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A B S T R A C T   

Solar photovoltaic (SPV) is one of the most common renewable energy sources used at present. The major issue 
with renewable energy resources is power quality to meet the growing energy demand. In recent times reliability 
and flexibility of energy supply are also associated with the quality of power. The issues attached with line faults, 
voltage sag/swell, harmonics in supply and flicker are the key concerns for poor power quality. The new scenario 
is designed to challenge electrical resources like generation, transmission and distribution. Considering renew-
able energy in the existing power system requires additional research and analysis to synchronize new compo-
nents. From this point of view, many power electronics converters and switching devices are designed to increase 
the reliability and efficiency of the system. Similarly, solar PV system requires a maximum power point tracker to 
extract the power upto the maximum extent. It consists of two stages: DC to DC converter and Pulse Width 
Modulation controlling phase. A multi-level inverter (MLI) is used to enhance the power quality of the overall 
system. It reduces the harmonics distortion and stabilizes the system near the unity power factor. This paper 
comprehensively analyses the cascaded H-bridge Multilevel Inverter associated with the fuzzy logic controller 
(FLC) and SPV system. The simulation results are compared with the 3-level and five levels Multilevel Inverter.   

1. Introduction 

The quality of power extracted from solar PV is becoming a major 
issue for the newly designed electrical system. A few decades ago, re-
searchers were only concerned about the quantity of power to meet the 
increasing demand of energy. Now, the situation is different, there are 
significant concerns about the reliability and flexibility of the power. 
Poor power quality is observed due to line faults, harmonics, voltage 
sag/swell, and flicker. In the novel scenario, it is a great challenge for 
electrical engineers to increase the reliability and efficiency of the sys-
tem considering the new electrical generation resources with existing 
transmission and distribution system. 

Fossil fuels are conventional energy sources, resulting in greenhouse 
emissions and environmental pollution. Researchers move towards 
renewable energy sources (RES) to reduce these problems. With the 
recent development, the demand for non-conventional energy resources 
like solar, wind, and biogas is increasing. Among all the RES, Solar is 

widely used. It is exhaustible, pollution-free and environmentally 
friendly. A huge amount of energy production is expected from solar PV 
systems over the next 20 years [1]. The Solar Photovoltaic energy system 
produces electricity in DC form. Therefore, the SPV system is coupled 
with a converter system into the existing system. The multi-aspects 
research has designed many electronics converters and the researchers 
tend towards multi-level inverters (MLI), which become more effective 
for AC topologies. MLI has many advantages over conventional con-
verters. It gives high power quality waveform, high voltage capability, 
and low switching losses [2–3]. Cascaded H-bridge Multilevel Inverter 
(CH-BMLI) is mostly used in converters with growing demand. 

Tapping the maximum energy from solar radiation is known as 
Maximum Power Point Tracking (MPPT) Arrangement. Many tech-
niques are available in the literature, like Perturb & Observe, Incre-
mental Conductance method, Fractional short circuit current technique, 
and Fractional open circuit voltage terminology [4–6]. The MPPT 
methods are based on various technical schemes and algorithms, as their 
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Fig. 1. Methodology Implication  
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name reflects, including recent techniques, Ripple correction tech-
niques, Fuzzy logic control (FLC), Artificial Neural Networks, partial 
swarm, and genetic algorithms. Among all these MPPT techniques, the 
FLC method is considered the most suitable for achieving Maximum 
Power points [7–10]. 

In this paper, a line conditioner is designed using cascade H-bridge 
Multi-level inverter in which conventionally input source of excitation is 
replaced by SPV system associated with Fuzzy logic control for 
extracting the maximum power. The proposed line conditioner gener-
ates a compensating current opposite in direction of line current to 
minimize the effect of harmonics present in the composite system. The 
Simulation results are compared with the 3-level and 5-level inverters 
designed for the same composite system. The total harmonics distortion 
(THD) and power losses are important parameters for the estimation and 
augmentation of performance analysis of proposed system. 

Key elements and technologies in the field of renewable energy based 
power conditioning compensators are multilevel inverters, Maximum 
Power Point Tracking (MPPT), and solar photovoltaic (SPV) systems. 
Each is essential to improving the performance, dependability, and ef-
ficiency of the systems. The relevance of SPV systems lies in their ability 
to harness solar energy. MPPT ensures the efficient utilization of the 
available solar power by optimizing the operating point of solar panels. 
Multilevel inverters act as power conditioner to convert the DC power 
generated by solar panels into high-quality AC power for distribution in 
the electrical grid, contributing to overall system efficiency and stability. 
Together, these technologies enhances the performance and viability of 
the proposed systems. 

