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Abstract: Multiprocessor task scheduling is an operation of processing more than two tasks 

simultaneously in the system. The Fog-cloud multiprocessor computing structures are the 

categories of exchanged collateral structures with great demand from its initiation. Like other 

networking systems, the existing fog cloud system based on multiprocessor systems faces some 

challenges. Due to the availability of excess clients and various services, scheduling and energy 

consumption issues are challenging. The existing problems must be resolved with proper 

planning to reduce makespan and energy consumption. To obtain this, an optimal scheduling 

approach is required. The proposed approach presents a novel methodology called Hybrid 

Genetic Algorithm and Energy Conscious Scheduling for better scheduling tasks over the 

processors. Here Genetic Algorithm and Energy conscious scheduling model are integrated. 

When only a Genetic Algorithm is chosen for the task scheduling approach, it becomes 

computationally expensive. Energy consumption becomes a huge challenge as it does not cope 

with complexity, making it extremely difficult to schedule appropriate tasks. When choosing 

the proposed hybrid Genetic algorithm, these issues can be overcome by considering optimal 

solutions with minimized makespan and consumed energy. A Genetic Algorithm is used to 

generate three primary chromosomes using priority approaches. The allocated resources are 

optimized through the Energy Conscious Scheduling model, and the proposed method is 

implemented using MATLAB. The existing methods, including genetic algorithm, particle 

swarm optimization, gravitational search algorithm, ant colony optimization and round robin 

models, are compared with the proposed method, proven comparatively better than existing 

models. 

 

Index terms: Fog-cloud system, Task scheduling, Makespan, Energy consumption, 

Multiprocessor, Genetic Algorithm, Energy Conscious Scheduling.  

 

1. INTRODUCTION 

The growth of multi-processing applications is developing rapidly and is widely used in 

different applications, including medical care, smartphones, aerospace, automotive electronics, 

etc. [1, 2]. To fulfil the necessity of computational abilities in most real-time applications, the 

processing systems gradually adopt multiple processors for better power saving and energy [3]. 

For effective performance, proper scheduling is undertaken for dependent or independent tasks 

for a parallel implementation over a wide range of processors [4]. In computer systems, the 

multiprocessor scheduling of tasks [5] is one of the main challenging issues. This form of 

scheduling varies from the conventional scheduling issues as it neglects the task assumption 

that it can be performed over only one processor in a specified time [6]. Based on the 
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requirements in a multiprocessor task system, the tasks should be handled on multiple 

processors simultaneously.  

With the developing computational requirement of huge-scale applications, Fog or cloud 

computing permits a high-velocity placement of huge-scale applications in the present days. 

The cloud promotes flexible and resistant computing devices for processing diverse tasks. 

Multiprocessor task scheduling is positioning tasks in a specified manner in a fog or cloud 

environment to utilize resources appropriately. The fog-cloud computing is a significant 

technology that renders effective Internet services. Scheduling diverse tasks in cloud 

computing is not simply due to heterogeneity characteristics. To reduce the overall execution 

time when following the task dependencies, efficient scheduling and traffic balancing cloud 

environment should be adopted to perform multi-processing tasks. A fog or cloud environment 

is a decentralized computing system where data can be stored. A multi-processing environment 

deals with processing more than one task simultaneously to improve the system’s performance.   

Task scheduling in computing scenarios is widely classified into dependent and 

independent strategies [7]. The dependent strategy has communications and dependencies 

while distributing and allocating tasks over the specified computing resources. The tasks are 

individually circulated over computing resources, either utilizing a batch or online mode in the 

case of independent strategies [8, 9]. Specifically, fundamental scheduling issues in 

multiprocessor systems have become a significant challenge to recent computer advancements 

[10]. One of the foremost factors that affect a multiprocessor system’s performance is improper 

allocation of tasks, increased makespan and consumption of more energy [11]. The task 

scheduling problem leads to more time and energy consumption in determining the best 

schedule.  

As the Internet of Things (IoT) based multiprocessor systems are widely used, the total 

number of connected devices is getting huge, and the data to be processed that emerges from 

these devices is large [12, 13]. Cloud computing is a significant technology that renders 

unlimited storage and processing power capabilities. But there are certain issues like increased 

latency, low performance, bandwidth obstacles and security issues [14]. To attain rapid 

response and increased quality in scheduling the tasks effectively, cloud-fog computing is 

utilized as it possesses reduced computational capabilities, and limited resources are required 

for the task execution [15, 16]. Scheduling all the resources is an essential issue with the 

multiple connections of devices running various tasks. Enhancing performance and reducing 

costs when connected to IoT devices are highly challenging.  

Multiprocessor scheduling is considered a non-deterministic polynomial-time (NP) hard 

problem that must be addressed effectively [17]. Normally, the cloud-fog system comprises 

several computing nodes and upgraded server performance incorporated with many processor 

cores [18]. The interactions between fog and cloud nodes are relatively complex [19]. For 

instance, the allocation of resources in handling user tasks is challenging. For the better 

allocation of resources, the task scheduling approaches are essential in a dynamic environment 

that assists in establishing the arrival time of each task associated with the resource 

management system [20]. To conquer the issues of task scheduling, some approaches, 

including Ant colony optimization (ACO), Particle swarm optimization (PSO) and cuckoo 

search optimization (CSO), have been established. The approaches are utilized in some deep 

learning applications, including visual recognition, speech enhancement [21], mood 

recognition [23,24], emotion recognition [22,25], fraudulent detection, healthcare, etc.  

Due to the consumption of more energy, increased makespan, low rate of convergence and 

computational complexities, better scheduling of tasks cannot be attained in the fog cloud 

setting. The computation of the multiprocessor system is said to be efficient if it assures better 

performance in scheduling tasks. Most researchers have worked on multiprocessors’ effective 

task scheduling process recently. Several learning approaches are introduced to attain better 
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performance. But still, optimal results cannot be obtained due to drawbacks like lower 

convergence rate, high chances of overfitting issues, high energy consumption and increased 

makespan. These drawbacks motivated many researchers to promote significant techniques for 

effectively scheduling tasks. Hence, the Hybrid Genetic Algorithm and Energy Conscious 

Scheduling approach is implemented to effectively schedule tasks in the proposed work. The 

proposed task scheduling model is implemented to answer the following questions. 

a) How effectively has task scheduling contributed to the proposed research study? 

b) What are the scheduling outcomes in the case of multiprocessor systems compared to 

the existing techniques? 

c) Whether the proposed task scheduling algorithms been analyzed statistically? 

d) What are the drawbacks analyzed in the case of a proposed task scheduling model? 

Some effective contributions in promoting better scheduling tasks to enhance the proposed 

research’s overall network performance are presented below: 

 The transferring and receiving resources in a fog-cloud environment consume more 

time and energy. To bring out efficient performance, a novel approach called Hybrid 

Genetic Algorithm and Energy Conscious Scheduling (Hgecs) is presented to minimize 

the overall energy consumption through efficient scheduling of tasks in the appropriate 

nodes. 

 To lessen the computational time, energy consumption and makespan issues in the Fog 

cloud environment by reducing the data traffic with appropriate scheduling to obtain 

better outcomes for multiprocessor systems. 

