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Abstract 

Organizations gather enormous amounts of data and analyze these data to extract insights that can be 

useful for them and help them to make better decisions. Predictive data analytics is a crucial subfield 

within data analytics that make accurate predictions. Predictive data analytics extracts insights from data 

by using machine learning algorithms. This thesis presents the supervised learning algorithm to perform 

predicative data analytics in Embedded Test System at the Nordic Engineering Partner company. 

Predictive Maintenance is a concept that is often used in manufacturing industries which refers to 

predicting asset failures before they occur. The machine learning algorithms used in this thesis are 

support vector machines, multi-layer perceptrons, random forests, and gradient boosting. Both binary 

and multi-class classifier have been provided to fit the models, and cross-validation, sampling 

techniques, and a confusion matrix have been provided to accurately measure their performance. In 

addition to accuracy, recall, precision, f1, kappa, mcc, and roc auc measurements are used as well. The 

prediction models that are fitted achieve high accuracy.      
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1. Introduction 

Nowadays, organizations gather enormous amounts of data and analyze these data to extract insights 

that can be useful for them and help them to make better decisions [1]. Predictive data analytics is a 

crucial subfield within data analytics that make accurate predictions. Predictive data analytics extracts 

insights from data by using machine learning algorithms. There are four types of machine learning 

algorithms such as supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement [1]. This thesis presents the supervised learning algorithm to perform predicative data 

analytics in Embedded Test System (ETS) at the Nordic Engineering Partner company (NEP). The 

increasing availability of data and the increasing capability of hardware have encouraged industries to 

apply machine learning (ML) approaches in maintenance management domains [2]. The concept 

Predictive Maintenance (PdM) is often used in manufacturing industries which refers to predicting the 

asset failures before they occur [3]. There are many advantages to using predictive maintenance in 

production environments, but there are also challenges to be overcome [4]. The PdM increases 

productivity and efficiency and decreases the system faults and unplanned downtimes [4]. The necessity 

of integrating data from diverse systems and sources within a facility to gather accurate data for creating 

prediction models is a challenge that has to be overcome [4]. Additionally, the use of artificial 

intelligence (AI) raises several challenges such as “obtaining training data, dealing with dynamic 

operating environments, selecting the ML algorithm that better fits to a given scenario, and the necessity 

of context-aware information, such as operational conditions, and production environment” [4]. 

Furthermore, the use of ML for predictive data analytics faces several challenges as well, such as 

extracting and selecting the features from the database and fitting and developing the models to predict 

the failure of ETS. In this thesis, the implementation of a ML-based application is carried out using the 

experimental and Cross Industry Standard Process for Data Mining (CRISP-DM) methodologies [1].  

 

2. Background 

2.1. Embedded Test System 

The Nordic Engineering Partner is a company that develops and assembles advanced In-Circuit Test 

(ICT) fixtures executing through End of Line (EOL) tests on Printed Circuit Board Assemblies (PCBAs), 

these fixtures are called Embedded Test System. ICT is a type of electrical test and used to ensure that 

the PCB is functioning correctly and identify any potential defects. ICT uses a bed-of-nails test fixture 

that makes electrical contact to every net on the PCB [5]. EOL testing is a crucial part in ensuring the 

quality and reliability of PCBAs and represents the final functional check of PCBA before it is shipped 

to the customers [6]. PCBA is the process of attaching electronic components to a substrate that is printed 

with a particular circuit. PCBA ensures components are electrically interconnected and allows them to 

communicate with each other [7]. The Embedded Test System is shown in Figure 1 and is an “all-in-one 

solution” for testing electronic products. The ETS consist of a test fixture, a computer with operators 

panel and tester specific boards such as power supply, input/output channels etc.1 ETS fixtures are 

hardware and software tools that are designed to automate tests on the PCBA, such as functional tests, 

stress tests, and environmental tests. ETS fixtures improve the quality and reliability of the PCBA by 

increasing test efficiency, reducing human error, and improving test coverage and accuracy.      

 
1 Embedded Test System. https://nepartner.se/products/embedded-test-system/  

https://nepartner.se/products/embedded-test-system/
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Figure 1  Embedded Test System 

2.2. Machine Learning  

Arthur Samuel coined the term “Machine Learning” in 1959 in the context of letting the machine solve 

the game of checkers. Machine learning refers to a computer program that has the ability to learn in 

order to produce behavior that was not explicitly programmed by the programmer, and it can display 

behavior that the programmer might not even be aware of [8][9]. The program learns the behaviors based 

on the following factors: the consumed data by the program, a metric that measures the error or the 

deviation between the ideal behavior and current behavior, and a feedback mechanism that utilizes the 

measured error to guide the program to produce better behavior in future occurrences [8]. ML is a subset 

of artificial Intelligence [10]. In contrast to AI-Applications, ML involves learning of hidden patterns 

within the data and uses these patterns for prediction or classification [10]. Since making inferences from 

samples is the core task of ML, the ML builds statical models by using the theory of statistics [11].  

2.2.1. Supervised Learning 

There are four types of machine learning algorithms such as supervised learning, unsupervised learning, 

semi-supervised learning, and reinforcement [1]. Supervised learning simply refers to learning from 

examples. Supervised learning techniques aim to learn a model using a training set of input-output pairs 

and later use this model to make predictions (predicate outputs) on a test set. The inputs are also called 

descriptive features and the output is called a target feature or label [1][12][13]. 

Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) … (𝑥𝑛 , 𝑦𝑛) represent a set of training examples where: 

• 𝑥𝑖 is a vector or tuple containing n numbers of descriptive features. 

• 𝑦𝑖  is a target feature. 

• (𝑥𝑖 , 𝑦𝑖) is a pair of 𝑥𝑖  and its corresponding 𝑦𝑖 .  

More specifically, the dataset represents a table in a relational database, and each row in the table is 

called a record or an example and represents such (𝑥𝑖 , 𝑦𝑖). In addition, each column in the table is called 

an attribute or a feature and represent such 𝑥𝑖 or 𝑦𝑖 . The test set is represented in the same way as the 

training set, but target feature 𝑦𝑖  is not known. By applying the supervised learning, 𝑦𝑖  can be predicted.  

