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Abstract Over the last decade, there has been a constant development in control techniques for

DC-DC power converters which can be classified as linear and nonlinear. Researchers focus on

obtaining maximum efficiency using linear control techniques to avoid complexity although nonlin-

ear control techniques may achieve full dynamic capabilities of the converter. This paper has a sim-

ilar purpose in which a novel hybrid metaheuristic optimization algorithm (AEONM) is proposed

to design an optimal PID controller for DC-DC buck converter’s output voltage regulation. The

AEONM employs artificial ecosystem-based optimization (AEO) algorithm with Nelder-Mead

(NM) simplex method to ensure optimal PID controller parameters are efficiently tuned to control

output voltage of the buck converter. Initial evaluations are performed on benchmark functions.

Then, the performance of AEONM-based PID is validated through comparative results of statisti-

cal boxplot, non-parametric test, transient response, frequency response, time-domain integral-

error-performance indices, disturbance rejection and robustness using AEO, particle swarm opti-

mization and differential evolution. A comparative performance analysis of transient and frequency

responses is also performed against simulated annealing, whale optimization and genetic algorithms

for further performance assessment. The comparisons have shown the proposed hybrid AEONM

algorithm to be superior in terms of enhancing the buck converter’s transient and frequency

responses.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The widespread application of DC-DC power converters in
different fields, such as renewable energy, electric vehicle, con-
sumer electronics, etc., have created an increased demand for

improved dynamic performance, stability and regulation accu-
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racy of switching mode power supplies (SMPS) by advanced
control methods [1]. Various control strategies, ranging from
relatively simple structures to more advanced types, have been

proposed to enhance the performance of DC-DC converters.
Type-II, Type-III, proportional-integral (PI) and
proportional-integral-derivative (PID) controllers are only

few examples of widely adopted control techniques for perfor-
mance enhancement. It is worth to note that, Type-II con-
trollers are characterized by having one zero and two poles

(one pole at the origin and the other at a higher frequency)
and they are mostly used with current-mode control of DC-
DC converters whereas Type-III controllers require additional
one zero and one pole and they are generally used with

voltage-mode control [2].
More advanced control methods are also available for the

same purpose apart from the above listed structures. The

advanced control techniques employed for the same purpose
can be listed as fractional order PID (FOPID) control, fuzzy
logic control (FLC), linear quadratic regulator (LQR), model

predictive control (MPC), deadbeat control (DBC), switching
boundary control (SBC), sliding mode control (SMC), time
optimal control (TOC) and passivity-based control (PBC)

[3,4]. These control techniques can be classified broadly into
linear and nonlinear control methods and they play an impor-
tant role in affecting performance of power converters since
the latter structures are considered as the center part in SMPS

design [5]. Hence, it is important to choose a suitable controller
to reach the desired design goals without increasing the control
system complexity.

Despite having limited bandwidths, small-signal based lin-
ear control design approaches such as PI and PID controllers
are still being investigated as part of the ongoing research stud-

ies about performance improvement. It is well known that a
properly tuned PID controller can achieve the following objec-
tives with less computational burden [4]; (1) closed-loop stabil-

ity over the target operating range, (2) fast transient recovery,
(3) robustness against parameter variations and model uncer-
tainty and (4) acceptable noise attenuation. However, these
objectives cannot be fully achieved by conventional tuning

methods such as Ziegler-Nichols (ZN), Cohen-Coon (CC),
gain- and phase-margin, or pole placement.

Many studies related to optimization of linear controller

parameters for DC-DC power converters have shown the
effectiveness of metaheuristic algorithms in reaching the
abovementioned objectives. For example, PI and Type-III con-

trollers have been designed for a non-inverting buck-boost
converter by utilizing ant colony algorithm (ACO) [6]. The
performance of those controllers was compared with the con-
trollers tuned by a classical method based on a conventional

frequency response technique. Both simulation and experimen-
tal results have shown the effectiveness of ACO based con-
troller designs in terms of frequency domain performance

indices. The capability of metaheuristic based approaches
has also been shown for transient response enhancement by
stabilizing output voltage of a basic inverting buck-boost con-

verter via bacterial foraging optimization (BFO) based PI con-
troller [7] which clearly demonstrated the better performance.
Further PI controller design examples have been reported for

a two-loop boost converter based power factor correction
(PFC) circuit using genetic algorithm (GA), particle swarm
optimization (PSO) and differential evolution (DE) algorithm
[8]. In the latter reported work, metaheuristic approaches were
shown to perform better not only in response to line/load vari-
ations but also in terms of program size, complexity, and con-
vergence time. One of the latter listed algorithms (PSO) has

also been used for achieving an optimum Type-III controller
employed for both boost converter and interleaved boost con-
verter (IBC) [9]. Likewise, the performance comparison has

been performed against conventional techniques and the best
closed loop performance, the largest stability margin, and
the highest system bandwidth were achieved via metaheuristic

approach. Examples of metaheuristic approaches are also
available for PID controller design, as well, which is adopted
in power converters. Hybrid whale optimization algorithm
(WOA) with simulated annealing (SA) [10] and hybrid firefly

algorithm (FA) with PSO algorithm [11] can be listed as some
of those examples. The optimization algorithms given above
for the control of DC-DC converters contain only a small por-

tion of their usage in the field of engineering. Metaheuristic
methods have been gaining an increased popularity as an alter-
native in engineering applications since traditional optimiza-

tion techniques are possessing disadvantages [12].
Artificial ecosystem-based optimization (AEO) algorithm is

