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Production  ramp-up  is  a  key  phase  during  the  introduction  or changeover  of  a production  system.  Process
calibration  and  tuning  are  inevitably  required  to make  such  a  system  fully  operational  and  let  it reach
its  maximum  production  yield.  A  complex  decision-making  process  takes  place  in order  to  optimally
tune  the  system  and  requires  a long  time  for  testing  and  experimenting  that  will  determine  the  system
behaviour.  This  work  considers  the  sequential  nature  of ramp-up  and  proposes  a Cyber-Physical  Systems
approach  based  on data  capturing,  learning  mechanisms  and  knowledge  extraction,  leading  to  an Industry
yber-Physical System
ecision Support System

ndustry 4.0
ntelligent manufacturing
roduction ramp-up

4.0 compliant  Decision  Support  System  (DSS)  for human  operators.  The  proposed  system  is implemented
as  an  online  DSS  and  also  supports  offline  learning  using  previously  gathered  knowledge.  A number  of
experiments  have  been  carried  out on a  micro  scale  assembly  station,  validating  the  expected  benefits  of
the proposed  DSS.  Results  show  a  reduction  of over  40%  in  the number  of ramp-up  steps  required  when
using  the  DSS.

© 2020  Published  by  Elsevier  B.V.
. Introduction

Nowadays, production systems (PSs) are subject to rapid tech-
ological changes, which led to very short product lifecycles and
igh variety of products, to meet the growing demand of prod-
ct customization (Kalir and Rozen, 2018). In addition to that, PSs
ecomes more modular and able to change from one configuration
o another (Colledani et al., 2018). The rapid introduction of new
roducts, mostly complex, and changeover cause a prolonged and
ore frequent production ramp-up (Letmathe and Rößler, 2019).

amp-up phase is very important for PSs because having high out-
uts with good quality and fast cycle time are the key factors for

ncreasing profits, where at the beginning of product life-cycle
roduct prices are the heights and competition is scarce (Kalir and
ozen, 2018).

Production ramp-up is a decision-making process where human
xperts decide on the best actions to fine-tune the process. It is
 highly complex parameter tuning process with many interre-
ated factors leading to a well-defined goal. Studies on ramp-up
eport long lead times of up to a few months from the initial sys-

∗ Corresponding author.
E-mail addresses: doltsinis@iti.gr (S. Doltsinis), P.Ferreira@lboro.ac.uk

P. Ferreira), m.mabkhot@lboro.ac.uk (M.M. Mabkhot), n.lohse@lboro.ac.uk
N. Lohse).

ttps://doi.org/10.1016/j.compind.2020.103190
166-3615/© 2020 Published by Elsevier B.V.
tem built to full production (Terwiesch and Bohn, 2001). Since the
product, PS, and the supply chain are new, uncertainty is very high,
making the ramp-up process very difficult to manage (Hansen and
Grunow, 2015). Also, ramp-up process is unstable, expressed in
the unpredictability of the system at this stage, which makes plan-
ning proactive steps to avoid some problems ineffective for many
ramp-up problems (Schuh et al., 2015).

In practice, during ramp-up, a PS is adjusted and changed until it
becomes sufficiently stable (disturbances reduced to a minimum)
and its production output reaches the desired level (Carrillo and
Franza, 2006; Doltsinis et al., 2014; Vits et al., 2006). The current
level of stability and performance is not clearly quantified during
the process and different studies adopting range of metrics, includ-
ing cost, quality, quantity and time related indicators (Surbier et al.,
2014; Glock and Grosse, 2015). The required time is highly depen-
dent on the system complexity and the ability of system integrators
to make good decisions according to their experience. Ramp-up
is essentially a human-machine fine-tuning process that varies in
every instance according to the personnel’s experience and the
system’s complexity, making the result highly unpredictable.

A substantial body of research highlights the important role of
the operators and their gained knowledge during ramp-up which

is usually not documented and not shared across an enterprise
(Terwiesch and Bohn, 2001; Hansen and Grunow, 2015; Schmitt
et al., 2018). Gaining knowledge through training and experimenta-

https://doi.org/10.1016/j.compind.2020.103190
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ion with the production system is time-consuming and expensive,
onsidering the stochastic nature of the process and the individual-
ty of every manufacturing system. Therefore, knowledge gathering
nd sharing have an essential role in current approaches in the lit-
rature focusing on supporting the operators with the appropriate
nformation (Heine et al., 2016; Doltsinis et al., 2017; Zülch, 2006).

Decision Support Systems (DSS) are used to help decision mak-
rs cope with inherently complex problems or situations. The
uman perception and intelligence can often reach its limits when
onfronted with complex systems generating a large amount of
ata with many interdependencies. Computers, on the other hand,
an process large amounts of data fast, reliably, and accurately.
ecently, Industry 4.0 is introducing significant changes to systems,
articularly on the availability and processing of data in CPS (Liu
t al., 2017). This alone enables significant progress in knowledge
epresentation models and learning algorithms enhancing the DSS
apabilities and their use in commercial areas (Glock and Grosse,
015).

To develop an efficient DSS for ramp-up, a lot of attention
eeds to be paid on the right learning algorithms and knowl-
dge representation. The limited similarity between production
ystems poses a significant challenge for finding a generally appli-
able model for extracting rules and recurring patterns. Also,
uman operators are a significant element of ramp-up and more
uman-friendly designs can support better intelligent manufactur-

ng systems (Pacaux-Lemoine et al., 2017). Previous works have
upported this approach showing that machine learning (ML)
pproaches can achieve promising results when designed to enable
uman-machine cooperation. Particularly, Reinforcements Learn-

ng (RL) methods show a potential capability to tackle the specificity
f ramp-up problems (Doltsinis et al., 2014).

