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A B S T R A C T   

The rapid global increase in electric vehicle (EV) usage, driven by its low CO2 emissions, uncomplicated 
maintenance, and minimal operating costs, has prompted extensive research in the field of electric vehicle 
charging station (EVCS). The integration of EVCS into the current distribution grid poses challenges due to 
potential power losses and voltage variations beyond acceptable limits. This complexity is heightened by the 
growing penetration of randomly dispersed solar-based distributed generation (SDG) and battery energy storage 
system (BESS). To address these challenges, distribution static VAR compensator (DSVC) systems have been 
introduced, offering benefits such as enhanced power transfer capacity, improved voltage regulation, and 
increased system security without requiring extensive infrastructure upgrades. This study offers SCOPE, a novel 
multi-objective framework that unifies the optimization goals of minimizing real power loss, lowering bus 
voltage variation, maximizing system voltage stability, minimizing system operating costs, and mitigating CO2 
emissions. The EVCS problem is optimized within this multi-objective framework utilizing an improved bald 
eagle search algorithm (IBESA). The proposed model accounts for vehicle to grid (V2G) capabilities and the 
actual driving patterns of users over a 24-h horizon. The formulation of a smart microgrid (SMG) structure is 
based on modifying the standard IEEE 33-bus test radial distribution network (RDN), comprising three inter
connected SMGs serving residential, commercial, and industrial users. The optimization approach based on 
IBESA is utilized to optimize both the siting and capacity of EVCS as well as renewable energy sources (RESs). 
The findings show that SDG and DSVC are effective at lowering the SCOPE index, highlighting the advantages of 
the suggested approach.   

1. Introduction 

1.1. Motivation and incitement 

The surge in fossil fuel consumption, particularly in power genera
tion and transportation, intensifies environmental pollution and con
tributes to global warming (Fazelpour et al., 2014). In response, nations 
seek sustainable and eco-friendly energy alternatives to mitigate the 
substantial threat posed by fossil fuels, which account for 42% and 22% 
of global CO2 emissions in the electricity/heat and transportation sec
tors, respectively (Fig. 1) (Arif et al., 2021). The prevalent use of Internal 
Combustion Engines (ICE) in vehicles exacerbates climate change, 

making Electric Vehicles (EVs) a cleaner and more resilient alternative 
with minimal or no CO2 emissions (Arif et al., 2021). 

Many countries are actively promoting EVs coupled with renewable 
energy sources (RES) to address environmental concerns (Amini et al., 
2016). The appeal of EVs lies in their emission-free operation and reli
ance on clean energy, positioning them as a viable alternative to tradi
tional transportation (Mozafar et al., 2018). Ongoing research trends 
reflect a growing acceptance of EVs, contributing to reduced greenhouse 
gas emissions and decreased reliance on fossil fuels (Sovacool and Hirsh, 
2009). The automotive industry is undergoing transformation with the 
escalating adoption of EVs, projected to reach 66 million units by 2040 
(BloombergNEF, 2021). This surge is driven by incentives, a growing 
cost-benefit ratio, and environmental advantages. However, challenges 
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like high acquisition costs and limited infrastructure, particularly elec
tric vehicle charging stations (EVCSs), hinder widespread adoption 
(Shaaban et al., 2019). As EVs charge on the electrical grid, radial dis
tribution networks (RDN) face impacts, including increased energy 
losses and voltage profile degradation (Etezadi-Amoli et al., 2010; 
Canizes et al., 2019). Despite challenges, the strategic importance of 
planning EVCSs to meet rising electricity demand is underscored by the 
benefits of zero emissions and reduced fuel consumption (Alanazi, 
2023). 

In efforts to combat greenhouse gas emissions and reduce trans
mission network expansion costs, solar-based RES, such as photovoltaic 
modules, gain popularity (Gazijahani and Salehi, 2018a). The declining 
costs of these modules enable widespread deployment, contributing to 
environmental benefits and optimizing RDN (Krauter, 2018; Khalid, 
2020). While traditional power facilities have lower upfront costs, 

combining RES and fossil fuels in large-scale plants offers economic 
feasibility, improved operating costs, energy flexibility, and system ef
ficiency (Gazijahani and Salehi, 2018b). A comprehensive examination 
of energy source options is crucial for determining the optimal combi
nation in the RDN. Battery energy storage system (BESS) become critical 
for RDN optimization, particularly in integrating EVCS, solar-based 
distributed generation (SDG), and advanced power electronics (Dar
amola et al., 2023). BESS’s rapid energy storage/release and dynamic 
response to grid dynamics make it pivotal for creating a sustainable, 
reliable, and efficient power infrastructure. In EV integration, BESS fa
cilitates load management, grid stability, and consistent power supply 
when paired with SDG. Coordinated with advanced power electronics, 
BESS contributes to voltage regulation and overall system optimization, 
playing a key role in the evolving energy landscape. 

Within the power electronics industry, flexible alternating current 
transmission systems (FACTS), including the distribution static VAR 
compensator (DSVC), revolutionize electricity systems (Rakočević et al., 
2021; Abou El-Ela et al., 2020). DSVC enhances power transfer capacity, 
improves voltage regulation, and boosts system security without 
extensive infrastructure upgrades. Optimizing DSVC in the RDN in
volves various indices and techniques (Rakočević et al., 2021; Abou 
El-Ela et al., 2020). In the context of optimal allocation alongside BESS, 
EVCS, and SDG, DSVC contributes to mitigating EV and EVCS impacts, 
aiding in voltage stability. Strategically integrating DSVC within the 
distribution system holds potential for a more resilient and efficient 
power infrastructure (Rakočević et al., 2021; Abou El-Ela et al., 2020). 
Smart microgrids (SMGs) with the proposed optimization achieve the 
best integration of heterogeneous energy sources in the RDN. SMGs, 
with self-healing capabilities, seamless RES integration, and demand 
response support, optimize device allocation for enhanced depend
ability, resilience, and overall system efficiency. SMGs facilitate optimal 

Nomenclature 

Ui The magnitude of the bus voltages for node i 
Ui+1 The magnitude of the bus voltages for node i+1 
I Division current 
Ri,i+1 Resistance between nodes i and i+1 
Xi,i+1 Reactance between nodes i and i+1 
Pi+1 Real power consumption at node i+1 
Qi+1 Reactive power consumption at node i+1 
PT,loss Total power loss 
Nb Number of buses/branches/nodes 
σ Standard deviation 
ρ Mean value 
nmodule Number of modules 
ta Ambient temperature 
tc Cell temperature 
Ffactor Fill factor 
tno
c Cell’s nominal operating temperature 

cv Voltage temperature coefficient 
ci Current temperature coefficient 
Voc Open-circuit voltage 
Isc Short-circuit current 
VMPPT Voltage at the MPPT 
IMPPT Current at the MPPT 
φ Thyristors’ firing angle 
BDSVC Equivalent susceptance 
BC Capacitor reactance 
BL Inductance reactance 
TOC Total operational cost 
MOF Multi-objective function 

CO2 Carbon dioxide 
EV Electric Vehicle 
EVCS Electric Vehicle Charging Station 
SDG Solar-based distributed generation 
BESS Battery energy storage system 
DSVC Distribution static VAR compensator 
IBESA Improved bald eagle search algorithm 
G2V Grid to Vehicle 
V2G Vehicle to Grid 
SMG Smart microgrid 
RDN Radial distribution network 
RES Renewable energy sources 
ICE Internal combustion engines 
FACTS Flexible Alternating Current Transmission Systems 
BFS Backward Forward Sweep 
BIBC Bus injection to branch current 
DNOs Distribution Network Operators 
PSO Particle Swarm Optimization 
GWO Grey Wolf Optimization 
WOA Whale Optimization Algorithm 
DEA Differential Evolution Algorithm 
HHO Harris Hawks Optimization 
MCTLBO Multi Course Teaching Learning Based Multi objective 

Optimization 
GA Genetic Algorithm 
MPPT Maximum power point tracking 
SOC State of Charge 
VSI Voltage Stability Index 
CVV Cumulative voltage variation  

Fig. 1. Sector wise CO2 emission globally.  
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energy management of EVs through active bi-directional communica
tion between utilities and consumers. 

1.2. Literature review 

Numerous studies have focused on enhancing the strategic planning 
of EVCS for seamless integration into electrical RDN. Researchers have 
developed spatiotemporal models to evaluate the impact of different EV 
charging approaches on the electric grid (Mu et al., 2014). Findings 
suggest that minimizing losses involves strategically siting EVCS near 
electrical substations, but challenges arise due to substations’ distance 
from urban areas, leading to increased energy consumption by EVs. 
Careful consideration of trip expenses and grid losses is crucial in 
determining EVCS locations. The capacity of EVCS, limited by available 
land area, poses a challenge requiring thorough investigation (San 
Román et al., 2011). 

Several research articles (Ge et al., 2011; Frade et al., 2010; Li et al., 
2011; Hanabusa and Horiguchi, 2011; Jia et al., 2012; Liu et al., 2012a, 
2012b; Mohanty and Babu, 2021; Yuvaraj et al., 2023a) have addressed 
the difficulties of EVCS location and size in the RDN. A 
partitioning-based strategy, for example, was introduced to optimize 
EVCS location by minimizing traffic loss (Ge et al., 2011). For the city of 
Lisbon, optimal EVCS locations with the goal of minimizing station 
development costs were determined (Frade et al., 2010). The studies 
established the ideal site of EVCS with an emphasis on decreasing station 
development costs, and EVCS locations were optimized for EV driving 
patterns (Li et al., 2011; Hanabusa and Horiguchi, 2011). A graph 
theory-based study evaluated the ideal location and sizing of EVCS (Jia 
et al., 2012). Furthermore, developed a two-step strategy that used 
particle swarm optimization (PSO) to optimize the placement and size of 
EVCS, with the ideal location identified (Liu et al., 2012a, 2012b). Using 
the Jaya algorithm (Mohanty and Babu, 2021), the optimal location of 
EVCS was achieved while accounting for operational expenses, instal
lation costs, and power grid loss. This research explores strategies to 
alleviate the influence of EVCS on the RDN by optimizing the DG and 
DSTATCOM, taking into consideration uncertainties in load predictions 
(Yuvaraj et al., 2023a). 

The researcher’s utilized PSO optimization considered operating, 
investment, and maintenance costs, and network constraints (Chen 
et al., 2019). This research addressed EVCS impact on RDN by exploring 
modeling and allocation strategies for hydrogen fuel cell-based distrib
uted generation (DG), including a reliability analysis (Yuvaraj et al., 
2023a). It determined optimal EVCS positioning in IEEE-33 bus RDN, 
considering uncertainties in EV numbers (Pal et al., 2019). Placement 
challenges are tackled using grey wolf optimization/whale optimization 
algorithm (GWO/WOA) with 2 m point estimate method (2 m PEM) for 
EV uncertainties, and optimization is done with DE and HHO algorithms 
(Pal et al., 2021). Implementing distribution static synchronous 
compensator (DSTATCOM), the study optimizes EVCS configuration in 
real-time Indian RDNs to reduce power loss (Yuvaraj et al., 2023b). 
Proposing EV parking lots and DGs positioning in RDN, it employs PSO 
to choose suitable locations considering economic objectives (Sriabisha 
and Yuvaraj, 2023). For IEEE-33 and 69 bus RDNs with RESs and 
BESS-powered EVCSs, the focus is on improving bus voltage, mitigating 
power loss, and increasing loading capacities (Yuvaraj et al., 2023c). An 
energy management system optimizes PV/BESS system size and EVCS 
locations using the multi-course teaching-learning-based 
multi-objective optimization (MCTLBO) method to reduce annual EVCS 
operating expenses and system active power loss. 

