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A B S T R A C T   

The increasing global concern for sustainability in supply chain management is driven by stricter government 
regulations addressing environmental pollution and social injustice. This has led to a growing emphasis on 
integrating sustainability into supply chain practices. However, there is limited research on incorporating all 
three dimensions of sustainability (economic, environmental, and social) into supply chain management. This 
study presents a mixed-integer linear programming model for designing an uncertain supply chain network 
design that aims to minimize overall costs (establishment, production, and transportation/routing costs) while 
considering carbon emissions and a few social factors simultaneously. The study considers sustainable aspects of 
decision-making process and utilizes chance-constrained programming to address uncertainties. The proposed 
model attempts to maintain balanced flow levels across all stages of the network, optimizing the utilization of 
raw materials and production. The proposed optimization model is a cost minimization model that also tries to 
minimize greenhouse gas emissions throughout the entire network. A greedy based heuristic is provided for 
dealing with larger instances of the given decision making problem. Additionally, sensitivity analysis has also 
been carried out to explore the impact of various parameters involved.   

1. Introduction 

Supply chain management plays a crucial role in the success of 
businesses operating in today’s dynamic and complex global market-
place. As organizations strive to minimize costs, maximize efficiency, 
and meet growing consumer demands, the need for sustainable practices 
within the supply chain has become inevitable. A sustainable supply 
chain aims to balance economic, environmental, and social aspects 
while ensuring long-term viability and resilience. 

The design of a sustainable supply chain network involves strategic 
decisions related to the location of facilities, distribution, transportation 
routes, and inventory management. By considering sustainability factors 
such as carbon emissions, waste reduction, renewable energy utilization, 
and ethical sourcing, organizations can create networks that are not only 
efficient but also environmentally and socially responsible. Several new 
concepts and practices like green logistics (Rodrigue et al., 2001), 
reverse logistics (Carter and Ellram, 1998), sustainable supply chain 
management (Carter and Liane Easton, 2011), have been developed and 
implemented in order to attain a balance between the economic, envi-
ronmental and social factors. 

One of the key challenges in achieving sustainability within the 
supply chain lies in managing uncertainties. Uncertainties, arising from 
factors such as demand fluctuations, market dynamics, resource avail-
ability, and regulatory changes, can significantly impact supply chain 
performance and sustainability goals. To achieve an optimal design, it is 
essential to develop sophisticated optimization models that take into 
account the uncertain nature of supply chain operations. These models 
incorporate probabilistic techniques (Mehrbakhsh and Ghezavati, 
2020), scenario analysis (Mohammed et al., 2017), and simulation (Xie 
et al., 2011) to assess various possible outcomes and strategies to reduce 
risks and improve overall performance to determine the optimal allo-
cation of resources, inventory levels, production schedules, and trans-
portation routes under different demand scenarios, cost structures, and 
sustainability constraints. To address these uncertainties, a compre-
hensive and proactive approach is required, which encompasses the 
design, optimization, and management of sustainable supply chain 
networks. 

This research paper proposes a holistic multi-objective optimization 
framework for designing an uncertain supply chain network considering 
sustainable practices. The key objectives include reduction of supply 
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chain costs and environmental impacts, enhancing social responsibility, 
and achieving long-term success in a rapidly changing business land-
scape. To handle uncertainties, chance-constrained programming has 
been utilized and a greedy based heuristic has also been provided to 
demonstrate the computational intelligence of this research. 

The overview of this paper is as follows: Section 2 represents the 
literature review, that includes a brief description of the past studies and 
the research gap identified in this study. The problem formulation and 
description for a sustainable four-stage supply chain network is pre-
sented in Section 3. Section 4 presents the numerical illustration of the 
proposed optimization model. Section 5 presents the heuristic based on 
greedy algorithm. Section 6 provides a discussion on importance and 
managerial implications of the model based on the results obtained. The 
paper is concluded in Section 7. 

2. Literature review 

Supply chain network design has emerged as a crucial strategic 
decision-making exercise that aims to optimize the facility location, flow 
of goods, information, and finances across various stages, from raw 
material acquisition to end-product delivery (Kumar, 2022). Traditional 
supply chains primarily focused on the forward supply chain (Melo 
et al., 2009). However, evolving market dynamics and increasing 
environmental concerns have highlighted the importance of considering 
both forward and reverse supply chains in network design (Carter and 
Ellram, 1998). The reverse supply chain involves processes such as 
product returns, re-manufacturing, recycling, and disposal. The inte-
gration of forward and reverse supply chains forms the foundation for a 
closed-loop supply chain (CLSC), that emphasizes the cyclical nature of 
resource utilization and recovery, thereby reducing waste and 
enhancing sustainability (Govindan et al., 2015). In recent times, there 
has been a rise in the literature on CLSC that combines reverse logistics 
into traditional forward supply chain. The review article by Govindan 
and Soleimani (2017), presented a detailed discussion on reverse lo-
gistics and closed-loop supply chain network design (SCND). Moham-
med et al. (2017) developed a multi-period, multi-product, capacitated 
CLSC network design problem. Zhen et al. (2019) presented a stochastic 
bi-objective mixed integer programming problem for a CLSC to optimize 
cost and environmental impact and an efficient solution method is also 
provided to find the solution quickly. Devika et al. (2014) and Golpı̌ra 
and Javanmardan (2022) proposed a general CLSC in which the goals 
were to reduce cost, minimize overall environmental effects, and 
maximize social benefits. Kumar and Kumar (2023) proposed a general 
forward and reverse SCND pertaining to the three dimensions of sus-
tainability (economic, environmental and social). 

Sustainable supply chain management. 
Sustainable supply chain management (SSCM) has gained interest 

due to growing relationship between business operations and ecological, 
social, and economic dimensions. This approach encompasses three 
essential aspects of sustainability, viz. environmental, social, and eco-
nomic (Carter and Liane Easton, 2011). The environmental dimension 
involves reducing carbon footprints, minimizing waste, conserving re-
sources, and adopting cleaner production processes. The social dimen-
sion focuses on ensuring fair labor practices, upholding human rights, 
and contributing positively to local communities. Finally, the economic 
dimension focuses on maintaining profitability. Therefore, SSCM re-
quires a combined consideration of these dimensions to achieve long- 
term success and resilience (Wang et al., 2020). 

Literature reviews conducted by Terouhid et al. (2012) and Olatunji 
et al. (2019) proposed frameworks to identify the main characteristics of 
the sustainable supply chain and suggested that a sustainable supply 
chain should focus on environmental and social dimensions as well in 
addition to the economic aspect of sustainability. The literature review 
by Panigrahi et al. (2018), presented a theoretical perspective of a sus-
tainable supply chain network. The literature review conducted by Fang 
et al. (2020), focused on the optimization of logistics network for 

reducing carbon emissions. The review by Eskandarpour et al. (2015), 
mainly focused on environmental and social factors of a sustainable 
SCND. 

The key to ensuring environment sustainability is to reduce green-
house gases (GHGs) emission. In a supply chain, transportation can be 
considered as one of the biggest factors of GHGs emission. Gong et al. 
(2017) presented a transportation mode selection based supply chain 
network design for minimizing cost and carbon emissions. Nurjanni 
et al. (2017) developed a green supply chain network design for 
reducing negative impacts of industrialization on environment. Ahma-
dini et al. (2021) proposed a multi-item inventory model for reducing 
GHGs emission. A bi-objective optimization approach based SCND was 
proposed by Kuo et al. (2018) for meeting the objectives of low cost and 
low carbon emission. 

Uncertainty in sustainable supply chain management. 
Uncertainty in a supply chain network may arise due to demand 

fluctuations, supply disruptions, changing regulations, and market 
volatility. In real life problems, managing uncertainties plays a crucial 
role in ensuring sustainability within a supply chain network. Mehr-
bakhsh and Ghezavati (2020) developed an optimization model to 
reduce GHGs emission while maximizing production costs in a three 
level supply chain with suppliers, manufacturers, and demand zones 
with uncertain demand. Rezaee et al. (2017) presented a stochastic 
model for designing a green supply chain network considering uncer-
tainty in product demand and carbon pricing. 

Using a novel bi-objective optimization approach, Tavana et al. 
(2021) presented a MILP model to solve the location-inventory-routing 
problems in green supply chains with minimum carbon emissions under 
uncertainty. Zheng et al. (2020) proposed a study concerning a pro-
duction planning and scheduling problem for a sustainable supply chain 
considering uncertainty in demand, inventory management capacity, 
service level and CO2 emission constraint. Das and Shaw (2017) pro-
posed an uncertain SCND model that minimizes total cost and finds 
optimal number of plants, warehouses and flow of materials throughout 
the supply chain network by considering various CO2 emissions and 
social consideration. Mehrbakhsh and Ghezavati (2020) proposed an 
optimization model for optimizing production cost and GHGs emission 
in three level supply chain while considering uncertain demand. 

Haddadsisakht and Ryan (2018) provided a three stage stochastic 
model for designing a CLSC network accommodating uncertainty in 
product demand and carbon tax. Yu and Solvang (2020) provides a new 
fuzzy-stochastic multi-objective model for closed-loop SCND consid-
ering various uncertainties. Mohammed et al. (2017) proposed an 
optimization model for a multi-period, multi-product, closed-loop SCND 
that considers product demand and return rates to be uncertain. Golpı̌ra 
and Javanmardan (2022) focused on a closed-loop SCND based on a 
multi-objective optimization approach for combining social, environ-
mental, and economic sustainability goals while considering uncertain 
demand. A robust optimization approach was employed to solve the 
problem. 

