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Colorectal cancer (CRC) is a common clinical malignancy globally ranked as the fourth
leading cause of cancer mortality. Some microbes are known to contribute to adenoma-
carcinoma transition and possess diagnostic potential. Advances in high-throughput
sequencing technology and functional studies have provided significant insights into
the landscape of the gut microbiome and the fundamental roles of its components
in carcinogenesis. Integration of scattered knowledge is highly beneficial for future
progress. In this study, literature review and information extraction were performed,
with the aim of integrating the available data resources and facilitating comparative
research. A knowledgebase of the human CRC microbiome was compiled to facilitate
understanding of diagnosis, and the global signatures of CRC microbes, sample
types, algorithms, differential microorganisms and various panels of markers plus their
diagnostic performance were evaluated based on statistical and phylogenetic analyses.
Additionally, prospects about current changelings and solution strategies were outlined
for identifying future research directions. This type of data integration strategy presents
an effective platform for inquiry and comparison of relevant information, providing a
tool for further study about CRC-related microbes and exploration of factors promoting
clinical transformation (available at: http://gsbios.com/index/experimental/dts_
mben?id=1).

Keywords: biomarkers, colorectal cancer, database, diagnosis, microbiome

INTRODUCTION

Colorectal cancer (CRC) is a common malignancy worldwide accounting for about 1 in 10 cancer
cases, with incidence and mortality rates of 6.1 and 9.2%, respectively (Bray et al., 2018). Various
genetic and environmental factors contribute to CRC development from aberrant crypts to tumors.
Overall, ∼3 × 1013 bacteria colonize the human gut and abnormal microbiome composition
has been shown to contribute to the initiation, progression and metastasis of CRC (Pitot, 1993;
Qin et al., 2010; Wong et al., 2017c). In cases where patients are rapidly diagnosed and treated
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with surgery at the early stages, survival exceeds 90%. However,
the survival rate is significantly decreased to 13% in patients
with advanced metastatic disease (Shah et al., 2018). The
potential value of microorganisms in early diagnosis has attracted
significant research attention over the last few decades.

The term “microbiome” refers to the entire habitat including
microorganisms (bacteria, archaea, lower and higher eukaryotes,
and viruses), their genomes, and the surrounding environmental
conditions (Marchesi and Ravel, 2015). These factors are
altered along the adenoma-carcinoma sequence, reflected by
changes in abundance. Some microbes produce genotoxic
compounds and induce inflammation while others proliferate in
the tumor-associated niche, designated “driver” and “passenger”
bacteria, respectively (Tjalsma et al., 2012). Systematic analysis
of microbial communities and identification of those with
differential abundance as biomarkers presents an effective
diagnostic strategy. Further advances, such as next-generation
sequencing, have generated massive amounts of data on the
CRC microbiome. Bioinformatics as well as machine learning
methods additionally provide powerful tools to advance our
understanding (Tabib et al., 2020). Metagenomics and 16S
rRNA sequencing studies have revealed different abundance
of some microbes between patients and healthy populations
and effective combinations of microbial biomarkers could be
applied for CRC diagnosis (Sze and Schloss, 2018; Thomas
et al., 2019b). Upon combination of these strategies with
the fecal immunochemical test (FIT), superior sensitivity and
area under the receiver operating characteristic curve (AUC)
were obtained relative to standalone FIT, which facilitated
advanced adenoma detection (Wong et al., 2017a). Several
microbes have been linked with CRC development, including
Fusobacterium nucleatum (Fn), Peptostreptococcus anaerobius
(Pa), Parvimonas micra (Pm), Enterotoxigenic Bacteroides fragilis
(ETBF), Peptostreptococcus stomatis (Ps) and Escherichia coli
(Yu et al., 2017a; Pleguezuelos-Manzano et al., 2020). Recently,
the ratio of pathogenic bacteria to probiotic populations with
decreased abundance in CRC patients was used in a diagnostic
model based on their antagonistic effect (Guo et al., 2018).
Metabolomics and metagenomics studies have shown that shifts
in pathogenicity island genes, short-chain fatty acids (SCFA),
amino acids, butyrate and bile acids occur at the early stages
of CRC development. Some of these factors possess health-
promoting and antineoplastic properties, such as maintenance
of mucosal integrity and suppression of inflammation and
carcinogenesis. Thus, the shift, particularly the decrease of these
health-promoting factors, could contribute to the malignant
outgrowth of the tumors (O’Keefe, 2016; Yachida et al.,
2019). Subsequent mechanistic research further confirmed their
involvement in CRC. For instance, Fn harbors the FadA virulence
factor, which binds E-cadherin and activates Wnt/β-catenin
and TLR4/MYD88 pathways to promote cancer initiation,
proliferation and invasion (Rubinstein et al., 2013, 2019).
Enterotoxigenic Bacteroides fragilis(ETBF) harbors the toxin
BFT that causes inflammatory diarrhea, inflammation-related
tumorigenesis and upregulation of spermine oxidase. Colibactin-
producing E. coli alkylates DNA at adenine residues and induces
double-stranded breaks, anaphase bridges and chromosome

aberrations (Cuevas-Ramos et al., 2010; Goodwin et al., 2011;
Chung et al., 2018; Pleguezuelos-Manzano et al., 2020). Based
on these omics and experimental data, a theoretical foundation
for clinical translation was proposed, which requires validation
with more economical methods, such as quantitative PCR
(qPCR), or integration with other indices, such as FIT, to obtain
optimal benefits (Wong et al., 2017a). More novel biomarkers
should emerge with further research progress. However, effective
diagnostic panels remain to be established.