one of those metaheuristic algorithms, which is inspired from

nature [13], proposed to deal with optimization problems as
an alternative to existing approaches. Several real-world engi-
neering applications have already employed AEO algorithm
such as parameter identification of different configurations of

photovoltaic (PV) models [14], parameter extraction of differ-
ent electrolyte membrane fuel cell stack models [15] and proton
exchange membrane fuel cells model [16], detection of tubercu-

losis in chest radiographs [17], allocation of multiple dis-
tributed generations [18], solution of large-scale reactive
power dispatch problem [19] along with configuration of a

hybrid photovoltaic, wind turbine and fuel cell (PV/WT/FC)
energy system [20]. AEO algorithm exhibits poor exploitation,
despite its abovementioned applications, because of its

stochastic nature. To deal with this issue and increase the
exploitation capability of AEO algorithm, Nelder-Mead
(NM) simplex method can be adopted.

The latter method has a history of more than five decades

which was proposed to deal with the minimization problems
[21]. It has been already combined with several algorithms
for enhancing the capability. Recently reported examples of

improved algorithms using NM can be listed as BFO algo-
rithm for solving economic dispatch problem [22], DE algo-
rithm for parameter identification of chaotic systems [23],

FA algorithm for solution of reactive power dispatch problem
[24], gravitational search algorithm (GSA) for optimization of
thin-wall structures [25], cuckoo search (CS) algorithm for
optimization of renewable based generations in AC-DC micro-

grid system [26], Jaya algorithm for parameter estimation of
proton exchange membrane fuel cells [27], Harris hawks opti-
mization (HHO) algorithm for solutions of design and manu-

facturing problems [28], dragonfly algorithm (DA) for training
multilayer perceptron [29], hybrid PSO and sine cosine algo-
rithm (SCA) for solution of engineering design problems [30]

and artificial electric field (AEF) algorithm for optimization
of benchmark problems [12].

In this paper, an improved AEO algorithm has been con-

structed by utilization of NM method. The improved algo-
rithm, named as AEONM algorithm, was used for
parameter tuning of a PID controller in a DC-DC buck con-
verter. State-of-the-art algorithms have been adopted for com-



Fig. 1 An ecosystem in AEO.
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paring the obtained results. The latter evaluation showed the
proposed AEONM algorithm to be superior to other algo-
rithms in terms of efficiency and performance. The contribu-

tions of this study to the literature can be summarized as
follows:

i. The hybrid AEONM algorithm is proposed for the first
time to exploit the AEO’s good global search ability and
NM’s good local search capability.

ii. The performance evaluation on six well-known bench-
mark functions has demonstrated greater success of
the proposed algorithm in terms of achieving the statis-
tical metrics of best, mean and standard deviation.

iii. The proposed hybrid AEONM algorithm and original
AEO algorithm are both used for the first time in PID
controller design for a DC-DC buck converter system.

This is the first application of AEO and AEONM algo-
rithms in the power electronics field.

iv. The efficiency of the proposed hybrid AEONM based

PID controller, designed for further performance
improvement of DC-DC buck converter, has been vali-
dated through various analyzes such as statistical box-

plot, non-parametric test, transient response, frequency
response, time-domain integral-error-performance
indices, disturbance rejection and robustness through
comparing with the original AEO algorithm and other

commonly used well-known successful algorithms such
as PSO and DE.

v. Further performance demonstration of the AEONM

based PID controller for DC-DC buck converter in
terms of transient and frequency responses was per-
formed via comparing it with other state-of-the-art algo-

rithms (SA, GA and WOA) based PID controllers used
for the same purpose.

The organization for the rest of the paper is as follows; Sec-
tion 2 and 3 introduce AEO algorithm and NM simplex
method, respectively. The proposed hybrid AEONM algo-
rithm is given in Section 4 whereas Section 5 describes the

basic operation and modeling of DC–DC buck converter.
PID controlled buck converter is also provided in the latter
section. Section 6 defines the optimization problem with the

proposed design approach. Section 7 discusses simulation
results with detailed comparisons using statistical boxplot
analysis, non-parametric test analysis, transient response anal-

ysis, frequency response analysis, and time domain based
integral-error performance indices. The disturbance rejection
performance of DC-DC buck converter is also presented in
the latter section. Finally, Section 8 concludes the overall

work.

2. Artificial ecosystem-based optimization

The ecosystem concept, introduced in 50 s, has inspired the
development of artificial ecosystem-based optimization
(AEO) algorithm as a novel nature-inspired metaheuristic

approach [13]. This basically is an algorithm that relies on
the energy transfer mechanism between living organisms which
helps maintaining the stability of species. To do so, three oper-

ators, named as production, consumption and decomposition,
are employed to achieve solutions. Fig. 1 demonstrates the
energy flow in an ecosystem that has producer, consumer

and decomposer.

2.1. Production

In AEO, the worst individual of the population is represented
by the producer. Therefore, it requires to be updated with
respect to the best individual by considering the upper and

lower limits of the search space so that it can help other indi-
viduals to search for other regions. A new individual is pro-
duced, via the production operator, between the best (xn)

and a randomly generated (xrand) individuals by replacing the
previous one. The production operator’s mathematical repre-
sentation is given as follows:

x1 tþ 1ð Þ ¼ 1� að Þxn tð Þ þ axrand tð Þ ð1Þ

a ¼ 1� t=Tð Þr1 ð2Þ

xrand ¼ r
�

Ub� Lbð Þ þ Lb ð3Þ
where the population size is denoted by n, maximum iteration
number is T, upper limit is Ub, lower limit is Lb and a random

number ranging between [0; 1] is r1. a and r
�
represent a linear

weight coefficient and a random vector having a range of [0; 1],
respectively. The a coefficient given in Eq. (1) helps drifting the
individual linearly from a random position towards the best
individual through iterations.