Contribution. 
Table 1 provides a comparison of this study with recent studies on 

sustainable SCND. The comparison is based on different aspects; viz. 
supply chain network structure, modeling type, number of objective 
functions, parameter uncertainty, sustainability aspects, and solution 
methodology. Table 1 demonstrates that, most of the research on sus-
tainable SCND accommodate deterministic parameters. Moreover, ma-
jority of the sustainable SCND problems were modeled using MILP 
formulations. To address the inherent complexities in the optimization 
problems (Elhedhli and Merrick, 2012; Yavari and Geraeli, 2019; 
Mehrbakhsh and Ghezavati, 2020; Govindan et al., 2015), several 
techniques like exact methods, Lagrangian, heuristics and meta- 
heuristics approaches have been frequently utilized. 

This study represents a multi-objective mixed-integer linear pro-
gramming based optimization model for a four-stage forward supply 
chain that simultaneously assesses the three dimensions of 
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Table 1 
Literature on sustainable SCND and contribution of proposed study.  

Article Network 
type 

Parameters Objective Fn Mathematical 
model type 

Sustainability aspects consideration Methodology Solver/ 
Solution 

procedure    
Single- 

Objective 
Multi- 

Objective  
Economic Environmental Social   

Mohammed et al. 
(2017) 

CL Stochastic and 
Robust 

× ✓ MILP ✓ ✓ × Exact GAMS and 
ILOG CPLEX. 

Mehrbakhsh and 
Ghezavati 

(2020) 

CL Stochastic × ✓ MILP ✓ ✓ × Exact NSGA-II, 

Elhedhli and 
Merrick (2012) 

F Deterministic ✓ × MILP ✓ ✓ × Heuristic LR 

Kannan et al. 
(2012) 

R Deterministic ✓ × MILP ✓ ✓ × Exact LINGO 8 

Rezaee et al. 
(2017) 

F Stochastic ✓ × MILP ✓ ✓ × Exact CPLEX 

Kuo et al. (2018) 
F Deterministic × ✓ MILP ✓ ✓ × Exact Pareto frontier 

method 

Mota et al. (2015) 
CL Deterministic × ✓ MILP ✓ ✓ ✓ Exact e-constraint 

method 

Nurjanni et al. 
(2017) 

CL Deterministic × ✓ MILP ✓ ✓ × Exact CPLEX 

Tavana et al. 
(2021) 

F Stochastic × ✓ MILP ✓ ✓ × Exact CPLEX 

Zheng et al. 
(2020) 

F Stochastic × ✓ MILP ✓ ✓ × Heuristic LR 

Haddadsisakht 
and Ryan 

(2018) 

CL Stochastic and 
Robust 

✓ × MILP ✓ ✓ × Heuristic – 

Ahmadini et al. 
(2021) 

– Deterministic × ✓ MOFP, Fuzzy, 
Goal 

✓ ✓ × Exact LINGO 

Devika et al. 
(2014) 

CL Deterministic × ✓ MILP ✓ ✓ ✓ Meta- 
heuristic 

AICA, VNS 

Esmaeilian et al. 
(2023) 

CL Deterministic × ✓ MILP ✓ ✓ ✓ Exact – 

Saffar et al. (2014) 
CL Deterministic × ✓ MILP, Fuzzy ✓ ✓ × Exact NSGA-II 

Yavari and Geraeli 
(2019) 

CL Deterministic 
and Robust 

× ✓ MILP ✓ ✓ × Heuristic YAG 

Golpı̌ra and 
Javanmardan 

(2022) 

CL Robust ✓ × MILP ✓ ✓ × Exact – 

Gong et al. (2017) 
F Deterministic × ✓ MILP ✓ ✓ × Exact Perato optimal 

solution 
method 

Zhen et al. (2019) 
CL Stochastic × ✓ MILP ✓ ✓ × Heuristic LR 

Wang et al. (2020) 
F Deterministic × ✓ MILP ✓ ✓ × Exact Pareto 

Optimal 
solution 
method 

Yu and Solvang 
(2020) 

CL Stochastic × ✓ MILP and Fuzzy ✓ ✓ × Heuristic SAAWN for 
pereto optimal 

solution 

Govindan et al. 
(2015) 

F Stochastic × ✓ MILP ✓ ✓ × Meta- 
heuristic 

AMOEMA and 
AMOVNS 

Mehrbakhsh and 
Ghezavati 

(2020) 

F Stochastic × ✓ MILP ✓ ✓ × Heuristic MOPSO and 
NSGAII 

Diabat and Al- 
Salem (2015) 

F Stochastic ✓ × MILP ✓ ✓ × Heuristic GAMS and GA 

Mogale et al. 
(2022) 

CL Deterministic × ✓ MILP ✓ ✓ × Meta- 
heuristic 

NSGAII 

(continued on next page) 
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sustainability, viz. economic, environmental and social, while account-
ing for different type of uncertainties. The study considers sustainable 
aspects of decision-making process and utilizes chance constrained 
programming to address uncertainties. A greedy based heuristic is also 
developed to solve the proposed model for demonstrating the compu-
tational intelligence of this research. 

3. Problem formulation and description 

Consider a four-stage supply chain, as illustrated in Fig. 1. It com-
prises of suppliers, manufacturing centers (MCs), distribution centers 
(DCs) and end-users. Let I, J,K and L represent the set of all suppliers, 
manufacturing centers, distribution centers and end-users respectively. 
A supplier i ∈ I can send materials directly to a single manufacturing 
center j ∈ J or multiple manufacturing centers j1, j2…jn ∈ J. Similarly, a 
manufacturing center j ∈ J can purchase the material from a single 
supplier i ∈ I or multiple suppliers i1, i2…im ∈ I and can send the finished 
products to a single distribution center k ∈ K or multiple distribution 
centers k1, k2…ko ∈ K. A distribution center k ∈ K may receive the 
product from a single manufacturing center j ∈ J or multiple 
manufacturing centers j1, j2…jn ∈ J and may send it to multiple end- 
users l1, l2…lp ∈ L. 

In this section, we formulate a new model for optimizing establish-
ment, production and variable costs and carbon emissions in a four-stage 
supply chain network including suppliers, MCs, DCs and end-users. In 

this model, capacities of different types of facilities viz. suppliers, 
manufacturing centers and distribution centers and demand of end-users 
have been considered to be uncertain and the routing decisions from 
suppliers to end-users are dependent on flow of product. This model is 
defined for a single product and is a single period optimization model. 
Fig. 2 presents the conceptual outline of the proposed model. We pro-
vide next the assumptions of the model, followed by individual model 
components and definitions of parameters and decision variables 
involved. This section then describes complete optimization model that 
combines two objective functions aimed at minimizing economic costs 
and environmental costs within the supply chain. Later, chance con-
strained programming is applied on the given optimization problem to 
deal with uncertain parameters involved. Application of chance con-
strained programming produces deterministic equivalents of the un-
certain parameters. A modified version of the proposed optimization 
model after the application of chance constrained programming is then 
provided towards the end of this section. 

3.1. Assumptions 

.  

• Forward supply chain has been considered as a four stage problem 
including suppliers, manufacturing centers, distribution centers and 
end-users. 

Table 1 (continued ) 

Article Network 
type 

Parameters Objective Fn Mathematical 
model type 

Sustainability aspects consideration Methodology Solver/ 
Solution 

procedure    
Single- 

Objective 
Multi- 

Objective  
Economic Environmental Social   

This Article F Stochastic × ✓ MILP ✓ ✓ ✓ Heuristic LINGO 19 and 
Greedy-based 

algorithm 

CL- Closed-loop; R- Reverse; F- Forward; MILP- Mixed integer linear programming; MOFP- Multi objective fractional programming; LR- Lagrangian relaxation; NSGA- 
Non-dominated sorting genetic algorithm; AICA- Adapted imperialist competitive algorithm; VNS- Variable neighborhood search algorithm; SAAWN- Sample average 
approximation based weighting method; AMOEMA- Adapted multi-objective electromagnetism mechanism algorithm; AMOVNS- Adapted multi-objective variable 
neighborhood search; MOPSO- Multi-objective particle swarm optimization. 

Fig. 1. A four-stage supply chain network design.  
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• The potential locations of all facilities and cost parameters are 
predetermined.  

• Supply chain is concerned with a single product and the SCND is 
proposed for a single period.  

• Neither manufacturing center nor distribution center may retain 
inventory.  

• Demand must be fulfilled.  
• Capacities of facilities are considered as uncertain.  
• Demand of end-users is uncertain.  
• Single unit of product is produced from a single unit of raw material.  
• All random variables considered in this study are assumed to follow 

normal distribution. According to the Central Limit Theorem, sample 
averages (or means) of a large number of independent and identi-
cally distributed random variables, regardless of the shape of original 
distribution, are approximated by a normal distribution. This prop-
erty makes normal distribution a natural choice for modeling un-
certainties. Additionally, normal distribution has been regarded as 
an ideal distribution for uncertain variables in real-life scenarios (Li 
et al., 2008). Moreover, normal distribution helps in keeping the 
computational complexity to be low in chance-constrained pro-
gramming  (Nazemi and Tahmasbi, 2013) that has been utilized to 
deal with uncertainty in this study.  

• Lead time in the system is zero.  
• Capacities of transportation vehicles are unlimited. 