Further, the study investigated optimal EVCS planning in the pres
ence of capacitors within a RDN (Bilal and Rizwan, 2021). Within a 
traffic-constrained framework, optimal EVCS planning was accom
plished (Wang et al., 2013). Achieving optimal EVCS planning within a 
traffic-constrained framework, the study focused on assessing public 
sector policies’ impact on EVCS expansion, evaluating grid loss and 
EVCS building costs using genetic algorithm (GA) for EVCS size and 

placement optimization (Sadeghi-Barzani et al., 2014). Another work 
modified PSO to achieve optimal EVCS planning, considering building 
and maintenance costs (Phonrattanasak and Leeprechanon, 2012). EVCS 
placement within the traffic network, accounting for installation ex
penses, was addressed in related studies (Simorgh et al., 2018), and cost 
functions were developed for optimized EVCS deployment considering 
traffic and geographical limits (Deb et al., 2017). Efficient reduction of 
power losses was demonstrated in a study optimizing DG sizing and 
EVCS location within an IEEE 33-bus RDN (Jamian et al., 2014). An 
intelligent algorithm-based technique addressed EVCS planning chal
lenges, assessing the influence on grid reliability by computing charging 
cost losses at each location (Bilal and Rizwan, 2023). This study 
extended the Adaptive PSO method for fast-charging EVCS, incorpo
rating randomly positioned SDG (Ahmad and Bilal, 2023). 

1.3. Contribution and paper organization 

To the best of the author’s knowledge, there has been a substantial 
amount of research dedicated to the placement and sizing of EVCS inside 
distribution and transportation networks. However, only a few re
searchers have looked into this issue while using dynamic load data. 
Furthermore, the impact of EVCS on voltage and stability inside the 
distribution grid has not been studied previously using the use of DSVC. 
Existing studies typically address objectives such as power loss mitiga
tion, voltage profile and stability improvement, operational cost 
reduction, and CO2 emission reduction, either separately or in combi
nation. Moreover, most investigations have focused on scenarios 
involving constant loads within traditional distribution grids. This 
research uniquely centers on the optimal planning of SDG and DSVC to 
alleviate the impact of EVCS. The conventional IEEE 33-bus RDN is 
transformed into a SMG to assess algorithm performance using mixed 
load models. The study employs an IBESA-based optimization approach 
to tackle the proposed allocation problem. Additionally, for the first time 
in an SMG context, the research introduces the use of the SCOPE algo
rithm for MOF optimization. 

The proposed work significantly contributes by addressing critical 
gaps in the existing literature and overcoming drawbacks associated 
with previous approaches. The contributions align with specific draw
backs and gaps, strategically filling these voids:  

• Novel DSVC Integration: Introduces a novel integration of DSVC 
with SDG in the RDN to minimize the impact of EVCS. 

• Simultaneous Optimization: Determines optimal location and ca
pacity of SDG, EVCS, storage facilities, and DSVC concurrently 
considering uncertainties.  

• Innovative Conceptual Model: Creates a model combining SDG and 
EVCS to simultaneously mitigate pollutant emissions from power 
generation and transportation sectors.  

• Comprehensive Planning with SCOPE Index: Conducts optimal 
planning using a novel SCOPE index, assessing the impact of EVCS 
load on the SMG in terms of power loss, voltage profile, cost, CO2 
emissions, and stability.  

• SMG Modification and Evaluation: Modifies the IEEE 33-bus RDN as 
SMG technology and evaluates the proposed approach’s efficacy 
under diverse circumstances. 

• IBESA Optimization Method: Proposes the IBESA method for opti
mally placing devices in the RDN, ensuring a minimum value of MOF 
without affecting other parameters.  

• Dynamic Load Conditions: Simultaneously addresses the optimal 
allocation and sizing of SDGs and DSVCs with EVCSs in the RDN 
under dynamic loading conditions.  

• Enhanced EVCS Placement Approach: Develops an enhanced 
approach for optimally placing solar-based EVCS with V2G and G2V 
facilities. 
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• Optimal Allocation under Mixed Loading Conditions: Solves the 
optimal allocation problem under mixed loading conditions (Resi
dential, commercial, and industrial) in the SMG.  

• Incorporation of RES and Dynamic Load Levels: Addresses the gap 
in literature by incorporating RES and accounting for dynamic load 
levels, providing a more realistic representation of the energy system 
compared to a focus on single load levels. 

The subsequent sections of this study are organized as follows: Sec
tion 2 outlines the methodology details for the proposed framework. 
Section 3 introduces the proposed optimization algorithm designed for 
solving the allocation problem in the SMG. The Simulation Study, con
ducted using the standard IEEE 33-bus RDN, is presented in Section 4. 
The study’s main conclusions are summarized in Section 5. 

2. Proposed framework 

2.1. Formulation of the research problem 

As mentioned in reference (Jabari et al., 2020), the Back
ward/Forward Sweep (BFS) technique has gained widespread accep
tance for its effectiveness in performing power flow analysis in RDN. The 
key characteristics of RDN solutions encompass simplicity, speed, min
imal memory requirements for processing, and stable convergence.  
Fig. 2 illustrates a single-line diagram of an RDN incorporating SDG, 
DSVC, BESS, and EVCS. 

The calculation for the bus voltage at i+1 is determined by the 
equation: 

Ui+1 = Ui − I(Ri,i+1 + jXi,i+1) (1) 

The magnitudes of the bus voltages for nodes i+1 and i are denoted 
by Ui+1 and Ui, respectively. The link between nodes i and i+1 has a 
resistance and reactance represented by Ri,i+1 and Xi,i+1.

The division current I is determined using Eq. (2). 

I = [BIBC][i] (2) 

The term ’BIBC’ refers to a matrix that describes how injecting cur
rent into a particular bus affects the current flow in the branches con
nected to it. 

ii+1 =
(Pi+1 + jQi+1)

∗

Ui
(3) 

The third equation expresses the actual and reactive power con
sumption at node i+1, labeled as Pi+1 and Qi+1 correspondingly, along 
with the electrical current injected at node i+1, represented as ii+1. 

Equations are employed to determine the actual and reactive power 
losses in a system, as given below. 

Ploss(i, i+ 1) =

(
P2

i,i+1 + Q2
i,i+1

|Ui|
2

)

Ri,i+1 (4)  

Qloss(i, i+ 1) =

(
P2

i,i+1 + Q2
i,i+1

|Ui|
2

)

Xi,i+1 (5) 

Eqs. (4) and (5) represent the transfer of real power and reactive 
power between nodes i and i+1, respectively. The variables Pi,i+1 & Qi,i+1 

represent these power losses. As a result, the sum of branch power losses 
offers a complete estimate of the system’s total losses (6). 

PT,loss =
∑Nb

i=1
PLoss(i, i+ 1) (6) 

In the above equation, Nb represents the number of branches/nodes/ 
buses. 

2.2. Formulation of an EV user load profile 

This section outlines the method proposed for constructing a load 
profile for EVs, which takes into account EV travel patterns, the place
ment of EVCS, and the charging habits of drivers for various sections 
such as residential, commercial and industrial area SMGs. The detailed 
model incorporating these factors is presented below. 

2.2.1. Calculation of cumulative load 
The cumulative load of EVs can be calculated by considering two 

main factors: the distance traveled by the EVs and the energy required to 
cover each kilometer (km). The average daily distance traveled by ve
hicles typically ranges between 40 and 50 km, with studies indicating 
that approximately 63% of vehicles cover less than 50 km per day 
(Darabi and Ferdowsi, 2012; Jaramillo et al., 2009). Additionally, 
different types of EVs, such as compact sedans, mid-size sedans, mid-size 
SUVs, and full-size SUVs, exhibit varying energy consumption per km 
(Kamruzzaman and Benidris, 2018). 

To calculate the cumulative load of EVs, we can use the following 
approach: 

Pcl
EV =

∑24

t=1

∑nEV

i=1

[
di

EV ∗ Eavg,i
EV
](

i, t) (7)  

Where Pcl
EV is the cumulative load, nEV is the total number of EVs, dn

EV is 

Fig. 2. Single line diagram of RDN with SDG, DSVC, BESS and EVCS.  
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the average daily distance traveled in km by the ith node EV, and Eavg
EV is 

the average energy required to travel each km by the ith node EV. 

2.2.2. Bus load 
In order to establish a load profile for EVs user at each bus/node, it is 

necessary to analyze the impacts of the locations of EVCSs and drivers’ 
preferences on the change in demand at system buses. The major per
centage of in-home (residential area) charging happens during the off- 
peak periods whereas public charging stations (commercial/industry 
areas) are mostly used during peak periods (Kamruzzaman and Benidris, 
2018). Therefore, to construct a load profile for EVs at each bus, it is 
necessary to determine the charging patterns of in-home and public 
stations at the corresponding bus. For the simplicity, in this research, it is 
assumed that each SMG is having a EVCSs. Based on this, the load of a 
bus can be calculated as follows for various load models for various 
nodes. Bus load for SMG charging stations: 

PTotal
EV (i, t) = Pload

int (i, t)+ f load
EV (i, t) ∗ Pcl

EV (8)  

where Nb is the total number of buses that contain EVCSs, Pload
int (i, t) is the 

initial load of ith bus at tth period, f load
EV (i, t) is the fraction of total EVs 

charging load contains ith bus at tth period, and PTotal
EV is the total load of ith 

bus at tth period after including the load demand at EVCS. 

2.2.3. Load profiles for bus considering movement of EVs user 
The EV charging pattern varies based on the type of charging station. 

Public charging stations saw the majority of activity between 9:00 am to 
7:00 pm, while in-home charging stations experienced most charging 
between 7:00 pm and 3:00 am (Kamruzzaman and Benidris, 2018). Due 
to EV movement uncertainty, some in-home charging loads (both peak 
and off-peak) may shift to public stations or vice versa. Moreover, 
there’s a possibility of shifting charging loads between off-peak and peak 
hours. Accounting for these factors, the bus load profile is constructed as 
follows.  

where, PO
(i+1,t) is the total load of the i+1th bus without EVs at the tth 

period, f total
EV (i+1, t) is the fraction of the total EVs charging load of the 

(i+1)th bus at the tth period without considering EVs movement, 
f load

EV (i+1, t1) is the fraction of shifted EVs charging load from the tth 

period to other periods of the (i+1)th bus for hour t1, mload
EV (m, t) is the 

fraction of shifted EVs charging load to the tth period from other periods 
of the (i+1)th bus, f load

EV (l, t) is the fraction of shifted EVs charging load 
from the ith period of the (i+1)th bus to other buses, mload

EV (l, t) is the 
fraction of shifted EVs charging load to the lth bus at the tth period from 
other buses, and P(i+1,t) is the final load of the (i+1)th bus at the tth period 
with EVs charging loads considering EVs movement. 