2.2. Consumption

This operator is performed by the consumers after the produc-

tion operator finishes the producers. A randomly chosen con-
sumer having lower energy or a producer may be eaten by each
consumer in order to obtain energy. A Lévy flight-like random

walk, named as consumption factor (C), is defined as follows
in order to enhance the exploration capability:

C ¼ 1

2

v1
v2j j ð4Þ

v1 � N 0; 1ð Þ; v2 � N 0; 1ð Þ ð5Þ
where N 0; 1ð Þ represents a normal distribution such that the

mean and the standard deviation equal to 0 and 1, respectively.
Different strategies are adopted by different types of con-
sumers. A consumer would only eat the producer in case of



Fig. 2 Flowchart of the basic AEO algorithm.
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being randomly chosen as an herbivore (see Fig. 1 – x2 and x5

are herbivore consumers, thus, only eat the producer x1). The
herbivore consumption behavior is modelled mathematically
as in Eq. (6).

xi tþ 1ð Þ ¼ xi tð Þ þ C � xi tð Þ � x1 tð Þð Þ; i 2 2; � � � ; n½ � ð6Þ
A consumer would only eat another consumer with higher

level of energy if it is chosen as a carnivore randomly (see
Fig. 1 – A consumer from individuals of x2 to x5 are eaten
by the consumer x6 as the latter is a carnivore and has a lower

energy level than those individuals of x2 to x5). A carnivore
behavior is modelled as:

xi tþ 1ð Þ ¼ xi tð Þ þ C � xi tð Þ � xj tð Þ
� �

; i 2 3; � � � ; n½ �

j ¼ randi 2 i� 1½ �ð Þ ð7Þ
Unlike the latter two behavior, a consumer with a higher

energy level or a producer can randomly be eaten by the con-
sumer if it is chosen as an omnivore randomly (see Fig. 1 –

Both the producer x1 and a randomly chosen consumer from
x2 to x6 can be eaten by x7 since it is an omnivore and has
lower level of energy than x2 to x6). The mathematical form

of this behavior is expressed as:

xi tþ 1ð Þ ¼ xi tð Þ þ C � r2 � xi tð Þ � x1 tð Þð Þð Þ
þ 1� r2ð Þ xi tð Þ � xj tð Þ

� �
; i 2 3; � � � ; n½ �

j ¼ randi 2 i� 1½ �ð Þ ð8Þ
where r2 denotes a random number of [0; 1] range. A search
individual’s position is updated with respect to either a ran-
domly chosen or the worst individuals in a population using

the consumption operator. This, therefore, allows the algo-
rithm to perform a global search.

2.3. Decomposition

This is an of crucial process in order to have an appropriately
working ecosystem. The decomposer chemically breaks down

the remains of each died individual in the population in order
to provide required nutrients for the producer’s growth. The
weight coefficients of h and e along with the decomposition

factor of D are designed to model this behavior mathemati-
cally. Those parameters help updating the position of xi (ith
individual) by the position of xn (the decomposer’s position).
Also, each individual’s next position is allowed to spread

around the decomposer (best individual). The mathematical
expression is given as follows:

xi tþ 1ð Þ ¼ xn tð Þ þD � e � xn tð Þ � h � xi tð Þð Þ; i 2 1; � � � ; n ð9Þ

D ¼ 3u; u � N 0; 1ð Þ ð10Þ

e ¼ r3 � randi 1 2½ �ð Þ � 1 ð11Þ

h ¼ 2 � r3 � 1 ð12Þ
To sum up the algorithm briefly, a random population is

generated at first and through each iteration, the position of
the first individual is updated using Eq. (1). The positions of
other individuals are updated by choosing amongst Eqs. (6)–

(8) with the same probability. Each individual updates its posi-
tion using Eq. (9) in case of an individual having a better func-
tion value. An individual is generated randomly in the search
space if it goes beyond the upper and lower boundaries. This
continues until a satisfactory termination criterion is met.
The final step returns the best individual found so far. The

flowchart that provides entire steps of the basic AEO algo-
rithm is given in Fig. 2.

3. Nelder-Mead method

This algorithm is simplex method and has been developed to
solve non-linear functions via gradient-free computations

[21]. An optimal vertex (x1) is identified through generating
dþ 1 vertices (x1, x2, . . . xdþ1) and evaluating the respective fit-
ness function values (f x1ð Þ, f x2ð Þ, . . ., f xdþ1ð Þ). The evaluated

fitness functions are then compared and sorted in ascending
order. Following the latter adjustment, four scalar coefficients
named as reflection (q), expansion (c), contraction (b) and
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shrinkage (d) are used to replace the worst vertex (xdþ1) with a
new one. Those parameters must be specified such that the
relationship of q > 0, c > 1, c > q, 0 < b < 1 and 0 < d < 1

should be satisfied [31]. The respective values chosen for this
study for the stated parameters are provided in Section 7.1.

