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ABSTRACT 

 

Comprehensive Survey of Machine Learning Applications in Power Systems  

By  

 

Pejman Azizzadeh  

 

Master of Science in Electrical Engineering 

This project presents a comprehensive survey of artificial intelligence in electric power system 

applications. It summarizes a general view of artificial intelligence in power systems in five 

chapters. The first chapter of This survey paper seeks to contribute to the literature by expanding 

on the existing research that has been published. A systematic review of the literature 

summarizes the practical applications of artificial intelligence to improve power systems in 

different areas such as control, security, distributed energy systems, control of load flow, and 

detecting faults. The second chapter is based on recent studies and research on artificial 

intelligence methods. It explains three critical categories of artificial intelligence: rule-based 

systems, machine learning techniques, and metaheuristic methods. The third chapter consists of 

the methodology for the literature review. It provides the databases that were used to search for 

the sources, as well as the screening procedure, time period for the search, and search string. 
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Chapter four describes Artificial intelligence applications. Finally, chapter five elaborates on the 

outlook for artificial intelligence in the power system.  
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1. INTRODUCTION 

 

Modern society has developed a strong dependency on electrical energy. This 

dependency creates an important demand for ensuring that power system operators are 

functioning reliably to ensure that there is a readily available supply of electrical energy. 

However, energy transitions have presented challenges pertaining to the stability for maintaining 

energy grid operations. Given these challenges, there is a demand for system operators to 

identify solutions for maintaining a stable grid so that a reliable source of energy can be readily 

supplied. These solutions focus on ensuring that there is adequate energy supply available when 

deviating away from non-renewable energy sources through the adoption of carbon-neutral 

systems. 

Given these challenges, numerous government agencies around the world are seeking to 

implement environmental solutions by working alongside grid operators. These government 

agencies are focused on integrating renewable energy from offshore sources. This is a strategy 

that the members of the European Commission have implemented. For example, the German 

government has implemented a strategy of optimizing its existing energy grid structures in an 

effort to reduce energy reserves, while also accelerating the development of new power lines. 
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In addition to these conventional strategies for improving the efficiency of power system 

operations, there are also data-driven strategies that can be incorporated. One of these 

strategies is the use of artificial intelligence to manage power systems operations using 

computational power. The literature provides data analysis from artificial intelligence 

measurement systems that utilize computational power to analyze data in real time. These 

research studies have led to interest in conducting additional research about the practical 

applications of artificial intelligence for improving the operational efficiency of distribution power 

systems. Online databases were used to collect and analyze data from the growing number of 

research studies published on artificial intelligence using data-driven systems to manage 

distribution power systems. The three online databases that were examined include Wiley’s, 

IEEE, and Elsevier. The change in the number of monthly publications on AI-driven distribution 

systems is plotted in Figure 1 below. The figure demonstrates that there has been a 40% increase 

in the number of research studies published on the topic of artificial intelligence applications to 

power systems from the year 2016 to 2021.        

The literature investigates the different applications that AI provides to power systems. For 

example, Zhao et. al discusses how artificial intelligence has applications to the three phases of 

the power electronics life cycle. These three phases include the design, control, and 

maintenance. The authors address the potential applications of AI in the management of electronic 

systems (AI). At least one activity can be handled by artificial intelligence in each stage of the 

design, control, and maintenance phases. 
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Figure 1. The number of publications on AI-driven distribution systems  

  

These activities include optimization, categorization, regression, and data structure analysis. This 

article covers a wide range of artificial intelligence (AI) models, including but not limited to expert 

systems, fuzzy logic, met heuristic approaches, and machine learning, along with the applications 

of each model. More than five hundred publications were reviewed to determine the current state 

of public awareness, the difficulties associated with implementing AI, and the potential research 

issues. Alongside this article, you will find a link to a downloadable Excel sheet that contains a 

compilation of helpful materials on statistical analysis. This article goes into the many forms of AI 

that are now being implemented in electrical power systems. The following outlines some recent 

discoveries. Design, control, and maintenance of power electronic systems are the three primary 

applications of artificial intelligence that are now being explored. At each stage of the life cycle of 

the technology, researchers investigate the adoption rate of (AI) artificial intelligence its 
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application pattern, features, and resource requirements. Expert systems, fuzzy logic, met heuristic 

techniques, and machine learning is the categories that can be used to categorize the artificial 

intelligence approaches implemented in power electronic systems nowadays. Comparisons 

between the suitable AI algorithms for each domain regarding their application patterns, 

advantages and disadvantages, and upper and lower bounds are made. Most software associated 

with AI is geared toward recognizing, categorizing, and improving data structures. By employing 

a chronology, we can examine the development of the most significant algorithms and the many 

applications to which they have been put. In addition to illustrative examples for every step of the 

life cycle, this article discusses the difficulties that need to be overcome and suggests future 

research fields. [1]. In a separate research study, Monti et. al investigates the different ways that 

distributed intelligence systems can control smart energy grids. This study presents a description 

of the issues, potential solutions, and recent breakthroughs in power distribution control that arise 

from multiple sources. These challenges have been identified as having several different origins. 

In the not-too-distant future, a considerable adjustment will be made to the electricity networks' 

organizational structure. There is not much space for debate on whether this will have the most 

substantial impact on distribution. This tutorial looks at the current state of affairs and explains 

how the grid might one day develop into something more intelligent and adaptable. To a significant 

extent, this idea depends on a varied collection of decentralized and renewable power plants. In 

the following sections, various subjects, including network-based control, distributed state 

estimation, and distributed intelligence, are broken down and examined in light of recent 

discoveries. The instruction explained that the electrical grid is in a state of constant change and 

that it is dynamic. 
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As a consequence of these shifts, it is more essential than ever to research new methods for the 

automation of the electrical system. Using this case study as an example, the authors focused on 

three critical areas: network-based control, distributed intelligent systems, and distributed state 

estimation. Each of these issues contains reports that provide a synopsis of the most recent findings 

from research on a range of specialized subjects [2]. A third example is Omitaomu’s survey 

research that investigates the security risks and operational challenges to consider when relying 

on AI-driven smart grids [3]. 