Novelty of the proposed line compensator has dynamic capability for 
enhancing the quality of power by tracking the load current harmonics 
content. Proposed compensator uses Solar PV system instead of DC 
voltage source in conventional CHBMLI. The fuzzy logic based MPPT 
controller is implemented to track the maximum power from SPV sys-
tem. Hysteresis current control scheme is exerted for generating the 
reference current to inject the active power component through PV 
supported VSC. Tracked load current containing harmonic component 
passes through low pass filter for obtaining the smooth sinusoidal cur-
rent which is used as error signal and render from actual load current for 

generating a compensating current in such manner that is opposite in 
phase sequence of harmonic current present in the system with same 
magnitude to rendering the harmonic effect. 

2. Methodology 

The work discussed in the paper contains the power quality 
improvement of 3-phase supply by injection of compensating current in 
opposite direction of analyzed harmonic current at point of common 
coupling. The whole process is executed in a sequential manner. The 
approach followed this methodology of execution shown in Fig. 1. It 
clearly elaborates the step by step process of considered system. The 
methodology of current work gathers information of power quality of 
existing system and analysis the harmonic current component present in 
the system [11–14]. The power line conditioner designed using CHBMLI 
produces a compensating current in reverse manner to eliminate the 
effect of harmonics present in the system. Simulation results, FFT and 
THD analysis depicted and validated the whole process. 

Power line conditioner uses a Solar PV system for excitation, uses 
fuzzy logic based maximum power point controller. It is performed by 
three functions as, Fuzzification, Interface and De-fuzzification. Input of 
the fuzzy logic is solar temperature (Tx) and solar irradiance (Sx) and 
output is found as voltage. This voltage is used as a reference voltage 
(Vref) for calculating the power of the panel. Fig. 2 shows the output of 
fuzzy system[15–17]. 

The MLI efficiently converts DC power to AC power with reduced 
harmonic distortion, while the FLC adapts the inverter’s operation based 
on real-time conditions using fuzzy logic reasoning. This collaborative 
approach enhances the overall efficiency, reliability, and adaptability of 
the solar power system. 

2.1. Composite System design 

The interfacing of SPV Panel and CHBMLI is shown in fig.2, where 
energy buffer involves battery or any other storage device [18–19]. It is 
used for continuity in supply when the solar energy is not available 

Fig. 2. PV panel and CHBML1 interfacing  

Fig. 3a. PV cell equivalent circuit with resistive load  

Fig. 3b. Approximate equivalent circuit of PV cell.  
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mostly in cloudy or night time. This power is fed on the multilevel 
inverter (MLI) in which voltage source converter (VSI) is used as 
compensator which minimize the ripple of current. To reduce the har-
monics, shunt active power filter (SAPF) [20–23] is designed to achieve 
the output voltage near the sinusoidal manner. It also reduces the filter 
size and cost. The structure of 5 levels MLI is shown in Fig. 9. The output 
of the system is Vα, Vβ and V0 [24–25]. 

The cascade H-bridge Multilevel Inverter is selected due to its ca-
pacity to boost voltage, lower harmonic distortion, modular design, and 
efficiency. The selection of the Fuzzy Logic Controller is based on its 
flexibility in dealing with nonlinear systems, low implementation 

complexity, resilience to uncertainty, and effective energy conservation. 
These elements work together to enhance a solar power system’s overall 
dependability and performance. 

The performance metrics used for evaluating a solar power system, 
particularly when incorporating a Cascade H-bridge Multilevel Inverter 
(MLI) and a Fuzzy Logic Controller (FLC), can be diverse and depend on 
the specific goals and priorities of the system. Here are some key per-
formance metrics commonly used for evaluation:  

• Energy Conversion Efficiency: Energy conversion efficiency is a 
measure of how effectively the solar power system converts sunlight 
into usable electrical energy. It is typically calculated as the ratio of 
the electrical energy output to the solar energy input, expressed as a 
percentage.  

• Total Harmonic Distortion (THD): THD quantifies the distortion in 
the output waveform, indicating how closely the inverter output 
resembles a pure sinusoidal waveform. It is expressed as a percentage 
and is calculated based on the amplitudes of harmonics relative to 
the fundamental frequency.  

• Maximum Power Point Tracking (MPPT) Efficiency: MPPT efficiency 
measures how well the MPPT algorithm tracks and maintains the 
solar panels at their maximum power point under varying environ-
mental conditions. It is the ratio of the actual power output to the 
maximum power available from the solar panels.  