 

2.2.2. Machine Learning Algorithms   

ML provides the knowledge that intelligent machines need to maintain and sustain their functionality. 

Essentially, ML algorithms are embedded into machines and data flows to extract knowledge and feed 

it into the system for managing the processes more rapidly and efficiently [10]. Machine learning 

algorithms utilize the patterns and relationships existing in massive amounts of multidimensional data 

to automatically learn how to anticipate outcomes, classify data, and perform other tasks. They gain 

knowledge from a training set of examples, and then they apply that knowledge to any new input [14]. 

There are a lot of ML algorithms, but in this thesis, support vector machines (SVM), random forest (RF), 

Multilayer perceptron (MLP) and gradient boosting (GB) were chosen to perform the work. The model’s 

implementation was carried out using the Scikit library. Scikit is a library in Python that supports the 

implementation of those algorithms2.   

 
2 https://scikit-learn.org/  

https://scikit-learn.org/
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2.2.2.1. Support Vector Machines 

The support vector machine algorithm is designed to solve binary classification problems. The idea is to 

use a hyperplane that separates two classes and maximizes the margin between the classes’ closest 

vectors [8] [15]. As shown in Figure 2 below, the hyperplane is the middle of the margin, and the support 

vectors are the points on the boundary [15]. When it is difficult to find a hyperplane between the two 

classes, the kernel approach can be used to separate the classes by projecting the support vectors into a 

higher-dimensional space [15]. SVM can be used to solve multi-class classification problems by 

separating the classes into several binary classifiers and solving the corresponding problem. This can be 

achieved via two techniques:  

• One-against-all:  

The one-against-all technique splits the dataset into n-classes, then applies the SVM algorithm 

for each class against all other classes. This technique creates n-numbers of SVM [16]. For 

example, the ETS’s dataset consists of four classes: passed, failed, error, and terminated. By 

applying this technique, four SVM binary classifications can be obtained, as follows: 

o Passed vs (failed, error, and terminated). 

o Failed vs (passed, error, and terminated). 

o Error vs (passed, failed, and terminated). 

o Terminated vs (passed, failed, and error). 

 

• One-against-one:  

The one-against-one technique splits the dataset into n-classes, then applies the SVM algorithm 

for one class against each other classes. This technique creates (n(n-1)/2) numbers of SVMs 

[16]. By applying this technique to the ETS’s dataset, six SVM binary classifications can be 

obtained, as follows:  

 

o Passed vs failed. 

o Passed vs error. 

o Passed vs terminated. 

o Failed vs error. 

o Failed vs terminated. 

o Error vs terminated. 

 

Scikit provides a great support for developing SVM3. Scikit uses the one-against-one technique 

to model SVM for multi-class strategies. The One-against-all matrix is constructed from the 

one-against-one matrix.    

 

 
Figure 2 Support Vectors Classification [15] 

 
3 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html  

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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2.2.2.2. Random Forest 

Random forest is a tree-based ensemble such that each tree depends on a set of random variables. RF 

can be used for classification purposes and is quite fast in training and predicting [17]. The approach, 

which creates many decision tree classifiers on various samples of the dataset while training the model, 

predicts the target feature on each classifier under the testing phase, then predicts the final target feature 

by voting for the majority of predicted target features. Figure 3 shows the process of random forest 

classification [18].      

 
Figure 3 Random Forest Classification [18] 

          

2.2.2.3. Multi-Layer Perceptron 

Multi-Layer Perceptron is one of the most popular artificial neural networks (ANN) for solving 

classification problems. MLP is a feedforward network that consists of multiple layers of perceptrons, 

the input layer, the output layer, and hidden layers between the input and output layers. Figure 4 

illustrates the MLP [19]. The size of hidden layers doesn’t depend on the input and output. Each layer 

has several nodes or neurons that connect all layers with each other. MLP is described as fully connected, 

in which each layer must be connected to every node in the previous layer and every node in the next 

layer [8] [19] [20]. MLP is a supervised type and uses the backpropagation algorithm to train the model. 

The backpropagation algorithm works as follows: randomly initialize network weights; propagate the 

input through the network to get the output; calculate the error between the target output and the actual 

output; propagate the error back through the network; update the weights to reduce the error; repeat the 

steps (without initializing the weights again) until the error is as small as possible [19].    

 

 
Figure 4 Multi-Layer Perceptron [19] 
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2.2.2.4. Gradient Boosting 

Boosting is an effective technique introduced in the domain of machine learning and statistics for solving 

classification problems [21] [22]. The concept behind boosting is the combination of simple classifiers 

that a weak or base learner obtains to improve prediction performance instead of using a simple classifier 

alone. A weak learner is a learning algorithm that produces classifiers with better performance than 

random guessing [17]. Boosting is a type of supervised learning that aims to find an optimal function of 

variables to predict the output by reducing the loss function [21]. One of the earliest boosting algorithms 

suggested is AdaBoost, which was developed to solve binary classification problems and then extended 

to solve multi-class classification as well. AdaBoost is an algorithm of type gradient descent, thus stating 

boosting as a statistical estimation and numerical optimization. Gradient boosting is an extension of the 

AdaBoost algorithm utilizing a statistical framework [8] [23]. Gradient boosting uses decision trees as 

weak or base learners [23]. Figure 5 illustrates the GB [24].     

 

 
Figure 5 Gradient Boosting [24] 

 

2.3. Predictive Data Analytics  

Predictive data analytics is the technique of creating and utilizing models that make accurate predictions. 

Predictive data analytics analyses and extracts insights from current and previous data by using AI, ML, 

and statistics [1][11]. CRISP-DM is one of the most widely used methodologies for predictive data 

analytics. The CRISP-DM is preferred by data analytics practitioners because it is non-proprietary, 

explicitly includes both application-focused and technical perspectives in the data analytics process, and 

is neutral regarding application, industry, and tools [1][25]. Figure 6 illustrates the CRISP-DM. The 

phases of CRISP-DM are as follows:  

• Business Understanding: addressing and determining business problems such as identifying 

the goal of building a prediction model and initializing and developing a plan.     