The literature also includes research studies that investigate the specific applications of AI-driven 

power systems. Cao et. al applies deep reinforcement learning as a means of solving challenging 

problems for the use of current power systems [4]. Glavic et. al also investigates how 

reinforcement learning can be used to improve the control and decisions made by power systems 

[5]. Another topic investigated by Sun et. al is the opportunities and challenges for using voltage 

control [6]. Similarly, Aldhelou et. al investigate the opportunities and challenges for the 

integration of artificial intelligence to improve the control of load flow. The paper concludes with 

a section that discusses current and future research requirements and emerging research trends 

in LFC. The article discusses the present situation of load frequency regulation in power networks 

worldwide. Because of this, all mathematical models of frequency response for traditional and 

intelligent power systems are subjected to substantial research. There are various innovative 

system models; examples are distributed generation, microgrids, smart grids, and modern power 

systems that use multiple renewable energy sources. In addition, both traditional and adaptive 

control strategies are thoroughly examined in this study. Studies also study cutting-edge control 

strategies for load frequency management in power systems, such as optimum control theory, 
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resilient control, and a control strategy based on soft computing. These theories and strategies 

include optimum control and robust control. In conclusion, we look at a few unanswered 

questions and some future avenues of investigation for load frequency control systems [7]. 

Darab et. al and Chai et. al have also contributed to the applications of artificial 

intelligence in smart grids by investigating the different methods  that can be applied for 

detecting faults and making diagnoses for power systems [8]. Kumar et. al also investigates the use of 

emerging techniques to integrate resources of distributed energy systems to improve smart grids. 

Following this, they covered the benefits and drawbacks of utilizing AI approaches and their basic 

principles, characteristics, and practical implementations within the realm of power grid FD. They 

discussed how artificial intelligence (AI) may be utilized shortly to identify and fix faults in the 

nation's electrical grid. This step is intended to encourage future research in the field, as 

mentioned above. Some minor adjustments have been made to the Grid FD approach that is 

dependent on AI. This research suggested several different artificial intelligence methodologies 

for locating issues with electricity grids. The authors examined the positive and negative aspects 

of the currently available AI power grid FD techniques. This study estimates the future of AI-

powered power grid FD in light of recent breakthroughs in AI technology (like AlphaGo) and the 

significant emphasis given to AI research and deep learning. At this point, most power grid FD 

techniques based on artificial intelligence (AI) are still in the experimental phase. On the other 

hand, because of the speedy advancement of AI technology, brand-new AI-based power system 

FD solutions are anticipated to be produced and put into action in the future [9]. Cai & Lu also 

investigate the applications of metaheuristic algorithms to improve power systems [10]. 
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The objective of this survey paper is to provide a systematic review of the existing applications 

that artificial intelligence provides to distribution power systems while also discussing the 

potential concerns for their practical applications. These findings are summarized based on the 

following: 

The systematic review of the literature discusses the practical applications of artificial intelligence 

systems to improve the operations of distribution power systems. The systematic review also 

includes an analysis of the requirements needed for artificial intelligence to provide applications 

to distribution systems while also discussing the key functions of artificial intelligence when 

applied to distribution power systems. Based on the analyzed data from the literature, the four 

key metrics to consider are the dynamics, adaptability, dataset, and runtime of artificial 

intelligence systems. In this survey paper, each of these four metrics is evaluated based on a 5-

point Likert scale. The metrics are rated from their practical applications derived from analyzing 

the selected research studies. 

A set of guidelines is created to outline the techniques for different artificial intelligence 

applications. These guidelines are derived from a performance analysis that considers the 

effectiveness of AI tools in creating AI solutions. 

The structure of this survey paper begins with Section II, which includes a brief overview of 

commonly used artificial intelligence techniques. This includes a discussion of the concepts of 

machine learning, fuzzy logic, metaheuristic, and the control phase. Section III includes literature 

review that analyzes the research methodologies of the selected studies, and introduces the four 

metrics used to evaluate these studies. Section IV includes a discussion of the practical 
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applications of artificial intelligence techniques to improve power system operations. Section IV 

is broken down into two sections that discuss closed-loop and decision-support systems. Section 

IV concludes with the guidelines for selecting suitable artificial intelligence techniques for each 

application to distributed power systems. Section V discusses the future outlook of artificial 

intelligence for improving distributed power systems. Section V also provides a brief overview of 

the key concepts applicable to artificial intelligence. Lastly, Section VI provides a summary for the 

key contributions of this survey paper to the literature. This survey paper aims to provide an 

overview of systematic research studies in order to provide guidelines for choosing artificial 

intelligence algorithms to enhance the operational efficiency of distribution power systems. 

 

 

 

 

 

 

 

 

 



[9] 
 

2. ARTIFICIAL INTELLIGENCE METHODS 

         The literature has provided an extensive discussion of artificial intelligence. In the 1940s, 

Turing introduced the definition of artificial intelligence [11]. However, recent research studies 

demonstrate disagreements about the definition of artificial intelligence. Despite these 

disagreements, there is a consensus that artificial intelligence consists of information processing 

systems that influence an environment through an ability to learn and adapt. The next part lays 

out four criteria for a good working definition, including how basic it should be, how it should 

reference relevant research, and how it should have a clear limit. These criteria are used to assess 

general field definitions. Adapting with limited information and tools is the essence of intelligence. 

Comparisons are made between this meaning and another to show how the effects of this term 

vary. The goal of this concept is to offer a solid foundation for the profession while resolving 

several problems. The concept of "Intelligence" within the field of artificial intelligence requires 

more study than has been conducted so far. Different scenarios necessitate different research paths; 

therefore, a working definition is crucial. Today's AI is a synthesis of many multiple areas of study, 

each with its theoretical underpinnings, practical applications, and other defining characteristics. 

The term "AI," is used to describe them all, but not in a theoretical sense. Losing all of these under 

the umbrella term "AI." is a mistake, although there are certain commonalities between them. One 

does not need a theoretical background to use this strategy effectively. Questions about artificial 

intelligence (AI) are not immediately apparent. When asked, "How to build AI" and "Is AI useful?" 

Because so many different kinds of AI can have such different outcomes, the question requires a 

definition of AI. It is essential to distinguish between systems whose knowledge, including moral 

and ethical understanding, is entirely predetermined in their design and development (their nature) 

and those whose knowledge is primarily derived from their own experience once they start 
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operating when discussing the security of artificial intelligence (its nurture). Each type of AI 

requires its own unique set of guidelines. It is argued from this perspective that the theoretical and 

practical repercussions of any definition of AI render it impossible to arrive at a single, 

operationally valid definition. To paraphrase the article's requirements, not all workplace 

definitions are created equal. Although there is no agreed-upon definition (and I seriously doubt 

there ever will be), it is nonetheless essential to acknowledge the diverse perspectives. When 

results are published, researchers should note any AI's role, but ultimately, it is up to the individual 

researcher to decide if and how AI is used. Many researchers find helpful information, but it may 

not be exactly what they want. However, the same theories and methodologies were used to 

address problems that had nothing to do with AI. One factor contributing to this is people's 

ignorance of the assumptions used in AI programs. Each research topic may be given its name in 

the future for the sake of the organization when an accurate definition of AI has been made. We 

can define AI and figure out its limits before that occurs. People who "don't much care" where 

they are headed can get there if they walk far enough no need to start over [12]. Basic components 

of artificial intelligence techniques are demonstrated from different applications in this paper. 