In the literature, ramp-up problems are the focus of considerable
orks, but few of them developed a DSS or RL approaches to han-

le the ramp-up process. However, as it will be discussed in section
I, there is no work exploits the aforementioned potentials offered
y the CPS an RL to manage the ramp-up process. This work effec-
ively combines different RL learning approaches and utilizes the
xtracted knowledge, supporting decision-making at the ramp-up
rocess. A DSS for ramp-up is developed that captures knowledge
nd shares it across different cases based on clear performance
riteria. The DSS manages the ramp-up process on the fly, creat-
ng an intelligent CPS and an effective Human Machine Interface
HMI). Several scenarios are tested with several human operators
amping-up an I 4.0 enabled production station. The next section
eports related studies in ramp-up and positions the paper to these
tudies. Section IIIII presents the main contribution of this study,

 DSS for ramp-up, followed by the experimental procedure and
esults in sectionIV. Section V discusses the result and section VI
raws the conclusion and possible research directions.

. Related works

Ramp-up is defined as the phase that starts after the develop-
ent of a product, during which the production output is scaled

p to reach a predefined maximum throughput. To achieve that, a
etailed fine-tuning takes place and the system is adjusted accord-

ngly. The process of fine-tuning a production system exhibits some
haracteristics that make it difficult and time-consuming. Previous
tudies highlight the stochastic and sequential nature of the pro-
ess with little knowledge of system’s dynamics and its uncertain

ehaviour (Haller et al., 2003; Ball et al., 2011). According to Surbier
t al. (2014) ramp-up phase is characterized by a low level of ini-
ial knowledge, throughput, and production capacity; high in cycle
ime, demand, and disturbances; and lack of planning reliability.
mputers in Industry 116 (2020) 103190

2.1. Decision models in ramp-up

In industry and academia, a variety of models and strategies
have been developed to support ramp-up, with some of the char-
acteristics being common across those cases. In the literature, three
interesting review articles investigate exiting works and analysed
various aspects of production ramp-up (Colledani et al., 2018;
Surbier et al., 2014; Glock and Grosse, 2015). Surbier et al. (2014)
present an overview of the production ramp-up, classifying exist-
ing works based on industrial application. Colledani et al. (2018)
address the quality improvement problem at ramp-up phase. They
discuss two common strategies to deal with the problem; antici-
pating problems and quality performance improvement. In the first
strategy, the ramp-up problems and its causes are anticipated at the
product design phase. In contrast, the second strategy focuses on
improving quality performance during the system ramp-up.

Glock and Grosse (2015) summarize existing decision support
models in the ramp-up phase. In general, the focus of decision sup-
ports models in ramp-up is on:

• Capacity investment/expansion: Models aim at determining
the capacity of equipment, production lines, or workforce at
the ramp-up stages. Knowledge about the capacity of avail-
able resources is essential for planning the ramp-up process,
where some disturbances can be avoided in advance (Hansen and
Grunow, 2015; Couretas et al., 2001).

• Product design management: Models in this category identify
and fulfil product functional requirements and plan a set of ver-
ification activities at the design stage. It supports stabilizing the
ramp-up process by taking a proactive modification in product
design (Kukulies and Schmitt, 2018).

• Inventory management/lot sizing/supplier selection: These
models aid in the selection of demand rate (Manna and
Chaudhuri, 2006), inventory level (Glock et al., 2012), lot size
(Manna and Chiang, 2010; Pal et al., 2014), or suppliers (Meisel
and Glock, 2018), which contribute to optimize the ramp-up
phase.

• Worker assignment: Models here focus on allocating workforce
to tasks/workstation, trying to exploit the experience and exper-
tise of workforce to improve the ramp-up phase (Terwiesch and
Bohn, 2001; Glock et al., 2012).

• Performance measurements/Monitoring/diagnostics:  These
models measure the performance of the ramp-up process
(Doltsinis et al., 2013), seeking to diagnose ramp-up problems
(Ceglarek et al., 1994) or eliciting corrective actions.

• Workflow management:  Models in this category support con-
trolling some parameters in the ramp-up process such as feed rate
(Nembhard and Birge, 1998), production output and production
yield (Terwiesch and Bohn, 2001), or other process specification
(Terwiesch and Xu, 2004).

Although a few decision-support models have been developed
for various aspects of the ramp-up process, an integrated decision
support system targeting the fine-tuning of the whole process to
reduce ramp-up time has not yet been reported in the literature.

2.2. Ramp-up in industry 4.0

Industry 4.0 provides great opportunities for ramp-up and, at
the same time, creates new challenges. CPS promises the avail-
ability and exchange of data between all “things” (i.e. machines,
workforce, products, building) that are components of PSs. The

main idea of CPS is to access and analyse all data on the fly to
integrate the flow of material and information (Dombrowski et al.,
2018). As a result, information about the previous and current
status of every “thing” can be interpreted and processed at any
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ime by another human or machine. Such potential could facili-
ates mastering the ramp-up phase. In the other hand, ramp-up
ask repetitiveness (Schuh et al., 2015) and system resources het-
rogeneity are major challenges (Uhlemann et al., 2017). Data will
e collected from heterogeneous system components, including
uman, which makes online processing of such a data unmanage-
ble (Dalenogare et al., 2018).

Toward the realization of CPS, four review papers highlight
umber of potential research priorities in ramp-up (Colledani et al.,
018; Surbier et al., 2014; Glock and Grosse, 2015; Schmitt et al.,
018). Schmitt et al. (2018) point out that moving toward CPS

nduces revolutionary changes in the ramp-up managements. They
tate that existing traditional models are incapable of dealing with
hese changes and there is a need for new models for better man-
gement of the ramp-up phase. Surbier et al. (2014) highlight the
eed for more quantitative models where the dynamics of the sys-
em can be simulated using dynamic system modelling techniques,
uch as Markov chains. Similarly, Glock and Grosse (2015) conclude
hat developments should focus on better forecasting models that
ccount for a wider range of ramp-up characteristics and manage
amp-up efficiently. Colledani et al. (2018) bring to an end that the
ew frontier research in the ramp-up management is to exploit

earning and data-analytics capabilities.
DSS solutions can be seamlessly integrated into existing