2.3. Modeling of devices 

Concerning the anticipated growth in future energy demand and the 
escalating concerns about greenhouse gas emissions, addressing the 
prevention of early earth heating has become a pivotal aspect in the 
energy management of SMGs. Consequently, substantial investments are 

being directed towards the adoption of EVs and the replacement of 
distributed low-scale RESs in lieu of traditional large-scale power plants. 
Simultaneously, the rapid proliferation of EVs within SMGs, coupled 
with power quality issues such as network instability and suboptimal 
bus voltage, underscores the increasing need for employing FACTS 
based DSVC and developing systematic plans for coordinating the 
scheduling of EVCS. Furthermore, in light of the aforementioned chal
lenges, addressing and managing the uncertainties arising from RESs’ 
generation pose another significant hurdle for Distribution Network 
Operators (DNOs). SMGs, facilitated by bidirectional communication 
between DNOs and consumers, offer precise real-time monitoring of 
system operations. DNOs can encourage users to shift unneeded con
sumption from peak to off-peak times by presenting various incentive 
plans based on this technology and accurate monitoring. This approach 
improves not just the load profile and procurement costs for DNOs, but 
also the profitability of EV owners and the overall network reliability. 
This study focuses on the best way to plan SDG, DSVC, BESS, and EVCS. 
A concise discussion on the modeling aspects of SDG, DSVC, BESS, and 
EVCS is provided below. 

2.3.1. Model of SDG 
The beta Probability Density Function (PDF) serves as the model for 

solar irradiance during each hour of the day, derived from historical 
data (Teng et al., 2012). The formulation of the PDF for solar irradiance 
in each time period (in this study, 1 h) is detailed in (Hung et al., 2014): 

F(x) =

⎛

⎝

Γ(a + b)
Γ(a) + Γ(b)

x(α− 1) ∗ (1 − x)(β− 1)

0Otherwise
0 ≤ x ≤ 1, a, b ≥ 0 (10) 

Eqs. (8) and (9) specify the parameters ’a’ and ’b’ in detail: 

a =
(ρ ∗ b)
(1 − ρ) (11)  

b = (1 − ρ)
(

ρ(1 − ρ)
σ2 − 1

)

(12) 

Here, σ and ρ represent the standard deviation and mean, respec
tively. The probability (x) of the solar irradiance state during any given 
hour can be formulated as: 

PD(Z) =
∫ x2

x1

F(x) dx (13) 

The solar PV module’s output power can be stated as: 

PSDG(x) = nmodule ∗ Ffactor ∗ Vs ∗ Is (14)  

Ffactor =
VMPPT ∗ IMPPT

Voc ∗ Isc
(15)  

Vs = Voc ∗ cv ∗ tc (16)  

Is = x[Isc ∗ ci ∗ (tc − 25)] (17)  

P(i+1,t) = PO
(i+1,t) +

⎡

⎢
⎢
⎢
⎢
⎣

f total
EV (i+ 1, t) −

∑24

t1=1

t1∕=t

f load
EV (i+ 1, t1)+

∑24

m=1

m∕=t

mload
EV (m, t) −

∑Nb

l=1

l∕=t

f load
EV (l, t)+

∑Nb

l=1

l∕=t

mload
EV (l, t)

⎤

⎥
⎥
⎥
⎥
⎦

Pcl
EV (9)   
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tc = ta + x
(

tno
c − 20

0.8

)

(18) 

The number of modules is denoted as nmodule, the ambient and cell 
temperatures are ta and tc, and the current and voltage temperature 
coefficients are ci and cv. tno

c signifies the cell’s nominal operating tem
perature. The fill factor is represented by Ffactor, and the open-circuit 
voltage and short-circuit current are represented by Voc and Isc, respec
tively. The variables VMPPT and IMPPT represent the voltage and current at 
the maximum power point tracking (MPPT). The entire output power of 
the PV panel is determined by the specs and irradiance characteristics, 
which are represented as follows: 

PSDG(t) =
∫ x2

x1

PSDG(x) PD(Z)dx (19) 

Eq. (19) defines the output power of the solar cell. The solar output 
load profile, as considered in this study, is depicted in Fig. 3. 

2.3.2. Model of DSVC 
The basic circuit configuration of a DSVC is depicted in Fig. 4 

(Ćalasan et al., 2020). The DSVC consists of a thyristor-controlled 
reactor running in parallel with a fixed capacitor, illustrating its 
fundamental components. 

The adjustment of the thyristors’ firing angle (φ) has a direct impact 
on the equivalent susceptance of the DSVC, denoted as BDSVC. This 
correlation can be articulated in the following manner: 

BDSVC = BL(φ)+BC (20)  

BL(φ) = −
1

ωL

[

1 −
2φ
π

]

(21)  

BC = ωC (22) 

The relationship governing the equivalent susceptance (BDSVC) is 
established through the parallel combination of the capacitor reactance 
(BC) and the series inductance reactance (BL). Here, C and L signify the 
capacitance of the capacitor and the inductance of the reactor, respec
tively, while Ui represents the voltage magnitude at node i. The reactive 
power and current controlled by the DSVC device can be described by 
the following equations: 

QDSVC = − BDSVC ∗ U2
i (23)  

IDSVC = − BDSVC ∗ Ui (24) 

When the system load is capacitive, the DSVC absorbs reactive power 
with thyristor-controlled coils (QDSVC). When the primary system load is 
inductive, the DSVC supplies reactive power via parallel-coupled ca
pacitors, improving voltage conditions. The allowable limits of DSVCs 
are built into the problem, constraining the reactive power function 
(whether inductive or capacitive). 

− QMax
DSVC ≤ QDSVC ≤ +QMax

DSVC (25) 

In the defined equations, − QMax
DSVC and +QMax

DSVCrepresent the limits for 
injected reactive power, delineating the bounds for inductive and 
capacitive operation modes of the DSVCs, respectively. 

2.3.3. BESS modelling 
It is crucial to achieve optimal sizing of the battery to efficiently 

handle the unpredictable fluctuations in SDG output, aligning it with the 
varying load demand. A pivotal variable in this context is the SOC, 
which closely monitors the charging and discharging states of the bat
tery. Overcharging incidents may occur when the hybrid model pro
duces excess power or when the load demand is inadequate. To mitigate 
this, the control system intervenes by discontinuing the charging process 
once the battery’s State of Charge reaches its maximum value (SOCmax). 
Conversely, to prevent the battery from being depleted, the control 
system deactivates the load when the SOC hits its minimum value 
(SOCmin) (Geleta et al., 2022). The battery’s state of charge undergoes 
fluctuations based on power output and load demand, playing a pivotal 
role in the system’s energy management. Serving as a dynamic regu
lator, the battery adjusts power demands and supply. Specifically, when 
the generated power surpasses the energy requirement, the battery en
ters a charging state at time ’t’, as defined by Eq. (26) (Geleta et al., 
2022). 

SOCbattery(t+ 1) = SOCbattery(t)(1 − ρ)+ [PSDG(t) − PEVCS(t) ] ∗ ηbattery (26) 

In instances where RES fall short in generating sufficient power to 
fulfill the demand, the battery functions as a backup, providing elec
tricity to the load system and operating in a discharging mode. The 
battery’s discharge status at time ’t’ is given as (27): 

SOCbattery(t+ 1) = SOCbattery(t)(1 − ρ)+
[

PEVCS(t) − PSDG(t)
ηbattery

]

(27) 

In the given context, where SOCbattery(t+1) and SOCbattery(t) repre
sent the state of charge of the battery at time ’t+1′ and ’t’, respectively, 
‘ρ’ denotes the battery’s self-discharge rate, PSDG(t) indicates the power 
output of the SDG, and battery is the efficiency of the battery’s round- 
trip energy conversion. Eq. (28) can be used to calculate the battery’s 

Fig. 3. Solar output load profile.  

Fig. 4. A model of DSVC device.  
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round-trip efficiency. 

ηbattery =
(

ηbattery
charging ∗ ηbattery

discharging

)
(28) 

In the above scenario, ηbattery
charging denotes the battery’s charging effi

ciency, whereas ηbattery
discharging denotes the battery’s discharging efficiency. 

The stated round-trip efficiency for the battery bank is 85%. Addition
ally, it is assumed that the efficiencies for charging and discharging are 
90% and 80%, respectively. 

Ctotal =
SOCmax

Rround − trip efficiency
(29) 

The maximum SOC, denoting the round-trip efficiency of the battery, 
is associated with the highest SOC value and is equivalent to the overall 
energy capacity of the battery bank, denoted as Ctotal (in Ampere-hours). 
This correlation can be expressed as follows (30): 

ϵbattery
total =

nbattery

nbattery
series

∗ ϵbattery
single (30) 

In this context, ϵbattery
single denotes the energy capacity of an individual 

battery, while, nbattery signifies the total quantity of batteries. Addi
tionally, nbattery

series indicates the count of batteries interconnected in a series 
configuration, strategically employed to attain the targeted bus voltage. 
The discharge of the battery bank is restricted, adhering to a predefined 
minimal state of charge denoted as SOCmin. Depending on the utilization 
of the battery bank, this constraint may operate as a governing factor 
within the system. 

The formula (31) can be used to calculate the number of batteries 
arranged in series (nbattery

series ): 

nbattery
series =

Vbus

Vbattery (31) 

The crucial aspect of battery modeling in this context involves 
determining the maximum charge/discharge power at any given 
moment. In the given scenario, where Vbattery represents the voltage level 
of an individual battery, and Vbus signifies the specific bus voltage of the 
RDN, this power is influenced by the maximum charging current. The 
calculation of this power can be expressed using the following Eq. (31): 

Pbattery
max =

nbattery ∗ Vbattery ∗ imax

1000
(32) 

In the provided formula, ‘imax’ represents the maximum current for 
charging, expressed in amperes, while ‘Pbattery

max ’ denotes the maximum 
input/output power capacity of the battery. 

2.3.4. EVCS load modeling 
A dual converter, charging ports, and EVs are the main components 

of an EVCS. A regulatory device linked to the charging station enables 
control of power flow direction at any time. The charging process for EV 
relies on the SOC of the vehicle, which is characterized as the proportion 
of the current available charging level to the maximum charging ca
pacity, representing a fully charged battery.Top of Form 

SOC offers critical information regarding the battery’s required 
charging level. Several factors influence an EV’s power usage, including 
distance traveled, battery capacity, and driving mode. Eq. (33) can be 
used to calculate an EV’s power consumption. 

PEV =
d ∗ Pneeded

Trecharge
(33) 

In the presented Eq. (33), where d is the distance traveled in km, 
Pneeded represents the power required per km, and Trecharge indicates the 
time required to recharge the battery. SOCbattery

EV is defined by the SOC 
of the vehicle’s battery, which represents the time difference between 
arrival and departure. The power consumption of an EV can be stated in 

terms of battery capacity, SOC, and charging time, as shown in Eq. (34). 