• Data Understanding: understanding the available data sources and what they contain. In 

addition, addressing the data requirements such as the collection, description, exploration, and 

quality verification of the data.    

• Data Preparation: preparing the data such as selecting the desired data, cleaning it, and 

organizing it into a specific structure.  

• Modeling: building a predictive model by using different ML algorithms and selecting the best 

one.   

• Evaluation: evaluating and testing the model to ensure that it fits the purpose (makes accurate 

predictions).   

• Deployment: deploying and integrating the evaluated model into the process within an 

organization.  
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Figure 6 A diagram of the CRISP-DM [1] 

 

2.4. Predictive Maintenance  

Due to the increased availability of data, the industries started to apply a new approach called predictive 

maintenance to improve their products. This concept refers to the idea that each production component 

can inform when it will fail [26] [27]. According to a common estimate [3], downtime costs almost every 

company between 5% and 20% of its production, and maintenance costs can be enormous. By reducing 

downtime, industry can become more efficient [3]. In addition, industries can provide efficient solutions 

for managing the maintenance and improving quality by applying machine learning techniques. In order 

of rising complexity and efficiency, the maintenance management approaches have been categorized as 

follow:  

• Run-to-failure (R2F): is reactive maintenance, which the maintenance is performed after 

the occurrence of failures and issues. This technique for maintenance is the easiest and the 

least efficient because the maintenance actions will be applied after the breakdown occurs 

and the cost will be higher than planned actions [26][27]. 

• Preventive maintenance (PvM): The maintenance is performed before the occurrence of 

failures by using a planned schedule that is “based on time or process iterations”. Failures 

are usually prevented using this technique, also known as scheduled maintenance. This 

technique may increase costs by unnecessarily maintaining a component that still works 

and has not failed [26][27].      

• Predicative maintenance (PdM): Also known as “condition-based maintenance” or “on-

line monitoring” or “risk-based maintenance” [28]. The maintenance is performed before 

the occurrence of failures by utilizing and monitoring the health status of the equipment. 

PdM applies statistical and machine learning techniques to automatically collect and 

analyze equipment data to predict failures [26][27]. With the help of the integrated sensors, 

PdM can reduce breakdowns and costs, increase efficiency, address different issues related 

to equipment replacement, and identify the underlying cause of the failure [28]. Both PvM 

and PdM may act in the same way to schedule the maintenance activities before failure 

occurrences, but the PdM approach is based on data gathered from sensors and analysis 

algorithms [28]. 
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2.4.1. Machine learning for PdM     

ML-based PdM categorizes into two classes: supervised and unsupervised. In supervised class, the 

modeling dataset contains information about failure occurrences, while in unsupervised class, the 

modeling dataset contains information about the logistic and/or process but doesn’t contain information 

about maintenance [27]. The availability of maintenance data depends on the type of existing 

maintenance management approach. However, in the run-to-fail approach, the supervised technique is 

suitable due to the availability of maintenance data such as the production process between two failure 

occurrences. On the other hand, in the preventive maintenance approach, the unsupervised technique is 

suitable because the failure maintenance is performed before actual failures occur, which leads to a lack 

of full availability of the maintenance data [27]. Due to the availability of datasets provided by NEP, the 

supervised approach is considered in this thesis. Two classes of supervised problems can exist depending 

on the type of outcome: a classification problem if the outcome is considered to have categorical values 

and a regression problem if the outcome is considered to have continuous values [27]. 

2.5. PdM based ML for ETS 

The NEP is trying to apply the ML algorithms within ETS to develop a system that can monitor the 

electrical performance of the test fixtures during testing and identify any changes in the test results that 

may indicate a problem with the bed-of-nails pins. For example, if the electrical resistance of the pins 

increases over time, it may indicate that the pins are becoming worn or contaminated and may need to 

be cleaned or replaced. This thesis can provide the essential steps to achieve the proposed system since 

the limitations of this thesis are limited to only classification purposes. To fully achieve the proposed 

system, the thesis can be extended for regression purposes as well. Furthermore, this thesis presents 

suitable ML algorithms that can be applied. Moreover, this thesis can provide a tool that is ready to 

extract the features, tune the parameters, fit ML models, evaluate them and plot the results. The tool can 

predict and classify the status of new ETS tests as well.   

     

3. Related Work 

The increasing availability of data and the increasing capability of hardware have recently encouraged 

industries to apply ML approaches in maintenance management domains. The application of ML 

approaches in maintenance management has made PdM a popular topic in manufacturing research 

[28][2]. PdM based ML applications have been a potential tool in preventing and predicting equipment 

failures. The performance of PdM applications is tied to the selection of the ML algorithm [29]. The 

research presented by Franco and Figueiredo [26], develops a PdM system in a mobile edge computing 

architecture to combine the low cost of embedded systems and the advantages of security with the needs 

of PdM. The research presented shows that the developed system provides an accuracy of 100%, whereas 

the ML algorithm was RF. According to Dey et al. [30], the performance of classification tasks that work 

online will be required by intelligent embedded systems in the future. SVM is one of the different 

classification techniques that has received a lot of interest. SVM appears to be a better option than 

traditional neural networks and provides “remarkable results both in classification and regression 

applications” [30]. Additionally, Chigurupati, Thibaux and Lassar [14] illustrate and propose that the 

SVM is a crucial algorithm for achieving very accurate prediction. The study developed by Castanheira 

et al. [31] shows that MLP is used to classify the incipient errors in power transformers. The provided 

procedure was evaluated using data collected from chromatographic tests of the transformers. The 

accuracy of MLP is between 75 and 90%. Gkamas et al. [32] proposed a ML framework based on a MLP 

classifier that can solve classification problems, analyze big data in a relative amount of time, is suitable 

for low-resource embedded systems, and is a utility for crucial event detection and industrial 

maintenance. The proposed framework can even be trained online. According to Carvalho et al. [29], 

research suggests a fault detection system that detects real-time faults on the hard disk drive. The 

suggested system is divided into two phases: batch training, where RF is used to train models, and real-

time prediction, where the estimations are performed using data collected from the end-user device. 

