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Abstract: This paper presents a novel 13-level switched capacitor multilevel inverter, which uses
less devices to achieve six-fold voltage gain. The proposed topology structure consists of twelve
transistors, two diodes, and three capacitors. It is worth mentioning that characteristics as having five
complementary switch pairs and self-balanced electric capacity voltages are conducive to simplifying
the control strategy. Moreover, the above components constitute the switched capacitor unit and
L-type unit. The inverter can acquire more voltage levels and a higher voltage gain by using multiple
L-type units with fewer elements. Furthermore, the cost function is employed to comprehensively
appraise the performance of the proposed inverter. The comparison with other existing 13-level
inverters shows that the proposed multilevel inverter can effectively decrease the value of the cost
function. Finally, the simulation and experimental results are presented to demonstrate the feasibility
and effectiveness of the 13-level inverter.

Keywords: multilevel inverter; switched capacitor; boosting; reduced components; extension

1. Introduction

Multilevel inverters (MLIs) have emerged as an important tool for medium-voltage
high-power applications like renewable energy system, electric vehicles (EVs), and flexible
AC transmission systems [1–3]. MLIs possess many excellent features in contrast with the
two-level inverter, such as a better performance in terms of total harmonic distortion (THD),
reduced dv/dt stresses, a lower switching frequency, etc. [4]. Generally, conventional MLIs
are divided into neutral-point clamped (NPC), flying capacitor (FC), and cascaded H-
bridge (CHB) inverters [5]. However, NPC and FC inverters use numerous components
with increasing voltage levels, and it is complicated to keep control of the balance of the
capacitor voltage [6]. In addition, CHB inverters have drawbacks like a strong demand for
isolated DC sources and a lack of boost capacity [7]. It is noteworthy that the MLIs based
on the switched capacitor (SC) technique are capable of self-balancing the capacitor voltage
as well as raising the input voltage [8,9].

With these unique advantages, switched capacitor multilevel inverters (SCMLIs) have
been widely studied and have produced various topologies. For instance, the inverters
in [10–14] use several DC sources combined with switched capacitors to produce a mul-
tilevel output. The SCMLIs proposed in [10,11] can achieve a double voltage gain with
self-charging capacitors. To obtain a greater number of voltage levels, the 17-level switched
capacitor inverter in [12] was developed using two SC cells. In [13,14], the inverters
achieved a higher boosting factor with a number of SC units. Nevertheless, the above
topologies have a common defect, namely that of employing multiple DC sources, which
results in the growth of application cost.

In order to solve the aforesaid issue, several single-source SCMLIs were proposed
in [15–18]. The inverter in [15] achieved seven-level output with a single source, and more
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levels were obtained in [16–18] using extended structures. However, these topologies all
use the H-bridge to transform the direction of the output voltage, which can raise the
total standing voltage (TSV) of switches. The H-bridge was removed in [19–22] due to
the intrinsic inversion ability. The multilevel inverter based on the K-type unit in [19] has
a voltage gain of 1.5, while a triple boosting factor was obtained in [20–22]. The three
MLIs include a T-type which maintains the capacitor voltage at half of the input voltage
to produce more output levels. Nevertheless, the above topologies could be improved if
they did not require abundant devices for a higher boosting factor, an issue identical to that
found in [23].

The works [24–27] developed 13-level switched capacitor inverters which achieve a
voltage gain of six with fewer components. Through the regular charging–discharging
of the capacitor, the inverter proposed in [24] can realize the self-balancing of capacitor
voltages, but the voltage stress of the switches is high. The stress on the devices of the
inverter in [25] decreased, which was restricted to half the maximum output voltage. The
multilevel inverter proposed in [26] used fifteen transistors and three capacitors, and
the output voltage polarity was changed with two half-bridge modules. Two switched
capacitor inverters proposed in [27] only used twelve switches. The topologies contain
a triple-mode SC unit and a simplified SC unit. The inverter proposed in [28] also uses
a triple-mode SC, but employs four capacitors, which leads to an increase in volume. In
addition, the abovementioned structures cannot be expanded and the application scenarios
are restricted.

Based on the previous analysis, a new 13-level SCMLI is proposed in this paper, and it
has the following excellent features:

(1) The proposed multilevel inverter can acquire six-fold voltage gain with a reduced
number of components;

(2) Only twelve transistors are employed and there are five complementary switch pairs,
which simplifies the control strategy;

(3) The capacitor voltage is self-balancing without the need for extra loops;
(4) The proposed SCMLI is capable of extending to acquire more voltage levels and a

higher boost factor;
(5) A low-value cost function (CF) can be obtained in the topology.