PEV =
Cbattery

EV ∗ (SOCmax
EV − SOCmin

EV )

Trecharge
(34) 

In the presented Eq. (34), Cbattery
EV represents the EV battery’s ca

pacity, while SOCmax
EV and SOCmin

EV are the maximum and minimum SOC 
limitations. Consequently, the aggregate power needed to charge a 
quantity of nEV EVs at a specific time, denoted as t, is expressed as Eq. 
(35): 

PTotal
EV =

∑24

t=1

∑nEV

i=1
PEV(i, t) (35)  

2.3.5. Operational strategy/ energy management strategies for EVCS 
Efficient energy management is critical to ensuring the reliability of 

any hybrid energy system. The major energy source takes precedence in 
the specified configuration to exclusively meet the load requirements of 
the EVCS. The following are the stages for the simplest implementation 
technique for this energy system. It is assumed in this scenario that the 
principal energy source is solely responsible for providing the load de
mand of EVs. Eq. (36) can be used to calculate the difference between 
the power generated and the power demanded by EVs: 

∂P(t) = PSDG(t) − PEVCS(t) (36) 

When solar panels fall short of satisfying the power requirements for 
EV loads, more power is obtained from the distribution grid. Further
more, any excess power generated by the SDG after fulfilling the stated 
requirements is sold back to the grid. 

The simulation will evaluate the following operational ways to apply 
power management strategies:  

• Renewable based SDG serves as the primary source of electricity, 
delivering sufficient real power to EVCS. Any surplus power is 
directed to the BESS.  

• SDG generates surplus power, meeting overall load requirements, 
and fully charging the BESS. Excess power beyond the load demands 
is redirected to a dump load.  

• In scenarios where SDG’s electrical energy is insufficient for EVCS 
load requirements, the deficiency is supplemented either by the BESS 
or the grid, ensuring uninterrupted power supply to EVCS.  

• If sustainable energy production is inadequate to meet the required 
load and the BESS is depleted, the system triggers a resizing process 
to effectively accommodate energy demands. 

2.4. SCOPE index 

In power system analyses, there is a lack of indices providing 
comprehensive insights into the five key operating parameters: stability, 
voltage, operating cost, power loss, and CO2 emissions. Stability 
enhancement is assessed using the VSI (S) value, voltage improvement 
relies on CVV (C), operating cost is determined by TOC (O), power loss 
mitigation is evaluated based on real power loss (P) values, and emission 
reduction is measured using CO2 emission values (E). To address this 
gap, a novel index called SCOPE (Voltage Stability, Voltage, Cost, Power 
Loss, and Emission) is introduced in this study. This index furnishes 
information on three critical operating parameters of the RDN following 
any form of disturbance. The SCOPE Index finds application in:  

• Optimum charging station position.  
• Planning the distribution network with RES.  
• Smart microgrid design.  
• Distribution network reconfiguration.  
• Assessment of network resilience after disturbances.  
• Environmental impact analysis.  
• Cost-effective operation strategies. 
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• Integration with smart grid technologies. 

2.4.1. Voltage stability (S) 
A substantial presence of sensitive and nonlinear loads within the 

RDN necessitates prompt and significant support in reactive power to 
ensure the secure and stable operation of the network. Without the 
provision of reactive power, the RDN may be compelled into an insecure 
operational state, leading to potential system outages. The vulnerability 
of the RDN to voltage-related issues may arise if the objective function 
fails to consider voltage stability. The enhancement of the RDN’s secu
rity can be notably achieved through the implementation of SDGs and 
DSVCs. In this context, the assessment of the RDN’s Voltage Stability 
Index (VSI) (Yuvaraj et al., 2020) can be computed using Eq. (37) to 
evaluate the network’s security and stability. 

Voltage collapse occurs more frequently on buses with low VSI. VSI 
measurements can be used to determine the stability of a power supply. 
If the VSI value is low, an appropriate action can be taken. 

VSI(i+ 1) = |Ui+1|
4
− 4
[
Pi,i+1 ∗ Xi,i+1 − Qi,i+1 ∗ Ri,i+1

]2
− 4
[
Pi,i+1

∗ Ri,i+1 +Qi,i+1 ∗ Xi,i+1
]
|Ui+1|

2 (37) 

Approaching a unity value in the VSI signifies enhanced system 
stability, while nearing zero suggests an unstable operational state for 
the system. The critical bus, identified as the one associated with the 
lowest VSI in the RDN, holds particular significance. To evaluate the 
impact of device allocation on the stability margin, a maximization 
objective function for system voltage stability (OF1) is formulated using 
Eq. (38). This equation represents the ratio of the reciprocal of the VSI 
for the RDN’s critical bus, both with and without considering device 
allocation. 

OF1 =
VSIa

VSIb
(38) 

OF1 values may vary, being less than, equal to, or greater than unity. 
Allocating devices is considered beneficial when the OF1 value is less 
than unity. This condition indicates that the VSI of the crucial bus is 
closer to unity in the presence of devices than in the absence of devices 
on the RDN. 

2.4.2. Bus voltage (C) 
Another rationale for allocating SDGs and DSVCs in the RDN is to 

keep the bus voltage at the load terminals within an acceptable range 
and to improve the system’s voltage profile. Because SDGs and DSVCs 
can deliver the needed amount of real and reactive into the system while 
reducing power losses, optimal placement of SDGs and DSVCs into un- 
compensating systems improves the voltage profile. The network’s cu
mulative voltage variation (CVV) can be expressed as (39): 

CVV =

⎧
⎪⎨

⎪⎩

0, if0.95 ≤ Ui ≤ 1.05
∑Nb

i=1

⃒
⃒Uref − Ui

⃒
⃒, else

⎫
⎪⎬

⎪⎭
(39) 

To demonstrate the system’s superiority in voltage profile improve
ment, the CVV at each bus was considered and kept as low as feasible 
(Thangaraj and Kuppan, 2017). The computations show that the lowest 
value of CVV represents a significant improvement in the voltage profile 
of the RDN. By reducing the objective function 2 (OF2), the voltage 
profile of the system with SDG and DSVC allocation can be maximized. It 
is calculated as the ratio of CVV after (CVVa) and before (CVVb) system 
SDG and DSVC placement, and is given by: 

OF2 =
CVVa

CVVb
(40)  

2.4.3. Operating cost (O) 
The system’s operational costs are divided into two categories. The 

cost of real electricity delivered by a substation is the primary term. This 
can be reduced by reducing total power losses in the RDN (Thangaraj 
and Kuppan, 2017). The cost of real/reactive power provided by the 
installed SDG and DSVC is the second part. This can be mitigated by 
reducing the quantity of real/reactive power drawn from SDG and 
DSVC. Eq. (41) gives the total operational cost (TOC): 

TOC = (α1Pa
TL) + (α2SSDG/DSVC) (41)  

Where α1 and α2 are the cost coefficients of the substation’s and SDG/ 
DSVC’s real/reactive power in $/kW/kVAr. The total real/reactive 
power drawn from installed SDG/DSVC is denoted as PSDG/DSVC. As a 
result, SDG/DSVC TOC decrease can be stated as: 

OF3 =
TOC

ω3Pmax
a

(42) 

OF3 reflects the system operating cost with SDG/DSVC implemented. 
By managing OF3, the operating cost of this system can be decreased. 

2.4.4. Power loss (P) 
The active power loss is critical in improving the RDN’s performance. 

As a result, the optimal SDG and DSVC placement challenge is primarily 
focused with minimizing network active power loss. OF4 is the ratio of 
total power loss after and before allocation of SDG and DSVC in the RDN, 
and is given by: 

OF4 =
Plossa

Plossb
(43)  

where Plossb and Plossa are the power losses before and after SDG/DSVC 
allocation in the RDN Eq. (43) can be used to calculate the system power 
loss. By lowering OF4, the total power loss decreased by SDG/DSVC 
allocation in the RDN can be maximized. An OF4with a value of one 
indicates that the device allocation has no effect on the RDN’s power loss 
minimization. An OF4 value less than unity indicates a favorable effect 
of device allocation. If the OF4 value exceeds one, it indicates a rise in 
system power loss when the devices are present, and is therefore deemed 
an adverse impact on the system. 

2.4.5. Emission (E) 
The objective function for minimizing CO2 emissions in a distribu

tion system with SDG, BESS, and EVCS involves calculating CO2 emis
sions from grid energy, determining emissions reductions from SDG, 
BESS, and EVCS. This function aims to optimize the system’s compo
nents, minimizing the overall carbon footprint by leveraging renewable 
energy and storage while optimizing EV charging. 

Emission(i, t) = Efactor ∗

[
∑Nb

i

×
∑24

t
(Pgrid(i, t) − PSDG(i, t) − PV2G

EVCS(i, t)) − PBESS(i, t)

]

(44)  

where Pgrid,PSDG,PBESSand PV2G
EVCS are variables which denotes the real 

power delivered by the grid, SDGs, BESS and EVCS (in V2G mode) at bus 
i and time t, respectively. The corresponding emission per hourly real 
power generation (TonCo2/MWhr) from the grid is denoted by Efactor. 
They are calculated using 0.910 TonCo2/kWhr (Shaheen et al., 2021). 

OF5 =
Emissiona

Emissionb
(45) 

In this objective function, the goal is to mitigate the total CO2 
emissions by reducing emissions from the grid and maximizing the 
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contributions of SDG, BESS, and EVCS in emissions reduction. OF5 is the 
ratio of CO2 emissions after and before allocation of SDG and DSVC in 
the RDN. The CO2 emissions of this system can be reduced by reducing 
the OF5. 

2.5. Multi-objective function (MOF) 

It has been observed in previous studies that researchers commonly 
employed different single objective functions in optimizing the alloca
tion problem of SDG/DSVC/EVCS in RDN. However, these objectives 
often conflict with each other, posing challenges in simultaneously 
optimizing opposing goals. A multi-objective function comprises a set of 
functions that need to be optimized concurrently while considering 
specific operational constraints. Furthermore, optimizing the placement 
of individual devices and their combinations can greatly improve the 
performance of the RDN. This optimization can lead to a reduction in 
power loss, improvement in voltage profile, enhancement of stability 
margins, reduction in operating costs, and mitigation of CO2 emissions. 
Furthermore, in a deregulated system, device owners must gain eco
nomic rewards, which incentivizes them to invest in complex equip
ment. As a result, device allocation must be planned to assure technical 
and economic benefits. As a result of the foregoing facts, both the 
technical and economic factors are appropriately merged to develop the 
MOF as shown in Eq. (46). 

MOF = Minimize(SCOPE)

= Minimize
[(

ω1 ∗ (
1

OF1
)

)

+(ω2 ∗ OF2)+ (ω3 ∗ OF3)+ (ω4

∗ OF4)+ (ω5 ∗ OF5)

]

(46) 

The values of the parameters ω1,ω2,ω3,ω4and ω5 are adjustable, 
providing the flexibility to prioritize the impact of specific elements 
within the overall MOF. The weightage factors are commonly taken as 
0.2 for each individual objective functions (OF1 to OF5) for the studied 
method. 

2.6. System constraints 

The RDN’s compensator distribution is established by a set of con
straints that includes both equalities and inequalities. 

2.6.1. Power distribution 
In constructing the power distribution constraints, they can be stated 

as equalities. 

PT,Loss +
∑

PD(i) +
∑

PG2V
EVCS(i) =

∑
(PV2G

EVCS(i) +PSDG(i) +PBESS(i)) (47) 

PD(i) denotes the power demand at specific buses in the system, 
PSDG(i) , and PBESS(i) denote the power generation from SDG and BESS, 
respectively, and PG2V

EVCS(i) and PV2G
EVCS(i) denote the power absorbed (G2V) 

and supplied (V2G) to SMGs by EVCS, respectively. 