While several meta-analyses and reviews based on large-
scale, cross-cohort studies have revealed robust associations
between microbiome and diseases, developing solutions from
the perspective of integration remains a considerable problem
due to a number of reasons. First, among the published
studies, feces is the most common sample type owing to
the non-invasive nature and convenience of sample collection.
Other non-invasive types of samples, such as oral swabs,
offer an alternative but still need more studies (Flemer et al.,
2018). Second, a number of studies were based on 16S rRNA
sequencing while others involved metagenomics analyses, which
may generate different taxonomic resolutions and involve
distinct bioinformatics methods (Wirbel et al., 2019). Third,
robustness among different countries or regions is another
key contributory factor in microbiome composition, including
genetic background, dietary habits and the environment. Fourth,
optimal numbers of microbial markers recorded are significantly
variable among studies (Duvallet et al., 2017). Fifth, specificity
deserves further research attention, since only a few studies
to date have included cases of other diseases. For example,
Helicobacter pylori and human papillomavirus are specifically
associated with gastric and cervical cancer types while other
microbes, such as the order of Clostridiales (Lachnospiraceae and
Ruminococcaceae families), are non-specifically associated with
disease (Duvallet et al., 2017). In general, integration of different
types of markers may obtain higher sensitivity, yet specificity
will decrease. Therefore, biomarkers that are specific to CRC
are of great importance. Finally, classification basis, algorithms,
costs and standardization are also worth noting, but systematic
integration of the data is lacking.

In this study, a knowledgebase of CRC-related microbes was
established by reviewing the relevant literature and extracting
key information. Next, a web-based platform using structured
query language (SQL) was constructed and statistical analysis
were performed that included three classifications and more than
seven hundred records of microbial markers. By integrating the
scattered data, our novel database could be used to perform
inquiry and comparison across different models or databases,
such as SILVA, VFDB and the Human Microbiome Oral Database
(HOMD), thus contributing to the study of microbiome-based
diagnosis of CRC.

MATERIALS AND METHODS

Database Construction
Literature was retrieved from PubMed during September
2019 and April 2020 based on the relevant search criteria.
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Two keyword groups were used, the first being “colorectal
cancer” and second comprising “16S rDNA,” “metagenomics,”
“sequencing,” “quantitative real-time PCR,” “biomarker,”
“diagnosis,” “screening,” and “microbiome.” Studies that used
blood samples or focused on prognosis, genes, methylation,
proteins, small molecule metabolites and liquid biopsy
biomarkers were excluded. Following a comprehensive search
of the literature and supplementary materials, the relevant data,
including names of microbes, sensitivity, specificity, changes
in abundance, functions of microbes, technology, algorithm,
number of cases, sources and links, were collected. Furthermore,
information of the taxonomy of microbial markers was collected
from NCBI (Taxonomy) and added into the database. Ultimately,
biomarkers were classified into three categories. Microbes
that displayed statistical significance in both high-throughput
sequencing/pyrosequencing and qPCR experiments were defined
as “Class One,” those confirmed with one of the above techniques
as “Class Two,” and combinations of different microbes for
diagnosis as “Class Three.” Notably, these candidates specifically
refer to gut bacteria although the gut microbiome comprises
bacteria, fungi, archaea, viruses and bacteriophages.

Data Query and Display
Integrated data were accessible through a web interface that
indirectly generates MySQL queries. The interface supports
query functions, such as “scientific name of the bacterium” and
“taxonomy.” Additionally, basic statistics and visualization were
performed according to personalized requirements. Article links
for verification or further research are provided for interested
authors. The organizational framework is presented in Figure 1.

Construction of the Phylogenetic Tree
and Statistical Analysis of
CRC-Associated Microbes
16S rRNA sequences of all the species (all CRC-associated
overabundant and depleted species) in the database were
aligned using MEGA-X v10.1.8 software (Kumar et al., 2018).
Phylogenetic tree was constructed using the following settings:
maximum likelihood as the statistical method, 500 bootstrap
replications, Kimura two-parameter as the substitution model
and Near-Neighbor-Interchange as the ML Heuristic method.
Finally, the tree was adjusted and visualized in Interactive Tree
Of Life (iTOL)1 (Letunic and Bork, 2019). Other statistical
analyses were performed with OriginPro software (OriginLab
Corporation, United States).

RESULTS AND DISCUSSION

Global Signature of CRC-Related
Microbes
In our database, 17 species belonged to Class One (microbes
with statistical importance verified using both high-throughput
sequencing/pyrosequencing and qPCR), 219 species/clusters

1https://itol.embl.de/

to Class Two (microbes confirmed via high-throughput
sequencing/pyrosequencing or qPCR), including 11 phyla, 22
classes, 41 orders, 68 families and 117 genera (Figure 2), and 41
panels to Class Three (combinations of different microbes for
diagnosis). Despite many microbes proposed for diagnosis and
several confirmed conclusions, inconsistent results have been
obtained by different research groups.

In healthy individuals, the most dominant phyla (over 90%)
are Firmicutes, Bacteroidetes, Proteobacteria and Verrucomicrobia
(Eckburg et al., 2005). Moreover, significant differences between
healthy individuals and CRC patients are detected. Meanwhile,
these differences of indices usually showed stepwise decreased
or increased frequency from controls, to dysplasia to cancers,
though some changes may not be statistically significant
between healthy and adenoma groups. In addition to relative
abundance, differences in other indices, such as alpha and
beta diversity, have been identified. Feces of healthy controls
generally contain microbial communities with higher diversity
while tissue samples from CRC patients show greater alpha
diversity. Earlier studies revealed greater microbial diversity
in tumor samples compared with control and polyp samples,
with a 75% higher estimated number of species than tissues
from healthy sites (Mira-Pascual et al., 2015; Vogtmann
et al., 2016), characterized by increased levels of opportunistic
pathogens. Chao1 and Shannon indices are commonly used to
estimate microbial richness and diversity. Decreased Shannon
and Chao1 indices were recently reported in fecal samples
collected from CRC patients (Yang et al., 2019). Similarly, in an
azoxymethane (AOM) mouse model, the CRC group showed
significantly lower bacterial richness and Shannon-Weaver’s
diversity index (Wong et al., 2017b). Other analyses revealed
no significant differences in either richness or biodiversity,
which could be attributable to the relatively small study
cohorts (Wu et al., 2013; Youssef et al., 2018). However,
differences at the taxonomic levels (family, genus and species)
were universally observed. For instance, patients with CRC
usually have increased abundance of operational taxonomic
units (OTU) assigned as Ruminococcus, Porphyromonas,
Peptostreptococcus, Parvimonas, and Fusobacterium, while
healthy individuals possess more beneficial butyrate-producing
bacteria, such as Bifidobacterium and Clostridium butyricum
(Flemer et al., 2017; Sacks et al., 2018). The collective results
clearly demonstrate differences in microbial populations between
CRC and healthy groups.