After initial arrangement, the computed fitness values are

sorted to establish the best (x1), the worst (xdþ1) and the cen-

troid (x
�
) points. Then, Eq. (13) is used to identify the reflection

point (xr):

xr ¼ x
� þq x

� �xdþ1

� � ð13Þ
Following the identification, the reflection point is

expanded across the search space as given in Eq. (14):

xe ¼ x
�þc xr � x

�� � ð14Þ
where the expansion point is denoted by xe which replaces the
worst value if the value of the fitness for the expansion point is
smaller than that of the reflection. Otherwise, xr replaces this

point. The contraction step is employed if the reflection point’s
fitness is bigger than that of the next worst. An outer contrac-
tion (xoc) is generated by Eq. (15) to achieve the corresponding

fitness value of f xocð Þ for f xrð Þ < f xdþ1ð Þ.
xoc ¼ x

� þb xr � x
�� � ð15Þ

The point of xoc replaces the xdþ1 point and the iterations
are terminated if f xocð Þ < f xrð Þ. Otherwise, the shrinkage

occurs in the next action. An inner contraction (xic), provided
in Eq. (16), may also be constructed in the contraction step in
order to achieve corresponding fitness of f xicð Þ for
f xdþ1ð Þ � f xrð Þ.
xic ¼ x

� þb xdþ1 � x
�� � ð16Þ

The point of xic replaces the xdþ1 point and iterations are
terminated in case of f xicð Þ < f xdþ1ð Þ, otherwise, the shrinkage
occurs. The latter is similar to the case for outer contraction.

The shrinkage step is the final operation in NM algorithm
which uses Eq. (17) to construct new points by shrinking them.

xi ¼ x1 þ d xi � x1ð Þ; i ¼ 2; 3; � � � ; dþ 1 ð17Þ
The flowchart of NM simplex method is provided in Fig. 3.

4. Proposed hybrid AEONM algorithm

The proposed hybrid AEONM algorithm aims to construct an

efficient global optimization algorithm with balanced explo-
rative and exploitative phases. Therefore, it employs good glo-
bal search ability of AEO algorithm for exploration whereas

the advantage of good local search capability of NM algorithm
is used for exploitation. The AEO has a Lévy flight like behav-
ior as can be seen from Eqs. (4) and (5), however, consists of a

simpler structure which provides an enhanced exploration
capability whereas NM is an algorithm that has greater
exploitation ability. The complementary characteristics of

AEO and NM is also the motivation of this study, thus, the
constructed AEONM algorithm is proposed for the adjust-
ment of PID controller employed in a buck converter.

The initialization of the proposed AEONM algorithm con-

sists of setting the parameters of AEO algorithm (number of
iterations, population size and number of decision variables)
and NM simplex method (coefficients of q, c, b, d). The

AEO algorithm is run to execute the exploration stage. The
best solution obtained in this stage is used as the initial guess
by the NM algorithm in order for execution of exploitation
stage. The NM algorithm was run after every 10 iterations of

AEO to perform the latter stage which allowed the algorithm
to perform with the best efficiency. This continues through
iterations until the stopping criterion is met. The flowchart

of the proposed AEONM algorithm is given in Fig. 4.
In terms of initial performance assessment of the proposed

AEONM algorithm, six well-known benchmark functions

were adopted. The definitions and other details of those bench-
mark functions are presented in Table 1. To demonstrate a fair
comparison, all algorithms (AEONM, AEO, PSO and DE)
were run 25 times with a population size of 50 and a maximum

iteration number of 1000.
The statistical results (best, mean and standard deviation)

obtained for the relevant test functions using the compared

algorithms are listed in Table 2. As can be seen from the
numerical values demonstrated in Table 2, the best results were
achieved with the proposed AEONM algorithm compared to

the original AEO and other algorithms (PSO and DE). Con-
sidering the demonstrated success of the proposed AEONM
algorithm in solving test functions, this study aims to further

evaluate it comparatively in terms of solving a real-world engi-
neering problem. The details of the relevant system and the
respective performance analyses are all provided in the follow-
ing sections.

5. Buck converter

5.1. Modeling of buck converter

The buck converter, also known as the step-down converter, is

a nonlinear system that operates in switched mode, thus, pre-
sents a changing behavior with respect to time. Therefore, the
linearized model of the converter must be derived first for

designing a linear controller. The buck converter circuit and
its small-signal model extracted from switching signal-flow
graph (SFG) method [32] is shown in Fig. 5. The SFG method

is a visible approach that allows obtaining the transfer func-
tion faster. The readers are referred to Refs. [32] and [33] for
more details on SFG method.

The small-signal transfer function, from the control signal

input to the capacitor voltage output, of the buck converter
is obtained as in Eq. (18) by using the signal-flow graph in
Fig. 5, graph algebra and Mason gain formula [34].

Gvd sð Þ ¼ bvo sð Þbd sð Þ
¼ Vg �

1
LC

s2 þ s
RC

þ 1
LC

ð18Þ

The parameters of the step-down converter circuit are pro-
vided in Table 3 [11] where Vg is input voltage, R is load resis-

tance, L is filter inductor, C is filter capacitor, Vref is output

voltage reference, D is steady-state duty cycle ratio and fs is
the switching frequency of the buck converter.

Using the values in the respective table, an open-loop step

response of buck converter shown in Fig. 6 can be obtained

which corresponds to a change of bd ¼ 1=12 occurring in duty
cycle ratio, hence, a change of 3 V in the output voltage. As

can be seen from Fig. 6, the open loop response of the buck
converter has a high overshoot value, and the settling time is
quite long. Enhancement of those parameters is feasible via
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employment of a PID controller as a simple and efficient struc-

ture. The respective controller is described in the following
subsection.