Figure 2 outlines the three key categories of artificial intelligence, which are rule-based systems, 

machine learning techniques, and metaheuristic methods. Standard algorithms are commonly 

modified, but are classified as a single category. 
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Figure 2. The Three Categories of Artificial Intelligence 

                                                 2.1 Machine Learning Techniques   

Machine learning is a technique that is commonly used in contemporary research 

studies. Machine learning can be classified into three categories: reinforcement learning, 

unsupervised, and supervised. These three categories are outlined in Figure 3 below. The 

supervised learning technique consists of a dataset with input and output data for 

mapping strategy. This includes neural networks that have applications for training and 

validating networks. The training process consists of an optimizer that minimizes the error 

function based on distance measurement between target values and output value for the 

dataset. Regular neural networks utilize supervised learning and convolutional neural 

networks that provide an added filter layer to data inputs [13]. Unsupervised learning 

doesn't include target values in the dataset, which consists of a training process where 

learning algorithms are used to identify the target value. The methods used for 

unsupervised learning are the Support Vector Machine (SVM) and k-means clustering 

algorithm. These two methods provide applications for detecting anomalies and 
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classifying images. The performance of the detection systems was analyzed using ROC 

charts, which take a comprehensive look at how well the systems function across all 

thresholds. Establishing a localized threshold requires extensive work but is essential [14]. 

Another learning technique to consider is reinforcement learning, which relies on agent-

based methods for learning a specific action strategy. In this case, the agent must choose 

the action for specific situations, which yields a reward for performing the action. This 

creates a utility function that provides an approximated value for the specific action. 

However, reinforcement learning helps us to understand our environment and find better 

solutions to problems [15]. 

                         

                                                          Figure 3. The Three Categories of Machine Learning 

 

                                 2.2 METAHEURISTIC METHODS  

Metaheuristic methods consist of groups of algorithms that are used to solve optimization 

problems. The algorithms commonly find hyperparameters for controllers and models. There are 
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two subgroups of algorithms that include population-based and trajectory-based methods known 

as swarm intelligence. Figure 4 provides an outline of the process for these two methods.  

       

 

              

                                            Figure 4. The Two Categories of Metaheuristic Methods 

 

The Particle Swarm Optimization (PSO)is the most popular population-based method. The PSO 

method was created by Kennedy and Eberhart in 1995, and developments have resulted in 

improved versions. The basic PSO version relies on swarms of particles that has an initial velocity 

and position relative to a search field. The PSO functions to find a global optimum with particles 

determining the best individual and global positions [16]. The fruit fly algorithm is also a popular 
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metaheuristic optimization algorithm. When compared to PSO, the fruit fly algorithm is limited 

to building geometrical representations [17]. Ant colony optimization is an alternative method 

that mimics the foraging behaviors of ant colonies. The ant colony optimization algorithm was 

created in the 1990s with the purpose of solving complex problems in a relatively short time. 

There is also the Genetic algorithm, which follows the process of natural evolution. In the Genetic 

algorithm, the fittest individuals are selected for genes to be passed down to the next generation 

[18]. The differential evolutionary optimization model follows this concept of the survival of the 

fittest [19]. There is also the immune algorithm that is derived from the genetic algorithm. The 

immune algorithm consists of an immune operator that is developed based on the selection of 

vaccination and immunity [20]. Another popular metaheuristic algorithm is the Tabu search 

method, which provides guidance for local heuristics processes to identify global solutions. The 

Tabu search method process consists of adaptive memory and exploring responsive mechanisms 

[21]. There is also simulated annealing that integrates the physical properties of solid materials 

during their cool-down phase after they have been annealed by solving optimization problems 

[22]. 

 

                                                    2.3 RULE-BASED SYSTEMS 

The third category of artificial intelligence are rule-based systems that consist of groups of 

AI techniques that work together to integrate human knowledge. These rule-based systems operate 

based on a set of "if-then" rules, which enables the system to make decisions based on the rules 

implemented by the developer. As a result, the rule-based system is perceived as a modularized 
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version of "know-how" systems [23]. In several other research studies, rule-based systems are 

described as expert systems. As shown in Figure 5, these rule-based systems rely on processes 

such as Boolean logic, control, and fuzzy logic.  

                       
  Figure 5. The Two Categories of Rule-Based Methods 

The key advantage of utilizing logic and fuzzy theory is that variables can be described in 

relation to human language. The fuzzy system consists of three key elements. The first is 

fuzzification, which provides input signals that are mapped into a function of fuzzy membership 

based on membership degrees. These functions can take on different shapes, such as Gaussian, 

trapezoidal, and triangular. The second is the inference model, which consists of calculating the 

degrees of memberships that are integrated into the code of fuzzy rules based on "if-then" 

processes. These fuzzy rules have to be developed by experts that are knowledgeable about the 

processes. The third element is defuzzification, which consists of creating an output signal tied 

to a physical system [24]. Based on these three elements, there are different types of 

combinations and categories that can be created [25]. Some of these techniques don't have to 

be tied to a single category, and can be grouped into multiple categories at once. In summary, 
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this chapter has introduced artificial intelligence techniques, as well as an outline of the 

advantages and limitations for grouping these techniques. These findings have been 

summarized in Table 1 along with a discussion of applications.                   

Algorithm  Advantages Limitations Applications 

Metaheuristic (Population 
based) 

global convergence convergence speed Improve PSO algorithm 

Metaheuristic (trajectory 
based) 

Implementation simplicity  parallel capability   improved objective 
function and genetic 
algorithm 

Fuzzy Systems Integration of expert 
knowledge  

elaborate design of rules Based on fuzzy set  
theory 

Supervised learning runtime after training large dataset  small signal stability using 
artificial neural networks 

Unsupervised learning no label data  time of training   low voltage distribution 
network based on fuzzy C-
means clustering 
algorithm 

Reinforcement learning   no dataset needed, learn 
interaction of system  

adaptation can be time 
consuming 

 double deep Q-learning 
networks approach 

                                                          Table 1. Artificial Intelligence Algorithms 
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3. REVIEW METHODOLOGY 

This chapter consists of the methodology for the literature review. Table 2 provides a list 

of the databases that were used to search for the sources, as well as the screening procedure, 

time period for the search, and search string.  

search index content 

data Google scholar, IEEE Xplore, Sciencedirect, 

MDPI, Wileys (IET) 

Search String Each technique/Methodology and app e.g. 