Biomarker Identification for Diagnosis
Sample Types Used for Diagnosis
In studies on CRC-related microbes, fecal samples from
CRC and adenoma patients and healthy volunteers were the
most commonly used owing to the non-invasive nature and
convenience of sample collection. Cancerous and adjacent non-
cancerous normal tissues represent another type of sample that
can effectively reveal the overall structure of microbiota in the
tumor microenvironment but are unsuitable for early diagnosis
(Gao et al., 2015). The microbial diversity in fecal samples is twice
as high as that in tissue samples (Mira-Pascual et al., 2015). Oral
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FIGURE 1 | Construction and framework of the database.

swabs represent another novel sample type. Previously identified
biomarkers, such as Fusobacterium nucleatum and Parvimonas
micra, are oral microbes. An earlier investigation profiled the
oral microbiome as an alternative screening method for CRC
(Flemer et al., 2018). Interestingly, a retrospective study on
data obtained from adult patients diagnosed with bacteremia
and subsequently CRC reported association with Bacteroides
fragilis, Streptococcus gallolyticus and other intestinal microbes,
thus providing a new perspective for clinicians (Kwong et al.,
2018). Recently, (Poore et al., 2020) reported that predictions
based on microbial DNA in blood could discriminate CRC
from healthy, cancer-free individuals. However, blood samples
were not included in this database due to the requirement for
further exploration.

Diagnostic Techniques
This database involves five technical protocols, specifically,
denaturing gradient gel electrophoresis (DGGE), qPCR,
pyrosequencing, 16S rRNA sequencing and metagenomics
sequencing, which have various advantages and disadvantages.
Initially, the culture-dependent method was used to analyze
CRC microbes as early as the 1960s, which led to significant
underestimation of microbial diversity (Wong and Yu, 2019).
Recently, a library containing 7,758 human gut bacterial
isolates was constructed. Although culture-based methodologies
provide access to data that both overlap and complement
sequencing surveys, yet these protocols were both labor- and
time-consuming compared with culture-independent methods
(Poyet et al., 2019). Molecular analysis technology has developed

from DGGE and qPCR to high-throughput sequencing over
the years. While the efficiency of analysis was improved by
DGGE and qPCR, limitations of low throughput remained
unresolved. In 2005, the introduction of next-generation
sequencing (NGS) facilitated massive parallel, low-cost and
rapid sequencing. 16S rRNA and metagenomics sequencing
have further improved efficiency and are widely employed
at present. The former procedure is based on the 16S rRNA
gene amplicon and facilitates taxonomic and phylogenetic
analyses. While the cost-effective feature enables its universal
application, several limitations exist: (1) amplicon sequencing of
16S rRNA gene via PCR may miss OTU/taxa detection due to
various biases associated with PCR, (2) possible overestimation
of community diversity or species abundance, and (3) lack of
ability to directly analyze the biological functions of associated
taxa (Xia et al., 2018). Recently, potentially unbiased shotgun
metagenomics analyses have been conducted, which provide
higher taxonomic resolution, gene function and comparative
analyses at a decreased cost (Wirbel et al., 2019). However, in
terms of clinical transformation, the qPCR-based method is
more economical and rapid.

Algorithms Used for Diagnosis
Algorithms include the processes of classification, biomarker
identification and model prediction. The classification
approaches comprise OTU-based, metagenomics linkage
group (MLG)-based, integrated microbial genome (IMG)-based
and co-abundant gene group (CAG)-based methods. The model
prediction algorithms include random forest (RF), support
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FIGURE 2 | Basic statistics at different taxonomy levels of all the microbial markers in the database.

vector machine (SVM), logistic regression (LR) and leave-one-
dataset-out (LODO) analyses, among which random forest is the
most widely used algorithm. For the biomarker identification
process, relative abundance and Linear discriminant analysis
Effect Size (LEfSe) methods are the most commonly used.

Random forest provides a measure of variable importance
and out-of-bag (OOB) error when building a tree, making it
suitable for prediction analysis. A recent meta-analysis employed
the random forest classifier to determine accurate predictive
models using a minimal microbial signature. The data showed
that using 16 species, cross-validation of AUC > 0.80 was
achieved for the majority of datasets (Thomas et al., 2019a).
SVM is advantageous for classifying small data volumes and
achieved an overall AUC of 0.80 for the combined population
(Dai et al., 2018). Recent studies have examined different
machine leaning classifiers, including RF, Bayesian network,
SVM, k-Nearest neighbor and general regression neural networks
(Arabameri et al., 2020). LR, applied by most studies, is used
to predict binary outcome from a set of numeric variables and
aims to identify the most significant features (Wong et al.,
2017a). Phylotype-based and OTU-based methods are the main
approaches for sequence identification, with the latter being most
widely used. However, the OTU-based method has a number
of limitations, such as a computationally intensive protocol and

larger memory requirement (Schloss and Westcott, 2011). Other
methods have been developed to overcome these drawbacks. For
instance, CAGs have been proposed to mitigate the ultrahigh
dimensionality challenge of gene-level metagenomics (Minot and
Willis, 2019). In addition, CAG-based clusters could be used to
determine CRC-associated microbe profiles (Flemer et al., 2017).
Taking the collective factors (such as data quantity, number
of cohorts and risk factors) into consideration, appropriate
approaches and classifiers should be adopted.