5.2. PID controlled buck converter system

The transient response of the buck converter is stable even in
the absence of a controller which is demonstrated in Fig. 6.

However, it can also be seen that an improvement is required
despite its stability. Therefore, in this study, closed loop con-
trol was performed via a PID controller to achieve an
enhanced stability. The block diagram of the buck converter

with PID controller is shown in Fig. 7.
The transfer function of PID controller is given in Eq. (19)

whereas Eq. (20) provides the reference voltage to output volt-

age closed-loop transfer function of the buck converter:

GController sð Þ ¼ Kp þ Ki

s
þ Kds ð19Þ

Tclosed�loop sð Þ ¼ v̂o sð Þ
v̂ref sð Þ

¼ Gvd sð Þ � GController sð Þ
1þ Gvd sð Þ � GController sð Þ ; for v̂dist sð Þ ¼ 0 ð20Þ
where Kp, Ki and Kd are proportional, integral, and derivative

gains of the controller, respectively. bvref sð Þ denotes the refer-

ence voltage change whereas bve sð Þ and bvo sð Þ are the error volt-
age and output voltage change, respectively. The unity

feedback closed loop transfer function of the buck converter
can be obtained as provided in Eq. (21) by substituting the sys-
tem parameters listed in Table 3.

Tclosed�loop sð Þ ¼ 216000 � Kds
2 þ Kpsþ Ki

� �
0:0006s3 þ s2 þ 6000sþ 216000 � Kds2 þ Kpsþ Ki

� � ð21Þ

It is worth to note that a linear controller design using the
small signal model was considered in this study. Therefore, the
controller output signals were assumed to be within reasonable

limits which would not need to be limited by any means.

6. Definition of optimization problem and proposed design

approach

The performance enhancement can be achieved by minimizing
the maximum overshoot percentage, steady-state error, settling

and rise times of the respective output voltage (v̂o) of the buck
converter system via using an objective function F. In this
study, the objective function proposed by Ref. [35] was
employed which is given in Eq. (22):



Fig. 4 Flowchart for the proposed AEONM algorithm.
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F ¼ 1� e�rð Þ � Mp þ Ess

� �þ e�r � Ts � Trð Þ ð22Þ
where Mp is maximum overshoot percentage, Ess is steady-

state error, Ts is settling time and Tr is rise time. r is the

weighting coefficient, which is set as 5�10�5 in this paper.

After extensive simulations, the latter provided value of
weighting coefficient has been found to be better if it is chosen

within 2� 10�5; 10�4
� �

and the optimum value was determined

to be 5� 10�5. It is worth to note that the proposed AEONM
algorithm can find the best result for any r value chosen from

2� 10�5; 10�4
� �

. This objective function helps the output of

the system to reach the steady-state value quickly without

causing higher overshoots. In order to obtain a high level of
Table 1 Used benchmark functions.

Name Formula

Sphere f1 xð Þ ¼ Pd
i¼1x

2
i

Schwefel 2.22 f2 xð Þ ¼ Pd
i¼1 xij j þQd

i¼1 xij j
Schwefel 1.2

f3 xð Þ ¼ Pd
i¼1

Pi
j¼1xj

� �2

Schwefel 2.21 f4 xð Þ ¼ maxi xij j; 1 � i � df g
Rosenbrock f5 xð Þ ¼ Pd�1

i¼1 100 xiþ1 � x2i
� �2 þ xi � 1Þ2

� ��
Ackley

f6 xð Þ ¼ �20exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd
i¼1x

2
i

q	 

� exp 1

d

Pd
i¼1

�

dynamic performance from the buck converter, the Kp, Ki

and Kd parameters should be set to their optimal values. The
upper and lower limits of these parameters are given in Table 4
[10,36]. It is worth to note that the closed loop response of the

system is always stable within the stated limits in Table 4. The
detailed flowchart of the AEONM tuned PID controlled buck
converter system to find optimal parameters is given in Fig. 8.

7. Simulation results and discussion

This section presents detailed comparative simulation results

of the PID controlled buck converter systems designed with
different approaches. The comparisons were performed by
means of statistical boxplot analysis and non-parametric test
results along with transient response analysis, frequency

response analysis, integral error-based performance indices,
disturbance rejection analysis and robustness analysis.

7.1. Compared algorithms

The proposed hybrid AEONM algorithm has been compared
with the original AEO algorithm and the two other most pop-

ular algorithms (PSO and DE). The implementation of the
AEO algorithm is quite simple such that it does not require
any parameter adjustment apart from the numbers of popula-

tion and the maximum iteration. The initial parameters of NM
simplex method, PSO [37] and DE [38] algorithms are provided
as follows.

NM: Reflection factor q ¼ 1, expansion factor c ¼ 2, con-
traction factor b ¼ 0:5 and shrinkage factor d ¼ 0:5.
DE: Mutation factor F ¼ 0:5 and crossover rate C ¼ 0:5.
PSO: Inertia weight linearly reduces from 0.9 to 0.2, cogni-
tive and social coefficients c1 ¼ 2:0 and c2 ¼ 2:0.

In each of the algorithms, the population number was set to
24 and the total number of iterations was taken as 50 and each
of the algorithm was run 25 times.

7.2. Statistical boxplot analysis

The statistical performance of the proposed AEONM-based
PID controller along with the other controllers based on

AEO, PSO, and DE algorithms are given in this subsection.
Table 5 presents the statistical results for the objective function
F in terms of best, mean and standard deviation.