Neutral network state, distribution system and 

AI 

Search Time  2010-2021 

Procedure  Relevant Judge by abstract, introduction and 

conclusion  

                                                         Table 2. Review of Research Methodology  

                                                     

 

The studies have been classified based on their applications to distribution systems. General 

metrics have been established and defined to provide clarification for artificial intelligence and 

distribution grid operation designs. This provides a process for reviewing each research study 

based on clearly defined metrics to provide a basis for AI guidelines. The metrics demonstrate 

the importance of the requirements for each AI application. The metrics are rated from a Likert 

scale between a score of 0 to 5. A score of 0 corresponds to a low rating for the severity of the 

requirements, whereas a score of 5 corresponds to a high rating. After reviewing each of the 
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research studies, a rating was provided for each of the metrics. Based on these results, the 

requirements are discussed to define AI approaches. 

         At the conclusion of reviewing these research studies, general guidelines have been 

established to demonstrate their applications to different methods. These methods are discussed 

in chapter 2 based on their applications. The outcomes are demonstrated in a table that 

summarizes the general rating based on the review of the literature and corresponding metrics. 

The metrics are described in further detail: 

Dataset: Most research studies are data-based approaches, and the database are presented along 

with the required measurements.  

Runtime: The AI approaches have a runtime and operating timescale, as well as practical 

applications that are reviewed based on their applications to real-time operations. 

Dynamic: Some AI applications consider system dynamics to be mandatory for efficient 

operations. 

Adaptability: Effort is provided to adapt the research designs to new situations, which include 

training time. This leads to a strong correlation between large datasets and long training times. 

         Table 3 provides a list of the times needed for adaptability based on rating, dataset, 

runtime, dynamic, and adaptability. In Table 3, rating provided to metrics are clearly defined. 

The reviewed papers are evaluated using a quantitative evaluation system with defined ranges to 

evaluate adaptability, runtime, and dataset. These values are then classified into 5 groups with 

defined outer limits. 
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Rate Data Runtime Dynamic Adaptability 

0 1-10            samples 2h-24h       —- millisec-sec 

1 10-10^2      samples 30m-2h min to hr sec-min 

2 10^2-10^3  samples 1m-30m sec to min min 

3 10^3-10 ^4 samples 10s-1m 10^-2s-10s min-hr 

4 10^4-10^5  samples 10^-2s-10s 10^-6s-10^-3s hr-day 

5 10^5-10^6  samples 10^-9s-10^-3s 10^-9s-10^-6s day-week 

 

                                                            Table 3. Defined Metrics 
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                4. AI APPLICATIONS TO DISTRIBUTION POWER SYSTEMS 

There are two types of distribution grid operations that are demonstrated in Figure 6. The 

left side of Figure 6 demonstrates the process of decision support systems that rely on 

measurements to visually represent different situations into the grid. The operator is capable of 

manually controlling the actions in this case. In this paper, the decision support system functions 

through an open-loop control process that is not fully automatic.  

On the right of Figure 6, the closed-loop system functions through an automated process. This 

automated process is completely self-reliant without a need for humans to interact with the 

system. The closed-loop system in Figure 6 includes a grid and control. Visualization from the 

decision support system plays a role in checking to ensure that the control is functioning 

effectively without human intervention. 

                  

Figure 6. Operations of Distribution Systems 
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The literature demonstrates that there are varying degrees of automated processes for 

managing distribution grids. However, these distribution grids are commonly run by decisions 

from manual operators. Section A demonstrates some of the common applications for artificial 

intelligence to decision support systems. Section B provides an investigation of these applications 

to a closed-loop control system. However, it is important to note that not all the reviewed research 

designs were designed for distribution systems, but these designs are still discussed because they 

are applicable to distribution systems.  

Recent research studies have investigated the use of frequency ancillary services to 

improve the connectivity of distribution generation in distribution systems [26]. Fast generation 

changes influence the investigation of fast generation grids. There is a need for investigating the 

impact of fast generation changes to improve distribution grids. Assessing the frequency leads to 

improving the interest of future grids. One of the areas of interest is to examine how the dynamics 

of distribution systems change based on modifications to distributed generation [27].  Tasks also 

need to be considered for their applications to distribution system operations. However, these tasks 

are primarily used for modern transmission systems. 

 

4.1 AI in Distribution Decision Support 

4.1-1 Distribution nodal loads and mode circuit connectivity models  

  

Digital twin concepts have been applied for modeling distributional nodal loads using 

lower time periods. Digital twin is growing in popularity in research studies given its rapid 

growth in AI distribution systems [28]. The digital twin provides a digital representation for 

physical systems where state and behavior can be changed based on measurements and 
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parameter information. The digital twin concept is primarily used in manufacturing processes, 

but there has been growing interest for using digital twin as applications for power systems. 

Some of the applications of digital twin in power systems is monitoring, control, maintenance, 

and design for power plants [29]. Figure 7 demonstrates the basic requirements for establishing 

circuit connection and nodal loads for power system operations. The process speed and accuracy 

are needed to demonstrate the system’s behavior in other states. The process speed and accuracy 

also play a role in providing a representation of system behaviors in all the system’s possible 

stages. This requires a broad dataset with multiple situations.  

                                  

Figure 7. Severity for basic requirements needed for modeling distribution modes 

 

The model extracts data related to the system’s be heavier to determine how to provide an adaptive 

response to different types of operational scenarios. This leads to high adaptability with the digital 

twin approach that includes an ability to change behaviors while online and estimate dynamic 

parameters. AI techniques build digital twins to provide a range of applications.[30] demonstrates 

how the digital twin can be used to provide an online grid analysis. In this application, the digital 
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twin consists of a virtual model that includes a bus, nose, breakers, and branch model that can be 

updated using state estimation and SCADA data. Any changes that are detected in the model results 

in the engine conducting a situation awareness analysis in which data is fed into a machine learning 

system. A neural network conducts an online security assessment, which can be conducted in an 

online environment. Field tests have been conducted and reveal that the computational time 

required for the entire process is 300 ms or less. 