Overview of Current Biomarkers for Diagnosis
More than 200 species belonged to the Class Two
microbe group (confirmed using either high-throughput
sequencing/pyrosequencing or qPCR), among which only
17 were verified as statistically significant with both high-
throughput sequencing/pyrosequencing and qPCR (Class One).
Fn is a known opportunistic pathogen showing increased
abundance in feces of CRC patients with a sensitivity range of
69.2–82.9%, specificity of 52.8–90.8% and AUC of 0.675–0.875.
Combined with FIT or fecal occult blood test (FOBT), sensitivity,
specificity and AUC values reached 92.3, 94.4% and 0.95,
respectively. Recently, a number of novel markers have been
shown to perform well in CRC diagnosis. Pa was increased in
four different cohorts and induced carcinogenesis in mice via a
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PCWBR2-integrin α2/β1-PI3K–Akt–NF-κB signaling axis with
a sensitivity of 79.8% and specificity of 98% in combination
with FIT (Yu et al., 2017a; Long et al., 2019). Lachnoclostridium
sp. (designated m3) sharing 97% (1883/1935) DNA sequence
similarity with Lachnoclostridium sp. YL32 was significantly
enriched in adenoma. m3 showed specificity of 78.5% and
sensitivity of 48.3% for adenoma and 62.1% for CRC. However,
its role in tumorigenesis warrants further research (Liang et al.,
2019). The other 15 biomarkers are presented in Table 1 (4 were
decreased and 11 were enriched in patients).

With regard to Class Two microbes, basic statistics are shown
in Figure 3 and phylogenetic tree in Figure 4. The majority
of enriched microbes were classified into Fusobacteriaceae,
Peptoniphilaceae, Lachnospiraceae, Porphyromonadaceae,
Peptostreptococcaceae, Bacteroidaceae, Prevotellaceae,
Ruminococcaceae, Streptococcaceae, and Bacillales incertae
sedis at the family level (Figure 3A). Among the group of
decreased microbes, most were classified into Lachnospiraceae,
Ruminococcaceae, Bacteroidaceae, Streptococcaceae,
Bifidobacteriaceae, and Eubacteriaceae (Figure 3B). In the
Venn diagram, only a small overlap of increased and decreased
microbes was observed, supporting the reliability of most
microbial markers despite some inconsistencies (Figure 3C).
At the species level, phylogenetic tree showed details of
current CRC-related biomarkers as well as their evolutionary
relationships. Additionally, species belonging to oral microbes
were marked with stars.

The functions of gut microbes include fermenting complex
carbohydrates to produce large amounts of metabolites,
maintaining epithelial homeostasis, serving as an endocrine
organ and participating in the development, maturation and
differentiation of the immune system of the host (Villéger et al.,
2018; Rastelli et al., 2019). In a sense, intestinal metabolites

directly affect the occurrence of CRC and not intestinal flora.
The majority of nutrients from food are absorbed in the small
intestine with protein residues and complex nutrients, such as
fiber moving to the colon, and consequently metabolized by
the microbial populations (O’Keefe, 2016). Therefore, from the
perspective of microbial function, the majority are associated
with protein fermentation, bile acid biotransformation,
decomposition of polysaccharides and polyphenols and
energy metabolism. For example, Faecalibacterium prausnitzii
(Fp), Bifidobacterium (Bb), Roseburia spp. (Rb), Eubacterium
rectale (EUB), Clostridium butyicum (Cb), Lactobacillus spp.
(Lc), Akkermansia muciniphila (Akk), Ruminococcus, and
Lachnospiraceae were found to be more abundant in healthy
controls compared with CRC patients. Fp is a butyrate producer
decreased in Crohn’s disease (CD) patients, whose metabolites
exert anti-inflammatory effects via blocking NF-κB activation
and IL-8 production (Sokol et al., 2008). Bb and Lc are
used as probiotics for human consumption and benefit the
gut through inducing cancer cell apoptosis, inhibiting cell
proliferation, modulating host immunity and inactivating
carcinogenic toxins (Wong and Yu, 2019). An earlier study
reported that determination of Fn/Bb and Fn/Fp ratios could
improve diagnostic performance for CRC based on their
antagonistic effect (Rezasoltani et al., 2018). Both Rb and EUB
are butyrate-producing Firmicutes and metabolize dietary fibers
to provide energy sources and achieve anti-inflammatory effects
(Paramsothy et al., 2019). Their capabilities as a non-invasive
tool were additionally evaluated but not included in the final
model (Malagón et al., 2019). More recently, the utility of other
widely recognized markers, including Fn, colibactin-producing
E. coli and ETBF, in diagnosis of CRC has been systematically
analyzed (Chung et al., 2018; Malagón et al., 2019; Wu et al.,
2019; Pleguezuelos-Manzano et al., 2020). However, several

TABLE 1 | Diagnostic performance of Class One microbials.