The remaining sections are organized as follows: Section 2 gives the structure of the
proposed 13-level switched capacitor boost inverter, and its working states at different levels
are also introduced. Section 3 analyzes the power losses and gives the parameter calculation
of the multilevel inverter. Section 4 introduces the topology extension and comprehensive
results of comparisons with other MLIs. Section 5 presents the simulation and experimental
platform to verify the validity of the 13-level inverter. In the end, conclusions are given
in Section 6.

2. Design of Proposed SCMLI
2.1. Topology

The proposed 13-level switched capacitor topology is depicted in Figure 1. It is made
up of four switches (S1–S4), a switched capacitor unit (SCU), a L-type unit (LTU), two
diodes, and three capacitors. The SCU contains a single DC source, five switches (S5–S9), a
diode D1, as well as capacitors C1 and C2. Figure 2 shows the working states of the proposed
switched capacitor basic unit. In Figure 2a, the capacitor voltage can be maintained at Vdc
when it is connected in parallel with the DC source. Figure 2b,c displays the discharge of
capacitors connected in parallel/series. The SCU can achieve a triple voltage gain when
the two capacitors are connected in parallel with the DC source. LTU includes the capacitor
C3, three switches (S10–S12), and a diode D2, whilst the capacitor voltage of C3 can be
maintained at 3 Vdc through the L-type circuit loop.
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Figure 2. Working states of switched capacitors. (a) Charging of C1 and C2 in parallel. (b,c) Discharg-
ing of C1 and C2 in parallel/series. 
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The different switching modes and output levels are shown in Table 1, where “0” and “1” 
indicate the “off” and “on” statuses of the switches, respectively. The working conditions 
of capacitors are presented by “C”, “D”, and “–”, which denote the charging, discharging, 
and idle states. A total of five complementary switch pairs are employed to prevent the 
capacitors from being short-circuited. Moreover, capacitors C1 and C2 have the same state 
and a high charging frequency, which is beneficial to diminish the capacitor voltage ripple 
and improve the waveform quality of the output voltage. 

Table 1. Operating modes of the proposed MLI. 
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Figure 3 shows the positive conducting paths in each operating state. Note that the 
lines highlighted in green represent the charging circuit of the capacitors, and that the 
lines highlighted in red represent the paths of the synthetic voltage level. In addition, the 
proposed 13-level topology can integrate the inductive load, because there is a reverse 
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Figure 2. Working states of switched capacitors. (a) Charging of C1 and C2 in parallel. (b,c) Discharg-
ing of C1 and C2 in parallel/series.

2.2. Operating Mode

The proposed topology possesses a 13-level output and fourteen operating modes.
The different switching modes and output levels are shown in Table 1, where “0” and “1”
indicate the “off” and “on” statuses of the switches, respectively. The working conditions
of capacitors are presented by “C”, “D”, and “–”, which denote the charging, discharging,
and idle states. A total of five complementary switch pairs are employed to prevent the
capacitors from being short-circuited. Moreover, capacitors C1 and C2 have the same state
and a high charging frequency, which is beneficial to diminish the capacitor voltage ripple
and improve the waveform quality of the output voltage.

Table 1. Operating modes of the proposed MLI.

Modes Output Voltage
Switches Capacitors

S1,2 S3,4 S5,6 S7/8,9 S10,11 S12 C1 C2 C3

1 +6 Vdc 01 10 10 01 01 0 D D D
2 +5 Vdc 01 10 10 10 01 0 D D D
3 +4 Vdc 01 10 01 10 01 0 C C D
4 +3 Vdc 01 10 10 01 10 1 D D C
5 +2 Vdc 01 10 10 10 10 0 D D –
6 +Vdc 01 10 01 10 10 0 C C –
7

0
01 01 10 01 10 1 D D C

8 10 10 10 01 10 1 D D C
9 −Vdc 10 01 01 10 10 0 C C –

10 −2 Vdc 10 01 10 10 10 0 D D –
11 −3 Vdc 10 01 10 01 10 1 D D C
12 −4 Vdc 10 01 01 10 01 0 C C D
13 −5 Vdc 10 01 10 10 01 0 D D D
14 −6 Vdc 10 01 10 01 01 0 D D D