 [31] recommends using the digital twin to conduct power flow calculations for artificial neural 

networks. This neural network includes P and Q as grid inputs and complex voltage as outputs. 

Also, designed a 9-bus system using 9,600 samples in MATPOWER to train and test the system. 

An operator is needed to monitor power flow within power systems using real-time operational 

data. This can be used to perform a series of conventional flow calculations to create a mode of 

the system. [32] recommends using a linear first-order load model to compute power flow 

calculations in a parameter fitting algorithm known as Powerfit. Linear models are used to 

provide convergence to power flow algorithms that search for any cut points in datasets. This can 

be used to detect drastic changes in load data in which load parameters can be adapted to new 

situations. 

[33] recommends using a two-stage approach to create a load model that provides a dynamic 

load response using the Western Electricity Coordinating Council Composite Load Model 

(WECC). Each of these load components provide a different aggregate for load components. A  

Double deep Q-learning Network (DDQN) learning agent is used to investigate the load 

composition for each bus during the first stage. I’m the second stage, Monte Carlo simulations 

are used to identify parameter sets. DSATools and TSAT are used to create training concepts 

based on the 39-bus grid. [34] proposes the use of LSTM to estimate parameters based on the 
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ZIP model. This is useful for extracting measurements related to the temporal relationship 

between the target bus and load model parameters.  

 [35] proposes a digital twin approach to identify load dynamics by combining identification 

methods for systems and their corresponding neural networks. It is possible to optimally utilize 

DERs and EVs, as well as topology identification systems to improve calculations for the 

system’s structure and parameters. 

[34] recommends using a neural network structure with binary classifieds to conduct online 

identification. The network can be trained using inputs from measurements, such as PMUs. This 

problem-solving approach is binary because the neural network output can either have a value of 

1 or 0. A value of 1 corresponds to connected and a value of 0 corresponds to not connected.  

 recommends using deep neural networks as an alternative approach for conducting topology 

identification. The deep neural networks include using DER management systems to conduct 

measurements. [36] suggests that fuzzy e-means clustering can be used to check LV distribution 

grid topologies with smart meter data collecting individual household data for correlation 

analysis. The collected data is then compared using a GIS system to determine if a user is located 

using the correct transformer area based on the fuzzy e-means algorithm.  

4.1-2 State Estimation  

The growing increase in distributed generation has led to more emphasis on controllability 

and measurability for distribution grids. Operation grids experience changes to their operation 

practices, which causes the ability to estimate the grid states to be important for grid modeling and 

control. Conventional approaches are difficult to implement because ere is undermined 

measurement sets and topology information that is missing. AI techniques are more effective 

because they can extract data in real time. Figure 8 provides a visual depiction of how AI 
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techniques can be used to perform state estimation. According to figure 8, state estimation relies 

on large datasets that are highly adaptable to changes in system states.  

                                         

Figure 8. Severity for basic requirements for state estimation 

  

 [37] recommends using a machine learning with physics methods to create a hybrid model that 

improves the ability to explain data-driven models. This includes a temporal relationship 

between states to achieve improvements to state estimation. This considers factors such as the 

system’s dynamics. The Deep Neural Network model incorporates LSTMs with measurements 

for time steps from the present and past. The system’s state is estimated based on this data and 

provided to an AC power flow model that provides the system with physical parameters.  

 [38] offers an alternative approach for incorporating physical structures into neural networks. 

This approach consists of graphing a structure based on the electrical grid, and copying it into a 

neural network. This approach is effective in reducing the complexity and training ability of 

network parameters.[39] demonstrates a deep learning-based framework that provides real-time 

distribution for state estimation based on machine learning methods. This deep learning-based 
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framework includes an offline component that trains DNN and online component that copies the 

offline DNN. Smart meter data is used to facilitate the offline learning process, and this data is 

then injected into Gaussian and Weibull models. With this process, bad data can be detected by 

identifying the differences between learned distribution parameters and measurements. [40] 

proposes that forecasting systems should be added to improve state estimation in real time. This 

can be achieved by implementing two DNNs systems. The first DNNs system is used to conduct 

estimations and the second is used to conduct predictions.  

  4.1-3 Stability    

One of the important aspects of power system operations is analyzing the stability of 

power systems. This subject presents several research studies that apply AI techniques to conduct 

stability assessment tasks for distribution system operations because of their capability to 

effectively acquire nonlinear data from dynamic systems with short runtimes.[41] reveals that 

these AI techniques are commonly applied to provide frequency stability in transmission system 

operators.[42] states that when generation transitions to distribution systems, the generators’ 

non-frequency and frequency ancillary services play a role in connecting to the distribution 

system.  

Figure 9 demonstrates how a model can be used to detect stability in dynamic systems. The 

model requires a large dataset and fast runtime based on rapid changes to the stability of the 

system. However, this model doesn’t work well for dynamic systems striving to achieve long-

term voltage stability. This is because achieving voltage stability is challenging because the time 

behavior fluctuates.[43] Suggests utilizing a method of data analysis that is self-adaptive with a 

hierarchy for assessing short-term voltage stability. In this model, PMU measurements are taken 

to evaluate whether there is stability in the propagation of voltage. When a stable status is 
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detected, the Fault-Induced Voltage Delayed Recovery (FIDVR) and root-mean-squared voltage 

severity dip (RVSI) is used to predict voltage recovery performance. This results in an 

assessment system based on a hierarchy. In this hierarchal model, the first tier in the hierarchy 

detects a stable point in the dynamic system, which then activates the second tier in the 

hierarchy. This creates a regression model that can be used to solve complex machine learning 

processes. ELMs are aggregated separately in each stage of the model, but performance 

validation is aggregated following the training step. This creates an optimization problem used to 

evaluate the accuracy and timeliness of the dynamic system. For the model used in this paper, the 

date was generated by measuring pre-fault conditions for the 39 buses in the New England bus 

system. The data generation process consists of 10,000 Monte Carlo simulations that contribute 

700 MW to loads and wind power plants. The simulations are carried out using Transient 

Stability Assessment Tools (TSAT) using 0.01 seconds for the step size. The ReliefF algorithm is 

used to select different features for the simulation [44]. 