rameworks, which provides access to semantically harmonized
emporal data (Leitão et al., 2016). Moreover, these systems will
ave existing HMI  that can be automatically reconfigured to new
SS solutions (Segura et al., 2018). There is a clear potential for the
evelopment of new solutions that take advantages of these fea-
ures. A DSS for ramp-up needs to combine the ability to learn from
revious ramp-up cases and to be adjusted online to the specific
ehaviour portrayed by a system. As any DSS, it should be com-
osed of three main elements, the database (data collection), a data
rocessing model (inference, reasoning, learning etc.) and an HMI
decision-support) (Guo et al., 2009; Mok, 2009). However, as it
ill be discussed in section II.C, the focus in the literature is placed

n the data processing mechanism that creates the required knowl-
dge not on building an interactive DSS for the ramp-up phase. This
ork considers the development in the field and defines a new com-

rehensive DSS framework that builds ramp-up data and processes
t, enabling HMI. This DSS is designed to learn from data, recom-

end possible solutions, and adapt to new situations imposed by
he system.

.3. Knowledge and learning in ramp-up

Learning and knowledge sharing throughout the ramp-up pro-
ess are a potential solution for ramp-up phase problems. Majority
f existing works on the ramp-up highlight the importance of such
romising potential in managing ramp-up related problems. Many
tudies focus on gaining knowledge effectively during the ramp-up
hase. Terwiesch and Bohn (2001) model the effect of knowledge
nd learning on the final quality of the production output and
y how much it can reduce the ramp-up time. Fjällström et al.
2009) classify the different sources of knowledge and informa-
ion highlighting their effect on the operator’s performance. Hansen
nd Grunow (2015) investigate the significance of the experience
ained during ramp-up and link it to the cumulative production
olume.

One of the important challenges for improving the ramp-up pro-
ess is to gather knowledge and experiences. However, knowledge
equires experimentation, something that is not always encour-

ged during ramp-up. At the ramp-up phase, market pressures to
uick products delivery and cost reduction; therefore, there is no
ime available for experimentation (Doltsinis et al., 2012). Besides,
revious studies conclude that long term investment in experimen-
mputers in Industry 116 (2020) 103190 3

tation and learning from experimentation suffers from short term
cost improvement (Terwiesch and Bohn, 2001).

One such strategy aiming to minimize changes during ramp-up
is the Copy-Exactly (CE) approach (McDonald, 1997). In CE, the pro-
cess is followed during the development phase of the first system
and copied without any changes to ramp-up subsequent systems.
Even in the CE case, the behaviour of the system is not exactly
the same and new characteristics behaviour will emerge in later
copies of the same system not observed previously. CE case shows
the advantage of knowledge management between similar ramp-
up cases, and the need to more effectively cope with the inherent
variations of each individual system.

Neumann and Medbo (2017) study the operator’s learning pro-
cess and its effect on ramp-up time. They model human learning
within a ramp-up discrete event simulator, showing that learning
leads to more efficient decisions and shorter ramp-up time. Simi-
larly, in Hansen and Grunow (2015) they develop a mixed integer
linear programming model used as a decision support tool in an
industrial case study. Their novelty lies on defining a new ramp-
up performance function based on the effective capacity instead
of time ramp-up time. Letmathe and Rößler (2019) investigate the
effect of tacit knowledge transfer on spillover learning in ramp-
ups. In a laboratory experiment, they analyse how this knowledge
is transferred from one ramp-up process to another and between
people and found that capturing and organizing knowledge is supe-
rior to transfer knowledge through observations. Indeed, real-time
data is a cornerstone in the ramp-up phase. It facilitates learning
and offers better decision support mechanism and thus speeds up
and improves the ramp-up process (Schmitt et al., 2018).

2.4. Reinforcement learning in ramp-up

In machine learning, Reinforcement learning (RL) is the area
where a software agent can take a sequence of actions to maxi-
mize a reward received from its environment. This capability allow
RL approaches to deal with problems, where supervised and unsu-
pervised learning is not able to deal with (Yau et al., 2012). Based on
the learning mechanism, RL can be classified into two  broad types:
Model-based and Model-free learning. Model-based RL relays on
planning to build an internal model for the actions and intermediate
rewards using experience (policies). On the other hand, model-free
RL relay on learning directly (trail-and-error or deliberative plan-
ning) from actions and reward without building any model (Sutton
et al., 2018).

Both model-based and model-free methods have advantages
and limitations. While model-based requires sufficient data to build
the model, model-free elicit learning gradually and can learn from
partial data (not complete policies) (Renaudo et al., 2015). Model-
based methods can efficiently learn a policy and adapt to new
problems via planning, reasoning about the model uncertainty.
on the other hand, model-free methods can learn faster while
also compensate for nonstationary environments (Dayan and Niv,
2008).

The potential of RL methods has been identified as promising
approaches to learn from ramp-up experience and bring out more
successful decision-making policies. Doltsinis and Lohse (2012) for-
malised the ramp-up process in a reinforcement learning set up
and solved through a Monte Carlo based algorithm, where each
ramp-up case is considered an episode. They suggested a model-
free RL for a CE test case. Similarly, in Doltsinis et al. (2012), the
implementation of QL-algorithm revealed fast convergence and
time reduction. In Doltsinis et al. (2014), the authors suggested a

formal MDP  model for the capture and analysis of ramp-up pro-
cess. The framework facilitates the reasoning and extraction the
cause-and-affect relationships between actions and their impacts.
Using the framework, a model-based RL is developed and shows
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hat finding an optimal policy by learning from a few ramp-up
ases is achievable. Later on, Doltsinis et al. (2017) investigate the
ymbiotic human-machine interaction to learn optimal actions,
iming at building effective ramp-up policies. They showed that
sing a human agent for guiding the exploration strategy signifi-
antly improved the policies quality using less datasets compared
o random and greedy exploration strategies.