• Response Time: Response time measures how quickly the solar 
power system, including the Fuzzy Logic Controller, can adapt to 
changes in environmental conditions or system parameters. It is 

Fig. 4. (a) I-V characteristics (b) P-V characteristics  

Fig. 5. Cascaded inverter (a) 3-level (b) 5-level  
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often measured in seconds and indicates the system’s agility in 
responding to dynamic conditions.  

• Modulation Index Control: The modulation index controls the 
amplitude of the output waveform in multilevel inverters. Efficient 
control of the modulation index is crucial for optimizing the in-
verter’s performance. It involves assessing the ability of the Fuzzy 
Logic Controller to adjust the modulation index dynamically. 

2.2. SPV Panel 

The solar cells are the primary component of SPV panels. In general, 
the solar cells are carrying fundamental properties of photoelectric di-
odes [26–28]. Therefore, the basic properties and equivalent circuit 
model of solar cells are considered for developing the solar PV Simulink 
models as depicted in Fig. 3(a). 

The output current is quantifying by KCL and computed as 

Fig. 6. Fuzzy logic based MPPT controller  

Fig. 7. Current compensation characteristic of the shunt active power filter  

Table 1 
Power Quality Categories with Characterization methods  

Specific Categories Methods of Characterization 

Sag Magnitude and Duration 
Swell 
Under voltage 
Over voltage 
Voltage-Imbalance Symmetrical-Components 
Harmonics THD and Harmonic spectrum 
Notching 
DC- Offset Volts and Amps 
Voltage flicker Frequency of occurrence and modulating-frequency  
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IC = ISC − Id (1)  

Where, output current through load is denoted byISCandcurrent through 
the intrinsic diodeIdis given by the following expression 

Id = Isc
(

e
qVd
kTc − 1

)
(2) 

The open circuit voltage in the above circuit can be obtained as; 

VOC =
kTC

q
ln
(

IPh

IO

)

(3) 

A direct relation is interposing between short circuit current (Isc), 
irradiance (Sx) and illumination intensity (Sc) and procured as 

ISC− SX
=

(
SX

SC

)

ISC− SX
(4) 

The approximation of equivalent circuit is amended in Fig. 3(b) to 
clarify the results and characteristics is plotted in Fig. 4(a)-(b). 

Solar photovoltaic (PV) systems have a wide range of real-world 
applications across various sectors, contributing to sustainable energy 
production and environmental conservation.  

• Solar PV systems can be connected to the grid, allowing excess 
electricity to be fed back into the grid. This not only provides a 
source of income through feed-in tariffs but also contributes to 
overall grid stability.  

• Remote or off-grid areas can benefit from solar PV systems as a 
reliable and sustainable source of electricity, powering homes, 
schools, healthcare facilities, and other essential services. 

• Solar PV system can install rooftop solar panels to generate elec-
tricity for their own use, reducing reliance on the grid and lowering 
utility bills.  

• Solar panels integrated into electric vehicles (EVs) or used as 
standalone charging stations can extend the range of EVs and reduce 
the environmental impact of transportation. 

2.3. CHBMLI 

The multi-level inverter consisting of a series of single complete H- 
bridge converters, each with a separate dc bus. Conventionally it used to 
convert DC to AC source as shown in Fig. 5 [29–32]. In the proposed 
work it is used to replicate the compensating current. 

Comparing cascade H-bridge multilevel inverters with 3-level and 5- 
level multilevel inverters involves evaluating various criteria to deter-
mine their performance, efficiency, and suitability for specific applica-
tions. Here are several criteria consider: 

Fig. 8. (a) p-q power components (b) Compensation of power components.  

Fig. 9. Schematic diagram of 5-level cascaded Inverter.  
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• Capable of achieving a high number of voltage levels by cascading 
multiple H-bridge inverters.  

• THD depends on the number of cascade stages and modulation 
technique. 3-level inverter: Typically lower THD compared to 2-level 
inverters. 5-level inverter: Generally lower THD compared to 3-level 
inverters.  

• Cascade H-bridge: May have higher switching losses due to multiple 
stages. 3-level inverter: Lower switching losses compared to cascade 
H-bridge for similar power ratings. 5-level inverter have higher 
switching losses than 3-level inverters but still lower than cascade H- 
bridge.  

• 5 level inverter has more efficiency as compared to 3 level inverter. 

2.4. MPPT 

The fuzzy logic based MPPT controller is implemented to fulfill the 
voltage demand of line compensator as shown in Fig. 6. Mamdani’s- 
based constant voltage (CV) method is used for extracting the maximum 
power which automatically adjusts the reference voltage at various 
environmental conditions [33–36]. The fuzzy logic controller toolbox is 

simulated in the MATLAB/Simulink environment to determine the open 
circuit voltage (Voc). 