                                      

Figure 8. Severity for basic requirements for power quality analysis. 
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[45] offer a similar strategy that consists of a two-stage system for conducting voltage stability 

assessment. The first stage consists of detecting the stability of the system. The second stage 

focuses on making an accurate prediction about the trajectory of the system based on the stability 

assessment results. [46] recommend using a Support Vector Machine (SVM) to assess the 

voltage stability of the power system based on PMU measurements. There are two key 

optimization goals for the processing of measurement data. The first is to determine the SVM 

misclassification rate. The second is to use the nonlinear relationship between data 

measurements and voltage stability to reduce the number of SVM input features. This leads to 

increasing the accuracy of predictions, while also focusing on reducing the processing time 

needed to make these predictions. 

A biogeography-based optimization algorithm (BBO) is used to process the dataset, which is 

known as an evolutionary optimization algorithm. In the first simulation conducted on the New 

England 39 bus system, the database is created by measuring load patterns from 506 pre-fault 

operation conditions. This leads to checking the stability for power flow convergence. The 

PMUs are used to calculate the angles of voltage phases, squared voltages, line currents, the 

flow of reactive power, and fault location. Iran’s 66 bus power grid is then used to carry out 

additional tests. A total of 26 operation conditions were established across 15 days of collected 

load data. There are 24 PMUs positioned throughout the power grid.  

The operations of power systems must also consider transient stability. The short timescales of 

detection algorithms make them suitable for achieving transient stability. [47] suggests that a 

transient stability is conducted by using PMU data with different ratios of signals to noise. 

Stacked autoencoders (SAE) are used to extract features, and convolutional neural networks 

(CNN) are used to carry out representational learning in order to filter noise. This process 



[29] 
 

occurs with offline training by using historical data. CNN relies on unsupervised learning to 

facilitate its features and supervised learning to provide the classification of data. PMUs rely on 

real-time data to perform online operations for conducting transient stability analysis. In this 

case, the simulation database is generated from the 39 New England bus system grid and a 

PSD-BPA software that conducts calculations for power flow for different load levels. Using 

SNR, a total of 4,000 data samples were collected. [48] recommends the use of ML systems to 

indirectly perform PCA to reduce input dimensions when conducting stability assessments. This 

approach leads to only retaining necessary data points. This approach is more effective then 

direct PCA, which reduces data points with a cutoff set by lowest eigenvalues. The process of 

direct PCA is ineffective because the reduction of low eigenvalues doesn’t necessarily lead to 

stability assessment in power systems. The indirect PCA is utilized to calculate the difference 

between stable and unstable dimension projections after acquiring the data values needed as 

inputs. In its application to the New England 39 bus system, datasets are created using Monte 

Carlo simulations for bus voltage and power generation with 165 measurements (i.e. branch 

power flows).  

  4.1-4 Analysis of economic efficiency 

It is important to consider the economic aspect of distribution systems for optimal 

generation. [49] demonstrates how the economics of optimal generation are significant in 

DOMA, as well as other optimization goals for power systems. One of the traditional problems 

is economic dispatch, which focuses on minimizing costs. One of the other top goals is to 

reduce carbon emissions. A cost function can be generated to incorporate each of these 
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optimization goals [50]. Figure 10 demonstrates that this cost function has problem variables 

that undergo slow changes, which enables the power system to achieve optimization without 

needing adaptability or fast runtimes. This is demonstrated in Figure 10, this cost function still 

requires enough data to achieve desired optimization levels. 

 

                                     

 Figure 9. Severity for basic requirements for analyzing economic efficiency 

 Decision-support systems require models of online adaptability and analysis to achieve long-

term applications for power systems as they undergo permanent changes. As a result, the 

model requires training and adaptation to be conducted routinely, which requires datasets and 

updated system data. Given these requirements and usage statistics, applied AI methods 

require suitable algorithms for each application, which are outlined in Table 4. 
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                                                          Table 4. AI Applications for decision-support systems.  

  

4.2  Application in distribution system closed-loop control    

4.2-1 VOLT/VAR/WATT Optimization  

 

The oscillations of low voltage systems are caused by transmission system operators with 

more than one voltage regulator. However, inverter-based generation with a connection to 

distribution grids using voltage-controlled mode offers improvements to the operators of 

distribution grids. Integrating voltage regulators that are continuously acting leads to the most 

conventional outcome for generation units that improve the steady-state stability for power 

systems. However, additional controls are needed because there are dangers with using a system 

that has small magnitude oscillations and low frequency. [51] developed a supplementary 

excitation control called a power system stabilizer that is designed to achieve synchronous 

generation. Figure 11 demonstrates how the controller runtime must be fast to provide a 

reaction for system’s dynamic behavior. Figure 11 demonstrates that the optimization for 
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controller parameters can be significantly slower since they don’t have to occur in real time. [52] 

recommends the use of Neuro-Fuzzy controller (NFC) to replace traditional PSS and coordinated 

multi-power system stabilizers. This allows the power system to achieve stability by reducing low 

frequency oscillations.  

                                     

Figure 10. Severity for basic requirements for power system stabilizer. 

In the next part, the distribution systems’ reactive power and voltage control are briefly 

discussed. This includes providing an overview and analysis of the challenges associated with 

voltage control for smart grids. Some of the recent approaches that researchers are taking will 

be discussed. Figure 12 demonstrates the large and comprehensive dataset that power systems 

require to manage multiple generation and load situations. According to Figure 12, voltage 

control is dependent on high adaptability and short runtime.  
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Figure 11. Severity for basic requirements for reactive power and voltage control. 

4.2-2 Fault identification, isolation, and service restoration 

Another crucial aspect for the operation of power systems is to detect and diagnose 

faults. This includes the detection of anomalies and losses for different short circuited other 

threats to consider are cyberattacks or communication outages that can result in power 

outages. Figure 13 demonstrates that detection of faults and anomalies are dependent on 

providing accurate models for system dynamics. Additionally, a fast runtime is required because 

systems are rapidly changing their system states. As a result, the adaptability of the system is 

important for being able to respond to different types of typologies [53]. 
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Figure 12 Severity for basic requirements for fault identification, isolation and service restoration. 

4.2-3 Coordination of emergency actions 

 

The coordination of emergency actions is important when the distribution grid is 

experiencing a critical mode. One of the potential emergency responses is to shed the loads in 

the event of a frequency drop. However, the low frequency of load shedding relays information 

that results in the disconnection of loads once a threshold is reached. Power systems are 

complex with dynamic behaviors, which makes it challenging to determine an optimal load 

shedding strategy. Figure 14 demonstrates a proposed algorithm that is adaptable without 

being dependent on a large dataset. The main purpose of this action is to reduce the time for 

the procedure of recovery and make the system stable in a shorter time. Also, it reduces the 

damages and help the system work more stable [54], [55].  