However, combining both model-free and model-based RL sys-
ems in one integrated model appears as a promising potential to
ndow a DSS with decision autonomy and flexibility to deal with
ncertainty and unpredictability of the ramp-up phase. To the best
f the author’s knowledge, this paper presents the first approach
hat combines the benefits of both model-based and model-free
earning to tackle the management of the ramp-up process.

. Ramp-up Decision Support System

The functionality of a DSS is defined by the field of application
hat is reflected in its structure. For ramp-up, a DSS needs to pro-
ide supportive information while also suggest the most promising
ction, or a list of actions, that can enhance the system’s perfor-
ance for every occurring ramp-up state. This should be based on

 well-defined decision-making process and knowledge acquired
rom experience. For this purpose, ramp-up is considered as a
equential process where an operator applies a sequence of actions
o tune the system (Doltsinis et al., 2017). A ramp-up process
R =

{
e1. . .eiE

}
is formally defined as a sequence of experiences

i. The experience set E at step i is defined as Ei =
{
si, ai, si+1S, A

}
,

he combination of a current ramp-up state si, a chosen action ai,
nd the following state si+1, where S and A are the state and the
ction lists, respectively.

The proposed DSS monitors ramp-up and formalizes captured
ata into experiences ei. The experiences are stored and fed to a

earning model, which in turn used by the decision support mech-
nism to provide the operator with performance information and a
roposed action for every ramp-up state. The core functionalities of
he proposed DSS are analysing and learning from experiences. This
upportive functionalities are enabled through capturing expe-
ience; a learning model and the decision support mechanism,
espectively (cf. Fig. 1). Their specific functions are defined in the
ollowing sections.

.1. Experience capturing

During the experience capture, the aim is to formally capture
he operator’s actions during the ramp-up process. The experience
tructured as a set of states with the operator’s actions, indicat-
ng the transitions and allowing formalize ramp-up process as a

arkov Decision Process (MDP). In fact, MDP  becomes a de facto
tandard formalism for learning such sequential decision making
Wiering and van Otterlo, 2012). Also, previous works prove the
enefits of formal representing ramp-up experience as an MDP  (cf.
ection IID). The MDP  requires a defined state space, a finite list
f actions and an objective function that determines a reward. A
rief overview of the detailed MDP  model for ramp-up defined in
Doltsinis et al., 2014) is presented below.

Ramp-up state space: The state space is based on the necessary
process information and is composed of three main character-
istics. These are the process functionality, the output product
quality and the process optimization.

Action list: The list should include actions that can directly affect
the state variables. The emphasis is placed on the description
of the action and not on its application. They are qualitatively
defined but not quantitatively to allow the operator to judge the
mputers in Industry 116 (2020) 103190

implementation. In this way, the generated policy from the learn-
ing model will be independent of how operators apply actions.

• Ramp-up reward: The proposed reward for ramp-up is based
on the performance measures proposed in Doltsinis et al. (2013)
and defined as RPM = 1

nw · fRU , a linear combination of the sys-
tem functionality (ff), the output quality (fq) and the process
optimization (fo). The w =

[
wf, wq, wo

]
is the weight vector and

fRU =
[

ff, fq, fo
]

is the performance metrics vector. The reward
function varies from -1 to 0 where -1 indicates too extreme ramp-
up state. Parameter n is the number of process runs and acts as a
normalization factor across several consecutive runs to account
for stochastic variation in the state information of the system.

• Policy:  The policy (adjustment mechanism) is a sequence of
actions to maximize the rewards. As the process behaviour cap-
tured as a probabilistic design, the return (recommended actions)
considers all the possible state transitions based on the transition
probability (cf. section III.B1). Policies are recommended to the
operator as qualitative actions during the ramp-up phase.

3.2. Ramp-up learning

This work proposes a reinforcement learning approach in order
to extract knowledge from experiences and formalize it in a
reusable structure. In RL, the learning agent interacts with the sys-
tem and captures its responses. Based on this, an optimal policy can
then be found.

In ramp-up, the learning agent is the human operator who
applies actions according to intuition and then monitors their
effect on the system’s response. This process contains the explo-
ration/exploitation strategy implemented by the human operator
where actions are intentionally chooses based on previous expe-
rience (exploitation) or experimenting (exploration) in unseen
states. In human exploration, actions are not random but are based
on the operator’s intuition and knowledge (Doltsinis et al., 2017).

The second functionality of the proposed DSS uses the gathered
experiences to extract an optimal policy or a ramp-up model based
on which a policy is determined. The proposed DSS can incorpo-
rate both learning a ramp-up model (model-based) and directly
learning a policy (model-free) depending on the ramp-up charac-
teristic and the data availability, which will be enabled in two DSS
operating outlined in sectionIIID.

3.2.1. Model-based learning
In model-based learning, algorithms aim at learning a model

which is then used to extract a policy. Having a learned model can
be very advantageous since it gives the ability to plan and test dif-
ferent strategies with different prediction horizon or award types
etc. This allows analyzing and comparing the different results or
even scrutinizing the ramp-up behavior in depth. However, this is
not always possible in practice to learn a representative model since
this requires a large amount of data with an adequate exploration
strategy of the state space. This requires computational resources
and time that are not always available during ramp-up and in real-
time decision making.

The model-based approach is defined below in an algorithmic
form.

• Given a finite number of unique ramp-up states s ∈ S,
∣∣S∣∣< ∞

for a certain equipment/process and a listed of finite number of
actions a ∈ A,

∣∣A∣∣< ∞,  a number of episodes are accumulated

and linked to the respective reward in forming the experience set
as follows:

E = (st, st+1, ast Rst ) (1)
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Fig. 1. Decision Su

Given the state action pairs, the transition probabilities P are
calculated to find a ramp-up model as follows:

sta

(
s’st, ast

)
(2)

Based on the extracted model and the state values V(S) (cf. Eq. (3)),
the state-action values Q (S, A) are calculated for different plan-
ning horizons and set-ups. An optimal policy � is then extracted
(cf. Eq. (4)) from choosing actions to accumulate the maximum
rewards given the model transition probabilities P and state val-
ues V�(S).

