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Abstract—An aggregation scheme is an effective transactive
manner of Distributed Energy Resources (DER) spreading across
distribution networks. Distributed approach locally achieves cost
minimization of an aggregator and customers. The uncertainties
of wholesale market price and rooftop PV output will impact on
aggregator’s scheduling decision and each customer’s cost, while
solar energy fluctuation can cause an overvoltage problem in dis-
tribution networks. However, the probability distributions of these
uncertainties always have errors, even in emerging data-based
methods. There is no stochastic method using real data with an
out-of-sample guarantee suitable for this distributed approach so
far to help an aggregator avoid price risk and manage customers’
energy against solar energy fluctuation. To address these unsolved
issues, we propose a data-driven Wasserstein distributionally ro-
bust formulation of the aggregator’s agent and customer’s agent
respectively. The Wasserstein metric is employed to construct the
Wasserstein ambiguity set. The mathematical models are then
reformulated equivalently to convex programming respectively so
that the operating model can be solved by the off-the-shelf solver.
To improve the efficiency of the distributed solving framework, an
alternating optimization procedure (AOP) process is proposed to
overcome the issue caused by binary variables in the alternating
direction method of multipliers (ADMM). The proposed operation
framework is verified on the modified IEEE 33-bus distribution
network and realistic single-feeder LV network.

Index Terms—Data-driven, residential PV and BESS, stochastic
optimization, wasserstein metric.
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NOMENCLATURE

A. Indices and Sets

A Set of all customers.
V Set of all buses in the distribution

network.
E Set of all branches in the distribution net-

work.
T Set of time slots.
Xa Set of all variables of customer agent.
Z Set of all variables of aggregator agent.

B. Parameters

cFiT Feed-in tariff.
cToU Tariff.
μPrice Price vector of wholesale market.
μ̂Price Sample of price vector of wholesale mar-

ket.
Δt Time-step resolution.
V i, V i Max/Min limit of voltage magnitude at the

bus i.
paggt , pagg

t
Max/min limit of aggregator’s output.

pLa , q
L
a Active and reactive load of the customer

a at bus i.
pga Max limit of the active power of customer

a’s feeder.
ηcha , ηdisa Charging/discharging efficiency of user

a’s battery.
ηinva Inverter efficiency of customer a’s PV sys-

tem.
pcha , pdisa Max charge/discharge power of customer

a’s battery.
eba, e

b
a Max/min energy state of customer a’s bat-

tery.
pPV,f
a,t Forecasting power of customer a’s PV.

pPV,f
a,t Forecasted maximum dispatchable power

of customer a’s PV.
rij , xij Resistance/reactance of branch (i, j).
ρ ADMM penalty parameter.
σ The weighting factor for the incorporation

of risk.
ε Wasserstein radius.
T Time horizon.

0885-8950 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Kent State University Libraries. Downloaded on January 14,2024 at 07:07:43 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8507-0558
https://orcid.org/0000-0001-5446-2655
https://orcid.org/0000-0003-4806-1227
https://orcid.org/0000-0001-9659-0858
mailto:huichuan.liu@sydney.edu.au
mailto:qiujing0322@gmail.com
mailto:qiujing0322@gmail.com
mailto:ytao5383@uni.sydney.edu.au
mailto:junhua.zhao@outlook.com
mailto:junhua.zhao@outlook.com
mailto:zydong@ieee.org
mailto:zydong@ieee.org
https://doi.org/10.1109/TPWRS.2022.3227178


LIU et al.: CUSTOMER-CENTRIC DISTRIBUTED DATA-DRIVEN STOCHASTIC COORDINATION METHOD 5807

C. Variables

pagg Power output vector of aggregator.
pPV
a Dispatch power of customer a’s PV.

pgrida Net active power injection of the customer
a at bus i.

p̂gridi Duplicate variable of pgrida at bus i.
pg+a , pg−a Power flowing from/to grid of customer a.
pb+a , pb−a Battery charge/discharge power of cus-

tomer a.
pb,ga Power flowing from battery to grid of

customer a.
pb,da Power flowing from the battery to the

demand of the customer a.
eba,t Energy state of customer a’s battery.
eba,initial, e

b
a,final Initial and final energy state of customer

a’s battery over the optimization horizon.
κpv
a Proportion of PV power flow.

dga Binary variable of power flowing direc-
tion of customer a.

χb
a Binary value of battery state of customer

a.
pij , qij Active/reactive power flow from the bus i

to j.
vj Squared voltage magnitude of bus i.
lij Squared current magnitude of branch (i,

j).
λa Dual variables.
τ Auxiliary variable in CVaR.
λ0, gi, γij Dual variables.

D. Functions

Ca(xa) The cost of customer a
C0(z) The cost of aggregator.
EP [] Mathematical expectation.
δ(�) Dirac measure.
CV aR[] Conditional Value at Risk.
max{·, ·} Taking the larger one of two values.
max{·, 0} Taking the larger one compared with zero.
P Probability distribution.
P̂N Empirical distribution.
Bε(P̂N ) Ambiguity set.
Bεpv (P̂

e
N ) Ambiguity set of PV forecast error distri-

bution.
D(P̂N ,P ) Wasserstein metric between P̂N and P .
Γ() Joint probability distribution.
P̂Ni Marginal distribution of μ̂Price

i .
Ph Marginal distribution of μPrice

h .

I. INTRODUCTION

EXTREME climate change caused by greenhouse gas emis-
sions has become a global challenge for humans. To cope

with the issue, the power sectors in the world are experiencing
an energy transition by increasing the penetration of sustainable
energy to substitute for fossil fuels. Distributed energy resources
(DER) in distribution networks (i.e., rooftop PV and battery
storage systems) have huge potential to reduce emissions. Many

countries are positively integrating these DER into energy mar-
kets. For example, Australia is constructing the distribution level
market to integrate DER into the wholesale energy market and
it is expected to be completed after 2022 [1]. As a result of
the characteristics of a large number and spatial dispersion,
each customer’s DER can hardly participate in the wholesale
energy market. One way to effectively prompt the integration
is to aggregate DER in a coordination approach as a single
entity traded in the market, which is so-called transactive energy
[2]. The typical aggregation paradigm comprises one aggregator
and a set of end-customers, each with DER managed by an
individual home energy management system (HEMS) [3]. The
aggregator usually plays a role in interacting with each HEMS to
schedule aggregated port power in offers to the market based on
the information about market prices and each customer’s DER
output forecast.

However, the operation of DER aggregation brings challenges
to all stakeholders. When the aggregator schedules the aggre-
gated port power with its objective for trade, the decision must
be simultaneously aligned with each customer’s objective of
minimizing individual costs through HEMS. On the other hand,
the market price and PV forecast error are uncertain for the
aggregator and all customers. The uncertain market price will
affect the aggregator’s profit earned from the market while the
PV fluctuation not only affects the customer’s cost but also
causes an overvoltage issue due to excessive PV feed-in. Thus, an
efficient and flexible operation approach is desperately required
for the DER aggregation problem.