3.2. Economic and Environmental dimensions of sustainability 

The objective function in this optimization problem comprises two 
fundamental components, each representing a critical aspect of the 
decision-making process. The first objective function represents the total 
supply chain cost, including the operating cost of MCs and DCs, as well 
as the variable costs associated with purchasing, production, trans-
portation and handling activites. Define Fm

j and Fd
k as fixed operating 

cost of manufacturing center j ∈ J and distribution center k ∈ K 
respectively. Further, assume VCa

ij be the variable cost (including pur-
chasing of raw-material from the suppliers, transportation and handling 
costs) for a unit of raw-material from supplier i to manufacturing center 

j;  ∀ i ∈ I, j ∈ J, VCb
jk be the variable cost (including production, trans-

portation and handling costs) for a unit of product from manufacturing 
center j to distribution center k;  ∀ j ∈ J, k ∈ K and VCc

kl be the variable 
cost (including transportation and handling costs) for a unit of product 
from distribution center k to end-user l;  ∀ k ∈ K, l ∈ L. Further, define a 
binary decision variable αm

j that takes the value of 1 if manufacturing 

center j is open and 0 otherwise; ∀j ∈ J, and another binary variable βd
k 

that takes the values of 1; if distribution center k is open and 0 otherwise; 
∀ k ∈ K. Consider Xsmij be the variable that captures the quantity of 
raw-material shipped from supplier i to manufacturing center j;  ∀ i ∈ I,
j ∈ J, Xmdjk be the variable that accounts for the quantity of product 
shipped from manufacturing center j to distribution center k;  ∀ j ∈ J,
k ∈ K and Xdekl be the variable describing the quantity of product 
shipped from distribution center k to end-user l;  ∀ k ∈ K, l ∈ L. Then, 
the economic dimension of sustainability defined as total supply chain 
cost is captured by the following expression: 
∑

j∈J
Fm

j αm
j +

∑

k∈K
Fd

k βd
k +
∑

i∈I

∑

j∈J
VCa

ijXsmij +
∑

j∈J

∑

k∈K
VCb

jkXmdjk +
∑

k∈K

∑

l∈L
VCc

klXdekl  

The second objective function focuses on environmental sustainability 
and is based on quantifying the total emissions generated across the 
supply chain including the fixed operating emission from MCs and DCs, 
and the variable emission associated with the production, transportation 
and handling. These emissions account for CO2 emissions from different 
supply chain operations. Define Em

j and Ed
k be the fixed operating emis-

sion of manufacturing center j ∈ J and distribution center k ∈ K 
respectively. Further, consider VEa

ij be the variable emission (including 
transportation and handling emission) for a unit of raw-material from 
supplier i to manufacturing center j;  ∀ i ∈ I, j ∈ J, VEb

jk be the variable 
emission (including production, transportation and handling emission) 
for a unit of product from manufacturing center j to distribution center 
k;  ∀ j ∈ J, k ∈ K, and VEc

kl be the Variable emission (including trans-
portation and handling emission) for a unit of product from distribution 
center k to end-users l;  ∀ k ∈ K, l ∈ L. The environmental dimension of 
sustainability defined as total emissions across supply chain is captured 

Fig. 2. A conceptual outline of the proposed model.  
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by the following expression: 
∑

j∈J
Em

j αm
j +

∑

k∈K
Ed

k βd
k +
∑

i∈I

∑

j∈J
VEa

ijXsmij +
∑

j∈J

∑

k∈K
VEb

jkXmdjk +
∑

k∈K

∑

l∈L
VEc

klXdekl  

The overarching optimization goal is achieved by combining these two 
objectives, resulting in a comprehensive approach that balances both 
economic efficiency and environmental impact. The objective of the 
policy maker would be to minimize total supply chain cost and carbon 
emission. 

The optimization problem is subject to a set of constraints that ensure 
the feasibility and sustainability of the solution. 

3.3. Social dimension of sustainability 

Incorporating social sustainability concerns in the decision making 
process ensures businesses to act in ways that are advantageous to the 
society. In this study, social sustainability is attributed to the regulation 
of training given to suppliers and complaints of end-users. By adhering 
to these social sustainability restrictions, the optimization process tries 
to foster equitable treatment of workers and promote safe and ethical 
sourcing practices. Equations given below capture the social sustain-
ability constraints in the proposed optimization model: 
∑

i∈I
(ST

i

∑

j∈J
Xsmij)⩽TimeMax  

∑

l∈L
(Ace

l

∑

k∈K
Xdekl)⩽AcmaxDTotal  

where, ST
i ; ∀ i ∈ I is a parameter that represents average annual training 

time given to the ith supplier. The annual training of suppliers ensures 
the adherence of the suppliers to social sustainability practices, e.g. no 
gender discrimination, no bounded labor and no child labor involved at 
suppliers end. Training suppliers on social sustainability practices re-
flects a commitment towards social ethics. It demonstrates a proactive 
approach to address and prevent unethical practices such as discrimi-
nation, forced labor, and child labor. Timemax is the maximum time 
allowed for the training of suppliers. Therefore, the first equation places 
restriction on the time for providing training to suppliers. 

Ace
l is the average annual number of complaints lodged by lth end- 

user with respect to the unit product; ∀ l ∈ L, Acmax is the maximum 
number complaints that can be handled in a given time period and DTotal 

represents the total demand from all end-users. Therefore, second 
equation places a restriction on maximum number of complaints to be 
received from end-users. This constraint indirectly reduces customer 
complaints and demonstrates a commitment towards ethical business 
practice and customer service. 

3.4. Flow Balancing 

A consistent flow throughout the supply chain is to be maintained to 
ensure that the quantity of the product entering a node equals the 
quantity leaving it. Maintaining flow balancing in the supply chain 
network ensures the interconnected nature of the network. Following set 
of equations describe the product balance flow in the supply chain: 
∑

i∈I
Xsmij =

∑

k∈K
Xmdjk ∀j ∈ J  

∑

j∈J
Xmdjk =

∑

l∈L
Xdekl ∀k ∈ K  

3.5. Operational facilities 

It is inevitable to decide the maximum number of facilities that 
should remain open in the entire supply chain network to ensure 

appropriate utilization of limited budget. The decision maker may place 
an upper limit on the number of facilities (MCs and DCs) that can be 
operational for managing limited resources judiciously. The following 
set of equations put a limit on the number of open facilities (MCs and 
DCs): 
∑

j∈J
αm

j ⩽Um  

∑

k∈K
βd

k ⩽Ud  

where, Um and Ud represent maximum number of operational 
manufacturing centers and distribution centers respectively. 

3.6. Capacity management 

Management of capacities of facilities is required to prevent over- 
utilization and ensure efficient operations of production, storage, and 
distribution centers. Capacity restrictions are imposed on suppliers, 
MCs, and DCs to safeguards against operational inefficiencies and 
congestion. These capacities are assumed to be uncertain in the given 
decision making problem. The equations below describe the capacity 
constraints for suppliers, MCs and DCs: 
∑

j∈J
Xsmij⩽Si ∀i ∈ I  

∑

k∈K
Xmdjk⩽Pjαm

j ∀j ∈ J  

∑

l∈L
Xdekl⩽Wkβd

k ∀w ∈ W  

where, Si represents uncertain supplying capacity of supplier i ∈ I, Pj 
represents uncertain production capacity of manufacturing center j ∈ J 
and Wk represents uncertain holding capacity of distribution center 
k ∈ K. 

3.7. Regulating Carbon emission 

Regulation of carbon footprints is needed for promoting ecologically 
conscious decision. By limiting the total emissions associated with 
transportation, handling and operations, the decision aligns with emis-
sion reduction goals. The equation given below restricts the total carbon 
emissions: 
∑

j∈J
Em

j αm
j +

∑

k∈K
Ed

k βd
k +
∑

i∈I

∑

j∈J
VEa

ijXsmij +
∑

j∈J

∑

k∈K
VEb

jkXmdjk

+
∑

k∈K

∑

l∈L
VEc

klXdekl⩽Ctotal  

where, Ctotal represents maximum carbon emission allowed. 

3.8. End-user demand 

To ensure customer satisfaction, timely delivery of customer orders 
should be made. The quantity of product reaching the end-users should 
satisfy the customer requirement. In the given decision problem, the 
end-user demand has been assumed to be uncertain. The set of equations 
given below have been used to meet the demand of end-users: 
∑

k∈K
Xdekl⩾Dl ∀l ∈ L  

∑

l∈L
Dl = Dtotal  

where, Dl represents uncertain demand of end-user l ∈ L. 
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3.9. Optimization model 

NotationsDescription of indices  

Index Definitions 

I Index set for suppliers; ∀ i ∈ I. 
J Index set for manufacturing Centers; ∀ j ∈ J. 
K Index set for distribution centers; ∀ k ∈ K. 
L Index set for end-users; ∀ l ∈ L.  

ParametersDescription of parameters  

Parameter Definitions 

Fm
j Fixed operating cost of manufacturing center j; ∀ j ∈ J. 

Fd
k Fixed operating cost of distribution center k;∀ k ∈ K. 

VCa
ij Variable cost (including purchasing of raw-material from the suppliers, 

transportation and handling costs) for a unit of raw-material from 
supplier i to manufacturing center j; ∀ i ∈ I, j ∈ J. 

VCb
jk Variable cost (including production, transportation and handling costs) 

for a unit of product from manufacturing center j to distribution center 
k;∀ j ∈ J,k ∈ K. 

VCc
kl Variable cost (including transportation and handling costs) for a unit of 

product from distribution center k to end-user l; ∀ k ∈ K, l ∈ L. 
Em

j Fixed operating emission of manufacturing center j; ∀ j ∈ J. 

Ed
k Fixed operating emission of distribution center k; ∀ k ∈ K. 

VEa
ij Variable emission (including transportation and handling emissions) 

for a unit of raw-material from supplier i to manufacturing center j; ∀
i ∈ I, j ∈ J. 

VEb
jk Variable emission (including production, transportation and handling 

emissions) for a unit of product from manufacturing center j to 
distribution center k;∀ j ∈ J,k ∈ K. 