However, the accuracy of this system is 85%. Furthermore, Carvalho et al. argue that RF is the most 

used and compared machine learning algorithm in predictive maintenance applications and the key 

reason is that RF is based on decision trees, which generate a huge number of observations that can be 

used in prediction. According to Liulys [22], recent developments in statistical and computer science 

domains have led to the manufacturing industry focusing on increasing the data from industrial 
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repositories in a sustainable manner. An exciting development is machine learning, where the GB is one 

of the most popular machine learning algorithms for analyzing big datasets.        

 

4. Problem Formulation 

The increasing complexity of ETS has made it difficult for engineers to ensure their reliability and 

performance. To address this issue, ML has been proposed as a potential solution for predicative data 

analytics in ETS. However, the adoption of ML-based predictive analytics in ETS is limited due to the 

lack of a systematic approach to implement ML-based predictive analytics in ETS and the lack of 

relevant research. A PdM-based ML approach allows engineers to ensure the performance of the ETS to 

maintain and replace pins frequently to prevent and avoid unexpected pin failures. This helps in reducing 

costs and unexpected failures, thus increasing the efficiency and reliability of ETS. This work aims to 

develop a systematic approach to implementing ML-based predictive analytics in ETS that can facilitate 

NEP’s engineers’ ability to predict the potential failures of ETS. 

4.1. Research questions 

1. How to extract and select the key Features from ETS dataset? 

2. How to implement ML model with optimize the parameters to predict ETS failures? 

3. How to develop a framework to be evaluated using real-world ETS dataset? 

 

4.2. Limitations 

The limitation of this thesis is that the dataset used in the implementation is limited to one year of data 

collection, which may not be enough to study all possible ETS tests. Additionally, this thesis is limited 

to the classification and prediction of the ETS results.   

 

 

5. Method 

5.1.  Research Methodology  

The main objective of the thesis was to apply ML algorithms to real-world ETS data to perform 

predictive analysis on the data that could facilitate NEP’s engineers’ ability to predict the potential 

failures on ETS. However, the developed approach could extract the features, prepare them for modeling, 

tunning the parameters and train the models and evaluate them. An experimental approach was carried 

out to address the research questions. The methodological steps were applied as follows:        

• A brief understanding of the concepts, technologies, and processes of both ETS and PCBA was 

made such as understanding the test fixture, electronic components, test objects, and 

interactions between them.  

• A literature study was carried out to review the existing literature and research in the domains 

of predictive data analytics, predictive maintenance, and embedded systems as well.  

• A current state-of-the-art study within the machine learning domain was also carried out to 

identify ML algorithms that fit the application.  

• An experimental implementation of the work was conducted as follows:  

o Collecting and preparing the data.  

o Medeling different ML-algorithms.     

o Evaluating and testing the performance of the built models. 

• The conclusion was drawn and discussed.  
 

6. Ethical and Societal Considerations 

There are ethical considerations to consider while conducting the thesis. The data that is provided by 

NEP is confidential and considered to be used exclusively at Mälardalen University campuses and only 

for research purposes. A non-disclosure agreement has been signed with the NEP, which includes the 
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data sharing agreement and publication regulation. The data will be deleted as soon as the work is 

finished.  

 

7. Experimental study and implementation   

The experimental work was carried out following the CRISP-DM approach [1]. Figure 7 illustrates the 

core implementation of the work. The implementation consists of three phases: the data preparation 

phase, the modeling phase, and the evaluation phase. In the data preparation phase, feature extraction 

and normalization of the features have been carried out; more details provided in sections 7.1, 7.2, and 

7.3. In the modeling phase, the steps are carried out as follows: 1. splitting the data set into an 80 percent 

train dataset and a 20 percent test dataset; 2. utilizing the train dataset to train the model; 3. selecting the 

type of classifier whether a binary classifier or a multi-class classifier; 4. selecting the classifier, such as 

SVM, RF, MLP, or GB; 5. selecting whether the dataset should be imbalanced or balanced. If the 

selected dataset is balanced, then resampling and cross validating the features, otherwise training the 

model with an imbalanced dataset. More detail about the modeling phase is described in section 7.4. In 

the evaluating phase, the evaluation of the trained model is carried out by using the test dataset to predict 

the outcomes and comparing them with the actual outcomes. More details are described in section 7.5. 

 

 
Figure 7 Experimental flow diagram 
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7.1. Data collecting 

The dataset gathered from NEP and compiled from ETS tests that contains details about the EOL tests 

of PCBA. The dataset consists of two csv files: test result and measurement result. The test result 

provides information on complete tests, namely, each record in the test file is a complete test sequence 

of an EOL test of a single PCBA, while the measurement test provides in detail how a test sequence is 

processed. As shown in Tables 1 and 2, the test result has 4 features and contains 42 992 records, while 

the measurement has 11 features and contains 1 473 741 records. 
Table 1 Details of test result features 

Header  Description  

Test result ID The ID of a test sequence  

Timestamp The execution time and data for each sequence    

Execution time The execution time of a test sequence 

status The status of a test (passed, failed, error, terminated)  

 
Table 2 Details of measurement result features 

Header Description  

Measurement result ID The measurement ID for each test in a test sequence 

Test result ID The ID of a test sequence  

Name The name of each test in a test sequence 

Timestamp The execution time and data for each test in a test sequence    

Execution time The execution time of a test sequence 

Numeric time The value of a measurement test 

Numeric low limit The lowest value accepted 

Numeric high limit The highest value accepted  

Comparator The comparator of a test 

Unit  The unit of the measured test  

Status  The status of a test (passed, failed, error, terminated) 

 

7.2. Data preparing  

Data preparation and feature extraction were carried out using the .NET4 framework and the LINQ5 

library. .NET is a free open-source cross-platform to build modern applications. LINQ stands for 

language-integrated query and refers to a set of technologies based on the direct integration of query 

capabilities into the C# language. With LINQ, the dataset can be easily filtered, ordered, and grouped 

with a minimum of code. The code for feature extraction is provided in Appendix A and on GitHub6 as 

well. The dataset was prepared into a format that could be used for training models. At the beginning, 

the two files have been merged into one file by including all features from the measurement file and 

replacing the status feature from the test file based on the test ID. Then a new dataset (format) was 

extracted, as shown in Table 3, some features were taken from the measurement file, and new features 

were added as follows:  

• Grouping the tests where they had the same test ID.  