  

                                      

Figure 13. Severity for basic requirements for coordination of emergency actions. 

 



[35] 
 

4.2-4 Coordination of restorative actions 

Distribution operators play an important role in providing restorative actions for 

blackouts because generation is becoming increasingly connected to distribution systems. 

[56]and [57] present ways that distributed generation can be incorporated into the restoration 

strategy of distributed power systems. [58] and [59] offer ways to incorporate energy storage 

for achieving these restorative actions. One of the proposed recommendations is to utilize EVs. 

Figure 15 demonstrates that blackouts can result in different types of outcomes following the 

emergency, which creates a need for adaptable approaches that can be readily applied to 

different types of situations. [60] recommends the use of multi-agent systems that provide a 

restorative distribution grid. In this model, two agent classes are considered: load and 

distribution substation agents. Load agents focus on the restoration of loads to provide energy 

and guidance to neighboring loads. The distribution substation agent monitors the flow of 

substation power and holds the load agents accountable.  

                               

Figure 14. Severity for basic requirements for coordinating restorative actions. 
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Power systems are dynamic and change when the inverter-coupled participants are integrated 

[61]. This results in interactions across multiple controllers that lead to different optimization 

goals and runtimes. As a result, AI-based controllers must be further investigated 

4.2.5 Load Forecasting  

   Forecasting is the process of estimating a variable's (or set of variables') value at a future 

time point. One of the main areas of electrical engineering research now is the forecasting of 

electricity demand. Artificial intelligence techniques have been the subject of extensive research 

in recent years when it comes to the load forecasting issue. Some artificial intelligence (AI) 

techniques used for load forecasting include expert systems, fuzzy, genetic algorithms, and 

artificial neural networks (ANN). In distributed systems, smart grid and buildings, next-day load 

demands, as well as autoregressive Artificial intelligence-based techniques such as ANN with 

exogenous vector inputs have been used for load forecasting. Because it does not require 

complex mathematical formulations, ANN has many applications in the areas of curve fitting, 

data mining, load forecasting, controls, system identification, and so on. The research, on the 

other hand, reveals two things. Electrical load forecasting and power system protection are two 

key applications of ANN in the context of the power system. ANN outperforms other forecasting 

methods in applications where non-linear relationships exist because of its ability to adapt to 

them. As a result, the use of artificial intelligence in load forecasting facilitates integration. of 

load switching, contract evaluation, energy generation and purchase, and infrastructure 

development. Additionally, it helps with precise load prediction, which is one of the key signs of 

power intelligence. Considering inputs based on loads, weather-related data, day type, and time 

of day is also beneficial. By maintaining current forecasting areas, this in turn helps to achieve a 

systematic approach to managing electric distribution. In the 1990s, load forecasting was widely 

acknowledged as an effective use of ANNs, but in the decade that followed, the field made little 

progress in terms of methodological innovation and enhancements to model accuracy and 

usability. While this was going on, other fields, like mathematical programming and computer 
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vision, made significant methodological and practical advancements. In contrast to those thriving 

fields, the load forecasting literature from the 1990s to 2000s made slow progress for a number 

of reasons. Before the 2010s, benchmarking data and models were absent from the load 

forecasting literature, and many load forecasting papers lacked reproducibility. Therefore, 

artificial intelligence techniques have a lot of applications for load forecasting [62].  

4.2.6 Stability control   

This chapter's goal is to showcase the key artificial intelligence (AI) technologies that are 

employed in the power system to handle operational and dispatching tasks when conventional 

approaches fall short. Additionally, a brief summary of each technology covered in the chapter 

along with its precise application of the power system is provided. Furthermore, by regulating 

voltage, stability, power flow, and load frequency, these techniques enhance the efficiency and 

productivity of the power system. Furthermore, it permits network management of features 

like size, location, and management of equipment and devices. The automation of the power 

system ensures that network administration, security, and problem diagnosis are all possible. 

The ideal artificial intelligence strategy has to be discovered in order to use artificial intelligence 

for planning, monitoring, and control of the power system. The chapter also briefly discusses 

the use of artificial intelligence to the sustainable components of the power system. 

Furthermore, it emphasizes the four main artificial approaches, including neural networks, 

fuzzy logic, expert systems, and genetic algorithms. Each method aids in resolving problems 

with the power system. The article focuses on installation stability analysis and management via 

intelligence system, which is more significant.  Sustainable energy practitioners must focus on 

the cautious operation of power channeling systems. communications. The authenticity and 

timely grading of any disruptions therefore prevents the handling of a later developed 

substituted system. Thus, this study addresses the challenges of selecting installation stabilizing 

structures and gives some rule solutions by examining reference works related to installation 

stability analysis and management. 
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In conclusion, the main feature of power system design and planning is reliability, which was 

conventionally evaluated using deterministic methods. Moreover, conventional techniques 

don’t fulfill the probabilistic essence of power systems. This leads to increase in operating and 

maintenance costs. Plenty of research is performed to utilize the current interest artificial 

intelligence for power system applications. A lot of research is yet to be performed to perceive 

full advantages of this upcoming technology for improving the efficiency of electricity market 

investment [63].  

 4.2.7 Energy Management 

To attain energy management for hybrid renewable energy-based multi-area power 

systems, the distributed controllable loads are used. The distributed controllable loads are hinted 

as better alternative instead of costly energy storage systems. The need for an artificial 

intelligence-based nonlinear energy management becomes mandatory due to nonlinearity, high 

variability and uncertain nature of hybrid renewable energy-based multi area power systems 

based on distributed controllable loads. This paper hints a hybrid control strategy based on fuzzy 

reasoning and nonlinear sliding mode control to manage the energy of distributed controllable 

loads in a smart grid such as rooftop solar photovoltaic units and wind generating units. The 

identified hybrid control strategy fuses the unique features of both fuzzy logic and nonlinear 

sliding mode to handle the system nonlinearities and to standardize the humid characteristics of 

the system response against the uncertainties of the boundaries, as well as the high variability of 

renewable energy resources. Also, the acquisition of proposed fuzzy logic and nonlinear sliding 

mode controller is regulated by the imperialist rival probabilistic that is considered a powerful 

artificial intelligent procedure. This paper emphasizes that the energy management of the 

controllable loads is evolved based on a fuzzy sliding mode control strategy to maintain the 

output recurrence within the agreeable limits. The recommended procedure is applied in a multi-

area smart grid, including renewable energy rather than the traditional. The addition of the 

hinted hybrid fuzzy logic and nonlinear sliding mode controller is honeyed by a new intelligent 

technique based on intelligent competitive rather than the trial and error conventional 
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procedure. Also, the hinted control procedure can ensure system stability under the uncertainty 

of the boundaries [64].  