Name Sensitivity% Specificity% AUC Algorithm Sample Case Region References

Fn 73.1 90.8 0.860 Relative Abundance Feces 490 China Wong et al., 2017a

Pa 56.7 86.3 0.720 Logistic regression Feces 390 China Wong et al., 2017a

Pm 45.2 97.1 0.730 Logistic regression Feces 390 China Wong et al., 2017a

Gm 39.0 76.0 0.622 Relative Abundance Feces 333 Spain Malagón et al., 2019

Ps 53.0 76.0 0.710 Relative Abundance Feces 333 Spain Malagón et al., 2019

Bf 33.0 0.76 0.571 Relative Abundance Feces 333 Spain Malagón et al., 2019

pks 56.4 82.0 NA Relative Abundance Feces 238 Sweden Eklöf et al., 2017

Fp 81.8 62.6 0.741 Abundance Rate Feces 549 China Rezasoltani et al., 2018

Bb 90.4 76.4 0.870 Abundance Rate Feces 549 China Rezasoltani et al., 2018

Cs 73.3 66.1 0.736 logistic regression Feces 781 China Xie et al., 2017

Ap NA NA NA Relative abundance Feces 146 Meta Yachida et al., 2019

Gl NA NA NA Relative abundance Mucosa 207 China Nakatsu et al., 2015

m3 62.1 79.0 0.741 Relative Abundance Feces 1012 China Liang et al., 2019

Bd NA NA NA Relative abundance Feces 179 French Sobhani et al., 2011

afaC NA NA NA Relative abundance Tissue 55 South Africa Viljoen et al., 2015

Akk NA NA NA Relative abundance Feces 112 China Wang et al., 2020

Cb NA NA 0.930 Random forest Feces 60 China Yang et al., 2020

NA, non-available; Meta, meta-analysis; Gemella morbillorum (Gm); Bacteroides fragilis (Bf); pks + clbA + Escherichia coli (pks); Clostridium symbiosum (Cs); Atopobium
parvulum (Ap); Granulicatella (Gl); Bacteroides (Bd); afaC-positive E. coli (afaC).
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FIGURE 3 | Basic statistical analysis of Class Two microbes (shown to be significant via high-throughput sequencing/pyrosequencing or qPCR) in the database.
(A) Statistical analysis of the top 10 increased microbes at the family level. (B) Statistical analysis of the top 10 reduced microbes at the family level. (C) Venn
diagram of all CRC-associated microbes at the species level.

issues require further clarification. Although the pathogenesis
and benefits of ETBF and Bb have been validated, inconsistencies
exist among different samples. ETBF was shown to be increased
in tumor tissues and form a biofilm in the gut. However, this
pathogenic bacterium displayed no significant differences in
abundance in patient fecal samples and was not detectable using
qPCR targeting the toxin-producing gene, making it difficult to
discriminate between patients and healthy controls (Zackular
et al., 2014; Kosumi et al., 2018; Sze and Schloss, 2018; Malagón
et al., 2019; Saffarian et al., 2019). Finally, Lachnospiraceae and
Ruminococcaceae families were associated with multiple diseases
(known as non-specific responders), which inspired us to obtain
non-gastrointestinal cancer samples for future experimental
design (Duvallet et al., 2017; Rezasoltani et al., 2018).

Diagnostic Strategy and Performance
Combinations of Different Microbial Markers
Class Three (combinations of different microbes for diagnosis)
included 41 panels verified using various methods (Table 2).
The combinations ranged from two species to 63 OTUs, with
AUC ranging from 0.531 to 0.998. Twelve panels were based on

qPCR, whose algorithms usually link with logistic regression or
relative abundance. Meanwhile, 16 panels and 12 combinations
were based on 16S rRNA and metagenomics sequencing
data, predominantly using the random forest-based model.
Based on AUC, qPCR-based models could achieve comparable
outcomes to the two other technologies with limited biomarkers
(usually no more five species). Nevertheless, 16S rRNA and
metagenomics-based models show performance advantages at
the cost of the number of markers (more than 10 OTUs on
average). In the random forest and Minimum Redundancy
Maximum Relevance (mRMR) models, both OOB and error
rate parameters demonstrated that panels comprising ∼16–20
biomarkers achieved the best prediction accuracy (Flemer et al.,
2018; Wirbel et al., 2019).

Combination of microbes may be operative, rather than
representing a strain that is increased or decreased in the intestine
(Tilg et al., 2018). In addition, prediction models from single
dataset may lead to reduced accuracy and be sensitive to both
technique and heterogeneity (Thomas et al., 2019a). An earlier
study identified 63 OTUs (29 from oral swabs and 34 from
fecal samples) to predict CRC. While the final AUC value
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FIGURE 4 | Phylogenetic tree of all CRC-related microbes in the database. Species marked in red and green refer to the increased and decreased microbes, and
species marked in blue refer to the microbes that show up in both increased and decreased groups. Species marked with yellow stars refer to oral microbes
according to HMOD (16S rRNA sequences of m7 and Sulfurovum sp. SCGC AAA036-O23 are not available, which also belong to the increased group).

was up to 0.98, its application in clinical examination remains
a challenge (Flemer et al., 2018). Several other researchers
used more than 30 OTUs/phylotypes/MLGs to construct a
random forest classifier and obtained AUC values >0.80 (Nakatsu
et al., 2015; Baxter et al., 2016a; Yu et al., 2017a). Previous
studies suggest that the Firmicutes/Bacteroidetes ratio responds
to health and disease states, such as obesity and CRC (Ley
et al., 2006; Saffarian et al., 2019). Interactions between bacteria
provide an ecological perspective for screening, and increase
in pathogenic bacteria is always accompanied by decrease in
beneficial microbes (Dai et al., 2018). Some researchers observed
an association of the group of Bacteroides and Prevotella with
elevated IL17-producing cells in colon cancer and demonstrated
that supernatant from Fn inhibited the bactericidal activities of
Fp and Bb (Sobhani et al., 2011; Guo et al., 2018). Furthermore,
beneficial microbes can contribute to several intestinal functions
and protect the organ from pathogenic microorganisms, and
the “pathogenic bacteria:probiotics” ratio generates a better
effect than single organism model (Eslami et al., 2019; Malagón
et al., 2019; Yang et al., 2020). Thus, the complementary

effects between enriched and reduced microbes should be
highlighted for further investigation. Clearly, combinations of
different microbial markers exhibit better predictive performance
than single markers.