• Calculating the minimum, maximum, average, median, and standard deviation of each 

execution time, numeric data, numeric low limit, and numeric high limit.  

• Counting the frequency of comparators and units. The comparator and unit have different 

abbreviations, some of them are GELE, EQ, GTLT, LOG, V, ÂµA, and NULL.  

• Counting the frequency of test names and measurement IDs.  

• The missing values (NaN) have been replaced in the dataset. 

 

 
4 https://dotnet.microsoft.com/en-us/  
5 https://learn.microsoft.com/en-us/dotnet/csharp/linq/  
6 https://github.com/FayadHanash/FeatureExtractionETS  

https://dotnet.microsoft.com/en-us/
https://learn.microsoft.com/en-us/dotnet/csharp/linq/
https://github.com/FayadHanash/FeatureExtractionETS
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Table 3 Details of extracted features 

Header Description 

TestResultID The ID of a test sequence  

Execution Time Total  The execution time for a test sequence  

Execution Time Min The minimum execution time for a test sequence 

Execution Time Max The maximum execution time for a test sequence 

Execution Time Avg The average execution time for a test sequence 

Execution Time Median The median execution time for a test sequence 

Execution Time StdDev The standard deviation execution time for a test sequence 

Numeric Data Min The minimum numeric data for a test sequence  

Numeric Data Max The maximum numeric data for a test sequence  

Numeric Data Avg The average numeric data for a test sequence  

Numeric Data Median The median numeric data for a test sequence  

Numeric Data StdDev The standard deviation numeric data for a test sequence  

Numeric Data Low Limit Min The minimum numeric data low limit for a test sequence  

Numeric Data Low Limit Max The maximum numeric data low limit for a test sequence  

Numeric Data Low Limit Avg The average numeric data low limit for a test sequence  

Numeric Data Low Limit Median The median numeric data low limit for a test sequence  

Numeric Data Low Limit StdDev The standard deviation numeric data low limit for a test 

sequence  

Numeric Data High Limit Min The minimum numeric data high limit for a test sequence  

Numeric Data High Limit Max The maximum numeric data high limit for a test sequence  

Numeric Data High Limit Avg The average numeric data high limit for a test sequence  

Numeric Data High Limit Median The median numeric data high limit for a test sequence  

Numeric Data High Limit StdDev The standard deviation numeric data high limit for a test 

sequence  

Name Frequency The frequency of the name for each test within a test sequence 

Measurement ID Frequency The frequency of the measurement ID for each test within a test 

sequence 

GELE Frequency  The frequency of GELE for a test sequence 

EQ Frequency The frequency of EOF for a test sequence 

LOG Frequency The frequency of LOG for a test sequence 

GTLT Frequency The frequency of GTLT for a test sequence 

V Frequency The frequency of V for a test sequence 

ÂµA Frequency The frequency of ÂµA for a test sequence 

NULL Frequency The frequency of NULL for a test sequence 

Status The status for a test sequence 

 

After exploring all extracted features, the most varied features were selected to train the model. The 

feature variety improves the performance of ML models and avoids data overfitting. As shown in Table 

4, the selected features are the total, maximum, average, and standard deviation of the execution time 

and the minimum, average, median, and standard deviation of the numeric data. In addition, the status 

feature is selected since it is the target feature. The name of each test in a test sequence is not considered 

while only its frequency is considered, due to the fact that the names are the same and frequently repeated 

in each sequence, which does not make any sense for modeling’s purpose to have them in the dataset. 

Furthermore, the measurement ID is not considered in the dataset since the measurement ID is frequently 

increased in each test. Moreover, the timestamp feature for each test in a sequence test is not considered 

because the execution time total already represent the total time for a test sequence. Finally, all other 

features that are presented in Table 3 and are not presented in Table 4 have been ignored since they do 

not vary and are almost the same in each test sequence. The dataset has been divided into two sets: one 

for the training phase, which includes 80% of records, and the second for the testing phase, which 

includes 20% of records.  
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Table 4 The selected features 

Header Description  

Execution Time Total The execution time for a test sequence  

Execution Time Max The maximum execution time for a test sequence 

Execution Time Avg The average execution time for a test sequence 

Execution Time StdDev The standard deviation execution time for a test sequence 

Numeric Data Min The minimum numeric data for a test sequence  

Numeric Data Avg  The average numeric data for a test sequence 

Numeric Data Median The median numeric data for a test sequence 

Numeric Data StdDev The standard deviation numeric data for a test sequence 

Status  The status for a test sequence  

 

7.3. Normalization  

Normalization is a technique used to scale the values in a given range. It is helpful for classification and 

predication purposes and facilitates the modeling process for machine learning algorithms. Min-Max 

normalization, also known as range normalization, is a normalization technique that fits the original data 

into a specific range. The Min-Max normalization can be calculated by using the following equation: 

  

𝑎′ =  
𝑎𝑖 − min (𝑎)

max(𝑎) − min (𝑎)
∗ (ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤) + 𝑙𝑜𝑤 

 

 

(1) 

 

Where 𝑎′ is the normalized value, a is the actual value, min is the minimum value of a, max is the 

maximum value of a, low and high are the boundaries of the desired range. [1] [33]. In the extracted 

features, the feature ranges were extremely high. The normalization phase was carried out using the Min-

Max technique, and the features were scaled into the range [0,1].  