In response to these challenges, the virtual power plant is
initially explored and implemented as an efficient means of ag-
gregating DER regardless of the network constraints [4]. [5] and
[6] cast the aggregated DER scheduling problem as a centralized
single problem that aligns the objective of individual customers
with the objective of the aggregator. The aggregator aims to
optimize the market-based interface [7] while end-customers
pursue some properties as their objective such as satisfaction
and comfort [8], end-customer preferences [9] or the customer’s
electricity cost [10]. Considering the overvoltage problem, the
optimal power flow (OPF) is introduced into the aggregation
model with the network constraints. To reduce the computa-
tional burden, a distributed fashion is proposed to efficiently
solve the aggregation scheme [11]. The coordination in a dis-
tributed manner is completed through the interaction between
the aggregator and customer agents by individually solving the
decomposed subproblems [12]. Some distributed optimization
techniques have been applied in OPF [13], [14], [15]. ADMM
as an augmented Lagrangian-based method has been the most
popular tool applied in the distributed coordination of the DER
aggregation problem [16], [17], [18].

To address the impacts caused by uncertainties, stochastic and
robust models are adopted in the centralized coordinated DER
aggregation. According to the different types of impacts caused
by price and forecast error, the stochastic optimization (SO)
model is employed to cope with price uncertainty [19] while the
robust optimization (RO) model or the chance constraints based
SO is adopted against the PV fluctuation [20], [21]. A joint
method of the stochastic adaptive robust model is proposed in
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[22] for deciding the VPP offering decisions. Nevertheless, the
defects of the stochastic and robust models are obvious. The SO
relays on the accurate description of the probability distribution,
but to reduce the computation burden, the scenarios reduction
technique is adopted [23] in the stochastic model. Even though
the full empirical distribution is used, the decision still has a poor
out-of-sample performance [24]. Furthermore, the robust model
leads to an overly conservative solution. The distributionally
robust optimization (DRO) model as an alternative stochastic
paradigm deals with uncertainties to overcome the defects of
above both models, and it was recently applied in OPF [25],
[26], [27], economics dispatch [28] and scheduling [29], [30]
problem. The idea of DRO aims to solve the decisions by opti-
mizing the expected objective under the worst-case distribution
within an ambiguity set. According to the existing applications
of DRO in the literature, three types of ambiguity sets are adopted
in the renewable energy field: moment-based [31], [32], [33],
KL divergence-based [34] and data-driven Wasserstein metric-
based [35], [36]. Among these ambiguity sets, the data-driven
Wasserstein ambiguity set performs more advantages than oth-
ers. The moment-based and KL divergence-based DRO models
must be approximately reformulated. The final reformulation
of data-driven Wasserstein DRO (DWDRO) is not only more
concise but also linear. Better yet, the reformulation of DWDRO
is fully equivalent to the original problem. In addition, since
the stochastic model including the DWDRO depends on the
probability distribution, the Vale-at-risk (VaR) and Conditional
Vale-at-risk (CVaR) are adopted as risk measures to control the
amount of probability tail risk of the optimization objective or
violating the chance constraints [37], [38], [39]. The CVaR is
also be applied in stochastic game theory for DER trading. The
payoff function of each player is formulated as the sum of the
corresponding expected form and the CVaR [40], [41].

Through reviewing the previous works, all the SO and RO
methods are applied in a single centralized DER aggregation
problem. Even though the distributed manner is successfully
adopted in the scheduling of the DER aggregation problem
to reduce the solution burden, the impacts of uncertainties are
neglected in the transformation from the single centralized form
into the distributed fashion. After directly introducing the ex-
isting SO or RO methods into the distributed framework, the
efficiency of the distributed manner is running in the opposite
direction to the original purpose of reducing the computation
burden. If the SO model is adopted, the chance constraints
in each customer’s subproblem need to complex approximate
reformulation and add more constraints corresponding to many
scenarios, whereas the RO model requires iterative algorithms
such as Benders Decomposition [42] or Column-and-Constraint
Generation [43] to solve the subproblem locally by the agent.
It is expected to find an efficient, easily tractable and flexibly
adjustable stochastic method suitable for the distributed manner
in the DER aggregation scheme.

In this paper, to address the above challenges, a customer-
centric distributed data-driven stochastic coordination method is
proposed for the decision-making of residential PV and BESS
aggregation. According to the type of uncertainties in agents
of the aggregator and customers, corresponding data-driven

Wasserstein distributionally robust models are proposed respec-
tively. The customer’s DER are aggregated in a stochastically
distributed fashion. The detailed contributions of this paper are
outlined as follows:

1) Data-driven distributionally robust models with Wasser-
stein ambiguity set of the aggregator agent and customer
ones are constructed respectively for the aggregation
scheduling problem. For the aggregator agent, a distri-
butionally robust objective is proposed in the form of a
piecewise affine function combining expected aggregator
operation cost and corresponding CVaR. The distribution-
ally robust chance constraint of PV output is proposed for
each customer agent.

2) The aggregator agent is equivalently reformulated into
a linear objective with extra linear constraints. Then, a
value-at-risk (VaR) based reformulation is used in the
customer agent to determine the maximum available PV
power output with a confidence level by utilizing a his-
torical dataset of the PV forecast error percentage and
the upper limit of constraint is obtained by optimization
offline.

3) Based on the existing distributed optimization framework
of the aggregation scheduling problem via replication
of the power import on the wire between the distribu-
tion network and customers to form equality boundary
constraints, an ADMM algorithm with AOP process is
employed to solve the problem with a guarantee of con-
vergence.

The remainder of this paper is organized as follows. Section II
describes some fundamental mathematical models. Section III
presents the detailed DWDRO agent models with their reformu-
lations and the AOP process. Section IV carries out numerical
simulations of the proposed scheduling method and demon-
strates the results. At last, Section V concludes the whole paper.

II. FUNDAMENTAL MATHEMATICAL MODELS

In this paper, all the market entities submit the next trading
day’s bids and offers before 12:30 pm in the day ahead, and
the market keeps being pre-cleared by rolling until real-time
dispatch to generate real-time Locational Marginal Prices (LMP)
[44]. The aggregator participates in the wholesale market via
the Distribution System Operator (DSO) as shown in Fig. 1.
Each aggregator is the corresponding LMP taker and the price
is uncertain for the aggregator when it determines the power
output in the day ahead. The aggregator schedules its port
power limited by network constraints which are given by DSO
while each customer’s minimum electricity costs are pursued
simultaneously.