Integration With FIT
In the database, FIT was also presented when available. FIT
has been extensively tested and recommended by National
Comprehensive Cancer Network guidelines. The method
involves direct detection of globin rather than heme, and shows
greater sensitivity than the highly sensitive guaiac fecal occult
blood test. Retrospective analysis showed that replacing 3-year
colonoscopy surveillance with annual FIT could reduce the
requirement for colonoscopy and provide economic benefits.
However, sensitivity was relatively low for advanced neoplasms,
ranging from 21.8 to 46.3% at the preset thresholds (Gies et al.,
2018; Cross et al., 2019a). Combining microbe analysis with FIT
could enhance the detection of advanced precancerous lesions,
as validated in numerous experiments. Taking results from Class
One and Three as representative cases, combined quantitation
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TABLE 2 | Different panels for CRC screening.

Name Sensitivity% Specificity% AUC Technique Algorithm Sample Case Region References

Fn, Pa, Pm 89.4 93.0 0.950 qPCR LR Feces 390 China Wong et al., 2017a

Ps/EUB, Bf/EUB, Bt/EUB 80.0 90.0 0.837 qPCR LR Feces 333 Spain Malagón et al., 2019

pks, Fn 89.7 61.0 NA qPCR DA Feces 238 Sweden Eklöf et al., 2017

Fn/Fp 95.0 71.3 0.914 qPCR AR Feces 549 China Rezasoltani et al., 2018

Fn/Bb 84.6 92.3 0.911 qPCR AR Feces 549 China Rezasoltani et al., 2018

Fn/Fp, Fn/Bb 80.8 85.6 0.910 qPCR AR Feces 549 China Rezasoltani et al., 2018

Fn, Fp, Bb 92.5 83.5 0.943 qPCR AR Feces 549 China Rezasoltani et al., 2018

5 OTUs 90.0 80.0 0.896 16SrDNA LR Feces 90 America Zackular et al., 2014

6 OTUs 90.0 83.0 0.922 16SrDNA LR Feces 90 America Zackular et al., 2014

22OTUs 81.2 97.1 0.673 16SrDNA RF Feces 490 Canada, United States Baxter et al., 2016b

34 OTUs 51.7 97.1 0.847 16SrDNA RF Feces 490 Canada, United States Baxter et al., 2016b

23 OTUs 70.0 92.8 0.829 16SrDNA RF Feces 490 Canada, United States Baxter et al., 2016b

16 OTUs 53.0 96.0 0.900 16SrDNA RF Oral swabs 60 Ireland Flemer et al., 2018

28 OTUs (16 oral swabs, 12 feces) 74.0 94.0 0.940 16SrDNA RF Feces and oral swabs 60 Ireland Flemer et al., 2018

63 OTUs (29 oral swabs, 34 feces) 88.0 94.0 0.980 16SrDNA RF Feces and oral swabs 60 Ireland Flemer et al., 2018

22 OTUs 58.0 92.0 0.840 Metagenomics LR Feces 156 France, Germany Zeller et al., 2014

7 OTUs 87.0 83.7 0.886 Metagenomics RF Feces 128 China Yu et al., 2017a

15 MLGs NA NA 0.983 Metagenomics RF Feces 96 Austria Feng et al., 2015

16 OTUs NA NA 0.860 Metagenomics RF Feces 969 Meta Thomas et al., 2019a

17 OTUs 60.1 84.8 0.804 Metagenomics RF Feces 424 Meta Shah et al., 2018

30 OTUs NA NA 0.830 Metagenomics RF Feces 208 Meta Yachida et al., 2019

8 taxa NA NA 0.750 16SrDNA RF Feces 492 Meta Yachida et al., 2019

12 genus NA NA 0.846 16SrDNA RF Feces 1674 Meta Sze and Schloss, 2018

18 OTUs NA NA 0.831 16SrDNA RF Feces 404 Canada, United States Baxter et al., 2016a

32 OTUs NA NA 0.853 16SrDNA RF Feces 404 Canada, United States Baxter et al., 2016a

41 OTUs NA NA 0.686 16SrDNA RF Feces 404 Canada, United States Baxter et al., 2016a

12 phylotypes NA NA 0.831 16SrDNA LEfSe Mucosa 160 China Nakatsu et al., 2015

18 OTUs NA NA 0.871 16SrDNA RF Mucosa 160 China Nakatsu et al., 2015

38 phylotypes NA NA 0.846 16SrDNA Dirichlet MM Mucosa 160 China Nakatsu et al., 2015

m3, Fn, Ch, Bc 85.2 80.2 0.907 qPCR LR Feces 1012 China Liang et al., 2019

m3, Fn NA NA 0.891 qPCR LR Feces 1012 China Liang et al., 2019

Fn, Ch, m7, Bc 92.8 79.8 0.886 qPCR SLC Feces 370 China Liang et al., 2017

Fn, Ch, m7, Bc, Ri 74.3 88.9 0.843 qPCR LR Feces 128 China Liang et al., 2017

17 IMG species NA NA 0.860 Metagenomics IMG Feces 128 China Liang et al., 2017

7 species-level mOTUs NA NA 0.890 Metagenomics mOTUs Feces 128 China Liang et al., 2017

27 MLG NA NA 0.960 Metagenomics MLG Feces 128 China Liang et al., 2017

Fn, Pa, Pm (4 genes) NA NA 0.770 Metagenomics CRC index Feces 96 China, Denmark, Austrian,
French