2.6.2. Voltage limit 

Ui,min ≤ |Ui| ≤ Ui,max (48) 

The minimum permitted voltage limit at node i is represented by 
Ui,min, whereas the maximum allowable voltage limit at node i is repre
sented by Ui,max. 

2.6.3. Reactive power compensation by DSVC 

±Qmin
DSVC(i) ≤ QDSVC(i) ≤ ±Qmax

DSVC(i)i = 1, 2, .........nb (49) 

The lower and upper limits of reactive power compensation (absor
bed/injected) given by the DSVC at bus i are denoted by Qmin

DSVC(i) and 
Qmax

DSVC(i) , respectively. 

2.6.4. Real power compensation by SDG 
SDG should inject real power at each optimized bus within the given 

minimum and maximum limitations. 

Pmin
SDG(i) ≤ PSDG(i) ≤ Pmax

SDG(i)i = 1, 2, .........nb (50) 

In this case, the lowest real power limits Pmin
SDG(m) reflect the lower 

boundaries for the compensated bus i, whilst the maximum real power 
limits Pmax

SDG(m) represent the upper bounds for the compensated bus i, 
which are compensated by SDG. 

2.6.5. Real power compensation by BESS 
BESS should inject real power into each optimized bus within the 

prescribed minimum and maximum constraints. 

Pmin
BESS(i) ≤ PBESS(i) ≤ Pmax

BESS(i)i = 1, 2, .........nb (51) 

The lowest real power limits Pmin
BESS(i) reflect the lower boundaries for 

the compensated bus i, while the maximum real power limits Pmax
BESS(i)

represent the upper bounds for the compensated bus i, which are 
compensated by BESSs. 

2.6.6. Line ampacity 
The line ampacity constraint can be represented as an inequality 

constraint in optimization problems. This ensures that the current 
flowing through the conductor does not exceed its maximum allowable 
value. 

Ii ≤ ILA,max
i (52)  

where, Ii,t represents the actual current flows in ith line and ILA
i,t is the 

maximum allowable current (ampacity) of the line/conductor in ith line. 

2.6.7. Thermal constraint 
The thermal constraint for a branch is represented as: 

Si ≤ Smax
i (53) 

Here, Si,t denotes the apparent power of the node i, while 
Smax

i,t represents the maximum allowable apparent power of the node i. 
This constraint ensures that the apparent power of the branch does not 
exceed its maximum allowable value, maintaining the thermal limit of 
the branch below its upper bound. 

3. Proposed optimization algorithm 

This section explains IBESA and its importance in defining the ideal 
placement and sizing of SDG and DSVC to fulfill the goal function inside 
the IEEE 33-RDN standard. Derived from the original BESA, IBESA takes 
inspiration from the hunting behavior of bald eagles, specifically during 
the three crucial sub-processes: space selection, space exploration, and 
the decisive swooping in on the prey. 

3.1. Bald eagle search algorithm 

Bald eagles, recognized for their distinctive foraging behavior pri
marily centered around fish, with a notable emphasis on species like 
salmon, have inspired innovative meta-heuristic approaches in optimi
zation algorithms. In 2020, H.A. Alsattar et al (Alsattar et al., 2020). 
introduced the BESA, a novel algorithm that draws inspiration from the 
hunting strategies of bald eagles, particularly their challenges in 
capturing fish in water environments. These magnificent birds are 
capable of hunting from perches as well as using aerial tracking to 
identify fish from great distances. Bald eagles demonstrate precise flight 
patterns and smart placement when foraging over bodies of water. These 
eagles are tough predators at the pinnacle of the food chain, defined as 
spirits reliant on crucial, protein-rich sustenance. As a result, the BESA 
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algorithm is divided into three distinct phases, which are discussed 
further below. 

3.1.1. Stage I: selection process 
During the first step, the eagle uses the following mathematical 

expression (54) to locate a probable food source: 

rnew,i = rbest +
[
γ ∗ ϑ ∗ (ravg − ri)

]
(54) 

The parameter here regulates the degree of position adjustment, 
which is limited to 1.5–2. The variable ϑ represents a value created at 
random within the range [0,1]. rbest represents the previously deter
mined optimal location, ravg combines data from prior points, ri repre
sents the current position, and rnew,i represents the updated position. 

3.1.2. Stage II: search process 
During this stage, the eagles navigate inside a preset search zone, 

executing spirals to increase the intensity of their hunt. The best swoop 
position is calculated using the following expression (55): 

rnew,i = ri + q(i) ∗ (ri − ri+1)+ p(i) ∗ (ri − ravg) (55)  

p(i) =
pϑ(i)

(max|pϑ|)
(56)  

q(i) =
qϑ(j)

(max|qϑ|)
(57)  

pϑ(i) = ϑ(i) ∗ sinφ(i) (58)  

qϑ(i) = ϑ(i) ∗ cosφ(i) (59)  

φ(i) = γ ∗ π ∗ rand (60)  

ϑ(i) = φ(i)+ z ∗ rand (61) 

Eqs. (55) through (61) are implemented during this step of the 
search. The angle between the location under search and the center 
point is determined by the parameter, which ranges from 5 to 10. 
Furthermore, the number of search cycles is determined by the value of 
z, which ranges from 0.5 to 2. The variable rand, which generates values 
between [0,1], acts as a random number generator. 

3.1.3. Stage III: swooping process 
In the final stage, all points converge toward the optimal place as 

eagles swoop towards their objective, mimicking their behavior while 
grabbing fish from the most promising site. Eq. (62) captures the 
manifestation of this behavior: 

rnew,i = rand ∗ rbest + p1(i) ∗ (ri − (e1 ∗ ravg))+ q1(i) ∗ (ri − (e2 ∗ rbest))

(62)  

p1(i) =
pϑ(i)

(max|pϑ|)
(63)  

q1(i) =
qϑ(j)

(max|qϑ|)
(64)  

pϑ(i) = ϑ(i) ∗ sinhφ(i) (65)  

qϑ(i) = ϑ(i) ∗ coshφ(i) (66)  

φ(i) = γ ∗ π ∗ rand (67)  

ϑ(i) = φ(i) (68) 

In this swooping stage, Eqs. (62) to (68) are also used. The param
eters e1 and e2 have values between (1 and 2). Furthermore, rand rep
resents a random number between (0 and 1). 

3.2. Improved bald eagle search algorithm 

In the original BESA, the convergence rate is affected by the use of a 
fixed controlling parameter γ within the range of 1.5–2 during the search 
space selection. This fixed parameter can lead to suboptimal perfor
mance in terms of both exploration and exploitation. To address this 
limitation, the IBESA method (Chhabra et al., 2023) introduces an 
adaptive control parameter. The adaptation allows for dynamic adjust
ments of the controlling parameter during the optimization process. This 
adaptability enhances the algorithm’s ability to explore diverse regions 
of the search space effectively, promoting a more robust exploration 
phase. Simultaneously, it enables the algorithm to exploit promising 
regions with a finer level of control, leading to improved convergence 
rates and more accurate identification of optimal solutions. By incor
porating adaptability into the controlling parameter, the IBESA method 
aims to strike a balance between exploration and exploitation, ulti
mately enhancing the overall efficiency and effectiveness of the opti
mization process. This adaptability is particularly advantageous in 
scenarios where the optimal solution may reside in different regions of 
the search space at different stages of the optimization process. 

γ = 1.5 ∗
Itermax − (i + 1)

Itermax (69)  

Where (i+1) represents the current iteration count, and Itermax denotes 
the total number of maximum iterations in the optimization process. 

3.3. Procedure for optimization 

The IBESA optimization approach for tackling the SDG and DSVC 
allocation problem is detailed below:  

1. Initialization: Define the number of populations, the number of 
decision factors (including the quantity, location, and size of 
SDGs/ DSVCs), and the maximum number of iterations.  

2. Initial Eagle Search Spaces: Randomly initialize eagle search 
spaces (ri), estimate the fitness value for each location using Eq. 
(54), and store the best location.  

3. Iteration Initialization: Set the iteration count (Iter) to 1.  
4. Update Locations: Update the locations using Eq. (55) for basic 

BESA or both Eqs. (69) and (63) for IBESA.  
5. Evaluate and Update Best Location: Evaluate the MOF value for 

the locations and update the best location found in step 2.  
6. Further Location Update: Update the locations using Eq. (55) 

and evaluate the MOF value with these new locations.  
7. Evaluate and Update Best Location (Again): Examine the MOF 

value for the locations received in Step 5 and update the best 
location discovered in Step 4.  

8. More Location Updates: Update the locations using Eq. (62) and 
evaluate the MOF value with these new locations.  

9. Evaluate and Update Best Location (Once More): Examine the 
MOF value for the sites discovered in step 7 and update the best 
location discovered in step 6.  

10. Iteration Check: If the iteration count (Iter) does not exceed the 
maximum value set, repeat Steps 4–9; otherwise, the optimiza
tion process is terminated. 

This procedure outlines the sequential steps involved in the IBESA 
algorithm for addressing the SDG and DSVC allocation problem, incor
porating the dynamic updates of search spaces and continuous 
improvement of the best location throughout the iterations. 

4. Simulation study 

The research addresses the challenge of optimal allocation of EVCS to 
effectively manage both active and reactive powers in the presence of 
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various SDG units, including BESS and DSVC. The IEEE 33-bus system 
serves as the foundation, drawing from Reference (Augugliaro et al., 
2010), and incorporates diverse load models outlined in Reference 
(Kaliaperumal Rukmani et al., 2020). The modified system features an 
actual power demand of 3.57 MW, a reactive power demand of 1.73 
MVAr, and a line voltage of 12.66 kV. The proposed SMG structure, 
depicted in Fig. 5 based on the modified IEEE 33-bus test system 
(Shamshirband et al., 2019), comprises three interconnected SMGs 
catering to residential, commercial, and industrial users. Table 1 pro
vides the details of hourly system active and reactive load demand for a 
typical day. Each SMG operates independently with distinct hourly 
active and reactive load profiles, as graphically illustrated in Fig. 6 using 
daily forecasted load profiles. The loads are combined with various load 
models (mixed load) such as residential, commercial, and industrial 
loads Simulations were executed within the MATLAB environment. 
MATLAB served as a tailored tool for developing a BFS specific to the 

RDN, enabling the computation of real and reactive power losses and 
bus voltage values in the absence of any compensation. 

The IBESA was used to solve the EVCS allocation problem within the 
SMG. The study includes 100 EVs (Residential-30EVs, Commercial- 
15EVs, and Industrial-55EVs) with a 19 kW charging rate, three EVCS 
with numerous charging stations, and a maximum of one SDG/BESS/ 
DSVC appropriately located in each SMG. The number of EVs in G2V and 
V2G modes, as well as charge and discharge speeds, determine the EVCS 
load. The charging rate for G2V mode was 19 kW, whereas the discharge 
rate for V2G mode was 8 kW (Mohamed et al., 2013). Charging and 
discharge efficiencies ranged from 80% to 95%, with G2V mode effi
ciency assumed to be 90% and V2G mode efficiency considered to be 
80%. In this study, the EV battery is charged with a power of 15 kW and 
a battery capacity of 50 kWh. To enhance objective values, a minimum 
of one compensator (SDG/BESS/DSVC), along with an EVCS in each 
SMG, is strategically positioned and sized at optimal locations within the 

Fig. 5. Modified IEEE 33-Bus System with Three Different SMGs Using Proposed Method.  