Figure 3 shows the positive conducting paths in each operating state. Note that the
lines highlighted in green represent the charging circuit of the capacitors, and that the
lines highlighted in red represent the paths of the synthetic voltage level. In addition, the
proposed 13-level topology can integrate the inductive load, because there is a reverse
current path composed of capacitors and anti-parallel diodes. For the simplicity of analysis,
the assumption is that all devices are ideal and that the voltages of capacitors C1 and C2 are
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constant at Vdc, while the voltage of capacitor C3 is constant at 3 Vdc. The positive polarity
voltage is generated when switches S2 and S3 are turned on, and the negative polarity
voltage is generated when the switches S1 and S4 are turned on.
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2.3. Modulation Strategy

A number of modulation strategies have been put forward to control multilevel
inverters, such as sinusoidal pulse width modulation (SPWM) [29], nearest level control
(NLC) [30], and selective harmonic elimination (SHE) [31]. To reduce the operational
complexity and the value of THD, the phase disposition pulse width modulation (PD-
PWM) is used to generate the drive signal of the switches, as shown in Figure 4.

For the proposed 13-level inverter, there are twelve triangular carriers (u1~u12) with
the same amplitude Ac and frequency f c, which are compared with the sinusoidal reference
wave with amplitude Aref and frequency 50 Hz (f o). The processes of the capacitor charge
and discharge in one cycle are also presented. The voltage of capacitors C1 and C2 can be
kept at Vdc with the same voltage ripple ∆Vc1,2, and the voltage of capacitor C3 can be
kept at 3 Vdc with the voltage ripple ∆Vc3. The modulation logic of the 13-level inverter is
presented in Figure 5. There are five complementary switch pairs and a 13-level output is
obtained through logical combinations.

For the modulation strategy adopted in the proposed topology, the number of output
levels is related to the modulation index, and the modulation index M can be expressed as

M =
Aref
6 Ac

. (1)

Table 2 shows the output voltage levels and the corresponding range of M, which
varies between 0 and 1.
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Table 2. The relationship between M and the output level.

M Number of Levels Output Voltage Levels

0 < M ≤ 1/6 3 ±Vdc, 0
1/6 < M ≤ 1/3 5 ±2 Vdc, ±Vdc, 0
1/3 < M ≤ 1/2 7 ±3 Vdc, ±2 Vdc, ±Vdc, 0
1/2 < M ≤ 2/3 9 ±4 Vdc, ±3 Vdc, ±2 Vdc, ±Vdc, 0
2/3 < M ≤ 5/6 11 ±5 Vdc, ±4 Vdc, ±3 Vdc, ±2 Vdc, ±Vdc, 0

5/6 < M ≤ 1 13 ±6 Vdc, ±5 Vdc, ±4 Vdc, ±3 Vdc, ±2 Vdc, ±Vdc, 0

2.4. Capacitor Analysis

The capacitor voltage of the proposed SCMLI can be balanced without the extra loops,
which is crucial to generate the ideal voltage. The capacitors C1, C2, and C3 can be charged
through a parallel charging mechanism in each cycle, as shown in Table 1 and Figure 3.

To diminish the voltage ripple and improve the quality of the voltage waveform, the
maximum voltage ripple of the capacitor is set to remain below 10% of the rated capacitor
voltage. The voltage ripple is related to the continuous discharging amount of capacitor.
It can be seen in Figure 4 that the points of uref intersect and that the carriers are set to ti
(i = 1, 2, 3. . ., 12), which can be calculated by

ti =
arcsin

(
i

6M

)
2π fo

, (2)

where f o is the output frequency and M is set to 0.9. As is shown in Figure 4, the maximum
discharging interval of the capacitors C1 and C2 is [t4–t7], whilst the maximum discharging
interval of capacitor C3 is [t3–t8]. The instants t3, t4, t7, and t8 can be calculated by

t3 =
arcsin

(
1

2M

)
2π fo

, (3)

t4 =
arcsin

( 2
3M
)

2π fo
, (4)

t7 =
π−arcsin

( 2
3M
)

2π fo
, (5)

t8 =
π−arcsin

(
1

2M

)
2π fo

, (6)

The capacitors C1 and C2 have the same discharge cycle and rated capacitor voltage.
For the simplicity of analysis, only capacitor C1 is calculated. According to Equations (3)–(6),
the maximum discharge amount of C1 and C3 can be obtained as

