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A B S T R A C T

This article comprehensively reviews the emerging concept of Internet of Intelligent Things
(IoIT), adopting an integrated perspective centred on the areas of embedded systems, edge
computing, and machine learning. With rapid developments in these areas, new solutions are
emerging to address previously unsolved problems, demanding novel research and development
paradigms. In this sense, this article aims to fulfil some important research gaps, laying down
the foundations for cutting-edge research works following an ever-increasing trend based on
embedded devices powered by compressed artificial intelligence models. For that, this article
first traces the evolution of embedded devices and wireless communication technologies in the
last decades, leading to the emergence of IoT applications in various domains. The evolution of
machine learning and its applications, along with associated challenges and architectures, is also
discussed. In this context, the concept of embedded machine learning (TinyML) is introduced
within the context of the Internet of Intelligent Things paradigm, highlighting its unique
characteristics and the process of developing and deploying such solutions. Furthermore, we
perform an extensive state-of-the-art survey to identify very recent works that have implemented
TinyML models on different off-the-shelf embedded devices, analysing the development of
practical solutions and discussing recent research trends and future perspectives. By providing a
comprehensive literature review across all layers of the Internet of Intelligent Things paradigm,
addressing potential applications and proposing a new taxonomy to guide new development
efforts, this article aims to offer a holistic perspective on this challenging and rapidly evolving
research field.

. Introduction

In the 1980s, mainframes were the primary means of information processing, although they had limited computational power
nd were not easily accessible when compared to current standards. As technology progressed, these devices were miniaturised and
ave way to personal computers (PCs), which introduced the concept of individualised computing. While office applications were
he most commonly used on PCs, they also had the capability to control the physical environment of workplaces. These innovations
nspired Mark Weiser to coin the term Ubiquitous Computing, envisioning computers that could process information anytime and
nywhere [1]. Weiser also foresaw the integration of computers into everyday products, resulting in their pervasive and ‘‘invisible’’
resence today, from embedded systems in cars and home appliances to a myriad of gadgets available in our daily lives [2].
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Fig. 1. The convergence of related areas to the development of the Internet of Intelligent Things.

Weiser’s prediction could be applied in the real world thanks to the emergence of embedded devices such as microcontrollers,
which have become ‘‘ubiquitous’’ in the sense they could transparently interact with other devices through wireless technologies [3].
These communication technologies, such as LoRaWAN, Bluetooth, Wi-Fi, and 5G, are increasingly common nowadays, being a key
factor in the emergence of the concept of the Internet of Things (IoT). In short, the so-called IoT paradigm seeks to integrate the
processing power of information and communication into everyday objects that were previously not equipped with computational
technology [4].

In a broader perspective, the IoT paradigm has evolved over three conceptual generations, with the first one being characterised
by machine-to-machine communications using resources like tagged objects and RFID identifiers, and then progressing to a second
generation based on communications toward cloud-based services [5]. More recently, the third generation introduced the widely-
used Three-Layer Architecture, consisting of a perception layer where devices collect sensing data on-site, a network layer that
transfers information from devices to an application layer, and the application layer itself, which is typically located in the cloud and
responsible for processing the data received from the network layer [4,6]. This conceptual architecture has created the foundations
for more widespread developments of IoT-based services that we have seen in the last decade.

When realising the three aforementioned generations, two major concepts have been distinguished: cloud and edge. The former
is a generic concept that relies on increased computing power and high storage capacity to provide enhanced-centred services to
remote users, using communication protocols for request/response procedures. In contrast, the latter depends on devices capable of
perceiving the environment and processing associated data locally, which might then be transmitted to cloud-based computing
servers for storage or post-processing actions [7]. Although particular architectures may employ the cloud and edge concepts
differently, there is a well-consolidated perception that edge-based elements are closer to the physical world and the end users,
while cloud-based elements are implemented in multiple remote servers that behave like a unified entity [8]. Since there are
some cost, energy, and time constraints in applications that are dependent on cloud servers [9], the Internet of Intelligent Things
(IoIT) paradigm has been promoted as a way to perform more elaborated processing tasks in edge devices, potentially enhancing
performance as a whole. Actually, this could enable previously passive agents in the system to become more active, redistributing the
processing burden of modern IoT systems and affecting networking bandwidth and timeliness requirements [10,11]. This way, the
Internet of Intelligent Things comes as promising convergence of embedded hardware, wireless networking, and artificial intelligence
elements, setting the foundations for a series of disruptive applications in areas such as Smart Cities, Industry IoT, Smart Homes,
Agriculture 4.0, Smart Healthcare, among others [12–17].

In the evolution of IoT applications, which has more recently favoured edge-based approaches, the existence of affordable
hardware development platforms has been crucial. Regarding the current hardware landscape, microcontroller-based embedded
devices now boast more computational power, thanks to their use of 32-bit processors with enhanced RAM and Flash memories,
while single-board computers (SBCs) incorporate 64-bit processors and may even include dedicated low-end GPUs, all usually
following an energy-efficient design and with affordable retail prices [2]. Consequently, the emerging IoIT paradigm has been
able to be increasingly reliant on new processing paradigms that support efficient edge computing, with Artificial Intelligence
(AI) algorithms receiving significant attention. As edge devices with adequate hardware resources can now extract information
from tabular, visual, and audio data accurately and reliably, the execution of Machine Learning AI algorithms on small, affordable
devices has become an integral part of the design of intelligent IoT systems [18].

When putting all these elements together, the TinyML paradigm emerges as a game-changer when considering the constrained
resources of edge devices for executing artificial intelligence algorithms. By embedding compressed AI models capable of performing
ML functions like linear regression and classification, TinyML can revolutionise the processing of sensed data in IoT-based
applications. The evolution of edge computing, driven by advancements in embedded devices that leverage low-power wireless
network technologies, has recently empowered limited-processing-power devices to effectively employ ML models for solving diverse
problems. Furthermore, the field of Machine Learning now offers reliable architectures optimised for TinyML, further solidifying
this trend. In fact, recent years have already witnessed the transformative potential of embedded ML principles in revolutionising
various applications and achieving remarkable outcomes through cost-effective solutions, as will be discussed in this article.

In Fig. 1, we draw an evolution timeline for some of the most relevant embedded systems, edge computing, and machine learning
landmarks, depicting important conceptual phases that have led to the highly anticipated Internet of Intelligent Things revolution.

Roughly speaking, IoIT emerges when IoT devices meet embedded AI algorithms. However, while it holds promise for
numerous benefits, various challenges have also surfaced. Therefore, gaining insight into the current state-of-the-art and anticipated
2
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development trends in this field becomes crucial. This article then provides a comprehensive survey of the Internet of Intelligent
Things paradigm, offering a holistic perspective. By doing so, it aims to expand upon previous review works, such as [18–20], which
focused on this research field following a ‘‘limited’’ review approach: while the works in [18,19] are centred on the execution of
machine learning models on microcontrollers, the work in [20] brings contributions on TinyML development within traditional IoT
scenarios. In general, those previous surveys cover important aspects when bringing AI closer to the edge, but our article goes further
by addressing IoIT across all of its layers, presenting existing and forthcoming challenges, as well as some perspectives envisioned
for this field. Finally, a more up-to-date perspective of the literature is presented.