Table 1 
Hourly System Active and Reactive Load Demand (Mixed Load).  

Time (Hour) Load factor Real Power (kW) Reactive Power (kVAr) Time (Hour) Load factor Real Power (kW) Reactive Power (kVAr) 

1  0.867  3097.37  1500.66  13  0.911  3254.57  1576.81 
2  0.852  3043.79  1474.69  14  0.904  3229.56  1564.7 
3  0.837  2990.2  1448.73  15  0.907  3240.28  1569.89 
4  0.83  2965.19  1436.61  16  0.911  3254.57  1576.81 
5  0.83  2965.19  1436.61  17  0.915  3268.86  1583.74 
6  0.859  3068.79  1486.81  18  0.919  3283.15  1590.66 
7  0.889  3175.97  1538.73  19  1  3572.52  1730.86 
8  0.926  3308.15  1602.78  20  1  3572.52  1730.86 
9  0.933  3333.16  1614.89  21  0.963  3440.34  1666.82 
10  0.937  3347.45  1621.82  22  0.911  3254.57  1576.81 
11  0.941  3361.74  1628.74  23  0.889  3175.97  1538.73 
12  0.933  3333.16  1614.89  24  0.867  3097.37  1500.66  
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RDN using the proposed IBESA. SDG, BESS, and DSVC are co-located at 
the same positions within the SMGs. The size of BESS is determined 
based on the size of SDG at a specific location within the SMG in the 
RDN. While DSVC is capable of both injecting and absorbing reactive 
power in the system, the proposed work only considers injecting reactive 
power into all three SMGs. This DSVC, installed in the RDN, serves the 
purpose of enhancing voltage and stability. The decision to limit the 
DSVC to injecting reactive power, without absorption, is made with the 
understanding that further improvement is not achieved by allowing 
both injection and absorption of reactive power, adhering to the speci
fied constraint. 

The proposed SMGs-based IEEE 33-RDN test system comprises three 
distinct regions: residential, commercial, and industrial loads. As a 
result, the load factor varies among the nodes within the same hour in 
the simulation. Each SMG in the RDN hosts one SDG and DSVC, opti
mally placed. Specifically, the optimal locations within SMGs are the 
13th node for Residential SMG, the 24th node for Commercial SMG, and 
the 30th node for Industrial SMG. The load factors for various load 

models at each node for different hours are detailed in Table 2, sourced 
from references (Shamshirband et al., 2019). Fig. 7 illustrates the active 
power load profile under various load models and node locations for the 
proposed approach. Similarly, the load profile for EV users under 
different load models is obtained from references (Kamruzzaman and 
Benidris, 2018; Tran-Quoc et al., 2012). The optimal locations of EVCS 
within SMGs are identified as the 2nd node for Residential SMG, the 
19th node for Commercial SMG, and the 26th node for Industrial SMG.  
Fig. 8 displays the EV load profile under various load models and 
locations. 

The optimal location and sizing of SDG and DSVC are determined by 
the proposed IBESA for various load models based on the nodes in the 
IEEE 33-RDN. Fig. 9 presents a comprehensive flowchart outlining the 
suggested optimization method using IBESA to find the appropriate 
location and sizing of SDG and DSVC in the RDN. 

Fig. 6. Hourly System Active and Reactive Load Demand Profiles (Mixed Load).  

Table 2 
Hourly SDG and DSVC Real and Reactive Power Outputs under Various Load Factors and Locations (Nodes).  

Time (Hour) 13th Location (Residential) 24th Location (Commercial) 30th Location (Industrial) 

Load Factor SDG (kW) DSVC (kVAr) Load Factor SDG (kW) DSVC (kVAr) Load Factor SDG (kW) DSVC (kVAr) 

1  0.165  0  38  0.234  0  96  0.225  0  129 
2  0.154  0  35  0.217  0  82  0.22  0  127 
3  0.142  0  29  0.194  0  85  0.231  0  122 
4  0.131  0  28  0.191  0  74  0.231  0  123 
5  0.134  0  28  0.22  0  85  0.254  0  135 
6  0.151  0  35  0.297  0  119  0.262  0  149 
7  0.191  0  42  0.408  0  150  0.368  0  215 
8  0.261  39.15  65  0.568  119.85  260  0.546  106.47  304 
9  0.277  97.78  65  0.668  350.7  291  0.697  345.02  420 
10  0.297  147.91  71  0.74  554.26  361  0.857  634.18  496 
11  0.334  210.42  79  0.737  606.55  348  0.905  767.44  550 
12  0.322  209.62  76  0.742  717.51  323  0.888  809.86  535 
13  0.377  248.82  93  0.762  677.42  321  0.98  894.74  552 
14  0.4  253.6  93  0.74  652.68  340  1  850  562 
15  0.411  215.78  97  0.7  555.8  284  0.947  714.04  563 
16  0.362  151.32  89  0.651  367.16  274  0.922  533.84  519 
17  0.337  85.94  92  0.76  277.4  321  0.771  280.64  426 
18  0.431  41.38  117  0.771  104.86  305  0.762  101.35  466 
19  0.531  0  146  0.651  0  306  0.642  0  398 
20  0.674  0  185  0.5  0  235  0.617  0  383 
21  0.602  0  158  0.394  0  182  0.58  0  358 
22  0.491  0  121  0.32  0  135  0.517  0  291 
23  0.374  0  83  0.265  0  98  0.32  0  187 
24  0.2  0  46  0.245  0  100  0.237  0  136  

Fig. 7. Active Power Load Profile under Various Load Models and Locations.  
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4.1. Numerical results 

This section outlines the novel methodology proposed in this paper 
for mitigating the impact of EVCS in the RDN while minimizing the 
SCOPE index. The study also delves into the uncertainties associated 
with SDG and system load by applying the suggested optimization 

approach. Utilizing V2G technology and enabling two-way power ex
change between EVCSs and SMGs significantly reduces the need to 
purchase power from the upstream network, thereby reducing depen
dence on the main grid. The model and optimization problem for SMGs 
in a 24-h operational time horizon are detailed in this section. This 
timeframe is chosen to explore the impact of uncertainties in SDG-based 
units and load consumptions within various scenarios on DSVC units, 
BESS, and responsive loads. To determine the optimal placement of 
EVCS on the RDN, an optimal number of EVCS units needs to be 
deployed at strategic bus locations. Since EVCS installation increases 
active power loss and affects other parameters of the SCOPE index in the 
network, SDGs and DSVCs are optimally positioned to compensate for 
these losses. The IBESA is employed to optimize the SCOPE index. Before 
integrating EVCS and SDG/DSVC, a BFS approach-based power flow 
study is conducted to establish baseline losses. The optimal locations 
and sizes of SDG and DSVC units are presented in Table 2, while the 
corresponding multipliers for hourly forecasted real and reactive power 
outputs from SDG and DSVC are depicted in Figs. 10 and 11, respec
tively. The optimal placement of SDG/DSVC units is identified at the 
13th, 24th, and 30th buses within each SMG. BESS units are co-located 
with SDG units, storing power during periods when EVCS is not actively 
drawing power and discharging during peak hours to support the SMGs. 

Fig. 8. EV Load Profile under Various Load Models and Locations.  

Fig. 9. Implementation Process of the IBESA for the proposed work.  

Fig. 10. Hourly SDG Output (kW) under Various Load Factors and Locations.  

Fig. 11. Hourly DSVC Output (kVAr) under Various Load Factors 
and Locations. 
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In the evolving landscape of future distribution systems, SMGs bear a 
crucial responsibility in enhancing the technical specifications of RDN 
by actively providing ancillary services to the network. A fundamental 
requirement for SMGs is to support the real and reactive demand of the 
network, aiming to improve key aspects such as voltage stability, 
operational cost efficiency, power loss reduction, and the mitigation of 
CO2 emissions within the system. Figs. 10 and 11 present a compre
hensive depiction of the generated real and reactive powers of SDG and 
DSVC units over a 24-h period with different load factors. This study 
strategically incorporates EVCSs to elucidate the influence of EVs on the 
generation patterns of SDGs. By actively participating in the generation 
of real and reactive powers, SDG units contribute to meeting the real and 
reactive demand of the network, thereby positively impacting voltage 
stability and overall system performance. Additionally, DSVC units play 
a crucial role in providing reactive power support, enhancing voltage 
regulation, and addressing stability concerns within the system. This 
integration of SMGs, especially with the inclusion of EVCSs, not only 
supports the technical requirements of the RDN but also highlights the 
dynamic interaction between emerging technologies like EVs and the 
generation capabilities of SDG and DSVC units. Such insights are vital 
for designing robust and adaptive future distribution systems that can 
effectively meet the evolving demands of a sustainable and resilient 
energy landscape. 

Table 3 provides a detailed information of the hourly EVCS demand 
and the corresponding modes of operation. Additionally, Figs. 12 and 13 
offer a comprehensive examination of the charging and discharging 
patterns of both EVCS and BESS over a 24-h period on the RDN under 
various load factors and locations. Based on the literature study findings, 
V2G services appear more viable during the middle of the day, while 
G2V services are more prevalent in the evening. Given the diverse load 
models in the proposed approach’s test system, G2V operations are 
scheduled from 5 p.m. to 9 p.m. (evening), whereas V2G operations are 
scheduled from 10 a.m. to 3 p.m. (middle of the day) for the simulation 
study. This strategic scheduling ensures that EVCSs leverage surplus 
power generated by the SDG units during their peak performance hours. 
Conversely, during peak demand periods when grid demand is highest, 
all three EVCSs seamlessly transition into discharging mode (V2G 
mode). This mode enables EVs to supply power back to the grid, thereby 
contributing to grid support and demand management efforts. 

In scenarios where the power supplied by the SDG units is insuffi
cient to meet the required demand, the EVCSs have the capability to 
draw additional power from the grid. Notably, during periods when the 
EVCSs are in an idle state and not actively charging or discharging, any 
surplus power is stored in the BESS. This stored energy is strategically 
discharged during peak demand hours, further optimizing the utilization 
of resources and supporting the grid when additional power is needed. 
This dynamic operation of EVCSs and BESS, synchronized with the 
varying patterns of SDG output and grid demand, exemplifies an intel
ligent and adaptive approach to managing power flows within the RDN. 
It not only enhances the efficiency of power utilization but also con
tributes to the overall stability and reliability of the system, aligning 
with the evolving requirements of modern smart grids. 

4.2. Effect of EVCS Load on SCOPE Index 

The analysis of the impact of EVCS load on the distribution network’s 
SCOPE index was carried out over a 24-h period, as shown in Table 4. 
This subsection describes the findings of this investigation, which shed 
insight on the dynamic relationship between EV charging operations and 
the overall performance of the RDN.Top of Form 

Table 3 
Hourly EVCS Demand and Modes of Operation under Various Locations (Nodes).  