VEc
kl Variable emission (including transportation and handling emissions) 

for a unit of product from distribution center k to end-user l; ∀ k ∈ K,
l ∈ L. 

Si Uncertain supplying capacity of supplier i;∀ i ∈ I. 
Pj Uncertain production capacity of manufacturing center j; ∀ j ∈ J. 
Wk Uncertain holding capacity of distribution center k;∀ k ∈ K. 
Dl Uncertain demand of end-user l; ∀ l ∈ L. 
π Cost per unit of carbon emission. 
ST

i Average annual training time given to the ith supplier; ∀ i ∈ I. 
Timemax Maximum time allowed for the training of suppliers. 
Ace

l Average annual number of complaints by lth end-user with respect to the 
unit product; ∀ l ∈ L. 

Acmax Maximum acceptable complaints from end-users with respect to the 
unit product. 

Ctotal Maximum carbon emission allowed for an organization.   

Parameter Definitions 

DTotal Total demand from the end-users.  

Decision variablesDecision variables  

Binary variable Definition 

αm
j 1; if manufacturing center j is open; 0 otherwise; ∀j ∈ J. 

βd
k 1; if distribution center k is open; 0 otherwise; ∀ k ∈ K.   

Other 
variables 

Definition 

Xsmij Quantity of material shipped from supplier i to manufacturing 
center j; ∀ i ∈ I, j ∈ J. 

Xmdjk Quantity of product shipped from manufacturing center j to 
distribution center k;∀ j ∈ J,k ∈ K. 

Xdekl Quantity of product shipped from distribution center k to end-user 
l; ∀ k ∈ K, l ∈ L.  

Objective The aim is to minimize the total cost of the network as a 
whole, which includes the costs associated with operating, production, 

and transportation and CO2 emission cost. 
Minimize Total Cost (Z ¼ Z1 + πZ2) 

where, Z1 =
∑

j∈J
Fm

j αm
j +

∑

k∈K
Fd

k βd
k +

∑

i∈I

∑

j∈J
VCa

ijXsmij +
∑

j∈J

∑

k∈K
VCb

jkXmdjk

+
∑

k∈K

∑

l∈L
VCc

klXdekl  

and, Z2 =
∑

j∈J
Em

j αm
j +

∑

k∈K
Ed

k βd
k +

∑

i∈I

∑

j∈J
VEa

ijXsmij +
∑

j∈J

∑

k∈K
VEb

jkXmdjk

+
∑

k∈K

∑

l∈L
VEc

klXdekl 

Subjected to the constraints 
∑

j∈J
Xsmij⩽Si ∀i ∈ I (1)  

∑

i∈I
Xsmij =

∑

k∈K
Xmdjk ∀j ∈ J (2)  

∑

k∈K
Xmdjk⩽Pjαm

j ∀j ∈ J (3)  

∑

j∈J
Xmdjk =

∑

l∈L
Xdekl ∀k ∈ K (4)  

∑

l∈L
Xdekl⩽Wkβd

k ∀k ∈ K (5)  

∑

k∈K
Xdekl⩾Dl ∀l ∈ L (6)  

∑

l∈L
Dl = Dtotal (7)  

∑

j∈J
αm

j ⩽Um (8)  

∑

k∈K
βd

k ⩽Ud (9)  

∑

i∈I
(ST

i

∑

j∈J
Xsmij)⩽TimeMax (10)  

∑

l∈L
(Ace

l

∑

k∈K
Xdekl)⩽AcmaxDTotal (11)  

∑

j∈J
Em

j αm
j +

∑

k∈K
Ed

k βd
k +
∑

i∈I

∑

j∈J
VEa

ijXsmij +
∑

j∈J

∑

k∈K
VEb

jkXmdjk

+
∑

k∈K

∑

l∈L
VEc

klXdekl⩽Ctotal
(12)  

αm
j , β

d
k = {0, 1}; Xsmij,Xmdjk,Xdekl⩾0 (13)  

Objective function 1 (Z1) represents the first objective function, which 
minimizes overall cost incurred in the network capturing the costs 
associated with establishment, production, and transportation/routing 
costs activities. Objective function 2 (Z2) expresses the second objective 
function, which minimizes the total carbon emissions inthe network 
resulting from establishment, production, and transportation/routing 
costs activities. Constraint 1 ensures that the flow of material from the 
supplier to manufacturing center will not exceed the supplier capacity. 
Constraint 2 performs flow balancing between supplier-manufacturer 
and manufacturer-distribution center arcs. Constraint 3 ensures that 
flow of finished product from manufacturing center to distribution 
center cannot exceed the production capacity of manufacturing center. 
Constraint 4 performsflow balancing between manufacturing center- 
distribution center and distribution center-end-user arcs. Constraint 5 
ensures that flow of finished product from distribution center to end- 
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user cannot exceed the holding capacity of distribution center. Con-
straints 6 and 7 represent the demand satisfaction conditions. Con-
straints 8 and 9 restricts the maximum number of open facilities (MCs 
and DCs). Constraints 10 and 11 are the social sustainability conditions. 
Constraint 12 limits the maximum carbon emission allowed for an or-
ganization. And condition 13 represents the binary and non-negativity 
restrictions on the decision variables. 

Collectively, these constraints create a comprehensive framework 
that optimizes supply chain operations while maintaining a balance 
between operational efficiency, customer satisfaction, social re-
sponsibility, and environmental consciousness. 

Uncertainty modeling in the proposed model 
In the proposed optimization model, various parameters have been 

assumed to be uncertain. The uncertain parameters involved in the given 
model are: capacity of different facilities viz. suppliers, manufacturing 
centers and distribution centers and the demand of end-users. This study 
utilizes chance constrained programming method to handle uncertainty. 

3.10. Chance constrained programming 

Chance-constrained programming (CCP) is a powerful and innova-
tive optimization technique that addresses decision-making under un-
certainty. This technique was first introduced by Charnes and Cooper 
(1959) to model the uncertain behavior of parameters involved in a 
linear programming problem. By considering uncertain parameters as 
random variables, CCP seeks to find solutions that satisfy constraints 
with a certain probability level. This approach finds diverse applications 
in various fields. Dong et al. (2014) applied CCP model to find the total 
cost at a specific risk stage, providing a basis for risk-cost trade off for 
watershed nutrient load reduction. Simic (2016) represented an 
interval-parameter CCP model for the management of few EOL products 
and Xie et al. (2011) provided a simulation based inexact CCP model. We 
first present below an application of CCP on a general linear program-
ming problem. 

Let us consider a stochastic linear programming problem: 

F(x) = cT x =
∑

j∈J
cjxj (14)  

s.t 
∑

j∈J
aijxj = bi ∀i ∈ I (15)  

xj⩾0 ∀j ∈ J (16)  

Here, cj, aij and bi are the random variables that follow normal distri-
bution. 

By using CCP in stochastic linear programming problem suggested by 
Nazemi and Tahmasbi (2013), Eq. 14–16 can be rewritten as: 

F(x) = cT x =
∑

j∈J
cjxj (17)  

s.t 

Pr[
∑

j∈J
aijxj = bi]⩾pi ∀i ∈ I (18)  

xj⩾0 ∀j ∈ J (19)  

where, pi represents respective probability for the constraint to be 
satisfied. Constraint 18 indicates that probability of meeting constraint 
15 is at least pi, where 0⩽pi⩽1. For simplicity, let us assume that the 
decision variables xj’s are deterministic. 

Now for the constraint of the type: 
∑

j∈J
aijXi⩽bi ∀i ∈ I ∗

when only bi’s are the random variables. Let us assume that the random 
variable bi follows normal distribution with mean ui and the variance 
Var(bi) = Θ2

i . 

bi ∼ N(ui,Var(bi)) ∼ N(ui,Θ2
i )

Now the constraint 18 can be restated as:- 
⇒ 

Pr[
∑

j∈J
aijXi⩽bi] = Pr[(

∑

j∈J
aijXi − ui)

/

(Θi)⩽(bi − ui)

/

(Θi)] ∀i ∈ I  

⇒ 

Pr[(
∑

j∈J
aijXi − ui)

/

(Θi)⩽(bi − ui)

/

(Θi)]⩾pi ∀i ∈ I (20)  

Where (bi − ui)/(Θi), ∀i ∈ I is a standard normal variate with mean 
0 and variance 1. The above inequality can be rewritten as 

⇒ 

Pr[z⩽(
∑

j∈J
aijXi − ui)

/

(Θi)]⩽(1 − pi) ∀i ∈ I  

If Ei represents the value of standard normal variate at which 

ϕ(Ei) = 1 − pi < 0.5  

Then the above constraint can be stated as 
⇒ 

ϕ[(
∑

j∈J
aijXi − ui)

/

(Θi)]⩽ϕ(Ei) ∀i ∈ I  

This inequality is satisfied only if 
⇒ 

(
∑

j∈J
aijXi − ui)

/

(Θi)⩽(Ei) ∀i ∈ I  

where, the standard normal variate 

Ei = ϕ− 1( 1 − pi
)

(21) 

⇒ 
∑

j∈J
aijXi − ui − EiΘi⩽0 ∀i ∈ I  

⇒ 
∑

j∈J
aijXi⩽ui +EiΘi ∀i ∈ I ∗ ∗

Thus the stochastic linear programming stated as Eq. 14–16 is equiva-
lent to the deterministic optimization model stated as 

F(x) = cT x =
∑

j∈J
cjxj (22)  

s.t 
∑

j∈J
aijXi⩽ui +EiΘi ∀i ∈ I (23)  

xj⩾0 ∀j ∈ J (24)  

3.11. Transformed model (After applying CCP) 

In the optimization model presented in subsection 3.9, constraints 1, 
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3, 5, 6 and 7 contain uncertain parameters. The uncertainty is there due 
to uncertain capacity at various locations and uncertain demand of the 
end-users. By using CCP, these constraints can be transformed as given 
below: 

Constraint1→Pr[
∑

j∈J
Xsmij⩽Si]⩾γi ∀i ∈ I] (25)  

Constraint3→Pr[
∑

k∈K
Xmdjk⩽Pjαm

j ]⩾δj ∀j ∈ J (26)  

Constraint5→Pr[
∑

l∈L
Xdekl⩽Wkβd

k ]⩾ηk ∀w ∈ W (27)  

Constraint6→Pr[
∑

k∈K
Xdekl⩾Dl]⩾μl ∀l ∈ L (28)  

Constraint7→Pr[
∑

l∈L
Dl = Dtotal]⩾μl (29)  

Here, γi, δj, ηk and μl represent acceptable probabilities for respective 
constraint to be satisfied. 