Yu et al., 2017a

22 genes NA NA 0.998 Metagenomics RF Feces 107 China Yang et al., 2020

Cb, Cs NA NA 0.935 qPCR RF Feces 60 China Yang et al., 2020

7 CRC-enriched bacteria NA NA 0.800 Metagenomics SVM Feces 526 Meta Dai et al., 2018

55 species NA NA 0.830 Metagenomics RF Feces 181 Meta Sze and Schloss, 2018

DA, Decision Abundance; AR, Abundance Rate; SLC, Simple linear combination; Dirichlet MM, Dirichlet multinomial mixtures; Clostridium hathewayi (Ch); Unclassified species (m7); Roseburia intestinalis (Ri); Bacteroides
thetaiotaomicron (Bt).
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of Fn and FIT showed superior sensitivity to FIT alone, leading
to detection of lesions missed by FIT alone (Wong et al., 2017a).
Similarly, Pa, Pm, Cs, and m3 displayed an obvious improvement
in both sensitivity and AUC, with a slight decrease in specificity
(Xie et al., 2017; Liang et al., 2019). This complementary role
was also illustrated using biomarker panels. Upon combining
22 OTUs identified using the penalized linear model with FIT,
sensitivity increased from 58 to 72% at the same specificity (Zeller
et al., 2014). In another study, combination of Bacteroides clarus
(Bc), Fn, Ch, and m7 showed an increase of 9 percentage points
when integrated with FIT in a logistic regression model (Liang
et al., 2017). In conclusion, clinical screening programs based
on both microbial markers and FIT/FOBT are cost-effective and
present a promising diagnostic tool.

Prospects and Challenges
High-throughput sequencing and other analyses over the
past decade have facilitated significant advances and gradual
elucidation of the role of microbes in CRC. Current research on
the value of clinical transformation of microbial markers in CRC
diagnosis highlights the continued challenges of using available
data effectively for making a contribution to precision medicine.
Inspiration from other fields may additionally facilitate novel
breakthroughs (Figure 5).

Formation of CRC is a multifactorial process and potential
complementary effects between molecular markers require
further attention. More than 80% CRC results from chromosomal
instabilities, including mutation of the adenomatous polyposis
coli (APC) gene and K-ras oncogene. APC gene-deficient mice
can spontaneously grow tumors in the intestine and patients
carrying the KRAS mutation show chemotherapeutic resistance
(Colnot et al., 2004; Kuipers et al., 2015). Fecal DNA samples

have been used to detect colorectal neoplasia (Imperiale et al.,
2004). Septin 9 gene methylation has been shown to be effective
as a biomarker and approved by the FDA (Lofton-Day et al.,
2008). Meanwhile, methylation of bone morphogenic protein
3 and N-Myc downstream-regulated gene 4 displayed high
specificity as an early and frequent event in colorectal tumors
(Melotte et al., 2009; Loh et al., 2010). In 2014, multitarget
stool DNA testing of combined KRAS, BMP3, NDRG4, and
FIT achieved significantly higher detection of cancers, which
led to FDA approval of Cologuard (Imperiale et al., 2014).
Therefore, integration of genomics with microbiome analysis
presents a promising direction. A recent study discussed this
issue, suggesting that associations between tumor genomics
and the microbiome could be beneficial in diagnostics (Burns
and Blekhman, 2018). Since about 11% CRC cases result from
overweight and obesity, other researchers used clinical data, such
as body mass index (BMI) representing overall body fat, which
displayed excellent discriminatory ability. However, no statistical
significance was observed in a number of other analyses (Bardou
et al., 2013; Zackular et al., 2014). To extract data from plain text
files, Natural Language Processing methods or software have been
employed for effective use of clinical features (Yim et al., 2016).
Overall, these findings offer possible solutions and important
directions for future research.

Universality is another key challenge, since differing
opinions exist with regard to universal microbial markers.
On the one hand, cross-cohort studies and meta-analyses
have provided practicable and effective strategies that could
overcome heterogeneity and ethnic differences with unbiased
bioinformatics and statistical analysis. For instance, an earlier
metagenomics analysis involving five ethnically different
cohorts identified not only known biomarkers such as Fn,

FIGURE 5 | Current challenges and opportunities for early diagnosis of CRC using microbial markers.
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Ps, Pm, and Solobacterium moorei, but also a novel strain,
Peptostreptococcus anaerobius, with subsequently confirmed
roles in carcinogenesis using a ApcMin/+ mouse model (Yu
et al., 2017a; Long et al., 2019). Numerous meta-analyses
also leveraged 16S rRNA or metagenomics data sets to reveal
altered microbiome. Wirbel et al. (2019) identified a core set
of 29 species while Dai et al. (2018) found 69 CRC-associated
bacteria with metagenomic analysis. Similarly, two other teams
identified 25 microbial OTUs and 12 common genera based on
a random forest model using 16S rRNA sequencing datasets
(Shah et al., 2018; Sze and Schloss, 2018). On the other hand,
(Yang et al., 2020) proposed a strategy from a new angle, which
inferred that regional biomarkers display high accuracy in
specific populations. This theory was also supported by another
study, which identified multiple Fusobacterium taxa (including
F. varium and F. ulcerans) in Southern Chinese populations as
disease biomarkers or targets that could be tailored according
to discrepancies (Yeoh et al., 2020). Both alternative strategies
provide well-powered assessments.