(S) = max
�
V�(S) (3)

 = max
a ∈ A

∑
s’ ∈ S

Psa
(
s’
)
V(s’) (4)

.2.2. Model-free learning
Unlike model-based approaches, model-free learning aims at

irectly learning a policy. In this case, the learning agent finds an
ptimal policy based on the received rewards from every action,
ather than learning the system’s dynamics. This approach can
rovide results very fast for the visited states even if the policy

s incomplete. In addition, the policy can be adjusted on the fly
hile new actions are applied and even if the system changes

ynamically. This is a data-efficient approach, especially for online
amp-up approaches.

The description of policy learning is outlined below.

Given a finite number of unique ramp-up states s ∈ S,
∣∣S∣∣< ∞

for a certain equipment/process and a list of finite number of
actions a ∈ A,

∣∣A∣∣< ∞,  a number of episodes are accumulated
in the form of past experiences and linked with the respective
reward (cf. Eq. (1)).
Given that an exploration policy is followed. For every state action
transition, the state action value Q (s, a) can be calculated as fol-
lows.
(s, a) = E�

{
T∑
k=0

�krt+k+1st = s

}
(5)
 System overview.

• Where max
a’
Q

(
s’, a’

)
is the maximum state action value in the

following state s’;  ̨ is the learning rate and � is the discount
factor, which will be further explained in the next part. The pre-
diction horizon T updates the state-action values for every new
state transition. The update rule is crucial for the quality of the
learning results and differs between algorithms. It is essential to
note that the update is based on the temporal difference between
the experiences (cf. Eq. (6)).

Q ’ (s, a) ←− Q (s, a) + ˛

[
r + �max

a’
Q

(
s’, a’

)
− Q (s, a)

]
(6)

• An action can be found that if applied, it will take the process to a
better state. The policy is based on maximizing the accumulated
reward that can vary from one step ahead up to all the steps until
the end of the process.

� (s) = argmax
a

Q (s, a) (7)

The proposed DSS utilizes both the model-based and model-
free approaches. The two different cases are realized in the two
operating modes of the DSS.

3.3. Decision support mechanism

Both the experience capture and the learning model are used
to eventually support the operator while carrying out the ramp-up
process. First, the captured experience is used to provide informa-
tion to the operator in the form of a ramp-up index and an action
recommendation mechanism will use the extracted knowledge
from the learning process that will be used as an action recom-
mendation list. The learning model will not always be in a state to
provide an action list with certainty. Hence, the operator should
always be provided with all necessary information in order to take
the best decision even without a recommendation. Therefore, the
support mechanism projects a ramp-up index based on the perfor-
mance of the process, showing a progress curve during ramp-up.
Studies have shown the significant impact of progress quantifi-

cation on the decision-making process and how such a measure
can positively affect an operator’s decision (Doltsinis et al., 2014;
Neely, 2005), The ramp-up index works as instant feedback as well
as tracking the long term progress of an operator.
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The index is based on the performance measure (reward)
resented in Eqs. (8)–(10). More specifically, four indices are pre-
ented, those of process functionality,  process quality and process
ptimization based on (8), (9) and (10), respectively.

f (j) = −
n∑
j=1

kjDj (8)

q (j) = −
n∑
j=1

�jQj (9)

o (j) = −
n∑
j=1

ˇjToj (10)

Parameters kj , �j, ˇj are weights and Dj, Qj, Toj are state param-
ters referring to the process functionality level, the product quality
nd the process optimization level, respectively (Doltsinis et al.,
014). The last metric of optimization is not always calculated since

t only becomes meaningful once the system is fully functional.
herefore, it is calculated as follows.

o (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

max  f0, ff < 0

−
m∑

i=1

1
st

⎛
⎝ n∑

j=1

ˇjTj

⎞
⎠

i

, otherwise
(11)

This reflects the significance of functionality and the correlations
etween the three metrics. Hence, the performance optimization
etric is assumed to have the maximum negative value while the

ystem is not yet functional.

.4. DSS operation

Based on what was presented above, it is clear that ramp-up
equires different decision support strategies that incorporate both

odel-based and model-free learning. These learning methods are
ctivated through two operating modes, the offline and online. This
s a result of the process data flow and depends on the systems
amp-up state and the previously acquired experience.

Fig. 2 presents the operational flow diagram of the proposed
SS, combining two modes of operation, namely online and offline.
hese are related to the requirement for decision support and the
peration of the learning model. Ultimately, ramp-up is always an
nline process of changes and hence the offline acquired experience

s combined with the online experience to generate a head start.
Once a ramp-up process is started, a process test-run is carried

ut to capture the state of the system and initialize the DSS. The
amp-up process then starts driven by an operator and the ramp-up
tatus along with process information is captured. The information
n the form of an experience set is passed for storage and model
pdate. A query is sent to the process performance, which handles
nd presents the information in the form of an index. This process
s repeated as many times as required by the operator in order to
ave a representative picture of the system’s performance. With
his information, the decision support mechanism is activated and
he operator can take one action to support ramp-up. The learning

echanism is then activated and a different operation is followed
ccording to the type of learning (online or offline). If the followed
rocess is done online, the DSS activates the online learning mode
hat used to further support the process with a proposed action and
redictions regarding its progress. If the process is done offline, the

ffline learning function is triggered and executed independently
o ramp-up without any proposed actions. The operator can change
rom an online to an offline mode during the process. If the operator
ecides to make a query, the DSS activates the knowledge retrieval
Fig. 2. Decision support system for ramp-up flow diagram.

mechanism and provides an action to support ramp-up. An action
is then applied and the same process continues until the system is
ramped-up.

The distinction between online and offline learning is mainly
due to the different processing requirements of the algorithms and
not to the process of ramp-up. Online learning algorithms aim to
create results as soon as possible while offline algorithms have
acquired a batch of data before processing them. The latter results
will be more accurate. Online learning though is combining previ-
ous process information in order to efficiently initialize the model.