 The prioritization of tasks is rendered by implementing the Hybrid Genetic Algorithm, 

whereas the primary chromosomes are generated. Through the Heuristic model of 

Energy Conscious Scheduling (Ecs), the tasks assigned to the processor are optimized 

to promote overall efficiency. 

The proposed work is organized into various categories, represented as follows: The 

associated works of multiprocessor task scheduling in a fog cloud environment are discussed 

in Section 2. The system architecture of the proposed methodology, problem formulation and 

model of task scheduling is discussed in Section 3. The outcomes and discussion of the 

proposed work are provided under Section 4. Lastly, Section 5 concludes the proposed work 

with future scope and references.  

 

2. RELATED WORKS 

Several methods have accomplished optimal results of multiprocessor scheduling tasks in the 

fog-cloud environment, and some recent related works are described as follows: 

A multi-objective method was presented by Abdel et al. [26] based on the Modified sine-

cosine Algorithm (MSCA) to tackle the task scheduling process in a multiprocessor. This 

approach was proposed to improve the makespan and energy by adopting the Pareto dominance 

strategy. This form can be expanded as an Energy-aware multi-objective MSCA (EA-M2SCA). 

The classical SCA was modified depending on the optimization process’s division into three 

levels. The first phase identifies a search space during the initial optimization procedure. The 

second phase explores a randomly chosen population. The third phase searches for the optimal 

solution for convergence acceleration. To enhance the performance, the proposed approach 

was integrated with the approach of polynomial mutation. High convergence can be obtained, 

but the scheduling efficiency is low. 

Hassan et al. [27] established a significant methodology through which the task priorities 

were designed from the bottom-level parameter and fuzzy logic. The proposed approach in this 

research was designed to identify tasks’ scheduling by ideal or sub-ideal lengths to obtain high 

performance across a multiprocessor environment. By adopting an acyclic graph, the 

precedence constraints were analyzed. As the processor’s number was fixed, the 
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communication cost was insignificant, and the processors were consistent. The proposed 

technique was established and compared with Prototype Standard Task Graph Set. High 

performance was attained in the case of makespan, speedup and efficiency. The flexibility and 

task scheduling capability of the proposed approach were less.  

An energy-conscious methodology for multi-core scheduling called a non-pre-emptive 

dynamic window (NPDW) was introduced by Michel et al. [28]. The main aim of this approach 

was to obtain an effective balance of load and temperature over chip multiprocessors. NPDW 

utilized the concept of dynamic time windows to accumulate the tasks and determine the best 

stable match between accumulated tasks and available processor cores by utilizing a modified 

Gale-shapely approach. The window metrics and match performance were defined to generate 

a dynamic window to analyze the next time window size. Compared to the baseline schedulers 

in a multi-core environment, this research distributed the computational and thermal load 

throughout the processors. Effective system load dispersion and excess core heating can be 

prevented. The main drawbacks of this research were certain hardware limitations and the 

window-based scheduling being ineffective. 

An efficient energy reduction technique called Dynamic voltage and frequency scaling 

(DVFS) was contributed by Deng et al. [29]. The major objective of this research was to 

determine the scheduling issue of energy optimization under reliability constraints and 

makespan on heterogeneous multiprocessor systems through DVFS. An improved WOA 

(Whale optimization algorithm) was initially proposed by employing an individual selection 

policy and opposition-based learning. Through this, the ability of exploration and exploitation 

can be balanced. A constrained approach based on ranks was applied to retaining some 

infeasible individuals among the population. The performance of improved WOA was 

enhanced by rescheduling the Critical Path Nodes (CPNs). The redistribution of critical paths 

enhanced the opposite learning and individual selection policy performance (OIWOA), but an 

energy consumption problem occurred.  

The Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with 

Multiprocessor Tasks (EADHFSPMT) was addressed in this research by considering two 

objectives, including overall energy consumption and makespan. A Novel Multi-Objective 

Evolutionary Algorithm model based on Decomposition (NMOEA/D) was projected by Jiang 

et al. [30]. Four rules were adopted to begin the population with some diversity based on 

various relationships between the solution and its neighbours. A cooperative search was 

designed to generate new resolutions. Two local intensification processes were employed to 

improve the solution quality. A dynamic adjustment policy was designed to balance 

convergence and diversity for weight vectors. The overall energy consumption was highly 

minimized, but the lifetime is negligible.  

Abualigah et al. [31] proposed a novel hybrid antlion optimization method for resolving 

the arrangement issues of multi-objective tasks through elite-based differential evolution in the 

cloud computing environment. The multi-objective nature of the issue is referred to as MALO, 

which is proposed to reduce makespan and increase resource utilization. The antlion 

optimization approach was improved by adopting elite-based differential evolution as a local 

search method to improve the exploration capability and neglect local optima tracking. The 

experiments were conducted over real and synthetic trace datasets through the cloudsim tool 

kit. The convergence was faster, and huge scheduling problems were overcome in MALO. 

Better results were attained for response time, makespan and degree of imbalance, but the 

overloading capacity is considerably less. 

The Enhanced version of the Multi-Verse Optimizer (EMVO) technique was established 

by Shukri et al. [32] to promote an effective task-scheduling process. By varying the number 

of tasks, the results were obtained to makespan time, throughput and utilization of resources. 

To lessen the makespan time and increase throughput and resource consumption, the EMVO 
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approach was employed to schedule the tasks efficiently. The performance of EMVO was 

compared with the original MVO, and PSO approaches. The outcomes showed that the 

proposed EMVO in this research had mapped the tasks well by holding no extra overheads 

regarding throughput. Higher utilization of resources can be attained with less time 

consumption, but the results of makespan time degraded the system’s overall performance. 

A multi-unmanned aerial vehicle (multi-UAV) incorporated with a Mobile edge computing 

(MEC) system was proposed by Luo et al. [33]. During offloading tasks over ground users, the 

UAVs act as computing servers. Through the joint optimization of UAV task scheduling, 

sharing bits and UAV trajectory in a combined architecture minimizes the energy consumption 

for ground users. A two-layer optimization policy was introduced, whereas the UAV task 

scheduling in the upper layer was based on a dynamic program-built bidding optimization 

approach. The minor layer resolves the bit allocations and trajectory of the UAV. To minimize 

the computational complexity, the minor layer was separated into various subproblems that can 

be solved simply by utilizing an alternating multiplier technique, which leads to conflicts. This 

was eliminated by proposing a re-optimization policy. But the trajectory conflicts cannot be 

solved effectively. 

Aider et al. [34] investigated using a look ahead strategy incorporating linking paths to 

handle the multiprocessor task scheduling issue over two dedicated processors. The major 

objective of this research was the effective scheduling of tasks to increase network 

performance. Initially, the proposed method started with an optimal solution constructed by 

applying the knapsack rule. A sequence of local operators was added to drive the search process 

around the neighbourhood series. An initial diversification policy was employed based on the 

drop and rebuild operators. The performance was highlighted through the second 

diversification policy. The behaviour of the proposed approach was estimated by rendering a 

statistical analysis through the sign test and Wilcoxon signed-rank test. Tight experimental 

approximation ratios were obtained, but the system capability is low. 