The respective values were ranked according to their statis-
tical performances. From the table, the proposed AEONM
d Test area fopt

30 �100; 100½ � 0

30 �10; 10½ � 0

30 �100; 100½ � 0

30 �100; 100½ � 0

30 �30; 30½ � 0

cos 2pxið Þ
�
þ 20þ e

30 �32; 32½ � 0



Table 2 The comparison of the performances of AEONM, AEO, PSO and DE algorithms.

Name Measure AEONM (proposed) AEO PSO DE

Sphere Best 0 0 7.3467e�06 1.1883e�15

Mean 0 0 2.1983e�04 3.5570e�14

Standard deviation 0 0 2.5634e�04 6.2032e�14

Schwefel 2.22 Best 6.1797e�201 8.0628e�198 4.2105e�05 1.5396e�08

Mean 2.8529e�190 1.1333e�189 3.0845e�04 4.1874e�08

Standard deviation 0 0 2.4850e�04 2.4051e�08

Schwefel 1.2 Best 0 0 9.8861e+02 8.2076e�01

Mean 0 0 2.7052e+03 5.4633e+00

Standard deviation 0 0 1.2908e+03 3.5439e+00

Schwefel 2.21 Best 6.7214e�193 1.1256e�192 1.0485e+01 2.3077e+00

Mean 4.9684e�186 6.0593e�184 1.6962e+01 9.2058e+00

Standard deviation 0 0 4.0843e+00 4.0632e+00

Rosenbrock Best 0 1.7923e+01 6.8303e+00 4.2950e+00

Mean 3.5698e�29 1.9411e+01 9.7047e+01 3.1968e+01

Standard deviation 5.0416e�29 9.5890e�01 7.5831e+01 1.7052e+01

Ackley Best 8.8818e�16 8.8818e�16 9.3017e�04 1.8395e�08

Mean 8.8818e�16 8.8818e�16 7.4902e�03 5.5394e�08

Standard deviation 0 0 8.0841e�03 3.0611e�08

Fig. 5 Buck converter system and its small-signal model.

Table 3 Parameters of the DC–DC

buck converter used in simulation [11].

Parameters Values

Vg 36V

Vref 12V

R 6X
L 1mH

C 100lF
D 1=3

fs 40kHz
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algorithm-based controller has ranked as first due to its supe-
rior performance over others in all parameters. These results

can also be visualized through the comparative boxplot given
in Fig. 9. Thus, the proposed AEONM algorithm-based con-
troller design approach can be concluded to be better than

of other algorithms-based design approaches.

7.3. Non-parametric test analysis

Apart from the statistical performance parameters provided in

the previous section, a non-parametric statistical test based on
the Wilcoxon signed-rank test was also performed to further
demonstrate the superior performance of the proposed
AEONM algorithm. In this way, the superior performance
of the proposed algorithm was shown not to be occurred by

coincidence because of the stochastic nature of it. The non-
parametric test was carried out at 5% significant level
Fig. 6 Open-loop step response of buck converter.



Fig. 7 Buck converter system with a PID controller.

Table 4 The limits of the PID parameters.

Parameter Lower bound Upper bound

Kp 1 50

Ki 0.01 10

Kd 0.001 0.01
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AEONM versus other algorithms. The obtained p values are
given in Table 6.

The obtained p values and the sign of 0 þ 0 in the winner col-

umn of the Table showed the significant difference of the pro-
posed algorithm’s performance compared to other algorithms,
thereby, clearly demonstrating great effectiveness of the pro-
posed AEONM algorithm with respect to AEO, PSO and

DE algorithms.

7.4. Transient response analysis

The best controller parameters obtained with different algo-
rithms in the optimization process are given in Table 7. Those
parameters were used to observe the transient stability of the

controlled system.
The respective closed loop transfer functions of the buck

converter system tuned by the PID controller parameters pro-

vided in Table 7 are given in Eqs. (23)–(26) for AEONM,
AEO, PSO and DE algorithms, respectively.

TAEONM sð Þ ¼ 0:3571s2 þ 605:8sþ 42:27

1e� 07s3 þ 0:3573s2 þ 606:8sþ 42:27
ð23Þ

TAEO sð Þ ¼ 0:3395s2 þ 1192sþ 286:2

1e� 07s3 þ 0:3396s2 þ 1193sþ 286:2
ð24Þ

TPSO sð Þ ¼ 0:2956s2 þ 1337sþ 134:1

1e� 07s3 þ 0:2957s2 þ 1338sþ 134:1
ð25Þ

TDE sð Þ ¼ 0:3143s2 þ 994:4sþ 46:95

1e� 07s3 þ 0:3144s2 þ 995:4sþ 46:95
ð26Þ

For the proposed AEONM/PID, AEO/PID, PSO/PID and
DE/PID controller approaches, the comparative transient
responses of the system with a reference voltage change ofbvref ¼ 3 V is shown in Fig. 10.

In addition, comparative numerical results in terms of

important transient response performance criteria such as peak
value, maximum overshoot, settling time, rise time and steady-
state error are presented in Table 8. As can be seen from all

these results, there is no overshoot in the system response with
the proposed AEONM/PID controller and it is much faster
which exhibits a more stable profile in time domain than other

controllers. Hence, it is superior to other design approaches.

7.5. Frequency response analysis

Gain and phase margins along with bandwidth are the param-
eters that are important for the evaluation of the algorithms in
the frequency domain. The Bode plot of the buck converter

system using the controller (designed by the proposed
approach) is shown in Fig. 11.