∆Q1 =
∫ t7

t4

Iosin(2π fot)dt, (7)

∆Q3 =
∫ t8

t3

Iosin(2π fot)dt, (8)

where ∆Q1 and ∆Q3 are the maximum discharge amounts of C1 and C3, respectively, whilst
Io is the output current. Supposing that the coefficient defining maximum admissible
voltage ripple is 0.1, then the capacitance can be calculated by

C1 = C2 ≥ ∆Q1

0.1VC1
, (9)
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C3 ≥ ∆Q3

0.1VC3
, (10)

where VC1 and VC3 are the rated voltages of C1 and C3, respectively. The voltage ripple of
the capacitors can be kept within an acceptable bound through a suitable capacitance.

3. Power Losses Analysis

For the proposed 13-level topology, three kinds of power loss are calculated, namely
the switching losses (Psw), conduction losses (Pcon), and ripple losses of capacitors (Prip).

3.1. Switching Losses

The switching losses are produced by the overlapping of the voltage and current
during the switch on/off process, which includes the switch-on loss (Psw,on) and switch-off
loss (Psw,off). For simplicity, the switching losses are calculated according to the linear
approximation of the voltage and current. According to the calculation method in [16], the
Psw,on and Psw,off of the i-th switch are expressed as

Psw,on,i = fsw
∫ ton

0 vsw,i(t)i(t)dt

= fsw
∫ ton

0

(
−Vsw,i

ton
(t − ton)

)(
Ion,i
ton

t
)

dt,

=
fswVsw,i Ion,iton

6

(11)

Psw,off,i = fsw
∫ toff

0 vsw,i(t)i(t)dt

= fsw
∫ toff

0

(
Vsw,i
toff

t
)(

− Ioff,i
toff

(t − toff)
)

dt

=
fswVsw,i Ioff,itoff

6 ,

(12)

where f sw is the switching frequency of the inverter, Vsw,i represents the stress of the i-th
switch, ton and toff are the turn-on time and turn-off time of the switch, respectively, and
Ion,i and Ioff,i represent the current through the i-th switch after turning on and before
shutting off, respectively. Thus, the Psw of the all switches is expressed as

Psw =
12

∑
i=1

(Psw,on,i + Psw,off,i). (13)

3.2. Conduction Losses

The conduction losses can be produced by the impedance of semiconductor devices
and capacitors, which include the conduction resistance Rs of switches, the internal re-
sistance Rd of diodes, and the equivalent series resistance ESRC of capacitors. Figure 6
provides the predigested circuits for all operating states.

Table 3 shows the equivalent parameters of each operating state. Herein, Vo, j and Req,j
are the output voltage and equivalent parameters, respectively. For the interval of [0, t1],
the energy loss can be expressed as

E0∼Vdc =
∫ t1

0
[Io sin(2π fot)]2 × [Req,1

Aref sin(2π fot)
Ac

+Req,0(1−
Aref sin(2π fot)

Ac
)]dt. (14)

For other intervals, the energy losses can be calculated in the same way.

EVdc∼2Vdc =
∫ t2

t1

[Io sin(2π fot)]2 × [Req,2
Aref sin(2π fot)− Ac

Ac
+ Req,1(1 −

Aref sin(2π fot)− Ac

Ac
)]dt, (15)

E2Vdc∼3Vdc =
∫ t3

t2

[Io sin(2π fot)]2 × [Req,3
Aref sin(2π fot)− 2Ac

Ac
+ Req,2(1 −

Aref sin(2π fot)− 2Ac

Ac
)]dt, (16)
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E3Vdc∼4Vdc =
∫ t4

t3

[Io sin(2π fot)]2 × [Req,4
Aref sin(2π fot)− 3Ac

Ac
+ Req,3(1 −

Aref sin(2π fot)− 3Ac

Ac
)]dt, (17)

E4Vdc∼5Vdc =
∫ t5

t4

[Io sin(2π fot)]2 × [Req,5
Aref sin(2π fot)− 4Ac

Ac
+ Req,4(1 −

Aref sin(2π fot)− 4Ac

Ac
)]dt, (18)

E5Vdc∼6Vdc =
∫ t6

t5

[Io sin(2π fot)]2 × [Req,6
Aref sin(2π fot)− 5Ac

Ac
+ Req,5(1 −

Aref sin(2π fot)− 5Ac

Ac
)]dt. (19)