The remainder of this article is organised as follows. Section 2 presents the background of the Internet of Things, approached from
he perspective of the evolution of embedded devices and wireless communication technologies that have enabled the development
f IoT applications that are already present in our daily lives. In Section 3, the evolution of the Machine Learning area is presented,
s well as its current challenges and architectures. In Section 4, the concept of the Internet of Intelligent Things is formally presented
rom the relationship with TinyML, showing the particularities of this area, as well as the definition of Intelligent IoT device classes,
nd its optimised implantation criteria. Section 5 deals with the presentation of recent research works developed in this area,
long with future perspectives on the development of applications based on Intelligent IoT. Then, final discussions are presented in
ection 6, followed by conclusions and references.

. The rise of the Internet of Things

In large cities around the world, modern technology is taking centre stage, bringing exciting changes to the way we live. In this
cenario, embedded systems are becoming more and more prevalent, collaborating and offering a variety of cutting-edge applications
nd services for residents, businesses, and governments [21]. When properly leveraged, embedded technologies may support the
evelopment of the Internet of Things (IoT) paradigm, which envisions promoting the ubiquitous presence of a variety of devices
apable of monitoring and/or acting in order to achieve a shared purpose, usually in a collaborative way [6].

Generally speaking, most IoT applications perform their tasks following the definitions of a three-layer architecture. The first
ayer is composed of embedded systems, which deal with low-power, dependable, real-time equipment for monitoring the sensed
nvironment. The second layer is communication, which involves sharing information with the third (application) layer and between
evices, usually through wireless connections, with the latter providing the actual services for any requester. To make this logical
peration more practical, wireless networks and embedded computer technology had to advance over many years, facing a lot of
hallenges on multiple scales. The development of those fields is discussed in this section.

.1. Embedded systems evolution

The journey toward the current state of IoT applications, which now finds relevance in various scenarios such as urban, domestic,
nd medical settings, has been a gradual evolution with many milestones in roughly five decades of advancements in embedded
ystems. Fig. 2 depicts this evolution process since the launch of humanity’s first embedded device, the Apollo Guidance Computer
AGC), in the 1960s, culminating in the development of affordable hardware development boards.

The AGC was the first computer to use silicon integrated circuits (ICs) and it is regarded as the first embedded device, guiding,
avigating, and controlling the spacecraft that transported Neil Armstrong and Buzz Aldrin in the Apollo 11 mission in 1969.
onsidered an engineering marvel, this computer weighed around 30 kg and had a processor with a frequency of 2 MHz that

nterpreted assembly code [22]. After this engineering milestone, efforts turned to the miniaturisation of electronic components
hat resulted in the emergence of the first microprocessors between the 60s and 70s, until the creation of the first microcontrollers,
uch as the Intel 8048. Launched in 1976, that is the most prominent MCU in the MCS-48 family, and compared to the AGC, it has
3 MHz higher processor frequency, in addition to being about 20x smaller and lighter [23].

Following the development of the first MCUs as a result of component downsizing, the primary goal became to enhance the
esources of these embedded devices. During this time, microcontrollers began to be available with 8, 16, and 32-bit processors,
s well as frequencies of up to 32 MHz. Furthermore, analogue-to-digital converters, serial ports, timers, and interruptions were
ncorporated into these devices, resulting in a significant boost in the capacity to read sensors and process data in real-time for a
ariety of applications, mainly in the context of Wireless Sensor Networks (WSN) [24].

WSNs gained popularity in the mid-2000s as a first step in the development of IoT applications, with the introduction of the MicaZ
2003) and TelosB (2006) boards being notorious [25]. These embedded devices feature an IEEE 802.15.4 wireless communication
nterface, making them the first boards to support remote monitoring for a wide range of applications. It should be noted, however,
hat these devices were more expensive than those currently available and had a higher learning curve for programming, with even
roprietary programming languages, as is the case with TelosB [26].

Due to the restricted flexibility of the boards used in WSNs, the developed applications were somehow limited in sensing
apability and data processing, mostly relying on remote servers when effectively using the sensed data. This scenario, on the
ther hand, prepared the way for a new development era based on more accessible and easier-to-program embedded devices (using
rogramming languages like C and C++), resulting in the first models of boards widely recognised and utilised in the present
ommunity, such as Arduino and STM32. These boards provided better affordability and programming flexibility, accelerating the
evelopment of IoT applications [23].

However, because these embedded devices lacked a network interface, remote contact with applications or other devices was
3
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Fig. 2. The evolution of hardware technologies and development boards in five decades.

single-core processors running at hundreds of MHz, memories starting at 256 MB, and the ability to run Linux-based operating
systems. Furthermore, these SBCs typically included USB, HDMI, and jack ports, allowing the use of peripherals such as a mouse,
keyboard, and monitor on these tiny boards [2].

Since Ethernet requires a wired connection, IoT applications based on hardware boards with an RJ45 connector (such as the first
generation of Raspberry Pi boards) were still limited in terms of device placement and outdoor deployments. Around 2014, the MCU
ESP8266 was released in a trend to change this configuration, which, in addition to having more processing power and memory than
previous MCUs, also featured a (IEEE 802.11) WiFi interface, allowing embedded applications to connect to the Internet. After this,
in 2015, the Raspberry Pi Zero, which also has a WiFi interface and Bluetooth Low Energy (BLE) capability, was released bringing
an additional perspective to the development of IoT applications [23].

At this time, the advancement of embedded devices since the AGC was already immense, with boards much smaller and
much more powerful reaching processing frequency in GHz for the SBCs and tens of MHz for the MCUs. However, there was still
opportunity for progress in such a short time, and this was capitalised on with the 2016 release of the ESP32, the first MCU with a
dual-core CPU at a frequency of hundreds of MHz [23]. Soon after, in 2017, some of the first boards with a graphics processing unit
were released, including the quad-core SBCs NVIDIA Jetson TX2 (64-bit) and Banana Pi M2 Zero, which are equipped with NVIDIA
and ARM GPUs. In terms of MCUs, we could also consider the Sipeed Maix Bit board, which features a 64-bit dual-core processor
and a double precision KPU (Knowledge Processor Unit), making it suitable for efficiently running machine learning algorithms via
its graphics processing units [27].