 

                                           

  5.  OUTLOOK FOR AI IN POWER SYSTEMS 

AI is becoming more prevalent in research for power systems. However, there is still 

potential for future research and improvements to current research. This chapter explores the 

outlook for AI in power systems and the current concerns for the practical applications of AI. 

These issues will be addressed in future research studies based on AI applications over the past 

few years. 

   5.1 . Explainability of AI 

As AI becomes increasingly implemented in real-world systems, there are concerns 

about how AI systems can be simplified and explained. This is particularly challenging for 

closed-loop control systems in which the system makes control decisions and actions instead of 

an operator. The majority of AI approaches have a black-box structure where the operator can’t 

check if the system is taking actions as intended in each type of possible situation. [65] suggests 

reviewing the type of models learned by the AI to better understand its behavior in the system. 

[66] suggests that the operator should focus on explaining individual predictions of behavior. 

Several studies investigate the explanation of AI for power systems, which offers tremendous 

potential for future research.  
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5.2 Database 

The database used by AI is crucial for the effectiveness of AI applications. This is 

particularly true for complex power systems, in which AI must rely on a larger database set to 

sort and test different types of algorithms and models. [67] offer open-source data collection 

models, but one of their challenges is that they lack general application to different types of 

systems and approaches. Another challenge is that there are privacy regulations that limit 

access to data that can be used to improve AI models and systems. This makes it challenging to 

gain access to central data collection and integrate this data into individual loads. In cases 

where date is protected, AI must rely on suboptimal datasets that limit the development of AI-

driven models and systems. 

5.3. Reducing Computational Loads 

Although computational power has experienced a significant increase over the last 10 

years, one of the limitations of AI systems is that they take a lot of time to acquire complex 

behaviors. This results in limiting the application of real-time behavior and tasks. This is 

particularly prevalent in cases where the AI system must perform learning processes online. For 

example, in cases where Deep Neural Networks carry out online adaptations. This is also a crucial 

step for metaheuristic approaches that are applied to optimization tasks that use a lengthy trial-

and-error process for convergence. However, AI systems require the ability to adapt online 

because power systems have long time changes, primarily to the aging components of the 

system. Based on these challenges, there are three aspects that future power systems should 

consider. The first is to enhance the AI system’s explainability so that systems can be traced and 

applied to plausible solutions. Second, is to create robust AI systems so that all components of 
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the system are safe and secure for system operations. Another important aspect is to ensure that 

comprehensive datasets are used to train and test AI models. A third objective is to reduce 

computational demand to improve real-world application and an ability to adapt to online 

environments [68].  

 

5.4. Sector Coupling 

In the last decade, there has been a source in research devoted to the coupling of energy 

sectors to achieve carbon neutrality. Integrated energy systems (IES), which link the electricity, 

heat, and gas industries, are seen as the benchmark for future energy systems that utilize a high 

percentage of renewable energies. IES also links the electricity industry to the heat and gas 

industries. Electricity, heat, and gas can be dynamically connected using two essential coupling 

technologies, power-to-gas, and power-to-heat. Despite this, the general stability of the system 

may be put at risk due to these interactions. As a potential methodology for conducting research, 

one option presented is to take the approach of combining grid reduction, steady state, and dynamic 

inquiry. 

[69] Also, In recent years, multi-carrier micro grids, also known as MCMGs, have been 

increasingly popular because they can offer practical solutions that improve the operation and 

construction of power grids. The owners of MCMG have been searching for viable solutions to 

the problems that are now hurting the energy markets worldwide on the company's behalf. This 

study investigates how effective the Transactive Energy Management (TEM) mechanism, which 

is a unique method of energy sharing, could be in assisting in reducing the operational expenses 

incurred by each MCMG in energy markets characterized by intense competition.  [70] However, 
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That researches demonstrate how energy quarters are used to provide energy coupling for 

buildings or entire neighborhoods on a distribution grid.  

The urban energy network at the neighborhood level has the potential to offer more cost-

effective and sustainable services to a large number of buildings through the integration of separate 

energy systems. It may not always be possible to guarantee the benefit of individual buildings 

within the network to achieve the highest potential network performance. There has not been much 

thought into whether energy networks' benefit allocation is fair. This work aims to provide unique 

cost and emission benefit distribution limitations based on cooperative game theory so that all 

participating buildings can reap the full benefits. The results show that the solution space is slightly 

reduced when benefit allocation is considered compared to when it is not. 

[71] Because of the expansion of intermittent renewable energy sources, the power grid is finding 

it increasingly difficult to strike a balance between supply and demand. It is anticipated that 

buildings will play a more significant role in the future of the smart grid due to enhanced grid 

connections and increased end-use loads. Buildings may be able to make more efficient use of 

passive thermal mass, which functions as a versatile source of thermal energy if predictive control 

is used. [72] These examples demonstrate several ways in which AI can be used to incorporate 

control concepts to improve these algorithm.

 5.5. Ancillary Services 

Providing ancillary services is a popular research topic due to the volatility surrounding 

the generation of renewable energy. [73] demonstrates that EVs can be used as flexible loads 

can be used alongside DER for advanced loading. However, [74] reveals that one of the 
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challenges of utilizing EVs to provide ancillary services is that the infrastructure is lacking. The 

rising use of asynchronous generation leads to concerns about system inertia because 

synchronous generators don’t provide system stability. [75] raises several concerns about the 

behavior of low inertia systems and how AI techniques can be applied to improve these 

systems. 
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                                                        6. CONCLUSION 

This project demonstrates the ways that AI is being integrated into the operations of 

distribution power systems. Some of the promising applications of AI include metaheuristics 

methods, machine learning, and rule-based systems to improve system efficiency. This survey 

classified the applications of AI into closed-loop and decision-support control systems. This 

literature review provides the guidelines for choosing the best algorithm for AI applications in 

distribution power systems. The four key metrics that are adaptability, dynamics, runtime, and 

the significance of database requirements. Each of these four metrics  quantitatively evaluated 

for each AI application. Using these metrics, each of the AI techniques are rated based on their 

suitability for each application to distribution power systems.  
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