One of the significant challenges of clinical transformation is
insufficient mechanistic analysis. While efficient computational
frameworks and tools based on feature selection have been
developed, machine learning requires further research (Tabib
et al., 2020). Distinct from FIT/FOBT and fecal DNA tests,
these semi-supervised or supervised learning methods are
more like a “black box” with unclear mechanism. To date,
hundreds of microorganisms have been shown to be linked
with CRC, among which limited numbers have been further
investigated. As a case in point, Fn was shown to be
overabundant in tumor versus matched normal tissue and its
potential role in CRC attracted widespread research attention
(Castellarin et al., 2012; Kostic et al., 2012). Over the
last few years, numerous studies have supported a role of
Fn in promoting colorectal carcinogenesis through various
functions such as inducing inflammatory cell infiltration,
modulating E-cadherin/β-catenin signaling, activating immune
cells, mediating interactions between bacteria, and binding
to tumor-expressing Gal-GalNAc (Rubinstein et al., 2013,
2019; Abed et al., 2016; Yang et al., 2017). These advances
have enhanced our knowledge of the potential relationships
between Fn and chemoresistance, metastasis and poor prognosis
(Mima et al., 2016; Yu et al., 2017b; Chen et al., 2020).
Therefore, detection of Fn for early screening or exploitation of
inhibitors targeting related pathways may be efficacious in clinical
practice. In terms of methodological aspects, Bertrand Routy
proposed a viable solution involving five steps: (1) microbial
metagenomics should be standardized, (2) different “omics”
analyses should be integrated, (3) the amount of cultivable
microbial species should be increased, (4) non-invasive sampling
methods should be combined with capsule endoscopy, and (5)
Avatar mouse models should be standardized and investigated
(Routy et al., 2018). Overall, longitudinal profiling of etiological
and protection mechanisms of microorganisms achieves higher
information richness and pave the way to take advantage of gut
microbiome for diagnosis.

Development of standardized methods should also attenuate
inconsistency of data. Inclusion and exclusion criteria have

been gradually established, including diet, treatment, genetic
background, disease history, antibiotic usage history and
colonoscopy, aiming to avoid intestinal microbiota changes
(O’Brien et al., 2013). During transportation and storage, a
low temperature of −80◦C and preservative buffer, such as
RNAlater or EDTA, are effective to maintain DNA stability
and integrity (Carozzi and Sani, 2013). In particular, compared
to freezing for preservation, smaller technical variability
was introduced without disrupting subject- and time-point
specificity of the gut microbiome (Voigt et al., 2015). DNA
extraction exerted the most significant effect on outcome of
metagenomics analysis, highlighting the standardized DNA
extraction method for human fecal samples (Costea et al.,
2017). To address the complex challenges posed by large-scale
studies, a protocol involving collection of microbiome samples
at home and shipping to laboratories for molecular analysis was
developed by Franzosa et al. (2014). Furthermore, for library
preparation, PCR-free based methods were recommended
to reduce PCR bias and improve assembly for accurate
taxonomic assignment (Jones et al., 2015). Nevertheless, lack
of standardization with regard to data access, metadata and
analysis tools remain a barrier to acquisition of accurate and
comparative results (Laudadio et al., 2018). Data integration
and system-level modeling from multiple omics platforms is
one of the most promising directions of microbiome research
(Nayfach and Pollard, 2016). To improve the status quo,
comprehensive platforms, such as MicrobiomeAnalyst and
gcMeta, were recently constructed for downstream statistical
analysis and functional interpretation (Dhariwal et al., 2017;
Shi et al., 2019). Notably, the International Human Microbiome
Standards (IHMS) project is committed to coordinate the
development of standard operating procedures designed
to optimize data quality and comparability in the human
microbiome field. SYBR Green and probe-based qPCR are
two common choices toward application, the former being
more economical and the latter achieving greater accuracy for
absolute quantification.

Cost-effectiveness is the ultimate challenge, including the
costs of testing, screening intervals and subsequent evaluations
resulting from the initial test (Dickinson et al., 2015). Due
to high-cost resources, colonoscopy is not generally employed
as a screening tool, except in a few countries like the
United States, Germany and Austria. In low-income or middle-
income countries with a low incidence of CRC, colonoscopy
screening strategies may not be sufficiently cost-effective for
implementation (Keum and Giovannucci, 2019). Taking FIT
and Cologuard as examples, although incremental costs per
additional advanced adenoma (AA) and CRC detected using
colonoscopy versus FIT were £7,354 and £180,778, respectively,
annual FIT reduced the colonoscopy incidence by 71% in
intermediate-risk patients compared to three-yearly colonoscopy
surveillance (Cross et al., 2019b). Cologuard shows superior
performance for screening of AA, but carries a higher cost. In
terms of the rate of screening compliance, stool DNA test is
associated with higher patient acceptance owing to its simplicity.
A preliminary calculation showed that combination of FIT and
bacterial markers would avert up to 30% of total colonoscopies
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as well as save an estimated 77 million € per 100,000 participants
(Malagón et al., 2019). Meanwhile, usage of residual buffer from
FIT cartridges is feasible for microbiota-based analysis and could
greatly ameliorate the cost (Baxter et al., 2016a; Gudra et al.,
2019).

Considering the collective findings, bacteriophages, viruses,
archaea and fungi will be integrated into this database
as biomarkers in the future. In addition, with advances
in elucidation of mechanisms and omics analyses (such as
transcriptomics, proteomics, and metabolomics), corresponding
function descriptions should be more systematic. Systems biology
and computational biology play crucial roles in mass data
integration, and machine learning-based algorithms are under
development for analysis of metadata to facilitate CRC diagnosis.

CONCLUSION

Development of colorectal cancer is a multifactorial process
in which gut microbes play an important role. Determination
of dysbiosis of microbial communities and differential patterns
of abundance of microorganisms as biomarkers based on
sequencing, algorithms and experimental data may aid in
diagnosis and reduce morbidity and mortality. Except for
a few pathogenic bacteria, the relationships between several
microorganisms and colorectal cancer remain to be established,
which are reflected by inconsistencies among different studies.
Here, a database of CRC-related microbes was constructed
using SQL and basic statistical analyses were conducted
to outline biomarkers at different taxon levels. Diagnostic
performance and mechanisms are discussed in detail. This

type of knowledge integration is important for understanding
and monitoring CRC. Moreover, this database can be used
to perform inquiries and comparisons across different models
and databases, contributing to further study of CRC-related
microbes and promotion of cost-effective and non-invasive CRC
screening strategies.
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