3.12. Reformulation. 

The modified formulation of proposed optimization model after 
removing the uncertainty is given below: 

Objective: Minimize Total Cost (Z) ¼ Z1 + πZ2 =

∑

j∈J
Fm

j αm
j +

∑

k∈K
Fd

k βd
k +
∑

i∈I

∑

j∈J
VCa

ijXsmij +
∑

j∈J

∑

k∈K
VCb

jkXmdjk +
∑

k∈K

∑

l∈L
VCc

klXdekl  

+ π
(
∑

j∈J
Em

j αm
j +

∑

k∈K
Ed

k βd
k +

∑

i∈I

∑

j∈J
VEa

ijXsmij +
∑

j∈J

∑

k∈K
VEb

jkXmdjk

+
∑

k∈K

∑

l∈L
VEc

klXdekl

)

Subject to 

∑

j∈J
Xsmij⩽mean

(

Si

)

+ ϕ− 1

(

1 − γi

)

Θi ∀i ∈ I (30)  

The constraint in stochastic Eq. 1 has been converted to deterministic 
Eq. 30. In Eq. 30, variables mean(Si), ∀j ∈ J, represent average of 
different capacities for supplier i ∈ I. ϕ− 1(1 − γi) represents the inverse of 
cumulative standard normal distribution of the random variable that 
follows normal distribution. Variables Θi’s represent the standard de-
viation of capacities of different suppliers. The constraint 30 ensures that 
the flow of material from a supplier to different manufacturing centers 
does not exceed the transformed capacity of supplier, i.e.. mean(Si)+

ϕ− 1(1 − γi) Θi. The supplying capacity of supplier can also be modified 
by changing the probabilities, i.e. γi’s. 
∑

i∈I
Xsmij =

∑

k∈K
Xmdjk ∀j ∈ J (31)  

∑

k∈K
Xmdjk⩽

(

mean

(

Pj

)

+ ϕ− 1

(

1 − δj

)

Θj

)

αm
j ∀j ∈ J (32)  

The constraint in stochastic Eq. 3 can be converted to deterministic Eq. 
32. In Eq. 32, the variables mean(Pj), ∀j ∈ J, represent average pro-
duction capacities of various manufacturing centers. ϕ− 1(1 − δj) repre-
sents the inverse of cumulative standard normal distribution of the 
random variable that follows normal distribution. Variables Θj’s repre-
sent the standard deviation of production capacities of different 
manufacturing centers. The constraint 32 ensures that the flow of the 
product from a manufacturing center to different distribution centers 

does not exceed the transformed production capacity of manufacturing 
center, i.e.. (mean(Pj) + ϕ− 1(1 − δj ) Θj). The manufacturing center 
capacity can also be modified by changing the probabilities, i.e.. δj’s. 
∑

j∈J
Xmdjk =

∑

l∈L
Xdekl ∀k ∈ K (33)  

∑

l∈L
Xdekl ⩽

(

mean

(

Wk

)

+ ϕ− 1

(

1 − ηk

)

Θk

)

βd
k ∀k ∈ K (34)  

The constraint in stochastic Eq. 5 can be converted to deterministic Eq. 
34. In Eq. 34, variables mean (Wk), ∀k ∈ K, represent average capacities 
of various distribution centers. ϕ− 1(1 − ηk) represents the inverse of 
cumulative standard normal distribution of the random variable that 
follows normal distribution. Variables Θk’s represent the standard de-
viation of capacities of different distribution centers. The constraint 34 
ensures that the flow of the product from a distribution center to 
different end-users must not exceed the transformed capacity of the 
distribution center, i.e.. (mean(Wk) + ϕ− 1(1 − ηk) Θk). The distribution 
center capacity can also be modified by changing the probabilities, i.e. 
ηk’s. 

∑

k∈K
Xdekl⩾mean

(

Dl

)

− ϕ− 1

(

1 − μl

)

Θl ∀l ∈ L (35)  

The constraint in stochastic Eq. 6 can be converted to deterministic Eq. 
35. In Eq. 35, the variables mean( Dl), ∀l ∈ L, represent average demands 
of different end-users. ϕ− 1(1 − μl) represents the inverse of cumulative 
standard normal distribution of the random variable that follows normal 
distribution. Variables Θl’s represent the standard deviation of demands 
of different end-users. The constraint 35 ensures that the flow of the 
product from a distribution center to different end-users must be more 
than the transformed demand of end-users, i.e.. 
mean(Dl) − ϕ− 1(1 − μl) Θl. The demand of end-users can also be modi-
fied by changing the probabilities, i.e.. μl’s. 

∑

l∈L
mean

(

Dl

)

− ϕ− 1

(

1 − μl

)

Θl = Dtotal (36)  

The constraint in stochastic Eq. 7 can be converted to deterministic Eq. 
36. The constraint 36 computes the total modified demand of the end- 
users. In Eq. 36, the variables mean(Dl), ∀l ∈ L, represent average de-
mands of different end-users. ϕ− 1(1 − μl) represents the inverse of cu-
mulative standard normal distribution of the random variable that 
follows normal distribution. Variables Θl’s represent the standard de-
viation of demands of different end-users. 
∑

j∈J
αj⩽M (37)  

∑

k∈K
βk⩽N (38)  

∑

i∈I
(ST

i

∑

j∈J
Xsmij)⩽TimeMax (39)  

∑

l∈L
(Ace

l

∑

k∈K
Xdekl)⩽AcmaxDTotal (40)  

∑

j∈J
Em

j αm
j +

∑

k∈K
Ed

k βd
k +
∑

i∈I

∑

j∈J
VEa

ijXsmij +
∑

j∈J

∑

k∈K
VEb

jkXmdjk

+
∑

k∈K

∑

l∈L
VEc

klXdekl⩽Ctotal
(41)  

αm
j , β

k
k = {0, 1}; Xsmij,Xmdjk,Xdekl⩾0 (42)  
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4. Numerical Illustration 

The suggested model’s utility is demonstrated by using a numerical 
example. The goal of this study is to create a strategic supply chain 
network that makes it easier to distribute products to end-users in 
different places in a way that is both cost effective and environmentally 
responsible. There are four levels in the proposed supply chain: supplier, 
manufacturing centers, distribution centers, and end-users. 

To evaluate the performance and robustness of the proposed uncer-
tain SCND, a series of numerical experiments were conducted using 
LINGO 19.0 software. One of the experiments focused on systematically 
varying the number of open facilities within the supply chain network. 
The objective of these experiments was to examine the impact of vari-
ations in available facilities on both total cost and carbon emissions, thus 
shedding light on the trade-offs between economic and environmental 
sustainability objectives. 

Table 2 provides the result of the experiment of varying the number 
of open facilities. As shown in Table 2, influence of increment in number 
of facilities (manufacturing centers and distribution centers) was 
observed on total cost and carbon emissions. Initially, total cost and 
carbon emmision values reduce with increase in number of facililities. 
Later, as number of facilities increases beyond case 3, the total cost and 
carbon emission also increase in accordance with the complex in-
teractions of production, transportation, and establishment costs. The 
optimal solution was achieved in case 3 when 12 manufacturing centers 
and 12 distribution centers remain operational and corresponding total 
cost is 26004710 while the carbon emission is 251419 tons. 

Sensitivity Analysis 

4.1. Variation in the number of open facilities 

Supply chain network design is a complex optimization process that 
involves strategic decisions regarding the configuration of facilities to 
achieve cost efficiency and sustainability goals. The two graphs pre-
sented in Figs. 3 and 4 provide an insightful analysis of the impact of 
altering the number of open facilities within the proposed uncertain 
SCND model. Specifically, these graphs show the interplay between fa-
cility availability and total cost, shedding light on critical considerations 
for supply chain decision-makers. 

In Fig. 3, the x-axis represents the number of open manufacturing 
centers, while the y-axis depicts the corresponding total cost. The 
number of distribution centers was fixed at 12 for this experiment. With 
a fixed number of distribution centers, this graph offers a clear 
perspective on how variation in the number of open manufacturing 
centers influence overall cost. As the number of open MCs increases, the 
total cost demonstrates specific trends. At lower values of open MCs, 
total costs is relatively higher due to under utilization of capacity and 
higher operational costs per unit produced. As the number of open MCs 
rises, economies of scale can be leveraged, potentially leading to a 
decline in total cost. However, beyond a certain point, the total cost 
starts increasing due to over utilization of open facilities and increase in 

transportation cost between the facilities. 
Similarly, Fig. 4 examines the influence of changing the number of 

open distribution centers while maintaining a constant number of 
manufacturing centers. Number of manufacturing centers was fixed at 
12 for this experiment. This graph provides insights into the intricate 
relationship between number of open distribution centers and total cost 
within the supply chain. 