An effective task-scheduling approach based on Particle Swarm Optimization (PSO) was 

proposed by Agarwal et al. [35]. To neglect the premature convergence and convergence 

acceleration in standard PSO, an opposition-based approach was utilized in this research. The 

projected approach’s performance relates to well-recognized task scheduling policies based on 

PSO, Modified PSO (MPSO), genetic algorithm and max-min methods. The results obtained 

after conducting different experiments establish that the proposed scheduling policy based on 

opposition-based learning-inspired particle swarm optimization performs better with a 

minimum execution and completion time. The feature consideration of underlying computer 

resources was low, and the energy consumption was very high.  

Hoseiny et al. [36] proposed a real-time randomized procedure to conquer the problem of 

large-scale fog-cloud computing systems. As the obligation for enlightening the quality of 

service (QoS) and computational power increased intensely, the QoS was raised by adopting 

the Po2C (Power of Two choices), efficiently reducing the monetary cost. Through the usage 

of general experiments, the efficacy of Po2C was projected. Improved outcomes were attained 

compared to the baseline scheduling policies. The deadline violation cost was minimized by 

58% compared to the Round robin methodology. The main disadvantage experienced in this 

research was increased total consumption of energy. 

Ali et al. [37] established an automated task scheduling method for Fog-cloud systems by 

adopting a non-dominated sorting genetic algorithm. This research developed a multi-objective 

task distribution-based optimization method to decrease the overall costs and makespan in fog-

cloud computing. For the automatic allocation of tasks, the researchers presented a discrete 

non-dominated sorting genetic algorithm processed over cloud or fog nodes. The NSGA-II 

method is applied to work cross-over and mutation processes rather than continuous operators 

because it consumes huge computational resources and cannot provide suitable task allocation. 
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This research model professionally shares the workloads through numerous computing fog 

resources. The simulation results display that the proposed model attains dynamic task 

scheduling with less execution time. The convergence issue was the major drawback found in 

this research.  

Bacanin et al. [38] presented an enhanced firefly optimization algorithm for handling 

workflow allocations over a cloud-edge environment. Incorporating a quasi-reflection and 

genetic operator-founded learning approach can overcome the examined complexities of the 

original firefly algorithm. Initially, the presented approach was validated over ten modern 

effectual benchmark examples with a performance comparison. Next, the simulations covered 

workflow scheduling issues by considering makespan and cost. This research can enhance the 

convergence speed, but established scheduling plans were ineffective.  
Chandrashekar et al. [39] developed an effective task scheduling procedure that compared 

cost, makespan and efficiency. The major objective of this research work was to solve the 

scheduling issues by adopting the Hybrid Weighted Ant Colony Optimization (HWACO) 

algorithm. Through this research, better convergence can be obtained in a minimal period. The 

issues of cost and makespan can be overcome, whereas the cloud computing environment 

performance can be maximized. But the presented research work is highly influenced by 

greater energy consumption.  

 Saif et al. [40] developed a Multi-Objectives Grey Wolf Optimizer (MGWO) procedure to 

minimize the major QoS Objectives like energy consumption and delay. Here, the fog broker 

plays a significant role in disseminating tasks. A mathematical approach of queue theory was 

employed to allocate workloads effectively to minimize the delay and consumption of power. 

The stability can be effectively maintained, whereas the major limitation was the non-

consideration of resource heterogeneity. Resource utilization and load imbalance were found 

to be the major issues. Table 1 analyses the task scheduling process in multiprocessor systems 

with its merits and demerits. 

 

Table 1: Review of task scheduling in multiprocessor systems 

Author name  Techniques 

used 

Objective Merits Demerits 

Abdel et al. [26] MSCA  To enhance the 

makespan and 

energy by 

utilizing the 

Pareto 

dominance 

policy. 

High 

convergence 

can be attained. 

Due to the low 

system 

efficiency of the 

Pareto 

dominance 

policy, 

scheduling 

complex tasks is 

difficult, which 

leads to high 

execution time.   

Hassan et al. 

[27] 

Performing non-

pre-emptive 

tasks using 

fuzzy logic. 

To determine 

the scheduling 

of tasks through 

best or sub-best 

lengths in a 

multiprocessor 

environment. 

High 

presentation is 

obtained to 

makespan, 

speedup and 

efficiency. 

Optimal 

scheduling 

length cannot be 

assessed due to 

inefficient fuzzy 

rules, so the 

system was not 

flexible.  



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Michel et al. 

[28]. 

NPDW To achieve an 

efficient balance 

of load and 

temperature on-

chip 

multiprocessors. 

Dispersion of 

system load and 

excess core 

heating can be 

preserved. 

The system 

temperature is 

maximized 

when 

scheduling huge 

tasks due to 

limited 

hardware.  

Deng et al. [29] DVFS and 

OIWOA 

To address the 

scheduling issue 

of energy 

optimization on 

heterogeneous 

multiprocessor 

systems. 

Enhanced 

performance of 

selection 

strategy. 

Because of 

heavy traffic, 

energy 

consumption is 

more, leading to 

reliability-aware 

scheduling 

issues.  

Jiang et al. [30] NMOEA/D To maintain an 

effective 

balance between 

convergence 

and diversity.  

Energy 

consumption is 

highly 

minimized.  

Because of 

lagging over 

task balancing 

capability in 

NMOEA/D, the 

system lifetime 

becomes 

negligible.  

Abualigah et al. 

[31] 

MALO To improve the 

exploration 

capability and to 

avoid local 

optima tracking. 

High 

convergence, 

reduced 

makespan and 

response time. 

Because of huge 

task sets and 

less exploration 

capability, the 

degree of 

imbalance and 

CPU time was 

very high. 

Shukri et al. 

[32] 

EMVO To schedule the 

tasks effectively 

and to promote 

overall 

performance. 

Higher 

utilization of 

resources by 

consuming less 

time. 

The 

optimization 

approach 

converges at 

higher 

iterations, 

whereas the 

execution time 

and cost are high 

over task 

scheduling. 

Luo et al. [33] Multi-UAV 

with MEC 

To lessen the 

energy 

consumption of 

ground users 

through the joint 

optimization of 

UAVs. 

Computational 

complexity is 

minimized. 

During the 

energy 

minimization of 

users through 

optimization, 

Trajectory 

conflicts are 
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raised, which 

cannot be solved 

effectively. 

Aider et al. [34] Look ahead 

strategy with 

path relinking. 

To schedule the 

tasks effectively 

through a 

diversification 

policy. 

Tight 

experimental 

approximation 

ratios were 

attained. 

Due to the 

inefficient 

ranking of tasks, 

processing tasks 

are less capable 

in the overall 

multiprocessor 

system.  

Agarwal et al. 

[35] 

Opposition-

dependent 

learning 

inspired particle 

swarm 

optimization. 

To avoid 

premature 

convergence for 

better 

scheduling of 

tasks. 

Execution and 

completion time 

is minimum. 

Because of less 

feature 

consideration 

and high energy 

consumption, 

the makespan 

and imbalance 

degree becomes 

less in 

scheduling 

tasks.  

Hoseiny et al. 

[36] 

Po2C (Power of 

Two choices) 

for diminishing 

the monetary 

cost. 

To increase the 

QoS and 

efficiency of 

P02C in a fog-

cloud 

computing 

system. 

Cost 

consumption 

was greatly 

minimized.   