3.4.1. Offline operation
Fig. 2 shows how the DSS operates while ramp-up is carried out

without presenting the detailed operation of the learning mecha-
nism. The offline operation (cf. Fig. 3) of the DSS is focused on the
data processing in an offline mode, meaning that processing time
is not a major issue while the amount of data is also expected to
be enough. In the offline mode, the system has access to a set of
data without the ability to interact with the system. This is treated
as a batch learning process. In batch learning, there is no interac-
tion between the learner and the system. In other words, the data
sets and the interactions are predefined during learning. That does
not give the option of exploration to the learner. Consequently,
the learning process is independent of the applied policy. Batch
learning algorithms aim to find the best policy within the applied

policies, rather than seeking for the optimal policy through interac-
tion. New data sets are treated as an exploration phase. That gives
a combination of online and offline learning practices, combined
under the batch learning.
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Fig. 3. Offline learning flow chart.
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Fig. 4. Online learning flow chart.

.4.2. Online operation
The second operating mode of the proposed DSS is focusing on

rocessing the data online and step by step policy update, while
lso providing support during the process. The learning update rule
hanges in order to provide an evaluation of the currently applied
ctions. The offline knowledge will not be discarded but will be
sed for initialization of the algorithm. The system, in this case,
an interact with the system (through the operator) and trigger
xploration if necessary. The main difference between online and
ffline learning is the dynamic update of the policy based on the

ncoming new data. Additionally, due to the lack of data, the early
earning process targets a direct learning approach. In Fig. 4, the
ow chart of the online mode is presented.

. Experimental procedure and results

In this part, the proposed DSS is implemented on an Industry 4.0

nabled assembly system to validate its functionality and ability to
upport the decision process. The DSS is tested under different sce-
arios to evaluate all operating modes. Following this section, the
mputers in Industry 116 (2020) 103190

used equipment is presented, followed by implementation details
and the experimental scenarios along with their results.

4.1. Experimental equipment and DSS implementation

For the experimental validation of the DSS, an assembly station
of the microscale assembly system SMC  HAS 200 is used. The assem-
bly process is composed of three subroutines and delivers a small
box filled with components (cf. Fig. 5). The station is fully automated
composed of an electric motor, conveyor belt, pneumatic actuators
and sensors. A Beckhoff industrial PC CX 1030 running soft PLCs for
the control logic is used. The station is selected to implement the
DSS for two  main reasons; the ramp-up process complexity and
the station capability. Ramp-up process is complex (cf. section II)
and it will be very difficult to implement the DSS in a full-scale I4.0
application for the first time. It is more practical to start the imple-
mentation in such systems, taking lessons for the implementation
in a full-industrial system. The second reason is the modularity of
the station software and hardware components, which makes the
implementation feasible.

The DSS is implemented on the above station as a JAVA software
application and contains three software modules, the data collec-
tion process (experience collection), the data processing (learning
mechanism), and the decision support mechanism through action
recommendation and performance awareness. This effectively cre-
ates a Cyber-Physical System implementation of the station.

Data Collection: The data collection mechanism structures
experience sets by combining a ramp-up state, the applied action by
the operator and the new state. The information is labelled with the
captured reward based on the ramp-up performance. The captured
experience set is based on one or more running cycles according to
that the operator’s requirement to determine a state. This enables
the temporal and semantically harmonized collection of all data as
postulated by the Industrial Internet of Things.

Data processing: Data processing implements the learn-
ing process of the DSS. It receives experience sets and runs
the learning algorithms according to the learning requirements
(model-based/model-free; online/offline). The DSS interface allows
the operator to change the ramp-up targets along with the weights
of the performance measures (reward). That gives the option to
reconfigure the process targets and the DSS can be applied to dif-
ferent systems or their variations. The learning element of the
framework creates and refines a cyber-representation of the sys-
tem.

Decision Support Mechanism: The mechanism has two
functionalities to provide; performance awareness and action
recommendations. Firstly, four performance measures (three per-
formance metrics and the overall performance) are presented in
graphs, while the process is carried out. The process state is also
presented. A list of hierarchical actions is outlined once the learning
mechanism can provide results. This feedback mechanism allows
for operator-in-the-loop self-optimization and thereby creates a
smart system.

An overview of the software architecture is shown in Fig. 6.
The DSS connects the individual components of the process and
provides an interface with the operator. The operator can import
information into the DSS, such as the chosen action, any operational
observations and control the tests. The DSS interacts with the PLC
software to control the process and allow the exchange of infor-
mation. Finally, the DSS interacts with Matlab where the learning
element is implemented.

The interface of the DSS can be seen in Fig. 7. During a ramp-
(start detection button), then the DSS triggers the production pro-
cess and the data is collected automatically. After the end of the
process, the operator observations are captured. An action is then
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Fig. 5. SMC  HAS 200 assembly station.
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Fig. 6. CPS impl

ecommended according to the ramp-up state. The operator has the
ption to follow the recommendation or choose a different action
hich is imported through the action list on the DSS interface. The

perator has also the option to run another test to observe the pro-
ess in more detail. Once the ramp-up process is on a satisfactory
tate the support process is stopped.

.2. Experimental Results

For the DSS validation, four experimental scenarios are imple-
ented and run 5 times from five different operators.

Scenario 1: Five ramp-ups are carried out by different operators
without support. Results are used as a benchmark for the eval-

uation of the remaining scenarios. Only process information is
presented; the cycle times and product quality.
Scenario 2: In the second scenario, the aim is to realize the effect
of the performance measure support. Ramp-up is carried while
ation overview.

the DSS projects the performance indices. Results are compared
to those from scenario 1. Additionally, operators were asked to
provide feedback on the functionality.

• Scenario 3: This scenario assesses the functionality of the action
recommendation and learning. This scenario considers model-
free offline learning since it updates its policy at the end of every
ramp-up process. Ramp-up is carried out by a different operator
who has the option to follow the recommended action or divert.
Online learning is assessed as if all ramp-ups constitute one big
data set.