When number of open DCs is low, total costs is comparatively higher 
due to higher transportation expenses and reduced responsiveness to 
demand fluctuations. As the number of open DCs increases, trans-
portation costs might decrease and distribution-related costs could rise. 
The optimal point on this graph represents a balance where the benefits 
of increased distribution efficiency counteract the additional costs 
associated with maintaining more open DCs. 

4.2. Variation in the supplier capacity constraint probability γi 

Effective supply chain management involves navigating un-
certainties, and the probability of supplier capacity constraints plays a 
pivotal role in determining the robustness of the system. The two graphs 
presented in this subsection, Figs. 5 and 6, provide insights into how 
variations in supplier capacity constraints probabilities influence both 
the total cost and total emission within the proposed uncertain SCND 
model. 

In Fig. 5, the x-axis represents the probability of supplier capacity 
constraints γi, while the y-axis illustrates the corresponding total cost. 
Fig. 5 demonstrates specific trend in the relationship between the 
probability of supplier capacity constraints and the resulting total cost. 
Initially, at lower levels of probability (0.72), the total cost is observed to 
be relatively high. The probabilities below the chosen range, such as 
0.72, lead to infeasible solutions within the system. As the probability of 
supplier capacity constraints increases to a certain critical point, a 
notable decrease in total cost has been observed. This decline reflects the 
positive impact in the supply chain strategy and efficient resource 
allocation. However, beyond this point, a reversal occurs, and the total 
cost starts increasing as the probability of the supplier capacity 
constraint increases. 

The insights captured from Fig. 6 states the link between the prob-
ability of supplier capacity constraints and the subsequent total emis-
sion. The x-axis denotes the probability of supplier capacity constraints, 
and the y-axis represents the corresponding total emission. This graph 
highlights the intricate dynamics between supply chain disruptions and 
environmental aspect of sustainability. This graph demonstrates a 
consistent upward trend wherein the total emissions increase with a rise 
in the probability of constraints. The upward trend in total emissions 
with an increase in probability of supplier capacity constraints is 
attributed to a combination of interconnected factors. The inverse 
relationship between the probability and the capacity of the supplier 
plays a crucial role. As the probability rises, it signifies a decrease in 
supplier capacity and vice versa. 

When the probability of supplier capacity constraints increases, a 
decline in supplier capacity indicates that there is a possible demand for 
additional suppliers to meet manufacturing requirements. Emissions 
resulting from manufacturing and transportation activities increase as a 
result. 

The observed dynamics of total cost and emission concerning varying 
supplier capacity constraint probabilities emphasize the importance of 
proactive supply chain management strategies. By identifying the crit-
ical inflection point in Fig. 5, managers can make informed decisions to 
strike a balance between cost-saving measures and resilience actions. 
Additionally, Fig. 6 emphasizes the need to prioritize sustainability ef-
forts. Collectively, these insights support the formulation of strategic 
decisions that balance operational efficiency, supply chain resilience, 
and environmental sustainability. 

Table 2 
Variation in the number of facilities.  

Cases No. of 
Manufacturing 

center open 

No. of 
Distribution 
center open 

Total cost Carbon 
emission (in 

tons) 

1 11 11 27112460 262194 
2 11 12 26505360 256269 
3 12 12 26004710 251419 
4 13 13 26024530 251512 
5 14 14 26049850 251682 
6 15 15 26079350 251872 
7 16 16 26110750 252062 
8 16 17 26132750 252145 
9 17 18 26171170 252390 
10 20 20 26304340 253330  
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Fig. 3. Variation in the number of Manufacturing centers.  

Fig. 4. Variation in the number of Distribution centers.  

Fig. 5. Total cost Vs change in γi.  

A. Kumar and K. Kumar                                                                                                                                                                                                                      



Cleaner Logistics and Supply Chain 10 (2024) 100142

12

4.3. Variation in the manufacturing center capacity constraint probability 
δj 

In this subsection, we investigate the impact of varying 
manufacturing center capacity constraints probability within the pro-
posed uncertain SCND model. The subsequent graphs, Figs. 7 and 8, 
mirror the trends previously observed in Figs. 5 and 6. These graphs 
reveal how changes in manufacturing center capacity constraint prob-
abilities influence both operational costs and environmental consider-
ations within the supply chain. 

Fig. 7 shows an interesting trend in the relationship between 
manufacturing center capacity constraint probabilities and the resulting 
total cost. Initially, as the probability of manufacturing center capacity 
constraints is set to be 0.75, it shows that the resulting total cost is too 
high. The probabilities below the chosen range, such as 0.75, lead to 
infeasible solutions and including these infeasible regions on the x-axis 
would not provide meaningful insights. This outcome reflects the po-
tential cost implications associated with operational disruptions, where 
constrained manufacturing capacity leads to increased production 

expenses. However, at a certain threshold probability, the graph in-
dicates a decline in total cost. This decline signifies the beneficial impact 
of robust manufacturing capacity, enhancing production capabilities 
and reducing operational costs. Beyond this threshold, further increase 
in the probability of manufacturing center capacity constraints 
contribute to a subsequent rise in total cost due to operational in-
efficiencies and additional costs incurred. 

Fig. 8 shows parallel trend established in Fig. 6, showcasing the 
relationship between manufacturing center capacity constraint proba-
bilities and total emission. As the probability of manufacturing center 
capacity constraints increases, the total emission demonstrate a consis-
tent upward trajectory. Disruptions adding from manufacturing center 
capacity constraints can lead to sub-optimal decisions and resource 
allocation, resulting in increasing emissions. This relationship empha-
sizes the need to manage manufacturing center capacity constraints pro- 
actively to mitigate the environmental consequences of disruptions. 

These graphs provide further depth to the analysis by extending the 
examination to manufacturing center capacity constraints. By recog-
nizing the critical threshold in Fig. 7, decision-makers can strategically 
optimize manufacturing center capacity to achieve a balance between 

Fig. 6. Total emission Vs change in γi.  

Fig. 7. Total cost Vs change in δj.  
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cost efficiency and operational stability. Additionally, Fig. 8 emphasizes 
the need to prioritize sustainability efforts to offset emissions growth 
resulting from disruptions. 

4.4. Variation in the distribution center capacity constraint probability ηk 

Extending the examination of supply chain constraints, the analysis 
further explores the effects of distribution center capacity constraints on 
total cost and total emissions within the context of the proposed un-
certain SCND model. The subsequent graphs, Figs. 9 and 10, reflect the 
observed relationships between the variation in the probability of DC 
capacity constraints and supply chain total cost/total emission, further 
emphasizing the intricate dynamics between supply chain economic 
considerations, and environmental impact. 

Fig. 9 offers valuable insights into the relationship between distri-
bution center capacity constraint probabilities and the resulting total 
cost. As the probability of distribution center capacity constraints in-
creases, a corresponding upward trajectory in total cost becomes 
evident. This pattern underscores the potential cost implications arising 
from operational disruptions related to constrained distribution center 
capacities. The graph’s trend highlights the importance of proactive 
measures to manage distribution center capacity constraints and 

maintain operational efficiency. For the probability below 0.75, the 
system becomes infeasible and therefore these values have not been 
represented in Fig. 9 as including these infeasible areas on the x-axis 
would not provide any meaningful information. 

Fig. 10 shows the trend which revealing the connection between 
distribution center capacity constraints probabilities and total emission. 
As the probability of distribution center capacity constraints rises, total 
emissions exhibit a consistent increase. Disruptions caused by con-
straints in distribution center capacities can prompt sub optimal de-
cisions in terms of transportation and resource allocation. Consequently, 
emissions escalate due to expedited shipping, inefficient distribution, 
and associated carbon-intensive activities. For the probabilities below 
0.75, the system becomes infeasible and therefore these values have not 
been represented in Fig. 10 as including these infeasible areas on the x- 
axis would not provide any meaningful information. 

Collectively, these insights empower supply chain professionals to 
make informed decisions that combine economic efficiency, operational 
stability, and environmental responsibility in the face of distribution 
center capacity uncertainties. 

Fig. 8. Total emission Vs change in δj.  

Fig. 9. Total cost Vs change in ηk.  
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4.5. Variation in the demand constraint probability μl 

In this subsection, we analysis the impact of demand satisfaction 
constraints probability to search the implications of these constraints on 
total cost and total emissions within the framework of the proposed 
uncertain SCND model. The ensuing graphs, Figs. 11 and 12, provide a 
distinctive perspective, revealing how the interplay between demand 
satisfaction and supply chain dynamics impacts both financial consid-
erations and environmental outcomes. 

Fig. 11 shows a valuable trend between the demand satisfaction 
constraint probabilities and the resulting total cost. The graph portrays a 
declining trend. Initially, as the probability of demand satisfaction 
constraints is set to 0.75, the total cost value is on a higher side that 
reflects the financial implications of increasing demand fulfillment and 
there are infeasible solutions for probabilities below the selected range, 
and including these infeasible regions on the x-axis would not provide 
useful information. As the demand satisfaction constraint probability 
increases, the total cost shows a decreasing trend throughout the graph. 
This decline underscores the impact of comprehensive demand 

satisfaction strategies, including enhanced demand forecasting, and 
responsive production. 

Parallel to the trend established in Fig. 11, Fig. 12 illustrates the 
relationship between demand satisfaction constraint probabilities and 
total emissions. So, the graph shows a relationship between demand 
fulfillment and environmental responsibility. As the probability of de-
mand satisfaction constraints rises, total emissions follow a declining 
trend. This decline underscores the potential environmental benefits of 
proactive demand satisfaction measures that enhance supply chain 
responsiveness and optimize transportation. 