Because of the 

huge workload 

in the network, 

energy 

consumption is 

more. 

Ali et al. [37] NSGA-II 

approach in 

Fog-cloud 

systems. 

To develop a 

multi-objective 

task allocation 

procedure to 

minimize 

energy 

consumption. 

Minimized 

execution time 

in task 

scheduling. 

Because of less 

training ability, 

convergence 

issues are more.  

Bacanin et al. 

[38] 

Genetic 

operators quasi-

reflected Firefly 

Algorithm 

(GOQRFA) 

To promote 

better workflow 

allocations over 

a cloud-edge 

environment.  

Reduced cost 

and makespan. 

Ineffective 

generation of 

scheduling 

plans.  

Chandrashekar 

et al. [39] 

HWACO To solve the 

scheduling 

issues with 

better 

convergence 

rates.  

Better 

efficiency over 

cloud 

computing can 

be obtained.   

Because of data 

handling 

difficulty, 

increased 

energy is 

consumed.  

Saif et al. [40] MGWO To overcome 

the power 

consumption 

The 

heterogeneity of 

Due to 

ineffective 

scheduling 
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and delay issues 

through 

effective 

stability 

maintenance.  

resources was 

not considered.  

efficiency, load 

imbalance 

issues are 

generated.  

 

In the existing research on multiprocessor task scheduling in a fog cloud environment, 

certain limitations emerge, like low scheduling ability, less flexibility, low consideration of 

features, high energy consumption, and trajectory conflicts. Low scheduling efficiency 

demonstrates the incompetent scheduling of multi-processing tasks over fog or cloud 

environments because of heavy data traffic and overloading issues due to a lack of efficient 

task managing approaches. Also, less overloading capacity, increased makespan, the system’s 

low capability, and decreased network lifetime are other drawbacks that degrade the 

performance outcomes of task scheduling in a fog cloud environment. To conquer these 

limitations in existing approaches, a novel methodology called Hgecs is implemented for better 

scheduling of tasks. 

 

3. PROPOSED METHODOLOGY 

The system strategy and the communication among numerous processors included in the 

scheduling tasks phase, overall system architecture, problem formulation and description of 

fitness function are described in this section. In this research, the fog broker constructed in the 

fog layer is assumed to be the major module of the proposed context.  

 

3.1 System architecture 

The generalized fog-cloud model comprises end-user devices and routers that commonly 

process the requests for scheduling tasks. But in the proposed Hgecs model, multiprocessor 

systems were considered for requesting the server to capture appropriate information. For 

organizing the corresponding tasks over fog or cloud nodes, a fog broker is the main component 

for splitting the tasks to be scheduled in the suitable nodes. Efficient scheduling can be 

undertaken with minimized computational time and energy consumption. The overall system 

architecture of fog-cloud computing for better task scheduling is illustrated in Figure 1. 

 
Multi processor systems

Smart healthcare Wearable devices Smart home Smart city

Fog nodes

Cloud nodes

Gateway

Task scheduler

Task receiver

Cloud-Fog 

information duty

Fog 

Broker

 
Figure 1: Schematic model of fog-cloud computing 
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The fog broker comprises three main parts; 

 Task receiver 

 Cloud-Fog information duty 

 Task scheduler 

Task receiver 

The role of a task assignee is to capture all task requests received from IoT devices and 

contributors. This component maintains the features and service necessities of the subscribers 

and then transmits the information to the task scheduler. 

Cloud-Fog information duty 

The Cloud-Fog information facility receives and monitors the grade reports of possible 

resources. Also, the status of computing nodes is provided with the task scheduler by this 

component for better preparation of appropriate scheduling decisions.  

Task scheduler 

The task scheduler undertakes the task scheduling process by allocating the task appeals to the 

valuable computing nodes under the task features and capabilities of obtainable resources.  

At last, the handled task submissions are gathered and repaid to the fog mediator, which directs 

the data to respective customers. Figure 2 describes the task scheduling approach between the 

Fog-cloud system and the fog broker. 

 
IoT Users

Fog broker

T5

T6

T1 T2 T3 T4

T7T8T9T10

Fog-Cloud system

T2 T9 T8 T7

P6T5

T1

T6

T4T3

T10

 
Figure 2: Task scheduling approach 

 

From the figure, it can be demonstrated that the requests are sent from the IoT 

multiprocessor systems to the fog broker. The tasks are assigned to the corresponding nodes in 

the fog cloud environment. Traffic may occur during scheduling tasks, leading to increased 

makespan and energy consumption, whereas proper scheduling cannot be undertaken. The 

corresponding requests are sent from IoT users to the fog broker. The major function of a fog 

broker is to split down the vector of separate tasks and creates a Bag of the task list. Based on 

the scheduling algorithm, the tasks which need to be accomplished are analyzed. The fog 

broker is a chief concern for transmitting tasks over the corresponding fog and cloud nodes. If 

the tasks are distributed over cloud nodes, they are forwarded from the cloud system to its 

corresponding server associated with the cloud node. The tasks are distributed over fog nodes 

based on the task’s priorities. When considering the fog broker assignment, high priority is 
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given to the fog nodes as they are positioned closer to the users. Lastly, the results from task 

processing positioned in fog or cloud nodes are transmitted back to the fog broker, and the 

responses are moved to the respective users. For instance, ten tasks are considered in the above 

figure and scheduled to the corresponding fog and cloud nodes, respectively. The tasks 1T to 

10T are considered, and the fog broker separates them as 2T , 3T , 5T , 9T and 10T are assigned 

to fog nodes whereas 1T , 4T , 6T , 7T and 8T are assigned to the cloud nodes. The task 

scheduling model’s problem description and working using the Hgecs are described in the 

following sections.  

 

3.2 Problem description 

A mathematical description of the problematic scheduling of tasks is described in this section. 

Consider there are m  independent tasks represented as   mTTTTT ,....,,, 321 where T

denotes the task gathered by the fog mediator to be shared through the cloud-cloud and fog-

cloud environments. These tasks possess properties, including the file size of input/output, 

memory requirement, and length of the tasks measured in Millions of Instructions (MI). In 

accordance with that, the fog-cloud system is assumed to be comprising a set of n computing 

nodes NCom  which includes cloudn and fogn nodes. Where cloudn and fogn represents the 

computing nodes of Fog and cloud. The computing node implies fogcloudN nnCom  and 

every NrCom , nr ....,3,2,1  holds its characteristics, including the size of the memory, 

network bandwidth, storage capacity and processing rate of CPU measured in MIPS (Millions 

of instructions per second). Where NrCom denotes the computing nodes with physical 

characteristics, n   denotes the final node range and r  represents the range of computing nodes. 

So, the expected time of computation (ETC) [31] of mkPk ,...2,1,   requests on NrCom , 

nr ....,3,2,1 is provided by ETC, which kP denotes the ETC of the task, m represents the 

number of tasks, n  denotes the final node range, r represents the range of computing node 

and k denotes the time period. The task scheduler utilizes it to evaluate the appropriate 

scheduling result. Subsequently, the ETC of the task kP on NrCom is denoted by rkETC , which 

denotes ETC to a period and computing node range. It can be estimated using the below-given 

equation. 