Finally, in 2019, the evolution of embedded devices started to focus on improving their peripherals, with the release of the
Raspberry Pi 4, a SBC model with a 1.5 GHz quad-core processor and available with 4, 6, and 8 GB memory, and the Arduino
Nano 33 BLE and Raspberry Pi Pico MCUs, both equipped with 32-bit processors and WiFi and BLE connectivity. More recently,
the Raspberry Pi 5 came offering new features and enhanced processing power, reinforcing the trend for powerful edge processing
at affordable prices. As a result, the progress of embedded devices to the present day has resulted in the release of many hardware
development boards that are still available today, even in different versions, having processing capability to enable lightweight
machine learning architectures and wireless network connectivity, enabling a variety of Intelligent IoT applications [4]. This scenario
has been exploited in different ways, opening many possibilities when enabling embedded machine learning-based applications on
the edge.

2.2. The advent of wireless networks

Over five decades, embedded devices have undergone significant evolution in processing power, memory resources, energy
efficiency, size, programming flexibility, and cost. In parallel, wireless networks, one of the main pillars of IoT, have also experienced
4
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Fig. 3. The evolution of wireless networks.

progress on their own, roughly starting from 1983 with the Advanced Mobile Phone System (AMPS), the first communication
technology for analogue mobile telephony. The AMPS played a crucial role in making the idea of cellular telephony commercially
viable, allowing users to connect across a wide geographic area [28]. When the first generation (1G) of cellular networks appeared,
as depicted in Fig. 3, it enabled voice communication over analogue modulation to send signals between cell towers and mobile
devices, a great breakthrough in that time. This was a major milestone, allowing people to communicate while on the move [29].

Wireless networking for mobile telephony continued advancing with the development of new technologies. The introduction
of 2G (1991) enabled mobile devices to deliver text messages, while Bluetooth 1.0 (1999) enabled file transfers between devices
over short distances. IEEE 802.11 WiFi (1999) offered high-speed Internet connections over short distances, and 3G (2001) enabled
mobile Internet connections, as well as voice calls and messaging, expanding on previous generations’ features [30].

In 2003, an innovative wireless network technology aimed at communicating with embedded devices was introduced: the Zigbee.
Based on the IEEE 802.15.4 standard, this technology establishes efficient and low-energy communication, which enables innovative
home and industrial automation applications. Examples of Zigbee-enabled embedded devices included the previously mentioned
MicaZ and TelosB boards (Fig. 2), released in 2003 and 2005, respectively. These boards exemplify Zigbee’s ability to provide
reliable and efficient communication for a variety of embedded applications [31]. For the embedded system world, more efficient
and affordable wireless technologies meant greater opportunities to expand the application scenarios.

In general, wireless networking technologies have been leveraged to allow communications among embedded devices, enabling
the creation of WSN and IoT applications. For some development boards, extra hardware modules might be inserted to support
different wireless network technologies including Bluetooth 2.0 (2004) and 4G (2009) [32]. However, as described in Section 2.1,
embedded devices with built-in WiFi connectivity started to appear in 2014, accelerating the creation of boards with similar features,
like the ESP8266. With this, the proliferation of IoT applications was facilitated, which allowed embedded devices to communicate
with other devices and servers [32], deeply transforming the way ubiquitous IoT applications would be developed.

Several wireless network technologies with special characteristics that could benefit embedded devices have arisen, taking into
account some requirements such as low-energy consumption, ad hoc data transmission, and long-range communications. These
technologies include LoRaWAN, which was announced in 2015, and Bluetooth Low Energy (BLE), which was introduced in 2010.
Currently, LoRaWAN is frequently utilised in IoT applications to connect devices across long distances. However, it is important to
point out that LoRaWAN has some limitations in terms of latency and speed, which can affect real-time communication of large
amounts of data [33].

Overall, some well-known limitations for IoT devices are being (partially) overcome with the arrival of 5G in 2019, the fifth
generation of high-speed, low-latency mobile communication networks. The fifth generation of mobile networks was designed to
primarily enable real-time IoT applications, offering an efficient and up-to-date solution not only for the context of the Internet of
Things but also wireless communications in general. Finally, faster and more dependable communication is anticipated with 5G,
allowing for the instantaneous integration of devices and the introduction of cutting-edge services in a variety of industries, notably
for applications that use Machine Learning algorithms in embedded devices for data processing in cloud services, which is still
5
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Fig. 4. The evolution of the Machine Learning field over five decades.

As a last remark, while IoT devices are increasingly adopting new wireless communication technologies as cost reduces and
hardware embedding is facilitated, energy consumption, high bandwidth and reduced latency demands are still some limitations
that should restrain how fast new game-changing technologies like 5G will be adopted in practical applications. This is even more
apparent when considering the anticipated advancements of 6G communications, which will eventually succeed 5G. At first glance,
the 6G technology aims to provide even faster data speeds, lower latency, greater capacity, and more reliable connections compared
to its predecessor [35,36]. Overall, this will be a deeper revolution for IoIT, particularly when considering that 6G is being designed
to enhance Massive Machine Type Communications (mMTC), while also supporting innovative AI-driven networking. While 5G
adoption is not yet widespread, its benefits for applications like Smart Cities and Industry 4.0 are widely acknowledged. However,
the prospects for 6G are even more promising, especially considering the escalating demands for bandwidth and latency in an
increasingly machine-to-machine communication-dependent landscape. The maturation of IoIT stands to benefit significantly from
these advancements, paving the way for unprecedented levels of connectivity and efficiency across various industries and domains.
Nevertheless, since 6G should not be around in this decade, 5G is already expected to unleash a series of profound transformations
for the still-evolving Internet of Intelligent Things.

3. The machine learning revolution

The Machine Learning (ML) ‘‘concept’’ has undergone a significant evolution since its beginnings, with initial developments in
the so-called ‘‘classic ML’’ until the impressive achievements in the Deep Learning era. In this classical ML, algorithms were mainly
based on statistical models and supervised and unsupervised learning techniques [37]. In short, supervised learning is a conceptual
approach in which algorithms are trained with input data and their respective desired outputs, aiming to learn a model that can
generalise and make correct predictions (inferences) for new unlabelled data [38]. On the other hand, unsupervised learning involves
analysing unlabelled data, seeking to identify patterns, structures, or clusters within the provided data set, without the need for prior
information about classes or target values [39]. Both approaches have been widely exploited in classical ML to solve problems of
classification, clustering, regression, and feature extraction, allowing a more interpretive understanding and analysis of data [37,40].

Fig. 4 presents the temporal evolution of different Machine Learning algorithms and paradigms, highlighting an evolution trend
that has unravelled in parallel to the previously discussed areas of embedded systems and wireless networking.

As depicted in Fig. 4, some of the main classical ML algorithms include Linear Regression, Logistic Regression, Decision Trees,
K-Nearest Neighbours, Support Vector Machines, and Naive Bayes, which have been applied in a variety of domains such as fraud
detection, demand forecasting, product recommendation, sentiment analysis, and pattern recognition [37], just to cite some of
the most common applications. Actually, this vast set of possible applications for classical ML algorithms directly benefits from
6
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their inherent simplicity and easiness of explanation (also referred to as ‘‘explainability’’), making it easier to grasp the results and
draw insights from the data [41]. However, limitations in their ability to handle complicated and non-linear data also pose some
restrictions, which prompted the development of more advanced systems like Deep Learning [42].