2.5. Shunt Active Power Filter 

Shunt active power filters inject an equal-but-opposite harmonic 
compensation current to balance out current harmonics. In this instance, 
the shunt active power filters functions as a current source, injecting the 
phase-shifted harmonic components produced by the load. Any kind of 
load regarded as a harmonic source can be used according to this 
approach [37–38]. The compensation approach is shown in Fig. 7. 

3. Power Quality Problems in Composite Power System 

The broad categories of power quality problems of composite power 
system are categorized in Table 1 [27]. 

3.1. Mathematical modeling of Power Quality Compensation with 
Instantaneous p-q Theory 

By specifying zero sequence power, the p-q theory emphasizes a 
three-phase, four-wire system. The goal of this simulation is to examine 
the performance of the compensation procedure in generalized power 
quality enhancements such as reactive power compensation, harmonic 
elimination, and imbalance compensation [39–40]. This is done by 
using the instantaneous p-q theory to verify the compensation tech-
nique. The next section contains the required transformation formulae. 

Fig. 10. (a) Schematic diagram of integration of PV power. (b). Schematic diagram of reference current generation through PV supported VSC.  

Table 2 
Switching sequences for the IGBTs  

If (Error >hmax) 

1. S1=1, S4=1 
2. S2=0 S3=0 
Else if (Error >hmin) 
1. S2=1, S3=1; 
2. S1=0, S3=0;  
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3.2. Compensation with p-q Theory 

The algebraic conversion of the currents and voltages in three-phase 
to two-phase sequences based on p-q theory instantaneous power com-
ponents is rendered as follows. 
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i0,iα,iβare zero sequence current along α axis and β axis current 
respectively. 
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v0,vα,vβare zero sequence voltage, α axis, β axis voltage respectively. 
[

p
q

]

=

[
vα vβ
− vβ vα

][
iα
iβ

]

P0 = v0i0  

p, q, p0 are instantaneous real, reactive and zero sequence power and 
depicted in Fig. 8(a) and 8 (b) evinced that the active filter capacitor is 
sufficient to recompense the alternating unusual active and zero 
sequence power [20–26]. 

Instantaneous zero-sequence power is recompensed using active fil-
ter capacitor, so ic0* = i0. The reference compensating currents in two 
and three phase sequence respectively is deduces as, 
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Fig. 11. Simulink model of composite system with proposed power line conditioner  

Table 3 
Simulation Parameter  

Parameters Numerical Value 

Source Voltage VS per phase 60 V 
No. of solar cell connected in series and parallel 108 & 2 
Number of modules connected in series and parallel 2 & 1 
System Frequency 50 Hz 
Source Resistor (RS) and Inductor (LS) 1 Ω & 0.5 mH 
Non-Linear Load: Diode Rectifier 

Load Resistor (RL) 
Load Inductor (LL) 

6-diode 
10 Ω 
100 mH 

Filter: Inductor (LF) 
Resistor (RF) 

2 mH 
1 Ω 

DC-side Capacitance (CDC) 1000 µF 
Reference Voltage (VDCref) 200 V  
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Fig. 12. Source voltage (a) Phase-a (b) Phase-b (c) Phase-c (d) Phase-a-b-c-d  
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i∗cx = −
(
i∗ca + i∗cb + i∗cc

)

Where.  

P0 = mean value of the instantaneous zero-sequence power 
P0~ = alternated value of the instantaneous zero-sequence power 
p = mean value of the instantaneous real power 
p~ = alternated value of the instantaneous real power 
q = instantaneous imaginary power 

4. Propose Composite CHBMLI Topology 

The proposed topology of power conditioning is depicted in Fig. 9 
relates how the PV power is integrating through voltage source con-
verter (VSC) and Fig. 10 (a) reflects active power injection technique 
through PV supported VSC and exchange between source and load. The 
objective is to generate a compensating current in such a way which is 
opposite in phase sequence of harmonic current present in the system 
with same magnitude to rendering the harmonic effect. 

The Block diagram of reference Current Generation for Active Power 
Injection through PV Supported VSC is demonstrated in Fig. 10 (b) and 
passes through low pass filter to allow only fundamental component of 
voltage and current which is responsible for active power production 
and there per unit sequence generated the reference current. 

The error was extracted from the formula given below 

ic(t) = iL(t) − iref(t)

Switching sequences are engendering through Hysteresis current 

control scheme for the IGBTs is given in the Table 2. 
Based on the above condition the switching of the IGBT is done of the 

shunt converter. 