A. Deterministic Customer Agent Model

The customers registered in energy aggregation are the end-
users with the PV and/or the battery storage system, which are
usually residential users in distribution networks. The agent of
a customer is responsible for locally optimizing the charging
profile of the battery so that the electricity bill cost is minimized,
and communicating with the aggregator agent (i.e., Agent 0
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Fig. 1. Market participation mode of customers with DER.

Fig. 2. The agent model of a customer with PV and battery storage.

in Fig. 1) in distributed coordinated approach. In the corre-
sponding distributed coordination manner, the customer agent
locally optimizes the decomposed subproblem and iteratively
shares the decisions of export with the aggregator agent for the
update. In this section, the deterministic customer agent model
in the uncoordinated approach is shown. The DWDRO customer
agent in distributed coordinated approach will be given in the
following sections. Assume that each customer has a certain
demand for a particular time slot.

The PV output of each customer can be centrally forecasted
by DSO because the end-users in the local distribution network
share the same solar radiation. The maximum dispatchable
output of each customer’s PV can be evaluated according to
their capacity and they share the same forecast error percentage.

Let’s define an agent a ∈ A\0 on behalf of a customer, which
will communicate with an aggregator agent (a = 0 ∈ A) in a
distributed manner as shown in Section III-D. The uncoordinated
agent model of a customer is an optimization-oriented individual
home energy management model [10] as shown in Fig. 2 and it

is described as follows:

minCa = cFiT pg+a,tΔ
t − cToUpg−a,tΔ

t (1)

s.t. pg+a,t = pLa,t − ηinva

(
pb,da,t + pPV,d

a,t − pb+a,t

)
(2)

pg−a,t = ηinva

(
pb,ga,t + pPV,g

a,t

)
(3)

pPV
a,t = pPV,g

a,t + pPV,d
a,t (4)

pb−a,t = pb,ga,t + pb,da,t (5)

pga,t = pg+a,t − pg−a,t (6)

0 ≤ pPV
a,t ≤ pPV,f

a,t (7)

0 ≤ pg+a,t ≤ pgad
g
a,t, 0 ≤ pg−a,t ≤ pga

(
1− dga,t

)
(8)

eba,t = eba,t−Δt + ηcha pb+a,tΔ
t −

pb−a,t
ηdisa

Δt (9)

0 ≤ pb+a,t ≤ pcha χb
a,t, 0 ≤ pb−a,t ≤ pdisa

(
1− χb

a,t

)
(10)

eba ≤ eba,t ≤ eba (11)

eba,t=0 = eba,initial, e
b
a,t=T ≥ eba,final (12)

For each customer agent a ∈ A\0 during the time-slot t ∈ T ,
the reference flow directions of all power variables are given
in Fig. 2. (1) gives the objective of the agent to minimize the
customer’s electricity cost. (2)-(5) describe the power balance
of a household by defining the power imported pg+a,t and ex-
ported pg−a,t, and the battery discharging power pb−a,t covers the

customer’s demand pb,da,t and the power fed back into the grid

pb,ga,t;p
PV,g
a,t andpPV,b

a,t denote the proportion of PV output flowing
to grid and battery; (6) shows the net active power injection
to grid pga,t derived by the power pg+a,t and pb−a,t; (7) denotes
the PV output should be dispatched lower than it maximum
dispatchable power during time-slot t; the binary variable dga,t
in (8) determines the single power flow state (import or export)
between customer and grid; (9)-(12) describes the customer
a’s battery storage model; (9) shows that relation of energy
stored eba,t in a battery at time t to the charging and discharging

power pb+a,t /pb−a,t; (10) denotes pb+a,t and pb−a,t should be controlled
lower than charging/discharging limitation pcha and pdisa , and the
charging/discharging states are denoted by binary variable χb

a,t;
(11) and (12) gives the limitation of energy stored in a battery
at time t.

B. Deterministic Aggregator Agent Model

The aggregator as an independent entity trades the port power
in the pool of the wholesale market and ensures the distribution
network voltage within the operating envelope. All customers
are physically connected to the AC distribution network via
the electricity feeder. The power imported from or exported to
the grid is governed by network constraints: the bus voltage
magnitudes of distribution networks are strictly required within
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a specific range [45], [46].{
−pgridj,t =

∑
jk∈E (pjk,t + ljk,trjk)−

∑
ij∈E pij,t

−qLj,t =
∑

jk∈E (qjk,t + ljk,txjk)−
∑

ij∈E qij,t
(13)

vi,t = vj,t + 2 (pij,trij + qij,txij) + lij,t
(
r2ij + x2

ij

)
(14)∥∥∥∥∥∥

2pij,t
2qij,t

lij,t − vj,t

∥∥∥∥∥∥
2

≤ lij,t + vj,t (15)

V 2 ≤ vi,t ≤ V
2

(16)

pgridj,t = pgrida,t , qLj,t = qLa,t (17)

Equation (13) are the active and reactive power balance
constraints of bus j at time-slot t. (14) is the relation between
bus j voltage and its connecting branch current. Constraint (15)
indicates the second-order cone relaxation equality power flow
constraints. (16) gives the lower and upper limits of squared bus
voltage magnitude. (17) shows the active and reactive power
consumptions at bus j are the power consumed by customer a.

Let’s define the agent a = 0 on behalf of the ag-
gregator to interface with customer agents to coordinate
their DER and make decisions on power output pagg =
[pagg1 , pagg2 , . . . paggt . . . paggT ]� ∈ RT over the scheduling hori-
zon. The power can be bought by the aggregator from the grid
for pagg

t > 0 and sold to gird for pagg
t < 0. The aggregator output

is limited as shown in constraints (18) and (19).

pagg ≤ paggt ≤ pagg (18)∑
i=1,∀j

pij,t = pagg
t (19)

The objective cost function C0 of the aggregator
agent can be derived by the inner production of pagg

and μPrice as shown in (20), where μPrice = [μPrice
1 ,

μPrice
2 , . . . μPrice

t . . . , μPrice
T ]� ∈ RT is the vector of LMP

where the aggregator locates over the scheduling horizon T.

min
(13)−(19)

C0 =
∑
t∈T

μPrice
t paggt Δt = ( μPrice)

�
paggΔt (20)

C. Wasserstein Ambiguity Set

The wholesale market price vector μPrice ∈ RT is uncertain
for the aggregator in the day ahead. We can construct an ambigu-
ity set to contain a true distribution of a random vector. Assuming
that the true probability distribution P is supported on Ξ =
{μPrice

1 ,μPrice
2 , . . .μPrice

h . . . ,μPrice
M } and the sample set

of μPrice is Ξ̂N = {μ̂Price
1 , μ̂Price

2 , . . . μ̂Price
i . . . , μ̂Price

N }.
Based on N independent and identically distributed training
samples in Ξ̂N , the uniformly discrete empirical distribution
P̂N can be obtained as follows:

P̂N =
1

N

N∑
i=1

δμ̂Price
i

(21)

where δμ̂Price
i

is Dirac measure on μ̂Price
i . P̂N becomes similar

to P for large N. The dataset Ξ̂N can be regarded to be governed

by P̂N . Therefore, the ambiguity set can be constructed as a ball
in probability distributions space employing a probability metric
as follows:

Bε

(
P̂N

)
=
{

P | D
(

P̂N ,P
)
≤ ε

}
(22)

The ambiguity set Bε(P̂N ) is a family of all distributions
centered at P̂N within radius ε with a confidence. In this pa-
per, we take the Wasserstein metric D(P̂N ,P )as the distance
function between two distributions, and its formulation is given
as follows:

D
(

P̂N ,P
)
= min

Γ

∫
Ξ2

∥∥∥P̂N − P
∥∥∥Γ(dP̂N , dP

)
(23)

where Γ is the joint distribution of μPrice and μ̂Price with
respect to their marginals P and P̂N . For discrete support set,
D(P̂N ,P ) can be reformulated as follows:

D
(

P̂N ,P
)
= min

Γ⎧⎪⎪⎨⎪⎪⎩
M∑
h=1

N∑
i=1

∥∥∥μ̂Price
i − μPrice

h

∥∥∥ · Γi,h

∣∣∣∣∣∣∣∣
M∑
h=1

Γi,h = P̂Ni, ∀i
N∑
i=1

Γi,h = Ph, ∀h

⎫⎪⎪⎬⎪⎪⎭
(24)

Replacing the D(P̂N ,P ) in (22) by (24), the Wasserstein
ambiguity set can be formulated as follows:

Bε

(
P̂N

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
P

∣∣∣∣∣∣∣∣∣∣∣∣

min
Γ

M∑
h=1

N∑
i=1

∥∥∥μ̂Price
i − μPrice

h

∥∥∥ · Γi,h ≤ ε

M∑
h=1

Γi,h = P̂Ni, ∀i
N∑
i=1

Γi,h = Ph, ∀h

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(25)

The radius ε offers a high confidence level to guarantee that
the unknown P resides inside of Bε(P̂N ) [24]. Similarly, the
Wasserstein ambiguity set of the distribution P e of the PV
forecast error p̃ea,t at time t for a customer is represented by

Bεpv (P̂
e
N ).

III. DWDRO AGENT MODEL AND SCHEDULING METHOD

A. Centralized DER Aggregation Problem

The scheduling problem of transactive energy aggregation
aims to minimize the total cost of the aggregator and customers,
and coordinate its internal customers’ DER efficiently subject
to the operating envelopes simultaneously. The aggregation
problem can be centrally solved by the following deterministic
optimization problem:

min (μPrice)
�
paggΔt+

∑
a∈A\0

∑
t∈T

(
cFiT pg+a,tΔ

t−cToU
t pg−a,tΔ

t
)

subject to (1) – (11) , (13) – (19)
(26)
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where the equality constraint (19) denotes the power sold
or bought by the aggregator via the port of the distribu-
tion network. To formulate compactly, let’s define a feasi-
ble set Xa of the agent composed of constraints (2)–(12)
for corresponding customer agent a ∈ A\0 variables xa =

{pgrida,t , pg+a,t , p
g−
a,t, p

b+
a,t, p

b−
a,t, p

b,g
a,t, p

b,d
a,t, e

b
a,t, p

PV
a,t , p

PV,g
a,t , pPV,d

a,t ,

dga,t, χ
b
a,t} ∈ Xa and a feasible set Z composed of

constraints (13)–(19) for aggregator agent variables z =
{paggt , pij,t, qij,t, vi,t, lij,t, p

grid
a,t } ∈ Z . The cost functions of

customers and an aggregator in (1) and (20) are expressed by
Ca(xa) and C0(z). The deterministic aggregation problem is
shown in the resulting compact form as follows:

min
xa∈Xa,z∈Z

C0 (z) +
∑

a∈A\0
Ca (xa) (27)

B. Distributionally Robust Form of Aggregator and Customer
Agents

The problem (27) is the deterministic form of aggregation
scheduling to make decisions of its power output and each
DER coordination over the time horizon in the day ahead if the
LMP μPrice

t and each customer’s maximum dispatchable PV
output pPV,f

a have been known accurately. However, they both
are uncertain when the aggregator makes decisions for bidding.
Moreover, the LMP can hardly be forecasted in practice due
to unavailable information from all market participants, but the
maximum dispatchable PV power can be forecasted based on
the environment input information from the weather forecast.
On the other hand, the uncertain pPV

a power fed into the
distribution network might cause the overvoltage issue while
the uncertainty of LMP only impacts the aggregator’s cost.
In terms of predictability and their corresponding impacts,
distributionally robust forms of the aggregation problem are
given concerning the aggregator and customers separately.

1) Distributionally Robust Form of Aggregator Agent: Con-
sidering the uncertainty of LMP, the objective of the aggregator
agent C0(z) is replaced by minimizing the expected cost func-
tion EP [C0(z)]. To avoid the risk raised by price uncertainty in
aggregator cost, the conditional value at risk (CVaR) is employed
together with EP [C0(z)] in the objective. The objective of the
aggregation problem is thereby shown in (28):

min
z

EP
[(
μPrice

)�
paggΔt

]
+σ

× CV aR
[
( μPrice)

�
paggΔt

]
(28)

where σ is the parameter denoting a weighting factor for the risk
control [47]. To make the following distributionally robust form
of aggregation objective tractable, the objective function (28)
can be constructed equivalently into a piecewise affine function
as shown in (29).

min
z,τ

EP

[
max
j≤2

{
aj( μ

Price)
�
paggΔt + bjτ

}]
(29)

where a1 =
(
1 + σ

α

)
, a2 = 1, b1 =

(
σ − σ

α

)
, b2 = σ. The de-

tailed derivation of (29) is given in Appendix I. The distribution-
ally robust optimization model aims to optimize the expectation

with respect to the random vector with the worst-case distri-
bution. The distributionally robust form of aggregator agent is
hereby shown in (30). The worst-case distribution of μPrice is
covered by the Wasserstein ambiguity set Bε(P̂N ).

min
z,τ

⎛⎝ sup
P∈Bε(̂PN)

EP

[
max
j≤2

{
aj( μ

Price)
�
paggΔt + bjτ

}]⎞⎠
(30)

2) Distributionally Robust Form of Customer Agent: Con-
sidering the uncertainty of maximum dispatchable PV outputs
pPV,f
a,t of each customer during different time-slots, the value

of pPV,f
a,t hardly is forecasted accurately. The actual maximum

dispatchable output power fluctuates centering on pPV,f
a,t with a

forecast error p̃ea,t. The right side of the inequality constraint (7)
can be rewritten into Wasserstein distributionally robust (WDR)
chance constraint as follows:

inf
Pe∈Bεpv (̂PN)

P e
(
pPV
a,t ≤ pPV,f

a,t + p̃ea,t

)
≥ 1− βpv (31)

The dataset of p̃ea,t can be calculated by the production of

pPV,f
a,t and the historical forecast error percentage which is

commonly shared by all customers.