As a culminating stage of the mentioned evolution trend, Deep Learning (DL) has emerged as a new paradigm based on neural
etworks capable of automatically learning complicated data representations at many levels of abstraction. These networks are
sually composed of numerous layers of processing units called artificial neurons that conduct mathematical operations on input
ata to change it into more meaningful representations. Each succeeding layer pulls more abstract elements from the data, enabling
he detection of subtle patterns and correlations [42]. Obviously, more elaborated modelling of a particular system or a set of
ariables comes at the cost of higher computational costs, which is one of the reasons why Deep Learning has become more popular
hen more affordable and powerful hardware resources come into the scene [43].

The capacity of DL to automatically learn important features rather than relying on manual feature engineering, as is the case
ith traditional ML techniques, is one of its key advantages [44]. This means that deep neural networks can handle unprocessed,
igh-dimensional data, including text, audio, and image data, and instantly learn representations that are more valuable for some
pplication domains. Deep neural networks are also very adaptable and can be trained on massive datasets, using the processing
apacity of a GPU (Graphics Processing Unit) to accelerate training, particularly creating more generic models after the 2000s
Fig. 4) [45]. These characteristics have made deep learning especially effective in areas such as Natural Language Processing
NLP), using Recurrent Neural Networks, computer vision, applying Convolutional Neural Networks, and many other high-end
pplications [42,46]. By learning complex and hierarchical representations of data, deep neural networks have achieved remarkable
erformances in tasks such as machine translation, object recognition, sentiment detection, and medical diagnosis, leading to
ignificant advances in several fields [42].

Currently, the field of machine learning is still developing thanks to cutting-edge deep learning models like Generative Adversarial
etworks (GANs). These GANs have revolutionised content creation by making it possible to produce realistic images and movies
sing training data. This important development landmark has strengthened graphic design and computer vision, opening the door
or original and inventive applications in both domains [47]. Simultaneously, the emergence of the attention mechanism and the use
f transformers have played crucial roles in machine learning nowadays [48]. These approaches have been particularly successful in
atural language processing applications, allowing the development of advanced models of Large Language Models (LLMs) such as
he GPT (Generative Pre-trained Transformer). Notable instances, such as ChatGPT, which is based on the GPT architecture, present
n astonishing ability to interpret and synthesise coherent text, which is accelerating the creation of smarter and more conversational
irtual assistants [49].

In parallel, machine learning has made great progress in computer vision, leading to the development of techniques like the
ision Transformer (ViT). With the help of attention and transformations, ViT has achieved success in image analysis, enabling the
xtraction of pertinent characteristics [50]. Segment Anything (SAM) is a technique that employs ViT to precisely and effectively
egment items into images, advancing object recognition and analysis in the field of computer vision, and it is a noteworthy example
f this [51]. These recent advancements in the field of machine learning are propelling the development of more advanced systems
apable of understanding, generating, and analysing information in increasingly sophisticated ways, with practical applications in
wide range of fields such as natural language processing, computer vision, and many others. This constant evolution is opening

p new opportunities and leading the machine learning field forward, which is currently being employed in a variety of areas such
s health, finance, industry, etc [52,53].

However, until the early 2020s, the need for substantial computing power for modern machine learning was closely tied to
loud-based infrastructure. This approach has provided scalable and flexible capabilities, enabling companies and organisations
o run ML algorithms efficiently, handle large volumes of data, train complex models, and run inferences in real time. Cloud
omputing also promotes collaboration and sharing of models and data across teams and organisations, driving the advancement and
doption of machine learning in many areas of research and application, without requiring significant investments in on-premises
nfrastructure [54]. Nevertheless, the associated costs of these complex infrastructures, notably the related carbon footprint in a
orld increasingly concerned with sustainable solutions, have also raised important concerns about the widespread adoption of

omplex ML models strongly dependable on cloud-based computational power. Actually, with the promotion of edge AI solutions
nd TinyML algorithms, it is expected that a large set of problems can be addressed by compressed tailored solutions with reduced
nergy consumption, potentially opening a more sustainable development trend for ML [55,56].

Conversely, the recent deployment of ML-based approaches at the edge has enabled the birth of a new generation of IoT,
he Internet of Intelligent Things [4]. For this, model optimisation techniques have been created and enhanced to enable the
ompression and reduction of models with the goal of implanting them in microcontrollers and single-board computers, making
hem ‘‘intelligent’’. These strategies began to emerge with the introduction of TinyML in the early 2020s, as well as the development
f embedded devices, as discussed in Section 2.1. However, IoIT also faces some challenges, such as available computing resources,
nergy supply, and storage limitations on devices, which may continue to limit the implementation of many ML architectures on
mbedded devices. Moreover, there is a need to manage and update locally deployed models, necessitating the definition of a path
o idealise the efficient deployment of models in embedded devices, optimising their resources, and actually paving the way for the
ising of the Internet of Intelligent Things paradigm [18].
7
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4. Foundation of the Internet of Intelligent Things

The growing demand for smarter devices, able to understand contexts and make decisions on the spot instead of relying
xclusively on systems in the cloud, has driven the development of the next generation of IoT-based applications [10,11]. This new
eneration, referred to as the Internet of Intelligent Things, is still experiencing its first steps, but the expectations are already high.
n a nutshell, this ongoing revolution aims to create solutions that operate with greater autonomy and efficiency, with interconnected
mbedded devices being able to perform complex tasks and quickly adapt to the users’ needs [4]. Moreover, when surpassing the
onventional reasoning of machine-to-machine communications previously enabled by the Internet of Things paradigm, the IoIT
nnovates by bringing artificial intelligence closer to the IoT devices, defining a new operation scope. As a result, we can expect
hat the IoIT will be the leading paradigm for new disruptive applications in many scenarios, moving the Internet of Things paradigm
o a more prominent place.

Generally speaking, the aforementioned development trend toward IoIT has been supported by the convergence of various
omputing areas, described as follows:

• The edge computing paradigm, which benefits from current embedded devices with enough computational power to process
large volumes of data;

• The ‘‘classical’’ internet of things, which establishes the infrastructure for interconnecting devices that will work together to
achieve common goals;

• The emerging TinyML concept, which allows the implementation of machine learning models (both classical ML and
Deep Learning) in embedded devices such as microcontrollers and single board computers, giving them the perception of
‘‘intelligence’’ [57].

As expected, the main challenges faced by the new generation of IoIT applications are directly related to the execution of artificial
ntelligence algorithms in embedded devices, which will typically have limited computational resources. In this context, TinyML
merges as a key element, allowing the implementation of efficient and compact machine learning models, suitable to run on these
onstrained devices. In this way, overcoming these challenges is crucial to further drive the development of the Internet of Intelligent
hings, enabling it to offer intelligent and adaptable solutions that benefit various areas of everyday life [18].