• Scenario 4: The fourth scenario targets model-based learning,
which is intended to support ramp-up in the long term. All pre-
vious ramp-ups are used to learn a model, which is evaluated.
For the reproducibility of the experiments, some of the opera-
tional aspects during the above scenarios are defined.

Operators: For scenario one and two, the same five operators
are used in order to receive comparable results. Scenario three is
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Fig. 7. Decision Support

Fig. 8. Ramp-up processes without any support.
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Results show a minimum of 10 steps and a maximum of 16,
creating an average of 12.8 steps. In comparison to scenario 1, this
presents 6.4 steps (25%) average reduction. Comparing the ramp-up
results of the same operators from both scenarios, all the ramp-ups
xecuted by different operators. The operators are engineers with
ittle knowledge of the station’s behavior provided just before the
xperiment. The different processes are explained in advance as
ell as the functionality of the individual components in terms

f the stations’ operational capabilities, its layout and its different
lements.

Ramp-up process: The ramp-up process is crucial for the valida-
ion scenarios and it has to run under the same conditions in every
ase. First, the ramp-up state of the station is randomly initialized,
y creating some critical error. The errors generate a number of
isturbances during the ramp-up process which cause previously
efined observations. For a ramp-up process to be considered com-
lete, at least 4 out of 5 consecutive test runs should be successful.

Experimental procedure: In the experimental procedure, a list
f actions is provided to the operators along with information
egarding the status of ramp-up. According to the experimental sce-
ario, the respective information is provided in every case through
he decision support system. The operational requirements and the
argets of the ramp-up process are provided at the beginning of the
rocess and no further information is provided.
 System interface.

4.2.1. Scenario 1 – benchmarking
In this part, the results of the first scenario are presented in Fig. 8

where the performance graphs of the five ramp-up processes are
presented.

The results show an average of 19.2 steps with a maximum of
27 and a minimum of 15 steps. The big difference between the
minimum and maximum steps was  expected and reflects the differ-
ent understanding of the operators, the variability of strategies and
applicability of actions. Results show that operators followed dif-
ferent strategies, focusing on different process targets. Some would
prioritize product quality without considering other dysfunctional
observations, while others would aim to achieve full functionality
before they would resolve other issues.

An interesting observation appears for those cases where ramp-
up is very long. In these cases, operators, who did not manage to
solve the occurring problems, changed their strategy and differ-
ent problems were targeted. This led to confusion, which did not
allow them to understand the system’s behavior resulting in longer
ramp-ups. When the chosen actions had a positive effect, the tar-
geted problems where fixed and the overall process appeared more
straightforward. Finally, another interesting observation was the
required time for the ramp-up process. Time varied between 1:30
to 2:30 h across all five scenarios. Some operators spent a lot of time
identifying the best way of applying an action and its actual effect,
while others experimented faster. The first managed to ramp-up
the system faster although the initial actions were taking a lot more
time. Their learning curve appeared to be steeper and received bet-
ter results. The difficulty realizing the effect of actions during the
initial steps was widely reported and the operators only managed to
ramp-up the system they made the connection between the actions
and their effect.

4.2.2. Scenario 2 – performance awareness
In scenario 2 the operators are provided with the performance

measures that reflect the effect of a change to the system. Perfor-
mance during ramp-ups is presented in Fig. 9.
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Fig. 10. Ramp-up processes with action recommendation.

Fig. 9. Ramp-up processes with performance measures.

ppear reduced. The number of steps increases by just one in only
ne case. In terms of time, all ramp-ups were finished in less time
ith an average of 1:15’ hour.

The operators appear to take corrective actions in those cases
here an action had a negative effect. For instance, this is observ-

ble on the first, second and fifth curve, on the 3rd, 12th and
th step, respectively. Operators also followed different strate-
ies during the process. A gradual curve improvement shows that

 step-by-step approach was followed compared to other cases
here the big changes in performance reveal a bigger action effect.

Although it is assumed that the step reduction is a result of the
SS and the use of the performance measures, two  points need to be
ade. Each ramp-up process is unique, starting from a random ini-

ial state; hence some processes might start from a better state than
thers and therefore require fewer actions. Second, since ramp-up

s a stochastic problem, the same actions might result in different
tates and therefore applying the same policy for the same initial
tate might result in different process outcomes. Finally, it is impor-
ant to note since the same operators from the first scenario were
sed, their experience and knowledge should be enhanced in paral-

el with the system. This might have resulted in better performance
ven without the performance feedback.

In order to get a better understanding of the DSS effect to the
perators, a discussion was carried out with each one, after the
rocess and some interesting points were made.

All operators reported that the performance measures provided
a clear picture of the ramp-up targets with a clear start and end
state.
Most of the operators claimed to gain an overall perception of the
process progress through the performance measures. This was
perceived to be clearer compared to just the raw state variables
such as cycle times (as in Scenario 1).
All operators reported that following the change of the perfor-
mance measures after an action gave them the opportunity to
reverse a bad action. That prevented the long ramp-up times
resulting from extensive iterations without progress towards the
final ramp-up state.

.2.3. Scenario 3 – action recommendations
Results from the implementation of scenario 3 are presented

n Fig. 10 and summarized in Table 1. Here the DSS provides a list
f suggested ranked actions to an operator who has the option to
ccept the recommendation or apply another one.

The first process runs without any support since there is no
nitial experience in the system. Four more processes were car-

ied out with the action recommendation functionality in place.
able 1 shows the number of steps and time required for ramp-up,
he number of available actions from the recommendation system;
ow many times the operator accepted the recommendation and
Fig. 11. Average ramp-up steps for the different scenarios.

the number of times they accepted the second recommendation
option.

Overall, the operators gave very positive feedback on the action
recommendation mechanism and its effect at the beginning of the
process where their knowledge was  limited. After a few steps, the
operators felt confident to divert from the recommendation. It is
important to note that all the proposed actions guided the operator
without the system getting stuck or oscillating between states. An
interesting observation is that the operators rarely diverted from
the proposed actions.

