and decentralization. Smart energy systems 
that are more autonomous and resilient can be developed by researchers 
by taking advantage of these innovations. 
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