                                                                  
r

k
rk

S

PL
ETC ,                                       (1) 

From the above equation, the processing speed of NrCom is denoted as 
rS  , and the length 

of the task kP  is represented as kPL . r represents the range of computing nodes and k denotes 

the time. The makespan (MS) [41] evaluated for the schedule X is provided in the below 

equation. 

                                                          





m

k

rk
nr

ETCMaxXMS
1

,
,...2,1

)(                                     (2) 

where, )(XMS denotes makespan for a schedule X , r represents the range of computing 

node and k denotes the time period and m represents the range setting of time. The energy 

consumption of the server denotes approximately 60% of its dynamic state [42]. The energy 
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consumption of NrCom is denoted by the energy acquired over its constant and active states. 

The idle time of every NrCom is represented by its time of execution lessened from its 

makespan. Hence the energy consumption to NrCom (calculated in the unit of Joules) can be 

expressed as follows;  

                rrrrrNr SuETMSvETComE                                      (3) 

                                                                       
2810 rr Sv  
                                    (4) 

The energy consumed by the cloud node is calculated through equation (4), whereas the energy 

is 
810

times the processing speed 
2

rS  of the cloud node. 

                                                                        rr vu  6.0                                    (5) 

where,  NrComE denotes the total energy consumed by the computing node, the total 

execution time and makespan of corresponding to NrCom are represented as 
rET and MS . 

The energy consumed in the active state for NrCom is represented as rv  , whereas the energy 

consumed in the passive state for NrCom is denoted as ru . The overall energy consumption 

(
EOverall ) in the fog-cloud environment can be estimated as follows; 

                                                              



n

r

NrE ComEOverall
1

                                    (6) 

where  NrComE denotes the total energy consumed and 
EOverall depicts the overall energy 

with a range of the computing node r , and n    represents the final range of the node. 

 

3.3 Fitness function 

This subsection evaluates the fitness function to identify the outcome quality for the task 

scheduling problem. The proposed research aims to optimize the entire energy consumption 

and makespan, as both factors have a major influence over the presentation of a fog-cloud 

system. This issue is contemplated as a bi-objective issue, whereas the fitness function can be 

expressed as,  

                                                         MSOverallF E   1                                  (7) 

From the above equation, the balance parameter amongst both factors of the corresponding 

fitness value is represented as  , whereas 0.7 is set to be the range of . EOverall  denotes the 

overall energy,  1  denotes the previous balance parameter, MS represents the makespan 

and F represents the fitness function. Hence, the major aim of the proposed task scheduling 

approach is to reduce the fitness function. The weighted sum method is commonly adopted to 

resolve the present bi-objective optimization issue, which includes energy consumption and 

makespan. The proposed approach can evaluate a single unique result for the tested issue. 

 

4. Task scheduling model using Hgecs 

The subscribers of fog-cloud systems do not hold any organization section and can easily 

acquire the services rendered through the Internet and pay for the utilized services. Such 

systems can offer any form of services to the corresponding users consisting of web services, 

computer services, communication and social networking services to the appropriate users. To 

perform an efficient service, the makespan and energy consumption must be less. A novel 

methodology called Hgecs is proposed in this research to achieve these objectives. As energy 

consumption issues tend to degrade the overall task scheduling performance in most previous 
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works, a hybrid metaheuristic approach is proposed in this research. The genetic algorithm is 

an efficient task-scheduling approach based on natural genetics and selection. The three basic 

operations of natural genetics are the selection rule for choosing the individuals, the cross-over 

operation to integrate two parents for generating a new offspring, and the mutation operation 

through swapping to attain an optimal output. The genetic algorithm analyses the task priorities, 

whereas the prioritized tasks are assigned to the appropriate location through the Ecs approach. 

The Ecs acts as a Makespan-energy minimization approach to exploit indirect energy 

consumption. The major objective of the Ecs approach is to optimize the output quality of 

energy and makespan with less complexity over time.  

Hgecs integrates the genetic Algorithm and Energy conscious scheduling (Ecs) model. Ecs 

model is a conscious technique for makespan and energy for effectively scheduling tasks in a 

fog-cloud environment which involves two steps. 

 Every task priority must be accomplished in a specified order, selecting suitable 

sequences for performing tasks based on priority and adopting a genetic algorithm. 

 The Ecs model is adopted in the second phase to optimize the allocated tasks to the 

processors to utilize resources best and minimize energy consumption. 

Hence, the first section of a proposed technique depends on the genetic algorithm, and the 

major part of a genetic algorithm is to produce the chromosome genes. The genetic algorithm 

completes the corresponding tasks, mTTTT ,....,,, 321  and these tasks are based on their genes. 

The processer and gene voltage part is completed in the next section.  

Once the process of a genetic algorithm gets over, the pattern of the Ecs approach is 

performed. The remaining chromosome parts        mTCTCTCTC ,....,,, 321  and voltage parts 

       mTVTVTVTV ,....,,, 321  get completed by Ecs. Where mTTTT ,....,,, 321  represents the respective 

tasks which m  indicates the total number of independent tasks, C denotes the processors, V  

describes the voltage. Once the processing procedure of processor and gene voltage is over, the 

genetic algorithm evaluator function is used. In contrast, part of this function is to evaluate 

energy utilization and schedule the period of every chromosome. The gene mutation process 

varies, so the priority is not restricted. The integration of both parents is selected randomly and 

separated into left and right during practice. The child comprises the right section of two 

parents. 

A genetic algorithm is utilized in the proposed approach to determine allocation results. 

The proposed algorithm’s operators, consisting of chromosome display, initial population 

generation, cross-over, selection, and mutation process, are clearly described in the upcoming 

sections. The variables are denoted as constituents called genes in the genetic algorithm 

approach. The answers to the issues are represented as a chromosome collection of genes. The 

constituents of the proposed approach are the task program organized on the priority-based 

chromosome. On every iteration, the gene value can be varied. Also, by applying mutation and 

cross-over processes, the gene value can be varied again, and new chromosomes (Scheduling) 

can be gathered. Table 2 represents the chromosome sample regarding eight function programs 

and three processors.  

 

Table 2: Chromosome sample 

1T  2T  4T  5T  3T  6T  7T  8T  

2C  1C  2C  3C  3C  1C  2C  3C  

3V  2V  1V  1V  2V  1V  2V  3V  
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The above table illustrates the information regarding the makespan over every processor 

and the energy consumption. From Table 2, T denotes the task, C represents the processor 

and V denotes the voltage. For example, in the chromosome mentioned above, 1T  task is 

performed over the processor 2C  and voltage 3V . 

 

4.1 Population initialization 

The initial population selection is made effectively to enhance the speed of tasks and obtain a 

favourable outcome. By utilizing three prioritization approaches comprising downward 

priority, upward priority and the integration of these two priorities. The initial three 

chromosomes are generated, and the three generated chromosomes swap the remaining 

chromosomes.  

Upward priority 

The upward priority of the corresponding tasks is equivalent to the remaining average cost until 

all the tasks regarding the present tasks are finished and must be undertaken after the current 

task accomplishment. The upward priority is denoted as  ix TRank and evaluated using the 

following equation. 