Given the high complexity of machine learning models, which generally necessitate devices with high computational power and,
n some cases, a dedicated GPU, the main impediments to the evolution of the Internet of Things from the paradigm of ‘‘monitoring
transmission’’ to ‘‘monitoring - comprehension - transmission’’ are related to the accurate and energy-efficient deployment of
achine Learning (ML)/Deep Learning (DL) models in embedded devices [4].

The primary obstacle stems from the nature of classical IoT applications, which rely on the deployment of numerous networked
evices to solve common problems. In this setting, these devices must be affordable, which inevitably leads to devices with minimal
omputational power and memory resources. This limitation of computing resources makes implementing ML/DL models on IoT
evices more difficult than the currently popular paradigm, where models reside in the cloud, typically employing robust computers
ith dedicated GPUs [2].

Therefore, it is critical to define a cutoff point for selecting the embedded devices that will form the basis for Internet of Intelligent
hings applications. We define three guiding criteria for that:

1. C1: Energy efficiency, allowing for sustainable, prolonged, flexible, and potentially secure operation;
2. C2: Affordability, seeking for large-scale deployment;
3. C3: Sufficient processing capacity, supporting the execution of ML/DL models.

All of these factors are critical and must be taken into account in Internet of Intelligent Things projects. For example, in some
ases, it may be critical to avoid blanket adoption of NVIDIA Jetson boards, because while they meet criterion C3, they may fall
hort of requirements C1 and C2. Similarly, designing IoIT devices based on Arduino UNO can be difficult because it may match
riteria C1 and C2, but fall short of criterion C3. As a result, prudent device selection based on these three criteria is critical in this
ontext.

At this point, a reference taxonomy is proposed to relate classes of embedded devices to the implementation of ML/DL models,
sing the concept of TinyML as the main guiding point. This taxonomy classifies devices into two categories: ‘‘High-end TinyML’’,
onsisting of embedded devices with greater computational power, but not excessive to the point of disregarding criteria C1 and
2, and ‘‘Low-end TinyML’’, which encompasses embedded devices with lower computational power, but sufficient for a growing
roup of small tasks that require some level of ‘‘intelligence’’.

.1. High-end TinyML

This group encompasses all embedded devices that have reasonably high computational power within the IoIT scope. In general,
hey will have the ability to execute the most robust TinyML models while still respecting deployment criteria C1 and C2. As a
esult, these devices are highly valued according to criterion C3, while maintaining remarkable energy efficiency and a moderate
ost that makes them viable for large-scale deployment.

Based on the aforementioned criteria, the class of embedded devices that fits into the High-end TinyML category is known as
8

ingle-board Computers (SBCs). The SBCs are entire, working computers that are integrated on a single printed circuit board and
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contain all of the main components of a computer, such as a processor, RAM, storage, and multiple input and output interfaces, such
as USB, HDMI, Ethernet, and Wi-Fi, among others. Furthermore, it is typical for SBCs to support entire operating systems, such as
Linux, Windows, or Android, which broadens their capabilities and possibilities for use in TinyML projects. Due to their versatility,
compact size and energy efficiency, SBCs have become a prominent choice for applications that require more computing power in
resource-constrained environments [58]. Their ability to run robust TinyML models in real-time and their ease of integration across
multiple devices make them ideal for implementing advanced artificial intelligence solutions in our defined context.

SBCs serve an important role as sensor nodes in the IoT landscape, gathering data from diverse sources such as temperature,
umidity, brightness, and acceleration [59]. These sensor nodes are usually dispersed throughout several surroundings, allowing
or distributed monitoring and data collection. Furthermore, SBCs are commonly employed as IoT gateways, serving as data
ntermediates between sensor nodes and central processing and storage systems. This gateway capability enables effective data
ggregation and transmission to the cloud or other processing infrastructures. In this sense, SBCs are especially indicated for the
mplementation of models that require greater computational power, making them ideal for more complex tasks, such as computer
ision (object detection and tracking, semantic segmentation, pose estimation) and speech processing (speech recognition, natural
anguage processing).

Therefore, these embedded devices may be used to solve problems in critical IoIT scenarios [60,61]: their ability to collect data
rom sensors in a distributed manner and transmit it efficiently, coupled with their ability to process complex artificial intelligence
odels, makes SBCs a versatile and powerful choice to meet the challenges of these diverse environments. In smart cities, for

xample, they help with traffic monitoring, energy resource management, and smart urban services. In precision agriculture, SBCs are
ey to optimising the use of agricultural resources and improving production and sustainability. In industry 4.0, these devices enable
ntelligent automation, machine monitoring and process optimisation, contributing to greater efficiency and productivity [58,62].
n summary, the use of SBCs in intricate IoIT scenarios greatly accelerates digital transformation and makes it possible for smarter,
ore connected, and effective solutions across a range of industries. The Raspberry Pi Zero, 2, 3, 4, and 5 boards, the Banana Pi M2
ero, as well as the NVIDIA Jetson TX2 board, which represents a high-performance option albeit at a higher cost (moving away
rom criterion C2), are some of the best-known SBCs that fall into the High-end TinyML class that were relevant examples presented
n Section 2.1.

In general, it is reasonable to say that the possibilities for deploying cutting-edge solutions in many IoIT scenarios have increased
s a result of the availability of SBC boards, revolutionising the development of this area [62].

.2. Low-end TinyML

While the High-end TinyML class is more associated with the criterion C3 when implementing applications in the Internet of
ntelligent Things context, we define that the Low-end TinyML class is more associated with criteria C1 and C2, ensuring better
nergy efficiency and lower implementation cost, as opposed to lower computational performance (being weaker in criterion C3).
his class is composed of extremely low-power embedded devices, known as Microcontrollers (MCUs).

MCUs differ from SBCs in terms of their CPU architectures, which has a big impact on how powerful they are computationally.
ith low power and energy-efficient processors, they have a small number of resources, including low RAM, integrated flash

torage, and simple I/O interfaces, and are highly integrated and designed for particular embedded applications [2]. In fact, the
omputational power difference between SBCs and MCUs is obvious, putting the Low-end TinyML class in a position where it can
un simpler ML/DL models, making it ideal for the implementation of simple artificial intelligence solutions. As a result, this type of
evice has been extensively used for simpler monitoring activities, mostly employing structured data from analogue sensors [63].