C. Reformulation of Aggregator and Customer Agents

The DWDRO form of the aggregator and customer agent
models (30) and (31) is intractable by using the off-the-shelf
solver. The objective function of the aggregator agent in (30)
can be equivalently reformulated into a linear form as shown in
(32)-(35):

min
z∈Z,τ∈R, λ0,gi,γij

C0 (z) = λ0ε+
1

N

N∑
i=1

gi (32)

subject to:

bjτ+aj( μ̂
Price
i )

�
paggΔt+d�γij−

(
W μ̂Price

i

)�
γij ≤ gi

(33)∥∥W� γij − ajp
aggΔt

∥∥
∞ ≤ λ0 (34)

γij ≥ 0, λ0 ≥ 0 (35)

where the LMP vector is limited by Ξ = {μPrice:
WμPrice ≤ d} since the price in the wholesale market is
restricted by price ceiling and floor and λ0, gi,γij are dual
variables in reformulation. The detailed reformulation is given
in Appendix II. To ensure that the problem is tractable, the
norm can be taken to be 1-norm so that the dual norm in (34)
is the infinite norm. Accordingly, the aggregation problem
becomes a second-order cone programming problem.

As for the DWDRO customer agent model, a VaR-based
reformulation is proposed to separate the uncertainty p̃ea,t from
decision variables in WDR chance constraints (31) as follows
[48]:

(31) ⇔ sup
Pe∈Bεpv (̂PN)

P e
(
0 ≤ −pPV,f

a,t − p̃ea,t + pPV
a,t

)
≤ βpv

(36)
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⇔ sup
Pe∈Bεpv (̂PN)

VaR1−βpv

(
−pPV,f

a,t − p̃ea,t + pPV
a,t

)
≤ 0

(37)

⇔ sup
Pe∈Bεpv (̂PN)

VaR1−βpv

(
−p̃ea,t

)
≤ pPV,f

a,t − pPV
a,t (38)

Let’s define La,t = sup
Pe∈Bεpv (

̂Pe
N )

VaR1−βpv
(−p̃ea,t), the value

of La,t can be calculated offline by the Npv-sample dataset of
ˆ̃pea,t as shown in the problem (39).

min
π1∈RNpv ,π2∈RNpv ,π3∈R

La,t

s.t. π3εpv +
1

Npv

∑
npv

π1,npv
≤ βpv

π1,npv
≥ 1− π2,npv

(
La,t − ˆ̃pea,t,npv

)
∀npv

π3 ≥ π2,npv
, π1,npv

≥ 0, π2,npv
≥ 0 ∀npv

(39)

Therefore, the constraint (7) can be substituted by (40) to
maximize the unitality of PV power.

0 ≤ pPV
a,t ≤ p̄PV,f

a,t − La,t (40)

D. Distributed Coordination Scheduling Manner

Through the above reformulation, the aggregation scheduling
problem (27) is a large-scale mixed-integer second-order conic
optimization problem. It is an NP-hard problem that is usually
intractable when solved centrally. In addition, the centrally
solved problem (27) needs to collect private information in Xa.
To overcome these challenges above, the aggregation scheduling
problem is proposed to be implemented in a decomposition
fashion by using the alternating direction method of multipliers
(ADMM) [49]. After reformulation of the aggregator agent
and customer agent models, let’s redefine the feasible set Z
by adding the constraints (33)-(35) and substituting (40) for
the constraint (7). It is noticed that the problem (27) is not
separatable due to the comment variables pgrida,t existing in bothz
andxa. To make the problem (27) decomposable and suitable for
ADMM, the boundary coupling variables pgrida,t are duplicated to
produce additional equality constraints as shown in (41) and in
Fig. 2 to achieve the resulting component-based decomposition.

pgrida,t = p̂grida,t (41)

The variables pgrida,t belong to customer agents and p̂grida,t

belong to the aggregator agent. Let’s rewrite aggregator and
costumer agent variables vectors z and xa:

xa =

{
pgrida,t , pg+a,t , p

g−
a,t, p

b+
a,t, p

b−
a,t, p

b,g
a,t,

pb,da,t, e
b
a,t, p

PV,g
a,t , pPV,b

a,t , dga,t, χ
b
a,t

}
∈ Xa∀a ∈ A\0

(42)

z =
{
paggt , pij,t, qij,t, vi,t, lij,t, p̂

grid
a,t , τ, λ0, gi,γij

}
∈ Z

(43)

The resulting form of aggregation scheduling problem is
shown as follows:

min
z,xa

C0 (z) +
∑

∀a∈A\0
Ca (xa)

s.t. z ∈ Z,xa ∈ Xa

pgrida,t = p̂grida,t (44)

where C0(z) is the reformulated form in (32). The problem
(44) is a solvable structure for standard ADMM. The augmented
Lagrangian form of each agent in the distributed framework is
shown as follows:

Aggregator agent a = 0:

L0 = C0 (z) +
∑

a∈A\0

∑
t∈T

λa,t

(
pgrida,t − p̂grid

a,t

)

+
ρ

2

(
pgrida,t − p̂grid

a,t

)2
(45)

Each customer agent ∀a ∈ A\0:

La = Ca (xa) +
∑
t∈T

(
λa,t

(
pgrida,t − p̂grid

a,t

)
+

ρ

2

(
pgrida,t − p̂grid

a,t

)2)
(46)

where λa,t is the dual variable and ρ is the penalty parameter in
ADMM. Then, the ADMM solving steps for the problem (44)
are given below via iteration and information update.