Based of the above, the Pcon of the proposed 13-level topology can be obtained by

Pcon = (4E0∼Vdc + 4EVdc∼2Vdc + 4E2Vdc∼3Vdc + 4E3Vdc∼4Vdc + 4E4Vdc∼5Vdc + 2E5Vdc∼6Vdc)× fref. (20)
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Table 3. Parameters of the equivalent circuits.

j Vo, j Req, j

0 0 Rs + Rd
1 ±Vdc 2 Rs + 2 Rd
2 ±2 Vdc 3 Rs + 3 Rd/2 + ESRC/2
3 ±3 Vdc 4 Rs + Rd + 2 ESRC
4 ±4 Vdc 3 Rs + Rd + ESRC
5 ±5 Vdc 4 Rs + Rd/2 + 3 ESRC/2
6 ±6 Vdc 5 Rs + 3 ESRC

3.3. Ripple Losses

The ripple losses can be produced by the voltage fluctuation of the capacitor, and the
voltage ripple of capacitors C1, C2, and C3 can be obtained as

∆VC1 = ∆VC2 =
∆Q1

C1
, (21)

∆VC3 =
∆Q3

C3
, (22)
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where the ∆VC1, ∆VC2, and ∆VC3 are the voltage ripples of capacitors C1, C2, and C3,
respectively. According to the calculation method in [28], the ripple losses of the capacitors
are expressed as

Prip =
fo

2

3

∑
k=1

Ck∆V2
Ck. (23)

Overall, the power losses of the proposed 13-level topology are expressed as

Ploss = Psw + Pcon + Prip. (24)

Finally, the theoretical efficiency is indicated by η, which is defined by

η =
Po

Psw + Pcon + Prip + Po
, (25)

where Po is the output power of the inverter.

4. Topology Extension and Comparison
4.1. Topology Extension

One of the main benefits of the proposed 13-level topology is that it allows for modular
extensions. As illustrated in Figure 7, each L-type unit (LTU) contains a capacitor, three
power switches, and a diode. It can be learned from a previous analysis that capacitor C3 is
charged in series with the capacitors C1 and C2 through switches S10 and S12. Theoretically,
n LTUs can be integrated into the proposed switched-capacitor multilevel inverter. For
the n-th LTU, capacitor Cn+2 can be charged to (3 × 2n−1) Vdc through series connection
with the capacitors C1~Cn+1, since the voltage levels and boost factor will be increased by
connecting multiple L-type units.
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The extended inverter consists of n number of LTU, the switch count Nswitch, the diode
count Ndiode, the switched capacitor count Ncapacitor, the voltage levels Nlevel, and the boost
factor G can be expressed as:

Nswitch= 3n + 9, (26)

Ndiode = n + 1, (27)

Ncapacitor = n + 2, (28)

Nlevel= 3 × 2n+1 + 1, (29)

G= 3 × 2n. (30)
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The THD of the proposed inverter can be further reduced with the increase in output
levels, while the control of switches will be more complex, and the demand for carriers will
also increase significantly, which is twice as much as voltage gain. Therefore, reasonable
output levels and voltage gain can be chosen according to application requirements.

4.2. Comparison Analysis

To assess the pros and cons of the proposed SCMLI, a comprehensive contrast with
other 13-level topologies is shown in Table 4. Items which are compared include the number
of power elements, the number of DC sources, the number of drivers (Ndriver), the voltage
gain, the total standing voltage (TSV), and the extensibility of SCMLIs. The cost function
in [16] is defined as follows

CF =

(
Nswitch + Ndriver + Ndiode + Ncapacitor + α

TSV
G

)
× Ndc

13
, (31)

where α is the “weighing factor” reflecting the proportion of TSV in the cost function,
which is considered to be 0.5 or 1.5. Therefore, the multilevel inverters with a lower cost
function have a better performance.

Table 4. Comparison with other 13-level SCMLIs.