There are many examples of successful IoIT applications when employing MCUs. In health monitoring, MCUs may be used for
he detection of irregularities or alarms in the event of a medical emergency via biometrics sensor data, which are often employed
n wearable devices. In environmental monitoring, MCUs may be used for collecting and processing data from sensors that indicate
ollution levels and air quality. Additionally, Low-end TinyML devices also favour the concept of the Internet of Intelligent Things
hen pursuing the Industry 4.0 concept, easing the implementation of solutions to monitor and control machines while assuring
igher flexibility and scalability [64]. This can usually be performed by the continuous monitoring of multiple variables, trying to
dentify failures and allowing preventive maintenance when the sensed data is processed using ML/DL models. Another example
ore associated with logistics is based on the adoption of MCUs to classify products and packages through simpler computer vision

rchitectures, facilitating the process of separating products in a factory [4].
Microcontrollers can be adopted with more modern CPU architectures and greater processing capacity. The ESP32, Arduino

ano 33 BLE, and the Raspberry Pi Pico are popular choices that provide the necessary processing power for the implementation of
ow-end TinyML models. Additionally, some options could be viewed as outliers among MCUs, with a high computational power due
o the use of a specific processing unit for ML/DL as FPUs (Floating-Point Unit), well fulfilling criterion C3 of implantation of TinyML
odels, but distancing themselves from criteria C1 and C2 due to the tendency of these MCUs to be pricey and energy-intensive (as

s the case with Sipeed Maix Bit and Arduino Portenta H7).
As a result, MCUs have moved from a position where they were used exclusively as sensor nodes in past IoT generations into

position where it is possible to process information and make decisions based on TinyML models, becoming intelligent sensor
odes [65,66]. This trend can be perceived when comparing some devices of the Low-end TinyML class with the devices of the
igh-end TinyML class, since some of them overlap when concerning our defined comparison criteria, even partially. In order to
9

ighlight these facts, Table 1 summarises the most popular boards for both classes in our taxonomy.
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Table 1
Low-end and High-end TinyML devices’ specifications.

Board Cost (US$) Supply (A) RAM (MB) Arch. Cores Freq. (MHz) Add.

Low-end Arduino Nano BLE 33 ∼25 ∼0.5 0.256 32-bit 1 64
Adafruit EdgeBadge ∼36 ∼1.0 0.192 32-bit 1 120
ESP32 DevKitC ∼10 ∼0.5 0.512 32-bit 2 240
Raspberry Pi Pico W ∼7 ∼0.5 0.256 32-bit 2 133
STM32F746 ∼15 ∼0.5 0.5 32-bit 1 216
Sipeed Maix Bit ∼45 ∼1.0 8.0 64-bit 2 600 FPU
SparkFun Edge ∼17 ∼0.5 0.384 32-bit 1 96 FPU

High-end Banana Pi M2 Zero ∼20 ∼2.0 512 32-bit 4 1200 GPU
Orange Pi Zero 3 ∼35 ∼2.0 1000 64-bit 4 1500 GPU
Raspberry Pi Zero W ∼15 ∼1.2 512 32-bit 1 1000
Raspberry Pi Zero 2 W ∼20 ∼1.2 512 64-bit 4 1000
Raspberry Pi 3 model B ∼35 ∼2.5 1000 64-bit 4 1200
Raspberry Pi 4 model B ∼35 ∼3.0 1000 64-bit 4 1800
Raspberry Pi 5 ∼56 ∼5.0 4000 64-bit 4 2400
NVIDIA Jetson Nano ∼99 ∼5.0 4000 64-bit 4 1430 GPU

Finally, in relation to High-end TinyML class devices, it is possible to observe in Table 1 that they tend to have approximately
0x higher energy consumption than low-end devices, reaching up to 5 A. In contrast, computational power also tends to be
pproximately 10x higher, with CPUs with up to 4 cores at 64-bit and 2.4 GHz. Another point that can be observed is the availability
f memory in devices of this class, which can be thousands of times greater than those of low-end devices, with RAM of 512 MB and
GB, but with versions that support up to 2, 4, and even 8 GB. In terms of cost, the Zero line boards (Banana and Raspberry) fit

riterion C2 well, costing between $15 and $20, which is close to the cost of some of the surveyed microcontrollers, being attractive
ossibilities for a genuine implementation with more processing capability. On the other hand, the Jetson Nano, NVIDIA’s entry-level
ard, is impracticable for some applications due to its extremely high cost and energy consumption, meeting only criterion C3 very
ell, as previously discussed.

.3. State-of-the-art applications and current research scenario

In order to answer this question in an initial effort, a survey of the literature was conducted about the development of TinyML
pplications between the period of 2020 and 2023, highlighting the novelty of this concept. In this investigation, we considered
ome of the most relevant research databases as reference, namely IEEE Xplore, Springer Link, ScienceDirect, ACM Digital Library,
nd MDPI, utilising the following search query: ‘‘Machine Learning’’ & ‘‘Embedded’’ & ‘‘Edge’’ & ‘‘Internet of Things’’.

During this search, we identified a total of 58 papers published in relevant conferences and journals that met our keywords. On
hat, we performed a stringent screening process, prioritising papers that either mentioned or effectively integrated ML/DL models
n boards classified as Low-end or High-end, encompassing not only the model training and conversion processes. Subsequent to
his rigorous screening process, we curated a final selection of 27 research papers, which are summarised in Table 2. In that Table,
‘Deploy’’ indicates whether the respective research work implemented some deployment strategy and employed ML models on
mbedded devices, while ‘‘Benchmark’’ indicates whether the corresponding work conducted evaluations pertaining to resource
onsumption on embedded devices, encompassing considerations such as memory, CPU, or energy utilisation.

After performing this survey, some conclusions could be taken. First, the following characteristics could be identified:

• The majority of the works used supervised learning models like Convolutional Neural Networks (CNNs) and Deep Neural
Networks (DNNs), but some unsupervised learning models like Isolation Forest were also identified;

• Applications are more prevalent in the medical, industrial, and agricultural contexts, employing sensors such as cameras,
microphones, and scalar sensors for image classification, detection, and segmentation, as well as sound detection, classification,
and regression;

• Among the Low-end class boards presented in Table 1, the most identified in the performed survey was ESP32, STM32, and
Arduino Nano 33. The Raspberry Pi Pico board has been little explored, being a gap for investigation since it is the cheaper
MCU board and with lower estimated energy consumption;

• Among the High-end TinyML boards, there is a greater use of Raspberry board models 3 and 4, which are the ones with the
highest costs and energy consumption. The use of the Zero line boards is also little explored;

• The model’s accuracy, memory usage, and latency were essentially evaluated every time embedded AI was adopted. Few studies
examined energy usage, and none examined the board’s resources and consumption over an extended time while simulating
a real application.

In addition to the listed observations, in Table 2 it is also possible to observe that the most used framework for the implementation
f TinyML models is TensorFlow in its two variations: TensorFlow Lite (TFLite), for high-end devices, and TensorFlow Lite for
icrocontrollers (TFLM), for low-end devices. However, in recent years, a new trend has been to use TinyMLOps platforms, such as
dge Impulse (EI), which performs training, optimisation, and prepares the code for deployment on the target device [90], making
10
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Table 2
Literature on TinyML-based applications between 2020 and 2023.