Step 1: Update primal each customer variable in parallel by:

xk+1
a

= argmin
xa∈Xa

Ca (xa) +
∑
t∈T

(
λk

a,t

(
pgrida,t − p̂grid,ka,t

)
+

ρ

2

(
pgrida,t − p̂grid,ka,t

)2)
∀a ∈ A\0 (47)

Step 2: Update primal aggregator variables by:

zk+1 = argmin
z∈Z

C0 (z) +
∑

∀a∈A\0

∑
t∈T

λk
a,t

(
pgrid,k+1
a,t

− p̂grida,t

)
+

ρ

2

(
pgrid,k+1
a,t − p̂grid

a,t

)2
(48)

Step 3: Aggregator updates dual variables λa,t by:

λk+1
a,t =λk

a,t+ρ
(
pgrid,k+1
a,t −p̂grid,k+1

a,t

)
∀a ∈ A\0, ∀t ∈ T

(49)

The primal and dual residuals in (50) and (51) are used as
termination criteria of iteration in ADMM:

rk =
(
pgrid,k − p̂grid,k

)
(50)

sk = −ρ
(
p̂grid,k − p̂grid,k−1

)
(51)

where primal residual rk denotes violation of the constraint (41)
at the current iteration; dual residual sk means the violation of
the Karush-Kuhn-Tucker (KKT) stationarity constraints at the
current iteration. The iteration of Steps 1-3 continues until the
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Algorithm 1: AOP with ADMM Algorithm.
1: Initialization: Set ϕ = 0 as the initial iteration index

for AOP and relax the binary variables in the problem
(44) to be continuous variables between 0 and 1. The
relaxed (44) is solved by ADMM according to
(47)-(51), which ensures the convergence since each
agent problem is linear. The continuous relaxed
problem is solved to get the initial values of boundary
variables p̂grid,0a,t for AOP iteration.

2: Solve the pgrida,t −fixed problem: Optimize the

problem (44) with pgrida,t −fixedaccording to ADMM

(47)–(51). The boundary variables pgrida,t are fixed at

the p̂
grid,(ϕ−1)
a,t given at last solution.

pgrida,t = p̂
grid,(ϕ−1)
a,t (52)

As a result of equality (52), the augmented item in (47)
and (49) is reduced into regional subproblems and they
are individually solved once as follows:

For customer agents ∀a ∈ A\0:

min
xa∈Xa

Ca (xa) (53)

The optimal solution of binary variables is denoted by
d
g,(ϕ)
a,t , χ

b,(ϕ)
a,t .

3: Check convergence: If the binary variables are the
same as the values in the last iteration, i.e.,
d
g,(ϕ)
a,t == d

g,(ϕ−1)
a,t , χ

b,(ϕ)
a,t == χ

b,(ϕ−1)
a,t , then take the

d
g,(ϕ)
a,t , χ

b,(ϕ)
a,t as the final solution and iteration stops;

otherwise, set ϕ = ϕ+ 1 and go to step 4.
4: Solve dga,t, χ

b
a,t−fixed problem: Solve the problem

(44) with fixed binary variables given in the last step
by ADMM according to (47)-(51), and then go to step
2.

residuals converge to the feasibility tolerances εpri and εdual.
Step 1 is implemented by each customer agent individually; Step
2 is done by the aggregator agent. The formulas on the right side
of the equation in (47) and (48) are the final DWDRO form of
agents in the distributed framework.

The problem, whereas, may not be effectively solved with a
convergence guarantee by using the original ADMM due to the
binary variables dga,t, χ

b
a,t in (8) and (10). A tractable heuristic

algorithm, AOP is proposed to ensure convergence of distributed
scheduling framework [50]. The key idea is to optimize the
aggregation problem over binary variables dga,t, χ

b
a,t with fixed

boundary variables pgrida,t , then over pgrida,t with fixed dga,t, χ
b
a,t,

and repeat the process until the convergence condition is sat-
isfied. The detailed process of AOP with ADMM is given as
shown in Algorithm 1

Fig. 3. Three types of customers on the modified IEEE 33-bus radial distribu-
tion network.

TABLE I
THE TIME OF USE (TOU) PRICE AND FEED-IN-TARIFF (FIT)

IV. NUMERICAL EXPERIMENT

The numerical experiment of the proposed aggregation frame-
work is presented on the modified IEEE 33-bus single-phase
radial distribution network including 33 customers as shown in
Fig. 3. The PV system in the simulation has a capacity of 400kwp
and the battery has a capacity of 850kwh/450kw. The Time of
Use (ToU) price and Feed-in-Tariff (FiT) are given in Table I. The
historical data of LMP and the solar forecast error percentage
can be collected from websites [51] and [52]. A solver MOSEK
is applied to solve the distributed framework on the YALMIP in
MATLAB by a PC with an Intel Core (TM) i5-6200U CPU @
2.40 GHZ with 8.00 GB RAM. The value La,t in (39) is solved
offline by a nonlinear solver IPOPT.

A. Market Risk-Aversion for Aggregator

To first demonstrate the validation of the proposed data-driven
DRO scheduling method for aggregator decision-making, the
maximum available PV output of each customer is set to be its
forecast value. The PV has a power output during the period
between 6 am to 7 pm.

The impacts of Wasserstein radius ε and risk preference
factor σ on day-ahead scheduling decisions are demonstrated in
Figs. 4 and 5. The Wasserstein radius determines the size of the
ambiguity set. Furthermore, it determines the conservatism of
the DWDRO method. As shown in Fig. 4, the power purchased
by the aggregator at night is nearly the same with respect to
different ε, and the impact of ε on decision-making is reflected
during the period of daytime (7 am∼ 7 pm) when the aggregator
submits bids to sell the electricity in the wholesale market. When
ε = 1 (light pink shaded area in Fig. 4), the power sold keeps
the level at 2115kw from 8 am to 6 pm. When ε drops to 0.5,
the power sold increases to 3001kw and it still has a flat output
decision from 7 am to 7 pm. However, when ε= 0.1, the power
export increases to 3908 kW during daytime except 2929kw at
4:30 pm and 2958kw at 5 pm. As ε continues to drop, the power
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Fig. 4. Day-ahead scheduling decisions with respect to the Wasserstein radius.

Fig. 5. Day-ahead scheduling decisions with respect to risk preference factor.

output of each time interval during daytime does not keep the
same. The aggregator’s bid at some intervals has more power
export to pursue more revenue and the aggregator is willing
to undertake more price risks. Therefore when ε = 0.0001,
the day-ahead scheduling decisions at each interval during the
period of 7 am ∼7 pm are various. The power export between
10:30 am and 11 am is 2929 kW while the one is 5155kW
between 4:30 pm and 5 pm. The smaller the Wasserstein
radius is, the less conservative the decision is. As a result, the
scheduling decision of ε = 0.0001 is solved by the proposed
method to bid more power at some intervals to pursue higher
revenue while bidding less power at other intervals. The impacts
of the risk preference factor on the scheduling decision are shown
in Fig. 5. The larger σ is, the more conservative the decision is,
which is reflected during the period of daytime to sell electricity.
When σ = 20, the power export in the bid only levels at 2643kw
between 8:30 am and 7 pm (purple shaded area in Fig. 5).