The graphical insights presented in this subsection underscore the 
criticality of effective demand satisfaction strategies in supply chain 
management. Collectively, these insights empower supply chain prac-
titioners to formulate strategies that holistically align operational effi-
ciency, demand satisfaction, and environmental sustainability. 

4.6. Variation in the total carbon emission cap 

This subsection explores the intricate relationship between total cost 

Fig. 10. Total emission Vs change in ηk.  

Fig. 11. Total cost Vs change in μl.  
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and environmental impact. The influence of variations in carbon emis-
sions on total cost has been studied within the context of the proposed 
uncertain SCND model. The ensuing graph provides a visual narrative 
that shows the dynamic trade-offs between economic efficiency and 
environmental sustainability. 

Fig. 13 offers a compelling visualization of the interaction between 
total cost and the carbon emission cap. The x-axis denotes varying levels 
of the carbon emission cap, while the y-axis portrays the corresponding 
total cost. The graph reveals a linear trend, where total cost exhibits an 
incremental rise with increase in carbon emission. 

This linear relationship underscores the inherent trade-offs between 
cost considerations and environmental commitments. The graph’s linear 
progression symbolizes the financial impact of adopting sustainable 
practices, where reducing emissions often entails investments in cleaner 
technologies, optimized transportation, and improved resource 
utilization. 

5. Greedy Based Heuristic 

A greedy-based algorithm is a heuristic approach used in solving 
optimization problems where the aim is to find the best solution from a 
set of choices. The term ”greedy” refers to the strategy of making locally 
optimal choices at each step with the hope that these choices will lead to 
a global optimal solution. In other words, the algorithm focuses on im-
mediate gains without considering the long-term consequences of those 
choices. 

The central idea behind a greedy algorithm is to iteratively select the 

best option available at each stage, making decisions that seem the most 
advantageous at the moment. This can be advantageous for solving 
problems with large solution spaces, as it simplifies the decision-making 
process and reduces computational complexity. However, the trade-off 
is that greedy algorithms might not always lead to the absolute best 
solution, as they do not account for potential future trade-offs or vari-
ations in the problem. 

In the context of optimization problems, strength of a greedy-based 
algorithm lies in its simplicity and efficiency. It often works well for 
problems where locally optimal choices contribute significantly to the 
global optimum. However, it might not be suitable for problems with 
intricate dependencies or those requiring an exhaustive exploration of 
all possibilities. 

Heuristic algorithms are commonly employed in various fields, 
including computer science, operations research, and engineering, to 
solve problems such as scheduling, network optimization, and resource 
allocation. Yavari and Geraeli (2019) developed an efficient heuristic 
algorithm, YAG, to solve the large size problem of MILP robust optimi-
zation model for green closed-loop SCND of perishable goods. By hy-
bridizing two meta-heuristic algorithms, AICA and VNS, Devika et al. 
(2014) developed a novel algorithm named as HIV to improve the so-
lution efficiency for a CLSC with multiple goals. While heuristic algo-
rithms do not necessarily find the optimal solution in all cases, a well- 
designed greedy algorithm can provide satisfactory results and serve 
as a useful tool in decision-making processes. 

To address the intricate challenges of our sustainable supply chain 
model, a greedy algorithm was strategically employed. This algorithm 

Fig. 12. Total emission Vs change in μl.  

Fig. 13. Total cost Vs change in total CO2 emission cap.  
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serves as the backbone of our decision-making process, effectively 
navigating the complex interplay between suppliers, manufacturing 
centers, distribution centers, and end-users. At each step, the algorithm 
makes locally optimal choices, selecting the most advantageous options 
based on immediate gains. This approach enables us to efficiently 
manage operational costs and carbon emissions throughout the supply 
chain. Leveraging the algorithm’s simplicity and computational effi-
ciency, we optimized the product flow between supplier to 
manufacturing center, manufacturing center to distribution center, and 
distribution center to end-users while considering capacity constraints 
and customer demands. Furthermore, the algorithm also considers the 
restrictions on the maximum number of open manufacturing and dis-
tribution centers, ensuring a balance between facility utilization and the 
broader sustainability objectives. By iteratively refining the facility al-
locations and transportation routes, the algorithm empowers us to 
achieve a solution that aligns with our overarching goals of minimizing 
costs and environmental impact. Through the strategic application of 
the greedy algorithm, we achieve a pragmatic and effective way of 
addressing the complexities inherent in our sustainable supply chain 
model to achieve a harmonious balance between economic efficiency 
and ecological responsibility. 

The primary objective of the employed greedy-based algorithm was 
to quickly and efficiently optimize decision-making processes within our 
sustainable supply chain model. By focusing on locally optimal choices 
at each juncture, the algorithm aimed to achieve a balance between 
time-saving and cost-efficiency. The algorithm’s immediate decision- 
making approach allowed us to swiftly navigate the complex network 
of suppliers, manufacturing centers, distribution centers, and end-users, 
efficiently allocating resources and minimizing the time required to 
determine optimal/near-optimal solutions. By prioritizing immediate 
gains, the algorithm contributed to reduced computational complexity, 
offering a pragmatic way to address complex optimization challenges 
without exhaustive exploration of all possibilities. Ultimately, the 
objective of the greedy-based algorithm aligned with the broader aim of 
achieving resource efficiency, cost minimization, and timely decision- 
making in the context of our sustainable supply chain model. 

Working of the algorithm. 
The algorithm operates by iteratively optimizing the flow of products 

through a four-stage supply chain, encompassing suppliers, 
manufacturing centers, distribution centers, and end-users. Employing a 
greedy approach, the algorithm strategically allocates product flows at 
each step to minimize total costs, including fixed operating cost and 
transportation cost, and carbon emissions associated with facility op-
erations and transportation. 

As shown in Fig. 14, the algorithm begins by initializing parameters, 
data, variables and defining the objective function that captures cost and 
emission considerations. Through a series of iterations known as the 
’Greedy Loop Approach’ the algorithm navigates through distinct 
stages. At each stage, it selects flow allocations that locally minimize the 
combined cost and emission factors. This loop is repeated to iteratively 
refine the flow allocations. The algorithm incorporates checks for con-
straints like capacity restriction and demand satisfaction. Importantly, it 
employs termination conditions to ensure an efficient trade-off between 
computational time and solution quality. Once the flow allocations are 
optimized, the algorithm incorporates maximum open facilities re-
strictions to check the robustness of the algorithm. Then algorithm 
proceeds to solution validation, where the results are analysed for 
feasibility and effectiveness. The algorithm concludes by presenting a 
solution that enhances decision-making in supply chain management. 

To evaluate the effectiveness and efficiency of the proposed algo-
rithm, a comparative analysis was conducted against the established 
optimization software, LINGO 19. Table 3 presents a trade-off compar-
ison of the results obtained from both approaches in terms of total cost, 
time taken, and the corresponding cost and time gaps. 

The outcomes of this comparative assessment reveal interesting in-
sights on the performance of the algorithm. As shown in Fig. 15, our 

algorithm shows an advantage in terms of computational time, 
demonstrating an approximate 80% reduction in processing duration 
compared to LINGO 19 software. This accelerated performance is a 
valuable asset, particularly in real-time decision-making scenarios 
where quick insights are imperative for responsive supply chain 
management. 

However, it’s important to note that this efficiency gain comes with a 
cost implication. As shown in Fig. 16, the results indicate an approxi-
mate 18% cost increase when utilizing the heuristic algorithm against 
LINGO 19 software. This cost gap underscores the intricate balance 
between computational time and solution value. The heuristic algo-
rithm, while providing accelerated results, may encounter certain sce-
narios where total cost is higher and therefore optimization-related 
compromises have to be made. 

Table 4 present a comparison of the optimization model and the 
greedy algorithm at larger instances by varying the number of nodes. As 
shown in Table 4, the greedy algorithm has been found to be time- 
efficient in comparison to the optimization model across larger in-
stances that demonstrates its scalability. For example in case 11, the 
runtime of the optimization model in LINGO 19 was approximately 
equal to 7 hours. Whereas, the greedy algorithm could find a solution to 
the same case (case 11) in around 32 minutes. This shows the time- 
efficiency of the proposed greedy based algorithm for handling larger 
and more complex instances. 

In the broader context of supply chain management, this comparison 
serves as a strategic guideline for decision-makers. While the heuristic 
algorithm significantly enhances computational efficiency, the trade-off 
between cost and time should be carefully considered based on the ur-
gency of decision requirements and the acceptable margin of cost de-
viation. This analysis underscores the heuristic algorithm’s potential as a 
valuable tool in supply chain decision-making. 

Algorithm 
A step-by-step working of the proposed algorithm can be found 

below: 
Step-1: Let iteration count p equal to 0; the initial iteration. 
S0= Set of all suppliers with capacity CapS0

i ; M0= Set of all 
manufacturing centers with capacity CapM0

j ; D0= Set of all distribution 

centers with capacity CapD0

k ; E0= Set of all end-users with demand 
DemE0

l . For each i ∈ S0 and j ∈ M0, set Xij = 0; for each j ∈ M0 and k ∈ D0, 
set Xjk = 0; for each k ∈ D0 and l ∈ E0, set Xkl = 0; and for each l ∈
E0; DemE0

l = 0. 
Step-2: For p = p + 1; the intermediate iterations. 
For each i ∈ S0; compute 

∑
j∈M0

Xij⩽CapS0

i . Further, for the cost per 
unit flow from supplier i ∈ S0 to MC j ∈ M0 such that Costsm = VCij +

πVEij; choose Xij that minimizes Costsm and identify j ∈ M0 satisfying 
∑

i∈S0 Xij =
∑

k∈D0 Xjk, go to Step − 3. 
Step-3: 
For the location of manufacturing center j ∈ M0; check the capacity 

restriction if the MC is established there, i.e.. identifying αj to compute 
∑

k∈D0 Xjk⩽CapM0

j αj. Further, for the cost per unit flow from MC j ∈ M0 to 
DC k ∈ D0 such that Costmd = VCjk + πVEjk; choose Xjk that minimizes 
Costmd and identify k ∈ D0 satisfying 

∑
j∈M0 Xjk =

∑
l∈E0 Xkl, go to Step − 4. 