                                               jxjiiix TRankTTDMaxTLTRank  )(                   (8) 

From the above equation, iT  and jT denotes the tasks of i , j correspondingly. The weight 

of each task is represented as  iTL and )( ji TTD  denotes the capacity of every task. The 

performance of the tasks (slower or faster) is shown by xRank . The successor task sets of iT  

are represented as  ij TSuccT   and  iTSucc . The upward priority initiates the tasks from 

the final task ExitT  and goes upward. 

Downward priority 

Comparable to the upward priority, the download task priority is described as  iy PRank which 

is evaluated through the following equation. 

                                               jyijiiy TRankTTDTLMaxTRank  ),(                           (9) 

From the above equation, the sums of predecessor tasks of iT  are represented as 

 ij TedT Pr  and  iTedPr .  iTL  denotes the weight of each task, ),( ij TTD denotes the 

capacity of every task. The download priority can be evaluated by navigating the task graph by 

initiating the first task. In this approach, the priority of the initial task is 0.  iy TRank  which is 

equivalent to the largest distance from the initial task to the favourable task  iT , excluding the 

computational cost of iT  task. 

Combination of priorities 

For scheduling directed acyclic graphs, the tasks can be performed based on upward, 

downward, or combined priorities. In integrating priorities, one level is described for every 

task based on the following equation, which shows the task level in the graph. 

                                     
  










otherwiseTLEVELMax

TTif
TLEVEL

j

Entryi

i
,1

0
                            (10) 
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where  iTLEVEL  denotes the task level iT ,   1jTLEVELMax denotes the maximum 

level of the task jT , EntryT represents the entry task and  jTLEVEL  denotes the task level jT . 

 

4.2 Selection of parent 

In a genetic algorithm, two generations are required to promote the next generation of 

chromosomes, and the parent’s choice depends on various procedures. The algorithm employed 

in the proposed method to choose the parent is roulette wheel selection. The chromosomes with 

the best fitness value are chosen; for instance, 20% of the best members from the original 

population are copied and generate a new population. This way, the members possessing 

various fitness values have more possibilities. The pairs required to integrate into the next phase 

are randomly chosen. 

 

4.3 Cross-over process 

The information of the two chosen parent chromosomes is combined through the cross-over 

process and generates the child’s chromosomes. Two children can be produced from each 

combination and select one of these two, which is improved than the parents. The cross-over 

process in the proposed approach selects two parents randomly, and, in every parent, a random 

point is chosen, called a cross-over point. The first section of two parents is inserted into two 

isolated chromosomes. Then the information in the next section will be equivalent to the parent 

information of the second part. Figure 3 shows the cross-over process between the parent and 

child. 

 

Parent 1

Parent 2

Parent 1

Parent 2

Child 1 Child 2  
Figure 3: Cross-over operation 

 

Parent 1 and parent 2 are chromosomes separated into left and right portions. The left 

portion is directly copied over the left portion of chromosomes corresponding to a child that is 

child 1 and child 2. The second section of the child’s chromosome is equivalent to the right 

portion of parent chromosomes.  

 

4.4 Mutation process 

The mutation operator guarantees population diversity by the random variations regarding gene 

data and intends to preserve the chromosomes from a very high equivalent over various 

generations. The mutation process in the proposed approach depends upon independent gene 

displacement at a similar level. The mutation point is chosen randomly, and the initial 

independent task (gene) swaps the information regarding that gene. It creates a new 

chromosome, and Figure 4 demonstrates the working process of the mutation. 
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Parent 

Offspring

Mutation 

position

 
Figure 4: Mutation process 

 

An example of the chromosome is shown in the above figure. The initial iT substitute from 

the selected point over the priority queue  jT  end is determined. Then the exchanging process 

is done by swapping iT with the first predecessor jT called kT . The illustration of two colours 

(Yellow and Blue) represents the point of gene exchange.  

Ecs technique is an energy and voltage-dependent approach for task scheduling and, at last, 

allocates to the finest option for processor and voltage. The main aim of using this technique 

with a genetic algorithm is to schedule the tasks over corresponding processors with minimized 

makespan and energy consumption criteria. Initially, the tasks are organized in descending 

order, and for every task, the amount of makespan and energy consumption are evaluated over 

every processor and voltage. The calculated outcomes are compared with the fitness function. 

The processors assign the tasks if the value is improved than the preceding states.  

When the maximum iteration is attained, the working of a proposed approach is terminated, 

and the extreme number of iterations considered in this algorithm is 1000. 

 

5. EXPERIMENTAL STUDIES 

The proposed Hgecs method is implemented by adopting the MATLAB simulation tool. All 

the experiments are shown on a Dell PC configured with an Intel (R) Core (TM) i7-3770 CPU 

of 3.40GHz frequency, 16GB RAM and Windows 7 operating system. The proposed work’s 

fog cloud framework comprises fog nodes with small processing power. They are nearer to the 

IoT devices, and the delay is minimal. The cloud nodes possess the capability to execute IoT 

tasks quickly, but they require a long time. Consequently, the proposed algorithm effectively 

manages the symmetry between the fog and cloud nodes to promote system presentation.  

 

5.1 Evaluation metrics 

The main aim of the proposed work is to guarantee less energy consumption and better 

makespan. The energy consumption and makespan performance are evaluated to calculate the 

proposed approach’s efficiency against the existing methodologies. The two-performance 

metrics considered are presented as follows: 

 The performance metric makespan is the finishing time of the final proficient task. The 

least makespan insists that effective mapping of user tasks is performed. The 

computation of the makespan is performed using equation (2). 

 The overall energy acquired by physical resources, including fog and cloud nodes, is 

total energy consumption. In the case of a practical system, the energy consumption of 
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the computing nodes should be minimum. The overall energy is estimated using 

equation (6). 

 

5.2 Results and discussion 

For the comparative examination, five states of the art procedures are compared with the 

proposed approach. The existing approaches, including the Gravitational search algorithm 

(GSA), Round Robin (RR), Particle Swarm Optimization (PSO), Ant Colony Optimization 

(ACO), and genetic Algorithm (GA), are compared with the proposed approaches to show the 

proposed performance is better. The outcomes of Hgecs are evaluated for makespan and energy 

consumption. To promote a better comparison, every algorithm’s population size is set to 100. 

The value  is set to be 0.7 as the main concern of the proposed work is to lessen the amount 

of energy consumption.  

To review the performance behaviour of the proposed Hgecs method, the curves are plotted 

for the average fitness values attained by Hgecs against the existing methods of GSA, RR, 

PSO, ACO and GA by setting a different number of tasks. In this evaluation, the experiments 

are conducted by considering 300 tasks. The file size is 32 to 64 MB for the task scheduling 

process, and 50 virtual machines have been used. The capabilities of these virtual machines are 

illustrated in Table 3.  