Work Year Field Class Deploy Benchmark Board Sensors Problem Framework Learning Architecture

[67] 2020 – Low-end x x STM32, ESP32,
Adafruit Feather,
Adafruit Metro

Camera Image classification TFLM Supervised SVM

[68] 2020 Robotics High-end x x Jetson AGX Camera Image segmentation TensorRT Supervised CNN

[14] 2021 Medical Low-end – Microphone Sound detection TFLM Supervised ANN

[69] 2021 Industrial High-end x Jetson Nano Camera Anomaly detection – Supervised GAN

[70] 2021 Industrial Low-end x Arduino Nano 33 Vibration Online learning TFLM Unsupervised DNN

[71] 2021 Agriculture High-end x Raspberry Pi 3 Camera Object detection PyTorch Supervised CNN

[72] 2021 Vehicular Low-end x Arduino Nano 33 IMU Anomaly detection – Unsupervised TEDA

[73] 2021 – Low-endHigh-end x x STM32, ESP32,
Adafruit Feather,
Adafruit Metro, etc

Camera Image classification TFLM Supervised SVM

[74] 2021 Traffic Low-end Arduino UNO Piezoeletric Regression SciKit Supervised Random Forest

[75] 2022 Smart city Low-end High-end x x ESP32, Raspberry
Pi 4, Google Coral

Camera Object detection TFLMTFLite Supervised CNN

[76] 2022 Vehicular High-end x Jetson Nano Camera Object detection PyTorch Supervised CNN

[77] 2022 Vehicular High-end x Jetson TX2 Microphone Sound detection – Supervised DNN

[78] 2022 Industrial Low-endHigh-end x x Arduino Nano 33
Raspberry Pi 4

Temperature Classification TFLMTFLite Supervised MLP

[79] 2022 Robotics Low-end x x Raspberry Pi Pico Camera Image segmentation TFLM Supervised CNN

[80] 2022 Medical Low-end x Arduino Nano 33 Microphone Spectogram classification EI Supervised CNN

[16] 2022 Energy High-end x Raspberry Pi 4 Camera Image classification TFLite Supervised CNN

[15] 2023 Industrial Low-end x x ESP32 IMUTemperature Anomaly detection – Unsupervised Isolation Forest

[81] 2023 – Low-end x x STM32 Camera Image classification – Supervised CNN

[82] 2023 Medical Low-end x Arduino Nano 33 ECG Classification TFLM Supervised CNN

[83] 2023 Vehicular Low-end – Camera Image classification TFLM Supervised CNN

[84] 2023 Agriculture Low-end x Arduino Nano 33 Spectral Classification EI Supervised CNN

[85] 2023 Industrial High-end x Raspberry Pi Zero WiFi RSSI Classification EI Supervised DNN

[86] 2023 Home Low-end x Arduino Nano 33 Gas Classification EI Supervised DNN

[87] 2023 Robotics High-end x Jetson Nano Robotics Image segmentation – Supervised DNN

[88] 2023 Medical Low-end x Arduino Nano 33 Camera Image classification EI Supervised CNN

[12] 2023 Automotive Low-end – Fuel Regression – Unsupervised TEDA

[89] 2023 Energy Low-end x Arduino Nano 33 Camera Image classification EI Supervised CNN

the process a ‘‘black box’’. However, while these works engage in substantial discussions about the AI models they adopt, a critical
research gap emerges in the lack of proper evaluation of the hardware constraints of the employed boards.

Therefore, it is clear that the question posed in this section cannot be fully addressed. This is due to the hardware utilisation
n scenarios where AI is embedded, which may need to operate uninterruptedly over an extended duration. Elaborating on
he significance of addressing this question, it is imperative to underscore that the Internet of Intelligent Things represents a
ransformative paradigm in the realm of interconnected devices. The practical feasibility of IoIT applications heavily relies on the
bility to balance the demands of intelligent decision-making with the constraints of hardware resources, especially in prolonged
peration scenarios. This way, resolving this question is pivotal for the advancement of IoIT, as it informs the design and optimisation
f systems that aim to strike a harmonious equilibrium between intelligent functionality and resource sustainability, ultimately
haping the future of connected, intelligent ecosystems. We believe that this question is still to be better answered in the coming
ears.

. Applications and perspectives of IoIT

The construction of the Internet of Intelligent Things paradigm revolves around the integration of intelligent devices equipped
ith embedded artificial intelligence and wireless networking capabilities, as discussed in previous sections. These devices are
esigned to perform a wide range of tasks and function autonomously, making them a pivotal component of the evolving digital
andscape. In recent years, the literature has witnessed a surge in research works highlighting various applications of IoIT, each
ccompanied by its own unique set of challenges and contributions. This section will shed light on some of these noteworthy
pplications, underlining their significance and the innovations they bring to the forefront of technology and connectivity.

.1. IoIT application domains

The Internet of Intelligent Things paradigm has rapidly expanded its footprint across a multitude of application domains,
howcasing its transformative potential in various sectors. In recent years, some new application areas have emerged, depicted
s follows:

• Smart Cities: IoIT plays a pivotal role in the development of smart cities by creating interconnected ecosystems that have the
potential to enhance urban living in multiple ways. Intelligent devices, such as smart traffic lights, environmental sensors,
11
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and autonomous transportation, may work to optimise different urban systems, particularly when performing decisions on
the edge [55,91]. With stakeholders investing more resources to better prepare for the negative impacts of climate change,
it is natural to expect that IoIT may come as an affordable tool to accelerate the desired smart city transformation into more
sustainable and resilient urban areas;

• Industry 4.0: IoIT has been expected as the driving force behind Industry 4.0 [92,93]. Intelligent machines, equipped with
AI and IoT sensors, enable real-time monitoring and predictive maintenance, increasing production efficiency, minimising
downtime, and reducing operational costs. In the coming years, this trend should be reinforced;

• Smart Agriculture: in general, agriculture has seen a remarkable transformation through the adoption of IoIT. Smart farming
solutions leverage AI-powered sensors and drones to monitor crops, soil conditions, and livestock health [94]. When supported
by data-driven approaches, IoIT may enhance crop yields, conserve resources, and ensure sustainable agricultural practices,
even when brought to an urban agriculture scenario [95];

• Military Applications: the military sector may harness IoIT to gain a tactical advantage through enhanced situational awareness.
Intelligent drones, wearable devices, and smart logistics systems will bolster the capabilities of armed forces, improving
communication, surveillance, and strategic decision-making [96]. When embedded AI is also considered, the possibilities to
better understand the field and react properly are considerably enhanced, bringing tactical advances for military uses;

• Space Exploration: space agencies have been employing IoIT to advance space exploration missions, especially due to cost,
reliability, and efficiency issues [97]. Intelligent spacecraft and rovers have been equipped with AI-driven systems that
autonomously navigate and perform complex tasks on distant celestial bodies, expanding our understanding of the target
environments;