5. Simulink model and results 

Simulations were carried out during the implementation of the 
power line conditioner to study its behavior under various operating 
situations and to tune some controller parameters in conjunction with 
the optimization of the active filter component values. The Power Sys-
tem Block set and MATLAB/ Simulink has been accomplished in this 
instance as simulation tools, which is shown in Fig. 11 along with the 
simulation’s parameters mentioned in Table 3. 

A power line conditioner is simulated in MATLAB/Simulink envi-
ronment and results are discussed in this section. Simulation results 
showed that distortion comes into picture when a non-linear load is 
connected to the system. Source side compensation is done at point of 
common coupling. The source voltage waveforms of all three phases are 
shown in Fig. 12(a), 12(b), 12(c) and 12(d) respectively. The waveform 
is pure sinusoidal, the concern of power quality issue comes into picture 
when non-linear load is integrated with system configuration as it dis-
torted the voltage waveform. 

Current waveform of all three phases before compensation is shown 
in Fig. 13(a)-(c) after integrating the non-linear load in the system. 
Result analysis depicted that waveform contain 29.84% THD. A fuzzy 
logic based and solar power supported multi-level inverter is designed as 
shunt compensator to intending the PQ-issue. 

As shown in Fig. 14(a)-(d) wave form shows that quality is improved 

Fig. 13. Source current before compensation (a) Phase-a (b) Phase-b (c) Phase-c  
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Fig. 14. Source current after compensation (a) Phase-a (b) Phase-b (c) Phase-c (d) Phase a-b-c  
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Fig. 15. Load current wave form of respective phases that contain harmonics  

Fig. 16. Compensating current  
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and THD content in source side currents are 2.96% which is in permis-
sible limit as per IEEE standard and PV based 5 level MLI is acted as 
power line conditioner. Fig. 15 shows load current wave form of 
respective phases that contain harmonics. Compensating current 
generated to ameliorate the source side response as delineating in 
Fig. 16. 

Fig. 17 shows the ripple less voltage extracted from solar panel and 
act as a constant voltage source through fuzzy logic based MPPT algo-
rithm. The conventional capacitors used in a voltage source inverter are 
replaced through optimized self-generating solar supported constant 
voltage source. 

5.1. FFT analysis 

The detailed FFT analysis is cultivated in Table 4 which is reflection 
of Fig. 18(a)-(c) to cope the overall objective of work done. 

Comparative analysis of 3-level and 5-level MLI based power line 
conditioner is done on Table 4and results show that the compensating 
capacity of line conditioner is directly proportional to the switching 
levels in inverter and 5-level MLI based shunt power compensator is 
optimized and self-sufficient on considering the system complexity. 

6. Conclusion 

An FLC based PV supported CHBMLI is depicted as smart power line 
conditioners. Under various circumstances, the performance of the 
shunt power filter is studied and efficacious even when the supply 
voltages are imbalanced and distorted; minimizes THD in source current 
to levels considerably below the stated limits set as standards. The 
source current becomes completely sinusoidal, devoid of harmonics, and 
in phase with the main supply voltage, retaining unity power factor in 
each of the cases investigated. Multiple non-linear loads have been 
utilized in each simulation to examine the active filter’s temporal 
response. It has been noticed in each case that the filtering plan of action 
follows the pattern after one power cycle when the loads vary. The basic 
positive sequence voltage detector is in high demand when voltage 
imbalance and distortions both present. The hypothesis worked quite 
well after the fundamental positive sequence voltage was retrieved. The 
key point of 

Future Research 

It can concentrate on enhancing the performance of multilevel in-
verters in line compensation by optimizing their topology. To improve 
voltage regulation and harmonic mitigation, this may entail investi-
gating novel configurations, switching schemes, and modulation tech-
niques. It can be develop the advanced control strategies for enhancing 
the performance of multilevel in line compensation. Also this technology 
can be integrated with hybrid system like combination of solar with 
wind. 
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Fig. 17. PV module DC output voltage  

Table 4 
Comparison to Total Harmonic Distortion of Source Current  

Topology Harmonic distortion in % 1 5 7 11 13 

PV based 3-Level Cascaded MLI Before compensation 100 18.68 12.47 6.52 4.72  
After compensation 100 4.51 3.72 3.01 2.09 

PV based 5-Level Cascaded MLI Before compensation 100 18.68 12.47 6.52 4.72  
After compensation 100 1.91 0.87 0.39 0.23  
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Fig. 18. FFT analysis (a) before compensation (b) 3 level cascaded inverter (c) 5 level cascaded Inverter.  
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