 

Table 3: Virtual machine capability 

Virtual 

machine 

ID (1-10) 

1 2 3 4 5 6 7 8 9 10 

Computing 

power 

(kbps) 

20 25 30 50 55 60 65 66 70 73 

Virtual 

machine 

ID (11-20) 

11 12 13 14 15 16 17 18 19 20 

Computing 

power 

(kbps) 

75 80 85 90 35 40 45 50 58 82 

Virtual 

machine 

ID (21-30) 

21 22 23 24 25 26 27 28 29 30 

Computing 

power 

(kbps) 

86 91 82 56 38 81 69 86 90 93 

Virtual 

machine 

ID (31-40) 

31 32 33 34 35 36 37 38 39 40 

Computing 

power 

(kbps) 

87 91 91 58 36 54 42 92 89 38 

Virtual 

machine 

ID (41-50) 

41 42 43 44 45 46 47 48 49 50 

Computing 

power 

(kbps) 

90 87 85 57 69 65 88 96 98 95 
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The proposed Hgecs possess the ability to resolve the issues properly and can compete with 

other existing procedures. As Hgecs is a hybrid approach, greater performance regarding 

makespan and energy consumption can be attained. The hardware limitations of existing 

approaches can be solved through the proposed research work by overcoming excess power 

consumption and managing high temperatures through effective task scheduling by avoiding 

excess data traffic. Also, the processor rates are highly improved for increasing the system 

performance.  

Hgecs holds more ideal conditions to determine makespan, which are measured up to 300 

tasks. RR is a scheduling algorithm adopted for the optimal scheduling of tasks, whereas the 

corresponding job is allocated to a particular time slot. The system ensures scheduling based 

on priorities by restricting every task over time. But the main drawback faced by the RR 

algorithm is the reduced processor output because of more time consumption. Based on the 

swarm behaviour, the PSO algorithm is highly simple to implement and possesses high 

computational efficiency and robustness in scheduling tasks. Even then, it becomes inferior as 

it possesses less convergence rate. The ACO approach is used to find the optimal solutions 

based on the searching behaviour of ants. The time complexity issues can be minimized through 

this, but the implementation is very hard. The GSA approach works based on newton’s law of 

motion and gravity, which is highly adapted to resolve complex optimization problems. But 

the efficiency of task scheduling is highly degraded due to local optima problems. A genetic 

algorithm is an efficient approach requiring only less information for scheduling and is highly 

probabilistic. But the consumption of energy is found to be more in genetic algorithms. The 

proposed approach is superior to other existing approaches for accuracy. Figure 5 shows the 

simulation outcomes of makespan by setting the tasks to 50. 

 

 
Figure 5: Average makespan for 50 tasks 

 

By varying the tasks from 10 to 50, the makespan performance is evaluated for the proposed 

and existing approaches. For an effective system, the outcomes of makespan should be 

minimal, and from the figure, it can be clearly understood that the proposed approach 

outperforms the existing approaches. The makespan performance is better in the proposed 

approach by setting the tasks from 10 to 50. In contrast, the makespan performance of the 

existing approaches like GSA, RR, PSO, ACO and GA did not meet the effective requirements 

of the system. The existing approaches have attained less scheduling performance due to less 

convergence rate and increased time and energy complexities. It shows that task scheduling in 

the proposed approach is done effectively over the resources in the fog cloud environment. 

Figure 6 illustrates the simulation outcomes of makespan by setting the tasks to 100. 
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Figure 6: Average makespan for 100 tasks 

 

The proposed algorithm shows better results when the allocated tasks are set to 100 than 

the existing methods. As the number of tasks gets bigger, the makespan result of different 

algorithms also increases. The other existing approaches have also attained better outcomes for 

makespan. Compared to the proposed work, GSA, RR, PSO, ACO, and GA performances are 

moderately less. Less makespan performance is attained in the existing approaches due to 

improper scheduling of tasks, increased computation time, and high energy consumption. The 

existing approaches attain less makespan performance due to improper scheduling of tasks, 

high congestion, low system efficiency, increased computation time, and high energy 

consumption. Figure 7 depicts the simulation outcomes of makespan by setting the tasks to 

200.  

 

 
Figure 7: Average makespan for 200 tasks 

 

The average makespan results of the proposed work are superior to existing approaches due 

to high flexibility, less energy consumption, congestion problem reduction, and increased 

network lifetime. In the existing approaches like GSA, RR, PSO, ACO and GA, the degraded 

performance is compared to the proposed method. For tasks in the range of 40, the makespan 
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performance is comparatively low than the performance achieved with 200 tasks. Figure 8 

represents the performance outcomes of makespan by setting the tasks to 300. 

 

 
Figure 8: Average makespan for 300 tasks 

 

From the figure, it can be noticed that the proposed work outperforms compared to the 

existing approaches when the tasks are varied from 60 to 300 tasks. As the overloading capacity 

of the proposed approach is high, the makespan results are better than the existing techniques 

like GSA, RR, PSO, ACO and GA. The limitations of the existing approaches are conquered 

in the proposed Hgecs approach in effectively scheduling tasks to the processors. Figure 9 

represents the performance outcomes of energy consumption by setting the tasks to 300. 

 

 
Figure 9: Energy consumption for 300 tasks 

 

The energy results of the proposed approach compared to the existing algorithms are shown 

in terms of Wh (watt per hour). The performances are estimated for several tasks ranging from 

60 to 300. As seen in the figure, energy consumption maximizes when the tasks increase in all 

the approaches. The Hgecs algorithm promotes better outcomes for determining energy in 

various tasks. Low energy consumption is obtained due to the lower value of the makespan. 



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Compared to the existing methodologies like GSA, RR, PSO, ACO, and GA, the proposed 

approach shows better outcomes due to lower complexities regarding computation and time. 

Figure 10 illustrates the performance outcomes of fitness values by setting the tasks to 300. 

 

 
Figure 10: Fitness values for 300 tasks 

 

The above figure shows the fitness curve for the proposed and existing approaches. A clear 

demonstration can be attained that a lower fitness value is obtained in the proposed Hgecs 

approach compared to the existing approaches like GSA, RR, PSO, ACO and GA. The task 

settings are done in the range of 60 to 300. The Hgecs algorithm attains better performance by 

acquiring lower fitness values other than the existing scheduling approaches, and the proposed 

method possesses the ability to determine optimal solutions.  

 

 
Figure 11: ROC 

 

Figure 11 illustrates the Receiver operating characteristic (ROC) performance analysis of 

proposed and existing approaches to multiprocessor task scheduling. The ROC is analyzed 

regarding False positive rate (FPR) and True positive rate (TPR). The optimal cut-off shows 

the maximum TPR or sensitivity with minimum FPR or specificity. The ROC curves are often 
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analyzed to show the trade-off between TPR and FPR for every possible scheduling of tasks. 

It represents the efficiency of task scheduling outcomes with minimizing energy and makespan. 

The ROC curve also denotes the capability to distinguish the tasks allocated over the 

corresponding nodes. A higher rate of ROC denotes a better performance of the task scheduling 

approach. The figure shows that the ROC analysis provided superior values in the proposed 

model compared with the existing GSA, RR, PSO, ACO and GA techniques. Figure 12 depicts 

the performance of the makespan and energy consumption for 1000 tasks.  

 

 
(a) 

 
(b) 

Figure 12: Scheduling performance for 1000 tasks (a) Energy consumption (b) Makespan 

 

From the figure, it can be justified that task scheduling has attained better results in terms 

of energy consumption and makespan for 1000 tasks. The tasks are increased from 200 to 1000, 

and the performance of the proposed scheduling model is analyzed. The existing methodologies 

like GSA, RR, PSO, GA and ACO are compared with the proposed performance model. 