Time 
(Hour) 

EVCS demand (kW) Modes of operation 
(G2V/V2G/Ideal) 

2nd 

Location 
19th 

Location 
26th 

Location 

1  0  0  0 Ideal 
2  0  0  0 Ideal 
3  0  0  0 Ideal 
4  0  0  0 Ideal 
5  0  0  0 Ideal 
6  0  0  0 Ideal 
7  0  0  0 Ideal 
8  0  0  0 Ideal 
9  0  0  0 Ideal 
10  539.76  30.1008  1572.33 V2G 
11  534.1027  36.3274  1514.36 V2G 
12  494.3378  36.219  1502.02 V2G 
13  423.6422  40.4957  1440.4 V2G 
14  360.3158  54.439  1473.23 V2G 
15  304.3351  65.785  1475.57 V2G 
16  0  0  0 Ideal 
17  410.7485  93.3667  1715.45 G2V 
18  466.4336  125.859  1742.04 G2V 
19  544.5121  185.632  1420.01 G2V 
20  524.1593  239.604  602.311 G2V 
21  468.313  258.516  290.359 G2V 
22  0  0  0 Ideal 
23  0  0  0 Ideal 
24  0  0  0 Ideal  

Fig. 12. Hourly EVCS Demand (kW) under Various Load Factors and Locations.  

Fig. 13. Hourly BESS Output (kW) under Various Load Factors and Locations.  
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4.2.1. Effect of EVCS Load on Voltage Stability 
This subsection addresses the evaluation of the EV charging load’s 

impact on the voltage stability of the modified IEEE 33-bus test RDN. 
The VSI is calculated for all buses using the proposed methodology. 
Table 4 presents the VSI values for the base case (before compensation) 
and subsequent to the placement of EVCS and other compensators (after 
compensation). The VSI serves as an indicator of bus stability, with 
values ranging between 0 and 1. Buses with higher VSI values close to 
one are considered stable, while those with lower values near zero are 
deemed prone to instability and require attention. The strategic place
ment and sizing of EVCSs and SDGs are contingent upon the continuous 
decline and abrupt rise in VSI. Fig. 14 illustrates the VSI values for the 
base case, after EVCS placement during charging times, and after 
considering SDGs and DSVC for a 24-h period. Notably, the installation 
of EVCS load at robust buses (bus 2, 19, and 26) mitigates the degra
dation of voltage stability. 

Furthermore, the stability index of the system’s weakest buses im
proves with the introduction of SDGs, considering the base values across 
all load levels throughout the day. The VSI values exhibit improvement 
for all buses with SDG and DSVC placement compared to EVCS place
ment alone. Consequently, the likelihood of voltage instability is 
reduced, rendering the system more stable with the combined deploy
ment of SDGs and DSVCs. This underscores the effectiveness of inte
grating renewable energy sources and compensating devices in 
enhancing the voltage stability of the RDN, particularly in the context of 
EV charging scenarios. 

4.2.2. Effect of EVCS load on cumulative voltage variation 
Table 4 provides the CVV for all load levels, depicting values for the 

base case, as well as after the placement of EVCSs, SDG, and DSVC. The 
CVV serves as an indicator of the voltage profile of the system, with 
lower values indicating an improved voltage profile. Fig. 15 further 

Table 4 
Hourly Performance Analysis of SCOPE Index.  

Time (Hour) Load factor Voltage Stability (p.u) CVV (p.u) TOC ($) Power Loss (kW) Emission (ton/kWhr) 

Before After Before After After Before After Before After 

1  0.867  0.7413  0.7509  0.0706  0.0676  1743.8  116.36  107.2  2818.62  2818.62 
2  0.852  0.7456  0.7547  0.0693  0.0665  1634.36  112.15  103.59  2769.85  2769.85 
3  0.837  0.7498  0.758  0.068  0.0655  1580.2  108.02  100.05  2721.09  2721.09 
4  0.83  0.7518  0.7599  0.0674  0.0649  1518.52  106.13  98.38  2698.33  2698.33 
5  0.83  0.7518  0.7603  0.0674  0.0648  1631.12  106.13  97.78  2698.33  2698.33 
6  0.859  0.7436  0.7536  0.0699  0.0668  1931.4  114.1  104.1  2792.61  2792.61 
7  0.889  0.735  0.7481  0.0725  0.0685  2471.28  122.69  109.07  2890.14  2890.14 
8  0.926  0.7245  0.7584  0.0758  0.0652  4856.03  133.77  95.92  3010.43  2768.85 
9  0.933  0.7225  0.7866  0.0764  0.0567  8104.34  135.92  64.21  3033.18  2311.1 
10  0.937  0.7214  0.8382  0.0767  0.0417  22234.6  137.16  50.47  3046.19  0 
11  0.941  0.7203  0.8587  0.0771  0.0359  23402.8  138.41  42.94  3059.19  0 
12  0.933  0.7225  0.8633  0.0764  0.0347  23695.8  135.92  44.48  3033.18  0 
13  0.911  0.7288  0.8834  0.0745  0.0291  23608  129.21  37.61  2961.66  0 
14  0.904  0.7308  0.8846  0.0738  0.0288  23347.8  127.12  37.87  2938.91  0 
15  0.907  0.7299  0.8681  0.0741  0.0334  21533.2  128.01  39.16  2948.66  0 
16  0.911  0.7288  0.8194  0.0745  0.0471  9845  129.21  43.35  2961.66  2004.05 
17  0.915  0.7276  0.7641  0.0748  0.0635  19245.2  130.42  183.13  2974.67  2388.65 
18  0.919  0.7265  0.7467  0.0752  0.0688  18240  131.635  222.6  2987.67  2762.36 
19  1  0.7037  0.7152  0.0823  0.0786  15971.8  157.55  242.76  3251  3251 
20  1  0.7037  0.7305  0.0823  0.0738  11523.7  157.55  169.59  3251  3251 
21  0.963  0.7141  0.7409  0.079  0.0706  9134.34  145.39  139.6  3130.71  3130.72 
22  0.911  0.7288  0.7543  0.0745  0.0665  3175.68  129.21  110.17  2961.66  2961.66 
23  0.889  0.735  0.7523  0.0725  0.0672  2276.88  122.69  109.22  2890.14  2890.14 
24  0.867  0.7413  0.7522  0.0706  0.0672  1836.2  116.36  106.55  2818.62  2818.62 
Average  0.905  0.7304  0.7834  0.0739  0.0581  10605.9  127.96  102.492  2943.65  2080.3  

Fig. 14. Hourly Voltage Stability.  Fig. 15. Hourly Cumulative Voltage Variation.  
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illustrates the hourly CVV of the modified 33-bus system over a 24-hr 
period. Notably, the minimum CVV occurs during the hours from 8 a. 
m to 6 p.m, while the CVV values reach their maximum during the pe
riods from 1 a.m to 7 a.m and 7 p.m to 12 a.m. These variations align 
with the charging and discharging cycles of EVCSs implemented in the 
proposed method. The introduction of SDG and DSVC results in signif
icant mitigation of CVV, particularly during the peak demand hours. The 
peak mitigation is observed after the installation of SDG and DSVC, 
contributing to a substantial reduction in losses and an overall 
enhancement of system performance. This analysis underscores the 
effectiveness of integrating RES and compensating devices, such as SDG 
and DSVC, in not only improving the voltage profile of the distribution 
network but also mitigating voltage variations induced by EV charging 
and discharging activities. The observed reduction in CVV signifies 
enhanced stability and resilience of the system, showcasing the potential 
of the proposed methodology to optimize system performance in the 
presence of EVCSs. 

4.2.3. Effect of EVCS load on total operating cost 
Table 4 outlines the TOC of the proposed method following the 

installation of compensating devices. The TOC is computed based on 
power loss values and the corresponding sizes of compensators (kW/ 
kVAr). Fig. 16 graphically represents the Hourly TOC of the proposed 
approach after the implementation of SDG and DSVC in the modified 
IEEE-33 RDN. The TOC is influenced by the values of power loss and the 
sizing of compensators, and its trends provide insights into the economic 
efficiency of the proposed methodology. The operating cost experiences 
an increase during G2V mode, reflective of the energy consumption 
pattern during this phase. Conversely, the operating cost decreases 
during V2G mode, as EVs contribute power back to the grid. It is crucial 
to note that despite potential economic losses associated with improper 
placement of charging stations leading to a higher TOC, the imple
mentation of EVs with a V2G scheme yields a net benefit that cannot be 
overlooked. The net economic gain derived from the V2G scheme out
weighs the drawbacks, emphasizing the overall economic viability and 
positive impact on the operating cost despite initial challenges associ
ated with EV charging stations. This analysis highlights the importance 
of strategically managing the operating cost dynamics, considering both 
charging and discharging modes, to maximize the economic benefits of 
integrating EVs and compensating devices within the distribution 
network. 

4.2.4. Effect of EVCS load on power loss 
Mitigating power loss is a crucial objective for network operators, 

particularly after the installation of EVCS in the RDN. This subsection 
presents an analysis of the impact of EVCS loads on the power loss of the 
distribution network over a 24-h period, considering different load 
factors as outlined in Table 4. Fig. 17 visually represents the magnitude 
of power loss in the network both before and after the placement of 
EVCS, SDG, and DSVC. It is evident that improper placement of EVCS 
and compensating devices leads to higher power losses compared to 
optimal placement strategies. Post-installation of EVCSs alone, the 
power loss in the distribution network tends to increase. However, this 
increased power loss is effectively controlled by strategically placing 
SDG and DSVC within the RDN. The power loss is minimized when SDG 
produces maximum power, typically during periods of ample sunlight. 
Additionally, during peak hours, EVCSs are operated in V2G mode, 
contributing to a mitigation in system loss induced by EVs within the 
RDN. This analysis underscores the significance of optimal placement 
and operation strategies for EVCS, SDG, and DSVC in effectively man
aging and mitigating power losses in the RDN. The combination of RES 
and smart compensating devices is critical in improving overall network 
efficiency and sustainability, even in the presence of dynamic elements 
such as EV charging operations. 

Fig. 16. Hourly Total Operating Cost.  Fig. 17. Hourly power loss.  

Fig. 18. Hourly CO2 emission.  
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4.2.5. Effect of EVCS load on emission 
Electricity generation accounts for around 40% of global CO2 emis

sions, mostly from the combustion of fossil fuels to generate heat for 
powering steam turbines. The resulting CO2 emissions contribute 
significantly to global warming. Hence, reducing CO2 emissions is 
crucial for promoting a sustainable environment. Smart electric grid 
technologies have the potential to play a pivotal role in achieving such 
reductions. The effect of EVCS loads on the CO2 emissions of the RDN 
was analyzed over a 24-h period, as outlined in Table 4. The results of 
this analysis are presented below. Fig. 18 visually depicts the hourly CO2 
emissions of the proposed approach. The reduction in CO2 emissions is 
achieved by supplying power through SDG and EVCS in V2G mode to the 
grid. This reduction is particularly notable during the time period from 7 
a.m to 7 p.m. The application of SMG technologies, such as integrating 
renewable energy sources and optimizing the use of EVs in V2G mode, 
contributes to the reduction of CO2 emissions. 