Finally, conclusions on overall DSS evaluation can be drawn by
comparing the three scenarios (cf. Fig. 11). A significant improve-
ment can be observed. Results improve gradually while the support
is enhanced. The application of the DSS (scenario 3) in compari-
son to an unsupported ramp-up process (scenario 1) shows a ∼41%
ramp-up time reduction.

4.2.4. Scenario 4 – model based learning
For this scenario, a model is generated based on the combined

data sets captured from all the previous scenarios. The aim in this
part is to assess the exported model and draw conclusions on its
usability. There are 21 available data sets, comprising of 277 state
transitions. Within these transitions, there are 29 unique states and
the rest are reoccurring states coming from the exploration of the
operator. Reviewing the model, the distribution of the experience
across the state space is very different. Fig. 12 shows the number of
visits for every occurred state. The number of visits varies between
1 and 46. Nine of the states have been visited 1 time, and 16 states

less than five.

A closer look at state 142 where the most visits (state 142
occurred in 14 out of 19 episodes and 47 times) occurred, shows
non-uniform distribution of action explorations. The actions cho-
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Table 1
Results Summary with Action Recommendation.

Case Steps/time(min) to completion Recommendation availability 1st recommendation 2nd recommendation

1 14/50 14/14 8 2
2  12/39 8/12 6 2
3  9/40 8/9 5 2
4  10/42 9/10 7 2

er of v

s
t
t

p
a
v
f
r
g
T
s
i
b
i

5

e
d
w
a
t
t
a
b
n
w
s
b
l
t
u
t
g

e

Fig. 12. Numb

en in state 142 are 1, 2, 3 and 5. They were chosen 19, 5, 10 and 13
imes, respectively. This shows that even for the most visited state,
he exploration of all actions is limited.

The exported model shows that only a part of the transition
robabilities was  learned. The model learning approach has strong
ssumptions, such as the requirement for a sufficient number of
isits per state. These are opposite to the practical challenges
aced during ramp-up, making it difficult to evaluate and use these
esults. Nevertheless, learning a complete and accurate model can
enerate an optimal policy that will benefit the ramp-up process.
his is a matter of generating a significant amount of data out-
ide the scope of this study. The functionality of learning a model
s essential for the ramp-up DSS and the application of model-
ased techniques for partial models should be further investigated

n future studies.

. Discussion

The weights of the performance measures (wf, wq, wo) influ-
nce the feedback and so actions of the next human agents. In the
ifferent stages of the ramp-up process, it is more practical to assign
eights differently. At the first stage, a higher weight should be

ssigned to functionality, this is to encourage the human operator
o focus on improving the functionality. The quality and optimiza-
ion measures are at this stage not relevant as you can only improve

 working system. Once the system is fully functional, the focus will
e on quality and eventually on optimization. It is important to
ote that in this study, the human operator assigns the weights,
hich can be freely updated at each stage. However, at certain

tages a higher weight may  be given for a measure that should not
e the focus for that state of the system. This might led to a pro-

onged ramp-up process. Therefore, it will be worth to investigate
he design of a weight interval for each indicator at different ramp-
p stages. The weight interval can vary from one production system

o another, allowing more specificity of the system and enhance the
enericity of the model.

In this work, RL is used with a reward that is calculated by
valuating the performance gain of changes in the system. In
isits per state.

order to ensure a better representation of the ramp-up process,
an accumulated reward for the policy is proposed. This enables
the resilience of the accumulated results to minor variations in the
performance. The results demonstrate a good performance of the
designed reward function, however it is important to note that RL
could use different reward function based on the transition of states
(Wiering and van Otterlo, 2012). While this is worth to investigate,
it was considered outside of the scope of this work. Considering
such reward function may  improve the fidelity of the result as
both the state context and actions contribute to the possibility of
selecting successful actions.

In this paper, actions are recommended qualitatively not quan-
titively to allow the operator to decide the implementation of
actions. This implies that the learning process is independent
of how actions are applied. A recommender system quantitative
action is a technique that allows the operator to implement actions
easily. Instead of including an increase or decrease a parameter
value (i.e. pressure) hundreds of values will be in the list for each
parameter. Therefore, this would explode the solution space and
make it unmanageable to quantify in the ramp-up process. Another
aspect to consider is the amount of options available for the oper-
ator, as this might lead to unmanageable amount of parameter
options. Enhancements of CPS DSS, could tackle this by using multi-
criteria techniques for ranking actions based on the expected future
improvement on the system performance.

6. Conclusions

In this study, a Decision Support System was defined follow-
ing the Industry 4.0 Cyber-Physical System design principles to
learn the behaviour model of a production system during ramp-
up. The DSS was  evaluated in a CPS enabled microscale assembly
station. Results indicate that supporting human operators dur-
ing system ramp-up with performance measures can significantly

reduce both the required time and the number of steps to ramp-
up completion. Providing further support by recommending the
most appropriate set of ramp-up actions further reduced both the
time and number of steps required for ramp-up. Qualitative feed-
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ack from the operators regarding the individual elements of the
SS indicates a very positive utility of the support provided during

amp-up. Users reported that the DSS enhanced their understand-
ng of the process’s progress and its goals. Although learning a

odel can eventually provide an optimal policy, the amount of data
equired poses a significant challenge when compared to a feed-
ack mechanism. The 41% ramp-up time reduction demonstrates
he significant support of the proposed DSS during the ramp-up
rocess. These are very promising results that should be further
valuated in larger scale production systems.

In addition to the points elaborated in the discussion sec-
ion, there is additional potential for further investigation of the
roposed DDS. One aspect is the transferability of model-based

earning from one system to another (i.e. from one production line
o other different types of the production lines). This would high-
ight the common and different characteristics between them and
nable a wider generalization of the proposed solution. This could
otentially reduce the required number of iterations, which would
esult in time gains for the ramp-up process. Another aspect to
onsider is the use of suggested DSS in more complex and diverse
roduction environments. This is critical to ensure the generic
pplicability of the solution, but also to identify improvement
pportunities.
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