Reference Ndc Nswitch Ndriver Ndiode Ncapacitor G TSV
CF

Extensibility
α = 0.5 α = 1.5

[10] 2 11 7 1 1 2 39 4.577 7.577 No
[11] 2 14 11 0 2 2 32 5.384 7.846 No
[16] 2 14 14 2 4 3 34 6.103 7.846 Yes
[18] 1 10 8 10 5 6 43 2.814 3.365 Yes
[19] 1 12 8 2 4 1.5 15 2.385 3.154 Yes
[20] 1 12 7 4 4 3 13 2.243 2.577 No
[21] 1 14 13 2 4 3 18 2.769 3.230 Yes
[22] 1 13 11 1 3 3 17 2.372 2.808 Yes
[23] 1 29 29 5 5 6 29 5.416 5.788 Yes
[24] 1 13 9 2 3 6 39 2.327 2.827 No
[25] 1 14 10 1 3 6 33 2.365 2.788 No
[26] 1 15 12 0 3 6 35 2.532 2.981 No
[27] 1 12 6 4 3 6 36 2.154 2.615 No
[29] 1 13 9 2 3 6 32 2.282 2.692 No

Proposed 1 12 6 2 3 6 38 2.013 2.500 Yes

It can be concluded from Table 4 that the multilevel inverter in [10] can achieve 13-level
output with less components, but the voltage gain is only of 2, which is the same as the
inverter in [11]. The topology in [16] requires more components in the extended structure.
In addition, the above three topologies use two DC sources, which also leads to a high CF
value. The inverter in [18] uses a single source to achieve the high-voltage gain. However,
the H-bridge will increase the voltage stress of the switches.

Compared with the above topologies, TSV is significantly reduced in [19–22], but
their voltage gain is no more than 3, and the application range is limited. Due to plenty of
elements being used, the inverter in [23] has a higher CF. The 13-level inverters in [24–27]
and [29] can achieve a six-fold voltage gain. The inverter in [24] has a lower CF value when
α = 0.5, while the inverter in [25] has a lower CF value when α = 1.5, because they have a
different TSV.

Although the proposed multilevel inverter has a higher TSV, it uses fewer power
devices to achieve a six-fold voltage gain. Due to the fact that the proposed inverter has
five switch pairs operating in complementary states, fewer drivers are needed to control
the switches, and the lowest value of Ndriver can be achieved. Compared with the inverters
in [24–27,29], the proposed topology with good extensibility can easily increase the output
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levels and acquire a higher voltage gain, which is conducive to applying more scenarios.
Moreover, it can be seen that the CF of the proposed 13-level switched-capacitor inverter is
lowest regardless of whether α is 0.5 or 1.5, which also confirms that the proposed topology
has a better overall performance.

5. Simulation and Experimental Analysis
5.1. Simulations

To validate the correctness of the proposed switched-capacitor multilevel inverter, the
13-level inverter model was built and simulated in the MATLAB/Simulink environment.
The simulation parameters are listed in Table 5. In the simulation model, the input voltage
Vdc is 25 V, the load is 80 Ω or 80 Ω + 15 mH, the output frequency is 50 Hz, and the value
of M is 0.9.

Table 5. Simulation parameters.

Parameters Values

Input voltage (Vdc) 25 V
Output frequency (f o) 50 Hz

Triangle carrier frequency 3 kHz
Capacitors C1/C2/C3 2200 µF
Modulation index (M) 0.9

Load 80 Ω/80 Ω + 15 mH

Figure 8 shows the corresponding results of the proposed topology. The waves of
the output voltage and current under resistive–inductive load is shown in Figure 8a. The
proposed inverter outputs 13 levels and the peak voltage is close to 150 V, which also
indicates a voltage gain of 6. The load current is sinusoidal, so the inverter can provide a
channel for reverse current. Figure 8b presents the waves of the output voltage and current
under pure resistive load. Figure 8c gives the waves of all capacitors voltage. It can be
seen that the voltage of the capacitors fluctuates slightly within the allowable range during
charging and discharging.

The THD of the inverter is approximately 10.37%, as shown in Figure 9, which indicates
that the modulation method used can effectively reduce the harmonic content and improve
the quality of the output voltage. In addition, due to the carrier frequency being 3 kHz, the
60th harmonic component is the highest compared to the others. Moreover, the low THD
can be further reduced by smaller filters or optimized modulation strategies.

5.2. Experimental Result

To validate the effectiveness of the proposed topology, a 13-level switched capacitor
inverter test prototype has been built, as shown in Figure 10. Table 6 gives the specific
experiment parameters. The carrier frequency is set to 3 kHz and the output frequency
is set to 50 Hz. The steady-state and dynamic performance of the proposed multilevel
topology are experimentally analyzed.

The strain capacity of the SCMLI was tested under complicated working states by
changing the experimental parameters, such as the change of the input voltage, load,
modulation ratio, and frequency.