Step-4: 
For the distribution center location k ∈ D0; check the capacity 

constraint if the DC is established there, i.e.. identifying βk to compute 
∑

l∈E0 Xkl⩽CapD0

k βk. Further, for the cost per unit flow from DC k ∈ D0 to 
end-user l ∈ E0 such that Costde = VCkl + πVEkl; choose Xkl that mini-
mize Costde, go to Step − 5. 

Step-5: 
For the each demand location l ∈ E0, Step-4 identifies all k ∈ D0 

which is open. Now, for every k ∈ D0 which is open; identify l ∈ E0 (or 
Xkl) satisfying 

∑
k∈D0 Xkl⩾DemE0

l , go to Step − 6. 
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Fig. 14. Flowchart of the Greedy-based heuristic solution approach of the model.  
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Step-6: 
If conditions established above are satisfied, 

∀ i ∈ S0; j ∈ M0; k ∈ D0; l ∈ E0; then stop; otherwise go to Step − 2. 

6. Discussion 

The findings of this research align with the increasing emphasis on 
sustainability in supply chain management. Stricter government regu-
lations have pushed companies to recognize the importance of 
addressing environmental and social concerns along with economic 

considerations. By integrating sustainability into supply chain practices, 
organizations can foster long-term success, enhance brand reputation, 
and contribute positively to society and the environment. 

This research paper identifies a research gap in the existing literature 
concerning the limited consideration of all three dimensions of sus-
tainability in supply chain management. By presenting a model that 
takes into account economic, environmental, and some social factors, 
this study fills a crucial void in the field, offering a more comprehensive 
and holistic approach to sustainable supply chain design. 

The proposed model represents a substantial step-forward in the 

Table 3 
Comparison of results between LINGO 19.0 software and heuristic.  

Cases No. of Manufacturing center 
open 

No. of Distribution center 
open 

LINGO 19 software 
Solution 

Heuristic solution Deviation from optimality 
(%) 

Time gap 
(%)    

Total cost Time (in 
sec) 

Total cost Time (in 
sec)   

1 11 11 27112460 7.68 32508180 1.04 19.90 86.45 
2 11 12 26505360 9.57 31690900 3.04 19.56 68.23 
3 12 12 26004710 10.63 30795600 2.22 18.42 79.11 
4 13 13 26024530 6.37 30754150 1.17 18.17 81.63 
5 14 14 26049850 4.64 30726070 0.86 17.95 81.46 
6 15 15 26079350 4.77 30717220 0.5 17.78 89.51 
7 16 16 26110750 2.62 30715690 0.34 17.63 87.02 
8 16 17 26132750 2.09 30715620 0.26 17.53 87.56 
9 17 18 26171170 0.37 30715690 0.2 17.36 45.95 
10 20 20 26304340 0.22 30715690 0.19 16.77 13.63  

Fig. 15. Time gap comparison.  

Fig. 16. Total cost gap comparison.  

A. Kumar and K. Kumar                                                                                                                                                                                                                      



Cleaner Logistics and Supply Chain 10 (2024) 100142

19

pursuit of sustainable supply chains. By leveraging CCP, the research 
effectively addresses uncertainties that are inherent in supply chain 
decision-making. With the incorporation of CCP, decision-makers gain 
the ability to assess and manage these risks by enhancing the resilience 
and adaptability of the supply chain. 

The integration of multiple objectives of reducing supply chain costs 
including establishment, production, and transportation costs, and 
minimizing greenhouse gas emissions, emphasizes the model’s 
commitment to economic and environmental sustainability. This multi- 
objective optimization approach finds a trade-off between economic and 
environmental sustainability dimensions, providing decision-makers 
with valuable insights for making informed choices aligned with their 
sustainability goals. 

Sensitivity analysis conducted in this study has provided invaluable 
insights into the model’s robustness and flexibility. Decision-makers can 
explore the impact of various parameters, such as the carbon footprint 
cap, the number of facilities, and probabilities, on the overall cost and 
the emissions within the supply chain. This analysis empowers them to 
make well-informed decisions, considering uncertainties that might 
arise in dynamic business environments. 

The utilization of a heuristic to solve the proposed model demon-
strates the computational intelligence of the research. By employing 
both an exact solution method and a heuristic approach, the study 
showcases the model’s capabilities in efficiently addressing supply chain 
complexities and finding near-optimal solutions for large-scale 
networks. 

The implications of this research are significant for supply chain 
managers, policy-makers, and other stakeholders. By embracing this 
model, organizations may create supply chains that not only meet reg-
ulatory requirements but also contribute positively to society and the 
environment. 

The optimization model employed in this study is based on mixed 
integer linear programming with uncertainties. The proposed model 
focuses on cost minimization, and the current framework primarily 
addresses economic, environmental, and selected social factors within 
the SCND. Additionally, social parameters are assumed to be deter-
ministic in this study, limiting the precision of social sustainability 
estimation. Consideration of uncertain social parameters could offer a 
more accurate reflection in the model. 

While this study has introduced a pioneering approach to integrating 
sustainability dimensions into uncertain supply chain network design, 
there are several directions for further exploration. One direction is the 
integration of additional uncertain parameters in the objective function 
and constraints. By extending the proposed optimization framework to 
encompass a wider range of uncertain variables such as fluctuating 
market demands, variable transportation costs, and uncertain supplier 
capabilities, a more resilient and adaptable supply chain design can be 
formulated. Incorporating these additional uncertainties will move the 
model more closer to reality and it will help in making decisions that not 
only optimize economic, environmental, and social considerations but 

also pro-actively address the unpredictable nature of real-world supply 
chain operations. This approach will require advanced techniques such 
as robust optimization or stochastic programming to effectively manage 
the intricacies of uncertain parameters. 

In conclusion, this research advances the understanding and imple-
mentation of sustainability in supply chain management by proposing 
an innovative model that incorporates economic, environmental, and 
limited social dimensions. With a focus on addressing uncertainties, 
optimizing flow levels, and conducting sensitivity analysis, the model 
provides valuable decision support for businesses to build resilient, 
sustainable, and responsible supply chain networks. 

7. Conclusion 

This research paper sheds light on the critical aspect of sustainability 
in supply chain management. Driven by stricter government regulations 
addressing environmental pollution and social injustice, businesses are 
increasingly recognizing the need to integrate sustainability principles 
into their supply chain practices. This study makes a significant contri-
bution by proposing an MILP model for designing an uncertain supply 
chain network that aims to minimize overall costs while incorporating 
carbon emissions and social factors of suppliers training and customer 
complaints. This research addresses uncertainty through the utilization 
of CCP and perform sensitivity analysis to explore the impact of various 
parameters. This research also presents a greedy based heuristic for 
solving larger instances of the problem in an efficient manner. 

While this study generates valuable insights by the integration of 
economic, environmental, and social sustainability dimensions within 
supply chain management through the proposed uncertain SCND model, 
there are certain limitations and future directions that should also be 
acknowledged:  

• The optimization model considered in this study is a mixed integer 
linear programming model with uncertainties. However, the model 
can be extended to a formulation where parameters and variables are 
non-linear.  

• The proposed optimization model focuses on a single period, single 
product problem. By extending it to a multi-product, multi-period 
problem, a more robust and adaptive supply chain network design 
may evolve that addresses diverse challenges faced by industries.  

• The proposed optimization model is a cost minimizing optimization 
model. Inclusion of social objectives may enhance the practicality of 
proposed work.  

• The model primarily focuses on economic, environmental (carbon 
emissions), and selected social factors within the SCND. Other 
important aspects of social sustainability, such as labor practices, 
ethical sourcing, and community engagement, are not captured 
within the current framework.  

• The social parameters considered in this study are assumed to be 
deterministic. A more precise estimation of social sustainability can 

Table 4 
Performance of the optimization model and greedy based heuristic at larger instances.  

Cases Number of Nodes LINGO 19 software Solution Heuristic solution Deviation from optimality(%) Time gap(%)  

Supplier(i) MC(j) DC(k) End-user(k) Total cost Time (in sec) Total cost Time (in sec)   

1 10 20 20 30 26004710 10.63 30795600 2.22 18.42 79.05 
2 11 22 22 33 28822780 11.2 35363741 2.87 22.69 74.37 
3 12 24 24 36 31462730 28.5 39622014 7.3 25.93 74.38 
4 13 26 26 39 34071290 35.32 43142861 10.07 26.62 71.47 
5 14 28 28 42 36876360 75.4 49696124 19.05 34.76 74.73 
6 15 30 30 45 39484930 124.28 54142041 29.7 37.12 76.08 
7 16 32 32 48 41966320 250.1 57372533 44.21 36.71 82.32 
8 17 34 34 51 44396190 342.8 62662889 57.2 41.14 83.31 
9 18 36 36 54 46754950 621.75 65878012 72.06 40.90 88.40 
10 19 38 38 57 49428530 5166.3 68722626 493.21 39.03 90.45 
11 20 40 40 60 51937224 25843.5 69224271 1937.36 33.28 92.27  
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be made by considering uncertain social parameters in the given 
model. 
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