The out-of-sample performance of the scheduling decision
solved by the proposed method is validated by implementing
100 runs to compare the expected cost and the averaged cost
realized by the given decision and out-of-sample market prices.
The occurrence frequency of the out-of-sample average cost
lower than the expected cost is denoted as reliability. As we
can see in Fig. 6, a large size of the dataset in the construction of

Fig. 6. Out-of-sample performance.

Fig. 7. Frequency of historical dataset and the relation of βpv and La,t.

the Wasserstein ambiguity set can help the aggregator improve
the reliability of the power scheduling decision in offering and
bidding.

B. DRO Model of Customer’s PV Power and Cost

The dataset for solving the upper bound margin La,t in (40) is
constructed by using the historical forecast error percentage. The
dataset of the forecast error at each time interval is calculated by
the production of PV forecast power and the historical forecast
error percentage. The frequency distribution of the historical
forecast error percentage of the dataset with 7000 samples and
the impact of the confidence level βpv on La,t are shown in
Fig. 7. Almost error percentages distribute between -1 to 1.
A small value of βpv corresponds to the day-ahead dispatch
of PV with high conservativeness, i.e., the PV output cannot
exceed its maximum available realization with high probability.
As a result, when βpv varies from 0.1 (blue segment) to 0.3
(green segment), La,t at each interval tends to become smaller.
The upper limit pPV,f

a,t − La,t in (40) increases correspondingly.
The expected cost of customers can be adjusted through the
value of βpv as shown in Table II. The expected costs of two
customers are selected to show relations of parameters βpv and
the customer’s cost. A negative value means the customers get
profits by exporting excessive solar energy. As for customer
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TABLE II
EXPECTED CUSTOMER COST WITH RESPECT TO βpv

Fig. 8. Iteration process of AOP and original ADMM.

9, when βpv = 0.3, the customer can earn profits of $173.83
during the daytime; when βpv = 0.2, the customer can earn
profits of $59.28 during the daytime. The deviation between the
feed-in power decision of the day head and the real-time is not
encouraged for customers. The punishment might be adopted
by DSO to reduce the deviation. The customer can adjust the
parameter βpv to reduce the expected PV output according to
their acceptance of the deviation penalty.

C. Efficiency of AOP With ADMM Algorithm

To check the validation of the AOP process, the AOP solution
process of the distributed framework on the modified 33-bus
network is shown in Fig. 8(a). It is compared with the original
ADMM algorithm to solve the proposed distributed aggregation
problem directly, and the solution process is shown in Fig. 8(b) as
well for the sake of comparison. The AOP process in Fig. 8(a)
corresponds to step 4 in the proposed algorithm when ϕ = 1,
which means the aggregation problem is solved by ADMM with
fixed binary variables after the initialization is implemented.
The whole solving process stops at ϕ = 2. Compared with the
original ADMM, the AOP process stops at the 1316th iteration,
and the norm of primal and dual residuals have relevantly smaller
fluctuation as the solving process goes forward. Whereas the
iteration process solved by the original ADMM does not stop
at the 1316th iteration and the norm of primal residual has
more obvious fluctuation than AOP. As a result, through solving
the pgrida,t −fixed problem and dga,t, χ

b
a,t−fixed alternatively, the

Fig. 9. Realistic single feeder LV network in U.K. and customers allocation.

TABLE III
RESULTS COMPARISON OF TWO NETWORKS

convergence of ADMM is ensured due to the guarantee of
convexity.

D. Scalability on a Realistic LV Network in the U.K.

To further verify the scalability of the proposed AOP process,
a numerical experiment is implemented on a single-phase LV
network extracted from a realistic distribution system in the U.K.
with 75 customers (45 customers with both PV and battery). The
residential house as a single-phase customer is connected to the
single-phase LV distribution network. The allocation of different
customers in the network is shown in Fig. 9. The PV forecast and
load profile are collected from the website [53]. The comparison
of two experiments on 33-bus and the LV distribution network
is given in Table III. As the number of customers increases
from 33 to 75, the number of agents increases accordingly. The
number of AOP processes rises from ϕ = 2 to ϕ = 3, while the
number of iterations in the first process rises from 1316 to 2189.
Even though the higher iteration number means much more time
consumption (i.e., the computational time in an AOP process
increases from 9.65min to 17.61min)due to more customers
participating in the aggregation scheme, the time consumption
will not affect the application of the proposed method since
the scheduling decisions are made in the day ahead. Moreover,
the convergence speedup of ADMM has been extensively re-
searched in the existing literature, which can be adopted di-
rectly. The optimum objective value of the aggregation problem
solved by the proposed distributed manner is compared with
the one solved in a centralized manner. The error percentages
are much less than 1%. Fig. 10 demonstrates the 45-customer
scheduling results of the power export. Each customer feeds
the excess power back into the grid. Each customer’s power
export profile is different but they have a similar characteristic
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Fig. 10. Power export of customers with PV and battery.

that most customers do not export power from 10 am – 12 pm.
The reason is that the objective of the aggregator agent existing
in the aggregation problem influences each customer’s power
export since the aggregator needs to decide the port power in
trade considering the electricity market price.

V. CONCLUSION

The proposed DWDRO agent models of the aggregator and
customers reflect the conservativeness of aggregation scheduling
decisions under the risks of uncertain market prices and PV fore-
cast errors. The aggregator can adjust the parameters including
the dataset size n, radius ε of the Wasserstein ambiguity set and
risk factor σ to change the conservative performance of transac-
tive energy import or export decisions to minimize the expected
cost under the worst-cast distribution of uncertainties, especially
during the period of daytime when aggregator exports the ex-
cessive energy generated by PV. The larger size of the dataset
the agent has, the higher reliability the scheduling decision has.
As for the customer agent DWDRO model with a given size of
historical PV forecast error dataset, the confidence level 1− βpv

can be adjusted to determine the upper bound margin La,t of the
maximum available PV output to reduce the uncertainty of PV
forecast. As the βpv increases, the La,t decreases, then each
customer’s expected cost decreases accordingly from a positive
value to a negative one, which means customer energy status
becomes from import to export. The proposed AOP process
with ADMM ensures the solution convergence of the data-driven
distributed framework when the customer agents have the binary
variables representing battery charging/discharging and energy
import/export.