Table 9 shows the performance criteria of all approaches in
frequency domain in terms of gain and phase margins as well

as bandwidth. As can be clearly seen from the comparative
numerical results in the table and the Bode plots from the fig-
ure, the most stable system in terms of frequency response is

the one with the proposed AEONM/PID controller.

7.6. Comparison of time-domain integral-error-performance
indices

This subsection presents a comparative analysis in terms of
well-known integral of error-based performance indices which

can be listed as IAE, ISE, ITAE, and ITSE which denote the
integral of absolute error, integral of squared error, integral
of time weighted absolute error, and integral of time weighted
squared error, respectively. The formulations of the listed

indices are given in Eqs. (27), (28), (29) and (30), respectively.

IAE ¼
Z T

0

e tð Þj j � dt ð27Þ

ISE ¼
Z T

0

e2 tð Þ � dt ð28Þ

ITAE ¼
Z T

0

t � e tð Þj j � dt ð29Þ

ITSE ¼
Z T

0

t � e2 tð Þ � dt ð30Þ

In the respective equations, T denotes the simulation time,

which equals 10�5s in this study, and e tð Þ is the error signal
that is given as e tð Þ ¼ v̂e ¼ v̂ref � v̂o. The values obtained from

simulations for these indices are given as bar graphs in Figs. 12,



Fig. 8 Flowchart of the buck converter system with a PID controller tuned by suggested AEONM.
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13, 14 and 15, respectively. It can be clearly seen from these fig-
ures that the proposed AEONM algorithm-based controller
has provided the smallest value, indicating the best perfor-

mance amongst all compared algorithms.
7.7. Disturbance rejection performance

This subsection presents the proposed AEONM-based con-

troller’s ability to reject the unexpected disturbances. The



Table 5 Comparison of statistical results for F objective function.

Algorithm Best Mean Standard deviation Rank

AEONM (proposed) 4.8016e�07 4.9563e�07 1.4493e�08 1

AEO 4.9920e�07 5.1693e�07 1.6234e�08 2

PSO 5.6805e�07 5.8939e�07 1.5587e�08 4

DE 5.6191e�07 5.8340e�07 1.9324e�08 3

Fig. 9 Boxplot analysis results for AEONM, AEO, PSO and DE

algorithms.

Table 6 Wilcoxon signed-rank test results for AEONM,

AEO, PSO and DE algorithms.

Algorithm p value Winner

AEONM vs AEO 1.7437e � 04 þ
AEONM vs PSO 1.2290e � 05 þ
AEONM vs DE 1.2290e � 05 þ

Table 7 PID controller parameters optimized by various

algorithms.

Algorithm Kp Ki Kd

AEONM (proposed) 16.8278 1.1742 0.00992

AEO 33.1153 7.9506 0.00943

PSO 37.1502 3.7255 0.00821

DE 27.6235 1.3043 0.00873

Fig. 10 Step response comparisons of the buck converter

system.
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value of the disturbance signal was taken as the positive 20%

change of the reference voltage change (bvref ¼ 3 V) at

t ¼ 5� 10�6 s. This sudden change in the output voltage
caused by the disturbing effect and should be suppressed
quickly with the proposed controller. The response of the out-

put voltage change (bvo) due to the step input at t ¼ 0s and the

response to the disturbance effect (0.6 V) at t ¼ 5� 10�6s is
shown in Fig. 16. From the figure, compared to AEO/PID,

PSO/PID and DE/PID controllers, the proposed AEONM/
PID controller is faster and better at suppressing the occurring
disturbance.

7.8. Robustness analysis

The robustness of a controller is a crucial point to bear in mind

in order to maintain the stability of the considered system for
unexpected cases. The parameters of L and C were separately
changed within a range of ±20% and ±10%, respectively, in
order to perform the robustness analysis of the proposed

AEONM based PID controller. Similar to the previous analy-
ses, the robustness was also carried out comparatively against
the PSO, DE and the original form of AEO algorithms.

Table 10 provides the respective comparative results.
As can be seen from the results provided in Table 10, all

algorithms provide zero steady-state error. However, in terms

of other parameters of peak value, overshoot, rise and settling
times, an overall superiority of the proposed approach can
clearly be observed.

7.9. Comparison with the state-of-the-art algorithms

As part of further performance demonstration of the proposed
approach for controlling buck converter, a comparison was

performed in terms of transient and frequency responses



Table 8 Transient response performance of different algorithms.

Algorithm Peak value (V) Overshoot (%) Rise time (s) Settling time (s) Steady-state error (V)

AEONM (proposed) 3.0000 0 6.1519e � 07 1.0954e � 06 0

AEO 3.0000 0 6.4613e � 07 1.1454e � 06 0

PSO 3.0000 0 7.4122e � 07 1.3093e � 06 0

DE 3.0013 0.0438 6.9808e � 07 1.2381e � 06 0

Fig. 11 Bode plot of the buck converter system with a PID

controller tuned by proposed AEONM.

Table 9 Frequency response characteristics of different

approaches.

Algorithm Gain margin

(dB)

Phase margin

(deg)

Bandwidth

(Hz)

AEONM

(proposed)

infinite 180 3.5628e + 06

AEO infinite 178.1149 3.3886e + 06

PSO infinite 177.4863 2.9515e + 06

DE infinite 178.2405 3.1369e + 06

Fig. 12 Comparison of IAE performance index values.

Fig. 13 Comparison of ISE performance index values.