Figure 11a gives the steady-state wave of output voltage and current when the mod-
ulation ratio M = 0.9. The switched capacitor inverter can output 13-level voltage and
achieve a six-fold voltage gain, which is in line with the theoretical analysis. In addition,
the output current is close to the sine wave, indicating that the proposed topology has a
reverse current loop to carry out the inductive load. Figure 11b shows the waves of the
capacitors voltage, which slightly fluctuates within the allowable range.
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Figure 8. Simulation waveforms. (a) Output voltage and current under resistive−inductive load.
(b) Output voltage and current under resistive load. (c) Voltage waves of C1, C2, and C3.
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Table 6. Experimental parameters. 

Components Specifications 
Input voltage (Vdc) 25 V 

Output frequency (fo) 50 Hz/25 Hz/100 Hz 
Carrier frequency 3 kHz 

Capacitors C1/C2/C3 2200 μF 
Resistive-inductive load 80/160 Ω + 15 mH 

Switches (S1~S12) SPP20N60C3 
Diode MBR20200CTG 

Figure 9. THD of the output voltage.
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Table 6. Experimental parameters.

Components Specifications

Input voltage (Vdc) 25 V
Output frequency (f o) 50 Hz/25 Hz/100 Hz

Carrier frequency 3 kHz
Capacitors C1/C2/C3 2200 µF

Resistive-inductive load 80/160 Ω + 15 mH
Switches (S1~S12) SPP20N60C3

Diode MBR20200CTG
Optocouplers TLP250
Current probe Tektronix A622
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Figure 11. Experimental results at the steady-state. (a) Output voltage and current. (b) Voltages of
C1, C2, and C3.

Figure 12 shows the waves of the output voltage and current under input voltage
changes between 25 V and 15 V. It is apparent that the voltage levels and boost factor of
the inverter remain unchanged during the sudden change in input voltage, and the output
voltage and load current can alter synchronously and stably with the input voltage.
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Figure 13 presents waves of the capacitors’ voltage under the input voltage of the
topology changes between 25 V and 15 V. It is apparent that the capacitor voltage is
relatively rapid and reaches the steady state after a short transition.
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Figure 16 gives the waves of the output voltage and current when the output fre-
quency changes between 25 Hz and 100 Hz. It is apparent that, when the output frequency 
of the topology changes, the amplitude of the output voltage and the load current remain 
unchanged, and the frequency change response is rapid, which verifies that the proposed 
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Figure 14 gives the output voltage and current waveform under the mutation of the
load (unloaded to 80 Ω + 15 mH and 80 Ω + 15 mH to 160 Ω + 15 mH). It is apparent that
the output voltage remains stable during the sudden change in load, and that the current
quickly changes from 0 to the working state before decreasing as the load increases.
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Figure 15 presents the experimental waveforms of the proposed SCMLI under the
mutation of the modulation index M. It is apparent that the voltage levels decrease from 13
to 9 when M alters from 0.9 to 0.6, and the voltage gain is reduced to 4, whilst voltage levels
decrease from 9 to 7 when M is altered from 0.6 to 0.4, and the voltage gain is reduced to 3,
which is consistent with the analysis in Table 2.
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Figure 16 gives the waves of the output voltage and current when the output frequency
changes between 25 Hz and 100 Hz. It is apparent that, when the output frequency of
the topology changes, the amplitude of the output voltage and the load current remain
unchanged, and the frequency change response is rapid, which verifies that the proposed
topology can work normally in a complex environment.
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6. Conclusions

This article introduces a new 13-level SCMLI, which can reduce the number of power
elements and achieve voltage self-balance. Through the combination of a switched capacitor
unit (SCU) and an L-type unit (LTU), the proposed inverter is capable of a six-fold voltage
gain with a single DC source and twelve switches. At the same time, the modulation
method and loss calculation are briefly described. In addition, the proposed topology also
has the capability of modular expansion. By increasing the number of LTUs, the voltage
levels and boost factor can be significantly increased. Moreover, the proposed inverter has
been compared with existing 13-level switched-capacitor inverters in detail. The results
show that the proposed inverter employs fewer power devices and has obvious advantages
in reducing the CF value. Finally, the proposed multilevel topology is built through an
experimental prototype. The static and dynamic analysis results validate the effectiveness
of the proposed SCMLI, which can quickly adjust a complex working environment.
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