7.4. Modeling 

The modeling implementation was carried out using Python and libraries such as Scikit7, Imbalanced-

learn8, Matplotlib9, NumPy10, Pandas11 and Seaborn12. Scikit is a comprehensive library for predictive 

data analysis and machine learning. It provides a wide range of tools and algorithms for classification, 

model evaluation, etc. Imbalanced-learn is a library that provides re-sampling techniques. Matplotlib is 

a plotting and visualization library. Pandas is a library for data analysis and manipulation. Seaborn is a 

visualization library based on Matplotlib. The code for normalization, modeling, and evaluating is 

provided in Appendix B and on GitHub13 as well. The final dataset contains 42 844 records, and after 

counting insight into the target set, the class that is “passed” has 39855 records, the class that is “failed” 

has 378, the class that is “error” has 2518 records, and the class that is “terminated” has 93 records. Since 

the class “passed” is significantly higher than the other classes, the modeling phase was trained in two 

different phases: the binary classification phase and the multi-class classification phase. In the binary 

classification phase, the target set has been binarized into two classes: the “passed” class and the “rest” 

class, while in the multi-class classification, all the classes have been kept. As illustrated in Figure 7, the 

developed framework allows to select either binary classification or multi-class classification, then select 

a classifier, and after that, select whether the dataset should be imbalanced or balanced. If the selected 

dataset is balanced, then the features will be resampled and cross-validated. Then, the modeling process 

continues fitting until it is done and evaluates the performance of the modeled classifier. Parameter 

 
7 https://scikit-learn.org/  
8 https://imbalanced-learn.org/  
9 https://matplotlib.org/  
10 https://numpy.org/  
11 https://pandas.pydata.org/  
12 https://seaborn.pydata.org/  
13 https://github.com/FayadHanash/MachineLearningBasedPredictiveDataAnalytics  

https://scikit-learn.org/
https://imbalanced-learn.org/
https://matplotlib.org/
https://numpy.org/
https://pandas.pydata.org/
https://seaborn.pydata.org/
https://github.com/FayadHanash/MachineLearningBasedPredictiveDataAnalytics
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tunning is carried out using the GridSearchCV14 approach, which is a method provided by Scikit that 

allows to search for the best parameters that fit the model.   

7.5. Evaluation 

In the evaluation phase, the combination of cross validation, sampling techniques, and confusion matrix 

were applied to the dataset for determining the classifier performance.   

7.5.1. Cross Validation 

Cross validation (CV) is a way to ensure how a model performs on unseen data. It is a procedure for 

evaluating robust models. The repeated stratified k-fold cross validation has been used to validate the 

balanced dataset. The repeated stratified k-fold cross validation is a version of k-fold cross validation 

that uses stratified random sampling to create the folds. The dataset was split into five folds and repeated 

three times; at each repeat, the training set was split into one testing fold and four training folds. This 

method can yield correct values if it is applied efficiently [34].  

7.5.2. Data balancing  

A dataset is imbalanced where the distribution of classes is significantly skewed, which leads to the 

classification of the majority classes being more accurate better than the minority classes or the minority 

classes being ignored at all. A way to address this issue is by re-sampling the dataset. Over sampling 

technique duplicates the records in the minority classes and replicates them in the dataset. Under 

sampling technique delates the records from the majority classes. Synthetic Minority Oversampling 

Technique (SMOTE) is a technique that creates synthetic examples to over-sample the minority classes 

[35]. By combining the SOMTE and the under-sample, a classifier can perform better [35]. In this 

experiment, the data balancing was carried out by pipelining the SMOTE and Random Under Sampler 

techniques. Figure 8 shows the distribution of the classes before and after balancing the dataset in both 

binary and multi-class cases.      

 

 

 
Figure 8 Distribution of the classes 

 

 
14 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html  

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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7.5.3. Performance Measures 

A confusion matrix (CM) was carried out to evaluate the performance of the algorithms. The CM as 

shown in Table 5 is a matrix containing the predicted class as columns and the actual class as rows.  

  
Table 5 Confusion matrix 

 Predicted Negative Predicted Positive 

Actual Negative True Negatives False Positives 

Actual Positive False Negatives True Positives  

 

True Negatives (TN): represent the number of correctly classified negative examples. False Positives 

(FP): represent the number of falsely classified positive examples. False Negatives (FN): represent the 

number of falsely classified negative examples. True Positives (TP): represent the number of correctly 

classified positive examples [35]. Accuracy represents the proportion of correct prediction examples of 

the total prediction examples and measures as the ratio between sum of correct classification and total 

number of classifications. The accuracy can be calculated by using the following equation:  

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁
 

 

(2) 

 

Recall represents the proportion of correctly predicted positive examples of all actual positive examples 

and measures as the ratio between of the true positive examples and the sum of true positive and false 

negative examples. The recall can be calculated by using the following equation: 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁 
 

 

 

(3) 

 

Precision represents the proportion of correctly predicted positive examples of all predicted positive 

examples and measures as the ratio of the true positive examples and the sum of true positive and false 

negative examples. The precision can be calculated by using the following equation: 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 

 

(4) 

 

F1-score represents the harmonic mean of recall and precision. The f1-score can be calculated by using 

the following equation: 

  

𝐹1 =   
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

 

(5) 

 

The Kappa coefficient estimates the degree of agreement between a pair of raters. The kappa, also known 

as Cohen’s kappa, was introduced by Jacob Cohen. The Kappa can be used as performance measure for 

both binary and multi-class classification. The value of kappa is a range between [-1, +1], where -1 

indicates to wrong predication and +1 perfect predication [36]. The kappa can be calculated by using the 

following equation:   

  

𝐾𝑎𝑝𝑝𝑎 =  
2 ∗ (𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁)

(𝑇𝑃 + 𝐹𝑃) ∗ (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) ∗ (𝐹𝑁 + 𝑇𝑁)
 

 

 

(6) 

 

Matthews Correlation Coefficient (MCC), also known as the phi (ɸ) coefficient in 2 * 2 confusion 

matrices [36]. MCC can be used to evaluate the performance of binary and multi-class classifications. 

The value of MCC is a range between [-1, +1], where -1 indicates to wrong predication and +1 perfect 

predication [36]. The MCC can be calculated by using the following equation:      
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𝑀𝐶𝐶 =  
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 ∗ 𝐹𝑁)
 

 

 

(7) 

 

The Receiver Operating Characteristic curve (ROC curve) is a plot that separates two classes in a binary 

classifier, such as a form of threshold. The ROC curve summarizes the classification performance 

between the true positive rate (TPR) and false positive rate (FPR) [35]. TPR and FPR are used to plot 

the ROC curve. The area under the ROC curve, often known as the ROC AUC, is a metric provided by 

the ROC curve, and it is a measurement that is considered the most essential property of the classifier. 