APPENDIX I

The aggregation scheduling problem below is formulated
composed of aggregator cost and customers’ cost as shown in
(26):

min
z∈Z,xa∈Xa

( μPrice)
�
paggΔt +

∑
∀a∈A\0

∑
t∈T

(
cFiT pg+a,tΔ

t

− cToU
t pg−a,tΔ

t
)

Let’s formulate the aggregator cost in the form of expec-
tation with CVaR item and denote each customer’s cost with
Ca(xa) =

∑
t∈T (cFiT pg+a,tΔ

t − cToU
t pg−a,tΔ

t). The following
process is derived only to formulate the equivalently piecewise
affine form of expected aggregator cost with CVaR. According to
the definition of CVaR, the CVaR of ( μPrice)

�
paggΔt is given

in (54):

CV aR
[
( μPrice)

�
paggΔt

]
= min

τ∈R
EP

[
τ

+
1

α
max

{
( μPrice)

�
paggΔt − τ, 0

}]
(54)

Substitute the (54) in (55) and move the “min” sign to the left
side together to get (56).

min
z∈Z,xa∈Xa

EP
[
( μPrice)

�
paggΔt

]
+ σ

× CV aR
[
( μPrice)

�
paggΔt

]
+

∑
∀a∈A\0

Ca (xa) (55)

min
z∈Z,xa∈Xa,τ∈R

EP
[
(μPrice)

�
paggΔt + στ +

σ

α

× max
{
[( μPrice)

�
paggΔt−τ ], 0

}]
+

∑
∀a∈A\0

Ca (xa)

(56)

Then, continue to formulate by moving the item
( μPrice)

�
paggΔt into the max function max{·, 0} in (56) to

get (57) as follows:

min
z∈Z,xa∈Xa,
τ∈R

EP

⎡⎢⎣max

⎧⎪⎨⎪⎩
( μPrice)

�
paggΔt + στ + σ

α

×[( μPrice)
�
paggΔt−τ ],

( μPrice)
�
paggΔt + στ

⎫⎪⎬⎪⎭
⎤⎥⎦

+
∑

∀a∈A\0
Ca (xa) (57)

Then, formulate the items in max function in the form of
expression with respect to (μPrice)

�
paggΔt and τ to get (58).

min
z∈Z,xa∈Xa,
τ∈R

EP

⎡⎢⎣max

⎧⎪⎨⎪⎩
(
1 + σ

α

)
× ( μPrice)

�
paggΔt

+
(
σ − σ

α

)
τ,

( μPrice)
�
paggΔt + στ

⎫⎪⎬⎪⎭
⎤⎥⎦

+
∑

∀a∈A\0
Ca (xa) (58)

Finally, the equivalently piecewise affine form of expected
aggregator cost with CVaR is given as shown in (59) with
parameter a1, a2, b1, b2, which is the form shown in (29).

min
z,xa,τ∈R

EP

[
max
j≤2

{
aj( μ

Price)
�
paggΔt + bjτ

}]
+

∑
∀a∈A\0

Ca (xa)

a1=
(
1+

σ

α

)
, a2=1, b1 =

(
σ− σ

α

)
, b2 = σ (59)

�
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APPENDIX II

The distributional robust form of the objective function of the
aggregation problem is shown in (60). To derive the reformu-
lation of the distributionally robust model of aggregator agent,
only (61) will be discussed in this section.

min
z∈Z,xa∈Xa,
τ∈R

sup
Bε(̂PN)

EP

[
max
j≤2

{
aj( μ

Price)
�
paggΔt + bjτ

}]

+
∑

∀a∈A\0
Ca (xa) (60)

sup
P∈Bε(̂PN)

EP

[
max
j≤2

{
aj( μ

Price)
�
paggΔt + bjτ

}]
(61)

According to [24], due to (61) is linear with respect to the
random vector μPrice, the strong dual holds. Based on the
Wasserstein ambiguity set in (25), the problem (61) can be
reformulated equivalently into (62), where λ0 and gi are dual
variables, and μ̂Price

i is ith sample in the historical dataset.

⇔ min
λ0≥0,gi

λ0ε+
1

N

N∑
i=1

gi

s.t. max
μPrice∈Ξ

max
j≤2

{
aj( μ

Price)
�
paggΔt + bjτ

}
− λ0

∥∥∥μPrice
h − μ̂Price

i

∥∥∥ < gi∀i (62)

Then, merge the two max signs in constraint of (62) to get:

⇔ min
λ0≥0,gi

λ0ε+
1

N

N∑
i=1

gi

s.t. max
μPrice∈Ξ

{
aj( μ

Price)
�
paggΔt + bjτ

}
− λ0

∥∥μPrice
h

− μ̂Price
i

∥∥∥ < gi ∀i, ∀j (63)

Then, substitute the norm ‖ • ‖ in (63) by the dual norm ‖ • ‖∗
and introduce the auxiliary variables νij to get (64):

⇔ min
τ∈R,λ0,gi,νij

λ0ε+
1

N

N∑
i=1

gi

s.t. max
μPrice∈Ξ

aj( μ
Price)

�
paggΔt+bjτ−ν�

ij

(
μPrice

h

− μ̂Price
i

)
≤ gi ∀i, j‖ νij‖∗ ≤ λ0 ∀i, j (64)

According to the market rules, there are a ceiling price and a
floor price to limit prices when bidding. As a result, the random
vector μPrice is constrained within a set Ξ in (65).

Ξ =
{
μPrice:WμPrice ≤ d

}
(65)

The constraints (64) become (66):

⇔ max
μPrice∈Ξ

aj(μ
Price)

�
paggΔt+bjτ−ν�

ij

(
μPrice−μ̂Price

n

)
≤gi

s.t.WμPrice ≤ d

‖νij‖∗ ≤ λ0 (66)

Since (66) is a linear problem with respect to μPrice and
strong dual holds again, (67) is got.

⇔ min
τ,λ0,gi,γij

bjτ + aj( μ̂
Price
i )

�
paggΔt + d�γij

−
(
Wμ̂Price

i

)�
γij ≤ gi

s.t.
∥∥W�γij − ajp

aggΔt
∥∥
∗ ≤ λ0

γij ≥ 0, λ0 ≥ 0 (67)

Finally, take (67) back into (64), the equivalent reformulation
of DRO aggregator agent is derived below in (68) as shown in
(32) to (35).

⇔ min
z∈Z,xa∈Xa,,
τ,λ0,gi,γij

λ0ε+
1

N

N∑
i=1

gi

s.t. bjτ+aj(μ̂
Price
i )

�
paggΔt+d�γij−

(
Wμ̂Price

i

)�
γij≤gi∥∥W�γij − ajp

aggΔt
∥∥
∗ ≤ λ0

γij ≥ 0, λ0 ≥ 0 (68)

LetC0(z) = λ0ε+
1
N

∑N
i=1 gi, the equivalent reformulation

of the distributionally robust form of aggregation problem is
given as follows:

⇔ min
z,xa,
τ,λ0,gi,γij

C0 (z) +
∑

a∈A\0
Ca (xa)

s.t. z ∈ Z,xa ∈ Xa

bjτ + aj( μ̂
Price
i )

�
paggΔt+d�γij−

(
Wμ̂Price

i

)�
γij≤gi∥∥W�γij − ajp

aggΔt
∥∥
∗ ≤ λ0

γij ≥ 0, λ0 ≥ 0

�
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