Furthermore, when the real power is fully supplied to the SMGs by 
the SDG and EVCS in V2G mode, emissions are nearly eliminated. This 
observation is evident from Fig. 18, where emissions are close to zero 
during the hour 10–15, coinciding with the period when SDG and EVCS 
produce maximum power to the SMGs. It’s important to note that SDG 
alone is not the sole contributor to emission reduction. EVCS in V2G 
mode also plays a significant role in reducing emissions within the RDN. 
Additionally, there’s a small contribution from BESS when discharging 
power to the SMGs during peak hours, further aiding in emission 
reduction efforts. By strategically utilizing clean energy sources and 
leveraging the capabilities of EVs, the proposed approach aligns with the 
imperative of mitigating the environmental impact associated with 
electricity generation. This underscores the potential of smart grid 
technologies in fostering a more sustainable and eco-friendly energy 
landscape. 

4.3. Comparative analysis 

The effectiveness of the IBESA strategy was evaluated using the 
standardized IEEE 33-test system, with the objective of minimizing the 
SCOPE index. A thorough assessment was carried out, comparing the 
performance of well-known algorithms such as Cuckoo Search Algo
rithm (CSA) (Yang and Deb, 2010), Particle Swarm Optimization (PSO) 
(Kennedy and Eberhart, 1995), and Genetic Algorithm (GA) (Holland, 
1992) against IBESA, all executed under the same conditions. To facil
itate comparison, the distribution system load was kept constant at a 
load factor of 1.0. The optimized results obtained from each optimiza
tion method were compiled in Table 5, illustrating a consistent trend 
that positioned IBESA as the superior approach for minimizing the 
SCOPE index across all investigated scenarios. Pictorial comparisons of 

each SCOPE index among the considered optimization methods, 
including the proposed IBESA, are presented in Figs. 19–23. 

Fig. 19 illustrates the first index of SCOPE, specifically the stability 
comparison of several algorithms. It compares the VSI values of each 

Table 5 
Comparative analysis of results under various optimization algorithms (Constant load).  

Parameters Base Case IBESA CSA (Yang and Deb, 2010) PSO (Kennedy and Eberhart, 1995) GA (Holland, 1992) 

SDG Size in kW (Location) –  630 (13) 
870 (24) 
920 (30)  

810 (6) 
470 (18) 
690 (29)  

840 (8) 
125 (20) 
750 (30)  

760 (10) 
100 (19) 
730 (25) 

DSVC Size in kVAr (Location) –  310 (13) 
445 (24) 
675 (30)  

450 (6) 
110 (18) 
580 (29)  

420 (8) 
125 (20) 
650 (30)  

540 (10) 
150 (19) 
430 (25) 

EVCS Size in kW (Location) –  325 (2) 
405 (19) 
570 (26)  

1490 (2) 
440 (19) 
390 (26)  

1220 (2) 
420 (19) 
720 (26)  

585 (2) 
190 (19) 
1200 (26) 

Stability (p.u) 0.7037  0.9143  0.9119  0.8308  0.7614 
CVV (p.u) 0.0823  0.0195  0.0209  0.0437  0.0632 
TOC ($) –  25861.6  27303.5  26603.4  26856.7 
Power Loss (kW) 157.56  27.89  38.37  63.34  107.93 
Emission (ton/kWhr) 3251  1048.2  1458.3  1690.4  1804.1 
Objective Function Value –  65.06  68.71  67.04  67.76 
Convergence time (s) –  9.89  11.54  13.05  15.09  

Fig. 19. Comparison of voltage stability profile using various algorithms.  

Fig. 20. Comparison of CVV profile using various algorithms.  
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node for both the base case and the optimized case using various algo
rithms. As indicated in Table 5 and Fig. 19, IBESA consistently produced 
superior VSI values (IBESA - 0.9143p.u, CSA - 0.9119p.u, PSO - 0.8308p. 
u, and GA - 0.7614p.u). The second index, CVV, is compared across 
various algorithms in Fig. 20. By examining the figure and Table 5, it is 
evident that the proposed IBESA offers better CVV minimization (IBESA 
- 0.0195p.u, CSA - 0.0209p.u, PSO - 0.0437p.u, and GA - 0.0632p.u). 
The third index, TOC, is calculated based on SDG, DSVCS, and EVCS 
sizes, as well as power losses. The bar chart in Fig. 21 highlights the 
superiority of IBESA in TOC minimization compared to other algorithms 
(IBESA - 25861.6$, CSA - 27303.5$, PSO - 26603.4$, and GA - 26856.7 
$). Next, the index of power loss is compared at each node across all 
algorithms in Fig. 22. Notably, IBESA outperformed competing algo
rithms such as CSA (38.37 kW), PSO (63.34 kW), and GA (107.93 kW) 
with a power loss of 27.89 kW. As reported in Table 5 and illustrated in 
Fig. 22, IBESA displayed more efficient loss reduction. The final index, 
CO2 emission reduction, is compared in Fig. 23’s bar chart. The sug
gested IBESA outperformed competing methods in terms of CO2 emis
sion reduction (IBESA - 1048.2ton/kWhr, CSA - 1458.3ton/kWhr, PSO - 
1690.4ton/kWhr, and GA - 1804.1ton/kWhr). This result underscores 
IBESA’s reputation as an innovative solution for effectively minimizing 
the SCOPE index in the RDN. Based on the above discussion, these 
findings demonstrate IBESA’s potential to address complicated power 
system difficulties. 

The efficacy of an algorithm in attaining the optimal solution is 
significantly influenced by its reliability in convergence. Fig. 24 illus
trates the convergence patterns of various renowned algorithms like 
CSA, PSO, and GA, as applied to the IEEE 33-bus test system for the MOF. 
Additionally, Table 5 provides insight into the convergence time for 
each algorithm. This study lays the groundwork for comprehending the 
performance of the IBESA algorithm. Notably, IBESA surpasses its 
competitors in terms of speed, achieving convergence to the optimal 
objective value within just eight iterations. The distinguishing feature of 
IBESA lies in its high convergence rate, blending stability, speed, and an 
exceptional ability for near-global exploration in solving the SCOPE 
index. When juxtaposed with other algorithms under scrutiny, IBESA 
stands out for its swiftness and precision in convergence, consistently 
maintaining a rapid pace of convergence. 

Fig. 21. Comparison of TOC using various algorithms.  

Fig. 22. Comparison of power loss profile using various algorithms.  

Fig. 23. Comparison of CO2 emission using various algorithms.  

Fig. 24. Comparison of various algorithms convergence characteristics of the 
objective function value. 
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4.4. Outcome of SCOPE index 

EVs offer environmental benefits by reducing local emissions; how
ever, their integration into the electricity distribution network in
troduces challenges. This work conducted a comprehensive analysis of 
the impact of EVCS loads on various technical and economic parameters 
in the context of the modified IEEE 33-bus RDN. The key findings and 
observations are summarized below:  

• The modified IEEE 33-bus test system demonstrated resilience in 
accommodating the placement of three EVCSs, SDGs, and DSVCs 
within SMGs. Beyond three installations, no further reduction in the 
SCOPE index was observed, indicating the need for network up
grades for additional EVCSs/SDGs/DSVCs.  

• Improper placement of EVCSs/SDGs/DSVCs in SMGs adversely 
affected the SCOPE index, emphasizing the importance of strategic 
deployment for optimal performance.  

• The maximum reduction in the SCOPE index was achieved when 
SDG units produced the maximum output power, underscoring the 
significance of RES in improving system performance.  

• The SCOPE index, by considering voltage stability, voltage, cost, 
power loss, and emissions collectively, demonstrated its novelty and 
efficacy as a comprehensive performance metric.  

• The analysis of CO2 reduction revealed that SDG and EVCS (in V2G 
mode) contributed significantly to lowering emissions during spe
cific hours. 

• The unique aspect of the SCOPE index lies in its ability to simulta
neously encompass voltage stability, voltage levels, cost, power loss, 
and emissions within a unified framework. Additionally, this study 
introduced a strategy for EVCS placement in SMG based on the 
IBESA. The outcomes of the optimal EVCS placement, guided by the 
SCOPE index, affirm the effectiveness and utility of this compre
hensive metric in evaluating and optimizing the performance of the 
distribution network. 

4.5. Future direction 

Future research directions in this area include:  

• Grid Resilience Strategies: Explore strategies to enhance grid 
resilience against potential disruptions caused by the integration of 
EVCS through advanced control and protective mechanisms.  

• Demand Response Optimization: Investigate how demand 
response programs and advanced optimization techniques can be 
applied to coordinate and optimize the charging and discharging 
patterns of EVs within the Smart Microgrid, considering both eco
nomic and grid stability objectives.  

• Cybersecurity in Smart Grids: Address the evolving cybersecurity 
challenges associated with the integration of EVCS and SMGs, 
ensuring the security and integrity of data and communication 
networks.  

• Dynamic Pricing Models: Develop and evaluate dynamic pricing 
models that encourage users to adopt smart charging behaviors, 
considering time-of-use pricing and incentives to promote load 
balancing and grid reliability.  

• Integration of Energy Storage: Explore the integration of advanced 
energy storage systems, such as advanced batteries, to mitigate the 
variability of renewable energy sources and enhance the overall 
reliability and resilience of the SMG.  

• Advanced Forecasting Techniques: Develop and implement 
advanced forecasting techniques for predicting EV charging patterns, 
renewable energy generation, and overall energy demand within the 
Smart Microgrid, aiding in better decision-making and resource 
allocation. 

• Interoperability Standards: Investigate and establish interopera
bility standards for seamless integration and communication among 

different components within the Smart Microgrid, promoting a 
standardized and efficient system. 

These future research directions aim to address emerging challenges 
and opportunities in the context of SMGs and the integration of EVs, 
contributing to the advancement and sustainability of smart grid 
technologies. 

5. Conclusions 

The rapid global surge in EV adoption, fueled by factors such as low 
CO2 emissions, simplified maintenance, and minimal operating costs, 
prompted extensive research in EVCS. The integration of EVCS into 
existing distribution grids posed challenges related to potential power 
losses and voltage variations exceeding acceptable limits. This 
complexity was exacerbated by the growing prevalence of randomly 
dispersed solar-based DG and BESS. In response to these challenges, 
DSVC systems were introduced, offering benefits such as enhanced 
power transfer capacity and improved voltage regulation without 
extensive infrastructure upgrades. This research presented the SCOPE 
framework, encompassing objectives such as minimizing real power 
loss, reducing bus voltage variation, maximizing system voltage stabil
ity, minimizing system operating costs, and mitigating CO2 emissions 
indices. The framework leveraged the IBESA to optimize the EVCS 
placement problem within this multi-objective context. The model 
accounted for V2G capabilities and user driving patterns over a 24-h 
horizon. The proposed SMG structure, based on the modification of 
the standard IEEE 33-bus test RDN, included three interconnected SMGs 
serving residential, commercial, and industrial users. The ideal position 
and size of EVCS and RESs were determined using the IBESA-based 
optimization technique. Results demonstrated the efficacy of inte
grating SDGs and DSVCs in reducing the SCOPE index, affirming the 
benefits of the proposed IBESA algorithm. This research provided a 
comprehensive solution to the intricate challenges associated with EVCS 
integration, offering a sustainable and optimized approach for future 
smart microgrids. The success of this study opens avenues for further 
exploration and implementation of advanced smart grid technologies to 
foster a cleaner and more efficient energy landscape. 
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