The larger the area, the better the performance of the classifier. TPR represents the same thing as Recall, 

also known as Sensitivity. FPR, also known as Specificity, represents the proportion of incorrectly 

predicted positive examples of all actual negative examples and measures as the ratio of the false positive 

examples and the sum of false positive and true negative examples [8]. The TPR and FPR can be 

calculated by using the following equations:   

  

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 

(8) 

 

  

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

 

(9) 

 

 

8. Results 

The result of the experimental work is divided into two sections: binary classification and multi-class 

classification, and each section is divided into two subsections as well: imbalanced dataset and balanced 

dataset. The measurements that are used in the binary classifications to perform the evaluation are 

accuracy, precision, recall, f1-score, kappa, mcc, roc auc. In contrast, accuracy, precision, recall, and f1-

score are used for the multi-class classification. Furthermore, the results of the CV are estimated only 

for the balanced dataset.      

8.1. Binary Classification 

8.1.1. Imbalanced dataset 

Figure 9 presents the CM of the SVM, RF, MLP, and GB classifiers, where the dataset was unbalanced 

and binarized to ‘pass’ and ‘rest’ classes. Table 6 shows the measurement as follows: The accuracy and 

precision of the classifiers are almost 100% where the data is unbalanced. The recall, F1-score, kappa, 

and MCC measurements are highest for the RF classifier and lowest for the SVM classifier. The ROC 

AUC measurement is highest for RF and GB at 100%, as plotted in Figure 10.   
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Figure 9 Confusion matrix of the binary classifiers for the unbalanced dataset 

 

 
Table 6 Accuracy, Precision, Recall, F1, Kappa, MCC, and ROC_AUC measurements of the binary classifiers 

for the unbalanced dataset 

Classifier 

Algorithm 

Accuracy Precision Recall F1-

Score 

Kappa MCC ROC_AUC 

SVM 98.06 1 0.73 0.84 0.83 0.85 0.97 

RF 99.95 1 0.99 0.98 0.98 0.98 1 

MLP 99.59 1 0.94 0.97 0.97 0.97 0.98 

GB 99.94 0.998 0.994 0.996 0.996 0.996 1 

 

 
Figure 10 Roc curve for the binary classifiers (unbalanced) 
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8.1.2. Balanced dataset 

Figure 11 presents the CM of the SVM, RF, MLP, and GB classifiers, where the dataset was balanced 

and binarized to ‘pass’ and ‘rest’ classes. Table 8 shows that almost all the measurements are equal. The 

ROC AUC measurement is highest for RF and GB at 100%, as plotted in Figure 12. Table 7 shows the 

average of the CV scores that are in the range [97%, 100%], and the best classifier was RF under training 

the model.   

 

 

 

 
Figure 11 Confusion matrix of the binary classifiers for the balanced dataset 

Table 7 Cross validation scores of the binary classifiers 

Classifier Algorithm Cross validation score 

SVM 97.07 

RF 99.94 

MLP 98.44 

GB 99.90 

 

 
Table 8 Accuracy, Precision, Recall, F1, Kappa, MCC, ROC_AUC measurements of the binary classifiers 

for the balanced dataset 

Classifier 

Algorithm 

Accuracy Precision Recall F1-

Score 

Kappa MCC ROC_AUC 

SVM 98.88 0.91 0.937 0.923 0.917 0.918 0.971 

RF 99.92 0.994 0.995 0.994 0.994 0.994 1 

MLP 99.25 0.94 0.956 0.949 0.945 0.945 0.998 

GB 99.91 0.992 0.995 0.994 0.993 0.993 1 
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Figure 12 Roc curve for the binary classifiers (balanced) 

 

8.2. Multi-class Classification 

8.2.1. Imbalanced dataset 

Figure 13 presents the CM of the SVM, RF, MLP, and GB classifiers where the dataset was unbalanced. 

The f1-score is focused here because the f1-score is between recall and precision. Tables 9, 10, 11, and 

12 show the accuracy, precision, recall, and f1-score of the SVM, RF, MLP, and GB classifiers, 

respectively. Table 9 shows that the SVM classifier classified the ‘passed’ class almost correctly while 

failing to classify the ‘terminated’ class, which classified one sample correctly of the total terminated 15 

samples. The ‘failed’ and ‘error’ classes were classified with 0.7 and 0.9, respectively. Tables 10, 11, 

and 12 show that the RF, MLP, and GB classifiers classified almost all the classes correctly.               
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Figure 13 Confusion matrix of the multi-class classifiers for the unbalanced dataset 

 

 
Table 9 Accuracy, Precision, Recall, and F1 measurements of the multi-class SVM for the unbalanced dataset 

Class Accuracy Precision Recall F1-Score 

Passed 98.75 0.987 1 0.993 

Failed 99.56 0.872 0.562 0.683 

Error 98.56 0.94 0.82 0.876 

Terminated 99.84 1 0.0667 0.125 

 

 

 
Table 10 Accuracy, Precision, Recall, and F1 measurements of the multi-class RF for the unbalanced dataset 

Class Accuracy Precision Recall F1-Score 

Passed 99.94 0.999 1 1 

Failed 99.91 0.93 0.959 0.946 

Error 99.88 0.994 0.987 0.991 

Terminated 99.99 1 0.933 0.966 

 
Table 11 Accuracy, Precision, Recall, and F1 measurements of the multi-class MLP for the unbalanced 

dataset 

Class Accuracy Precision Recall F1-Score 

Passed 99.61 0.996 1 0.998 

Failed 99.84 0.904 0.904 0.904 

Error 99.50 0.99 0.928 0.958 

Terminated 100 1 1 1 
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Table 12 Accuracy, Precision, Recall, and F1 measurements of the multi-class GB for the unbalanced dataset 

Class Accuracy Precision Recall F1-Score 

Passed 99.94 0.999 1 1 

Failed 99.92 0.946 0.959 0.952 

Error 99.88 0.994 0.987 0.991 

Terminated 100 1 1 1 

 

 

8.2.2. Balanced dataset 

Figure 14 presents the CM of the SVM, RF, MLP, and GB classifiers where the dataset was balanced. 