Because of higher data traffic and huge time complexity, the existing methods tend to consume 

more energy and result in increased makespan. Figure 13 shows the Makespan performance of 

the proposed model in a box plot considering 1000 tasks. 

 

 
Figure 13: Proposed Makespan performance 
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When the number of tasks is increased to 1000, the Makespan performance is analyzed in 

the box plot. The figure’s red line indicates the mean value of starting and ending points. It can 

be observed that the makespan of the proposed model increases when the number of tasks is 

increased. Compared to existing methodologies, the proposed model attains minimum 

makespan in scheduling appropriate tasks. Figure 14 shows the convergence plot for 

metaheuristic optimization approaches.  

 

 
Figure 14: Convergence performance  

 

The convergence performance is analyzed to the number of iterations versus the fitness 

function of the proposed model. From the figure, a clear analysis can be made that the proposed 

model converges faster over increasing iterations compared to the existing approaches like the 

Firefly algorithm (FA), sine cosine algorithm (SCA), Bat algorithm (BA), Harris hawks 

optimization (HHO) and cuckoo search (CS) optimization algorithm. The existing approaches 

obtained less convergence rate because of less training ability, high overfitting issues, and 

increased complexities in time and energy. 

   

5.3 Statistical test analysis 

The overall efficiency of the proposed task scheduling model can be estimated by the statistical 

analysis called the Mann-Whitney U test and post-hoc examination. The Quantitative decision 

can be rendered through statistical analysis, and from this, it can be observed that the proposed 

scheduling model promoted improved performance. 

 

5.3.1 Mann-Whitney U test 

The task scheduling time of fog and cloud nodes is the variable analyzed in the proposed 

research work. To estimate the performance of a proposed scheduling model, a statistical non-

parametric test called the Mann-Whitney U test is conducted. On conducting the normality test, 

it can be found that the data are not normally distributed because of uneven task scheduling 

time. Hence Mann- Whitney U test [43] analysis is carried out in the proposed research work. 

The Mann-Whitney U test is employed to associate whether there is a difference in task 

scheduling time for the two independent fog nodes and cloud nodes. The test procures ranking 

for all the dependent values from low to high. Then the rank sums of task scheduling time 

corresponding to fog and cloud nodes are evaluated. If the rank sums are similar, it indicates a 
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null hypothesis that predicts no relationship with the variables. In the proposed research, the 

rank sums are different and tend to alternate hypotheses. It states that the research procures an 

effect or relationship for better outcomes. Table 4 shows the outcomes of the Mann-Whitney 

U test analysis.  

Table 4: Mann-Whitney U test analysis 

Parameters Values 

CS HHO BA SCA FA Proposed 

Total number of 

tasks 

1000 1000 1000 1000 1000 1000 

Mann-Whitney 

U value 

90.68 110.36 542.13 586.97 678.45 88.31 

Standard error 11.362 18.154 21.38 22.083 38.657 9.239 

z-value 1.990 1.532 1.638 1.286 1.029 1.978 

p-value 0.048 0.0453 0.039 1.312 0.986 0.023 

 

Also, the statistical analysis of existing methodologies like FA, SCA, BA, HHO and CS are 

examined. The proposed work is examined, and the significance level of the non-parametric 

test is 0.05, which is signified as p value. If the accomplished value is inferior to a certain 

value, that is 05.0p , then the method is considered to be highly significant. If the attained 

value is higher or equal to the significance level, that is 05.0p , then the method cannot render 

the best performance. The statistical outcome of the Mann-Whitney U test of the proposed task 

scheduling model is obtained as 032.0p . The value of p is inferior to 0.05, and this has been 

proved statistically that the proposed research work achieves better performance. From the 

above table, it can be justified that the proposed outcomes are better. 

 

5.3.2 Post-Hoc analysis  
The statistical analysis using the Mann-Whitney U test examines the proposed methodology 

against the existing methods. To determine the time variations of existing algorithms from the 

proposed model, several post-hoc tests [44] were carried out. The rankings of proposed and 

existing algorithms with the proposed p-values are presented in Table 5.  

 

Table 5: Average rankings for multiple p-value comparison 

Algorithm Average rank Proposed p-values 

Post Hoc Mann-Whitney U test 

CS 5.8 0.0462 

HHO 5.2 0.0498 

BA 3.6 0.0514 

SCA 3.5 0.0512 

FA 2 0.0491 

Proposed 1 - 

 

Table 6 shows the post-hoc outcomes for the Mann-Whitney U test for equivalence 

hypothesis rejection.  
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Table 6: PostHoc outcomes of Mann-Whitney U test 

Algorithms Z value P value Bonferroni Holm Holland 

CS 18.65 0 0.00 0.011 0.016 

HHO 15.54 0 0.00 0.015 0.018 

BA 13.85 0 0.00 0.016 0.028 

SCA 9.86 0 0.00 0.024 0.053 

FA 9.53 0 0.00 0.051 0.052 

 

To reject some hypothesis of equivalence between the effective performing algorithms, the 

statistical analysis dependent upon the PostHoc algorithms are used by Bonferroni, Holm, 

Holland, Rom, Finner and Li. In the proposed work, Bonferroni, Holm and Holland procedures 

are employed. The outcomes of post hoc analysis have been performed with a significance 

level of 0.05. In the above tables 5 and 6, the rankings are provided for the existing algorithms 

from the best-performing proposed model. To determine the equivalence hypothesis that can 

be rejected, the proposed model is compared against certain algorithms. The Z-value and 

unadjusted p-values are mentioned based on diverse PostHoc procedures. Considering the 

overall outcomes, the proposed model is proven statistically significant compared to the other 

algorithms.     

 

6. CONCLUSION 

Efficient task scheduling is among the prominent challenges in fog-cloud systems due to the 

variability, dynamicity of the resources and increased volatility of service requests from the 

fog-cloud customers. This study presented a hybrid approach integrating GA and Ecs models 

to determine an optimal solution for effective multiprocessor task scheduling. In most 

approaches, attention has been provided in case of energy issues. The Hgecs method is utilized 

in the proposed approach to better schedule tasks that optimize makespan and energy usage. 

The main focus of a proposed Hgecs procedure is to lessen the makespan and energy 

consumption. Here, GA generates the best schedules and three ranking approaches to generate 

the primary chromosomes. The Ecs model is adopted to optimize the resource allocation to the 

corresponding processors. Using the Hgecs algorithm, three primary chromosomes are 

generated using three priority methods. The principal chromosomes are fed to GA, and the 

population is initialized. Better chromosomes are chosen through cross-over and mutation 

processes. The best chromosomes are selected for the makespan, and the energy consumption 

is allocated to the processors. The allocation of resources is optimized through the Ecs model. 

The performance evaluation in MATLAB results in better results in Hgecs than the existing 

approaches. Even though the proposed work attains better performances, some limitations are 

noticed. In the proposed model, the global optimum cannot be achieved, and the task 

scheduling time exists longer due to underrated chromosome generation. Due to some data 

traffic, energy consumption cannot be reduced at a larger rate. Hence, future work can be 

prolonged by considering large-scale environments to improve the convergence rate and 

minimize energy consumption. In contrast, more parameters like response time and 

transmission costs will be evaluated to analyze the performance of effective task scheduling.    
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