Fig. 14 Comparison of ITAE performance index values.
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against SA, GA and WOA based controllers that were used for
the same purpose. Table 11 presents the respective compara-
tive values for all algorithms. The respective data shown in



Fig. 15 Comparison of ITSE performance index values.

Fig. 16 Set point and disturbance resp

Table 10 Performance comparisons for parametric uncertainty.

Parameter Rate of change Algorithm Peak value (V) Oversh

L �20% AEONM 3.0000 0

AEO 3.0012 0.0400

PSO 3.0000 0

DE 3.0010 0.0346

þ20% AEONM 3.0000 0

AEO 3.0000 0

PSO 3.0003 0.0096

DE 3.0000 0

C �10% AEONM 3.0000 0

AEO 3.0012 0.0404

PSO 3.0000 0

DE 3.0010 0.0339

þ10% AEONM 3.0001 0.0022

AEO 3.0000 0

PSO 3.0002 0.0058

DE 3.0000 0
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Table 11 demonstrates highly competitive capability of the
proposed approach in terms of achieving good peak value,
overshoot, rise time, settling time, steady-state error, gain mar-

gin, phase margin and bandwidth.

8. Conclusion

A new hybrid metaheuristic optimization algorithm, namely
the artificial ecosystem-based optimization integrated with
Nelder-Mead simplex method (AEONM), has been proposed

for linear PID controller design of buck converter. After intro-
duction of original optimization algorithms of AEO and NM,
the proposed hybrid AEONM algorithm and its implementa-

tion to optimal PID controller design of buck converter has
been described in detail. Initially, the proposed algorithm
was tested against six well-known benchmark functions. Then,

several analyses and time domain-based performance indices
have been conducted to validate the efficiency of the proposed
design approach and compared with not only the original
AEO algorithm but also with other commonly used algorithms

such as PSO and DE. According to the statistical test results in
terms of best, mean, and standard deviation indices, the pro-
onses of a DC–DC buck converter.

oot (%) Rise time (s) Settling time (s) Steady-state error (V)

4.9215e � 07 8.7631e � 07 0

5.1707e � 07 9.1740e � 07 0

5.9331e � 07 1.0497e � 06 0

5.5862e � 07 9.9157e � 07 0

7.3822e � 07 1.3144e � 06 0

7.7511e � 07 1.3727e � 06 0

8.8896e � 07 1.5679e � 06 0

8.3746e � 07 1.4842e � 06 0

5.5375e � 07 9.8636e � 07 0

5.8170e � 07 1.0320e � 06 0

6.6740e � 07 1.1804e � 06 0

6.2846e � 07 1.1156e � 06 0

6.7661e � 07 1.2043e � 06 0

7.1053e � 07 1.2584e � 06 0

8.1497e � 07 1.4379e � 06 0

7.6766e � 07 1.3604e � 06 0



Table 11 Comparisons of the transient and frequency responses.

Performance criteria AEONM (proposed) SA [10] GA [36] WOA [36]

Peak value (V) 3.0000 3.0005 3.0000 3.0000

Overshoot (%) 0 0.0182 0 0

Rise time (s) 6.1519e � 07 7.7874e � 07 7.8296e � 07 6.4306e � 07

Settling time (s) 1.0954e � 06 1.3726e � 06 1.3883e � 06 1.1391e � 06

Steady-state error (V) 0 0 0 0

Gain margin (dB) infinite infinite infinite infinite

Phase margin (deg) 180 177.1461 178.1775 177.9724

Bandwidth (Hz) 3.5628e + 06 2.8077e + 06 2.7966e + 06 3.4042e + 06
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posed AEONM algorithm-based design approach ranked first
in all these terms. Also, a non-parametric analysis based on the

Wilcoxon signed-rank test has been conducted to show that
the high performance of the proposed AEONM algorithm
has not been occurred by coincidence. The obtained results

from this test have clearly demonstrated the effectiveness of
the proposed AEONM algorithm with respect to AEO, PSO,
and DE algorithms. According to the transient response anal-
ysis results, the proposed design had no overshoot and no

steady-state error, and the responses are much faster than
the other design approaches with less rise time and settling
time. The frequency response analysis has given similar high-

performance results in terms of gain margin, phase margin
and bandwidth. Both the tabulated numerical results and
graphical Bode plot results have shown that the proposed

AEONM-based design approach is superior to other design
approaches. These results are also validated through four dif-
ferent time-domain integral-error performance indices, namely
the IAE, ISE, ITAE, and ITSE, in which AEONM based

design approach has given the minimum (best) results in all
these performance indices. From the disturbance rejection
analysis, it is shown that the PID controller design based on

the proposed AEONM algorithm has better disturbance rejec-
tion capability than other design approaches with a higher dis-
turbance suppression speed. Moreover, the robustness analysis

has also shown the greater capability of the proposed
approach. Lastly, a comparative analysis, in terms of transient
and frequency responses, against SA [10], GA [36] and WOA

[36] based PID controllers have also demonstrated the better
performance of the proposed approach for control of DC-
DC buck converter. Therefore, from all these analyses results,
it can be concluded that the proposed hybrid optimization

algorithm is an efficient design tool that can be used to design
controllers in control applications of electrical engineering field
which can be the subject of future research studies of controller

designs for different engineering systems such as automatic
voltage regulator, DC motor speed control, power system sta-
bilizer and so on. The codes of the proposed algorithm written

in MATLAB environment can be accessed at ‘‘https://
github.com/davutizci/AEONM-Algorithm”.
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