The f1-score is focused here also. Tables 14, 15, 16, and 17 show the accuracy, precision, recall, and f1-

score of the SVM, RF, MLP, and GB classifiers, respectively. Table 15 shows the improvement of the 

SVM classifier with balanced data over unbalanced data, which this time misclassified only one sample 

of the ‘terminated’ class. While still the RF, MLP, and GB correctly classified all the classes, with a 

nuance improvement compared to the unbalanced data, as shown in tables 15, 16, and 17, respectively. 

Table 13 shows the average of the CV scores that are in the range [95%, 100%], and the best classifier 

was RF under training the model.            

 

 
Figure 14 Confusion matrix of the multi-class classifiers for the balanced dataset 
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Table 13 Cross validation scores of the multi-class classifiers 

Classifier Algorithm Cross validation score 

SVM 94.63 

RF 99.97 

MLP 98.81 

GB 99.93 

 

 
Table 14 Accuracy, Precision, Recall, and F1 measurements of the multi-class SVM for the balanced dataset 

Class Accuracy Precision Recall F1-Score 

Passed 98.76 0.995 0.992 0.993 

Failed 99.72 0.81 0.877 0.842 

Error 98.52 0.866 0.9 0.883 

Terminated 99.99 1 0.93 0.966 

 
Table 15 Accuracy, Precision, Recall, and F1 measurements of the multi-class RF for the balanced dataset 

Class Accuracy Precision Recall F1-Score 

Passed 99.93 1 1 1 

Failed 99.89 0.921 0.959 0.94 

Error 99.85 0.991 0.985 0.988 

Terminated 100 1 1 1 

 
Table 16 Accuracy, Precision, Recall, and F1 measurements of the multi-class MLP for the balanced dataset 

Class Accuracy Precision Recall F1-Score 

Passed 99.36 0.996 0.997 0.997 

Failed 99.87 0.897 0.959 0.927 

Error 99.28 0.947 0.936 0.941 

Terminated 1 1 1 1 

 
Table 17 Accuracy, Precision, Recall, and F1 measurements of the multi-class GB for the balanced dataset 

Class Accuracy Precision Recall F1-Score 

Passed 99.88 1 0.999 0.999 

Failed 99.88 0.909 0.959 0.933 

Error 99.81 0.985 0.985 0.985 

Terminated 100 1 1 1 

 

9. Discussion 

The measurement of the experiment is very high and accurate, which indicates doubts about it being 

unbelievable and not trustable. The SVM seems to be more acceptable than the RF, MLP, and GB, even 

though the RF, MLP, and GB are perfect. In contrast, it is also good to mention that when training the 

SVM, where the regularization factor was set to 10, the training phase was done for the binary SVM, 

where the data was balanced and unbalanced, and for the multi-class SVM, where the data was only 

unbalanced. The modeling time for multi-class SVM where the data was balanced, has taken 5 days 

without finishing the modeling phase, which leads to remodeling the SVM, but this time the 

regularization factor was set to 5 and 4 for binary SVM and multi-class SVM, respectively. The 

measurements reflect that the training is being overfitted despite the normalization and sampling 

techniques. One of the reasons why the measurements are high is the data itself, because the distribution 

of the features is not varied and the classes in each feature are discriminated, which leads to the 

classifier’s bias. Figure 15 presents the distribution of the scaled features in the training set. Figure 16 

shows the correlation matrix of features in the training set. The matrix shows that feature 7 is highly 

correlated to feature 5 with a value of 0.93 and to feature 1 with a value of 0.81. Feature 3 is highly 
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correlated to features 1 and 2, with values 0.82 and 0.82, respectively. In addition, as early mentioned in 

the limitation section, that the dataset is only for one-year collection, which means that after exploring 

the dataset and reviewing the document provided by NEP, not all the components are included in the 

dataset, especially the comparator and unit components. Regarding the research questions: 

1. How to extract and select the key Features from ETS dataset? 

The answer to this question is explained in the data collection and preparation sections, section 

7.1 and 7.2, respectively.   

2. How to implement ML model with optimize the parameters to predict ETS failures?  

The answer to this question is explained in the modeling section, section 7.4. 

3. How to develop a framework to be evaluated using real-world ETS dataset? 

The answer to this question is explained in the evaluation section, section 7.5. 

 
Figure 15 Distribution of the scaled features in the training set. 
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Figure 16 Correlation matrix of the training dataset 

10. Conclusions 

In this thesis, supervised machine learning algorithms were used to predict and classify the data that was 

collected from embedded test system. The machine learning algorithms were support vector machines, 

multi-layer perceptrons, random forests, and gradient boosting. Predicative maintenance is often used in 

manufacturing industries to predict failures before they occur. Predictive maintenance increases 

productivity and efficiency and decreases system failures and unplanned downtimes. Predictive data 

analytics is a crucial subfield within data analytics that make accurate predictions. Predictive data 

analytics extracts insights from data by using machine learning algorithms. The use of machine learning 

for predictive data analytics faces several challenges, such as extracting and selecting the features from 

the database and fitting and developing the models to predict the failure of ETS. The CRISP-DM was 

used in the experiment. Both binary and multi-class classifiers have been provided to fit the models, and 

cross-validation, sampling techniques, and a confusion matrix have been provided to accurately measure 

their performance. In addition to accuracy, recall, precision, f1, kappa, mcc, and roc auc measurements 

are also used. The random forest and gradient boosting performed best in all cases in this experiment. 

The trained models were supposed to be overfitted and biased, despite all the sampling techniques and 

normalization.    

 

11. Future Work 

In this experiment, only one single classifier is used to train the model. For future work, multiple 

different classifiers can be used at the same time to train the model by using the model ensemble 

technique, such as boosting or bagging techniques. The model ensemble technique is a technique that 

allows to combine a set of classification algorithms for building the models and then aggregates the 

prediction results of these models. Furthermore, the experimental work can also be extended to 

regression rather than just classification tasks.  
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Appendix A: Feature extraction 
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Appendix B: Modeling & Evaluation 
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