• Healthcare: IoIT has revolutionised healthcare with smart medical devices and remote patient monitoring. Wearable health
trackers and AI-powered diagnostics have been used to enable early disease detection and personalised treatment plans,
improving patient outcomes and reducing healthcare costs [98]. This trend might still be very prominent, with embedded
AI evolving to provide more accurate and fast solutions for many healthcare issues;

• Environmental Monitoring: the adoption of IoIT to gather data that can be associated with the tackling of climate change is
an important trend, with intelligent sensors playing an important role. In parallel, the monitoring of pollution levels and or
urban variables has also been considered. In general, intelligent sensors and satellite networks will keep helping scientists to
make informed decisions to mitigate environmental threats and protect ecosystems, reinforcing the relevance of IoIT in this
scenario [99];

• Energy Management: IoIT can be leveraged to optimise energy consumption in both residential and industrial settings. Smart
grids, connected appliances, and energy-efficient buildings enable users to reduce energy waste, lower costs, and reduce their
carbon footprint [100];

• Education: IoIT has the potential to revolutionise education with smart classrooms and personalised learning experiences.
Intelligent devices and AI-driven educational tools may address the individual student needs, enhancing the quality of
education in multiple ways [101].

In each of these domains, IoIT presents unique challenges and contributions. Recent works have exploited low-end and high-end
ardware boards with embedded AI algorithms, with solutions evolving as hardware capabilities improve and the efficiency of
he AI algorithms increases. In general, the fusion of intelligent devices with AI promises a future marked by greater efficiency,
ustainability, and quality of life across a multitude of sectors.

.2. TinyMLOps and the IoIT revolution

The endeavour of designing smart devices that encompass the requisites of IoIT, covering the previously discussed application
omains, presents intrinsic challenges. In general, it is critical to examine a variety of devices deployed in various localities, where all
f these devices require frequent and effective updating of their ML/DL models in order to maintain intelligence levels with accurate
esults. This operational environment necessitates the creation of a Machine Learning Operations flow (Machine Learning Operations
MLOps) tailored for distributed and embedded environments, also known as TinyMLOps (Tiny Machine Learning Operations) [102].

When considering a typical workflow for developing and provisioning TinyML models on IoIT devices, it is feasible to break it
own into two steps closely associated with the locations where the tasks are performed, namely, in the cloud layer and on IoIT
evices. This way, Fig. 5 presents a generic TinyMLOps pipeline highlighting the expected services for both conceptual layers, which
an be further adjusted by different applications according to their particular requirements.

The phase of the TinyMLOps pipeline performed in the cloud encompasses operations aimed at developing the model, following
he same process of the MLOps. This phase begins with the data Extraction, Transformation, and Loading (ETL) procedure, which
an be presented in structured, image or audio formats. This ETL results in the composition of a dataset that encompasses both the
raining set and the test set, which are used in later stages [103]. Subsequently, the training set from this dataset is used to fine-tune
ML/DL model with a specific architecture during the Training stage. This culminates in the creation of a model precisely adapted

o the IoIT application context, which is evaluated in the Validation stage to identify whether the performance of its responses is in
ine with what is expected from a set of test data [104].

This initial phase of the pipeline, which consists of training and validating the ML/DL model, represents the stages of the
inyMLOps process that presents the lowest performance risk when it comes to deployment on devices belonging to the Internet of
ntelligent Things. This is because the model will not be adapted to the embedded context, limiting this phase to the learning process,
12
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Fig. 5. Representation of the TinyMLOps cycle to create IoIT devices.

particularly in supervised learning settings [105]. Once the model has been customised to the specifics of the IoIT application context,
the process of converting it to the TinyML domain continues, with the goal of distributing it to the IoIT devices that comprise the
application’s perception layer.

The process of adapting the model to the TinyML context is primarily an optimisation process in which the model is subjected
to modifications in order to improve its efficiency and make it agile and lightweight. These optimisations are accomplished through
the use of techniques such as quantisation and pruning [106], and they represent a critical stage due to their ability to determine
the model’s performance when running on IoIT devices, particularly in terms of computational resource consumption [107]. In this
regard, this step is distinguished by the presence of significant risks, both in terms of TinyML model performance and the potential
deterioration of knowledge acquired in previous phases, because inadequate optimisations have the potential to damage the model’s
accuracy [108]. However, if the model is successfully optimised, resulting in a lighter ML/DL model, the next step is to convert it
to the TinyML context, followed by its insertion in the cloud storage and versioning module, as presented in Fig. 5.

In order to better highlight these ideas, Table 3 presents some of the frameworks commonly adopted in a typical TinyMLOps
pipeline.

As summarised in Table 2, some works have employed the Edge Impulse framework to implement TinyML solutions [90].
Actually, although not specified in Table 3, the Edge Impulse already implements all steps of the TinyMLOps pipeline, gaining
popularity lately.
13
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Table 3
Some popular TinyMLOps frameworks.

Stage High-end Low-end

Cloud Training TensorFlow, PyTorch TensorFlow, Edge Impulse
Validation TensorFlow, PyTorch TensorFlow, Edge Impulse
Optimisation Pruning, Quantisation (optional) Pruning, Quantisation (necessary)
Conversion TensorFlow Lite, ONNX TensorFlow Lite for Microcontrollers, Edge Impulse

IoIT device Flashing module TensorFlow Lite Runtime, ONNX Runtime Over-the-air
Inference module TensorFlow Lite Runtime, ONNX Runtime TensorFlow for Microcontrollers Library

Once the TinyML models are available in the cloud, the TinyMLOps cycle proceeds on to the second and final phase, which is the
elivery of the models to IoIT devices for actual use on the edge. In order to provide a reference implementation in this scenario,
s presented in Fig. 5, these devices should implement three generic modules that include both hardware and embedded software:

1. Acquisition Module: consists of hardware with wireless network interfaces that allow direct communication with the TinyML
model storage and versioning module in the cloud. It also includes the embedded software required for authentication in this
service as well as downloading the representative file of the most recent model, which is then saved on disk;

2. Flashing Module: responsible for transferring the TinyML model previously downloaded from the cloud to the local memory
of the IoIT device, preparing it for use. Generally, this module consists of libraries specialised in loading models, as well as
supporting inference execution;

3. Inference Module: includes specific libraries for loading TinyML models into memory and moving the model from memory
to the processing unit (CPU or GPU, if available). Furthermore, it maintains sensor inputs capable of creating data in the
model’s specific context, which may include scalars, images, or audio. Finally, it generates the model response, allowing IoT
devices to intelligently process input.

Given the full TinyMLOps cycle, with an emphasis on developing and delivering models to enable IoIT devices, it is important to
ighlight that this generic process incorporates specific technologies and techniques aimed at the two categories of devices outlined
n this article, namely, the low-end and high-end. These differences apply only to the Training, Validation, Optimisation, and
onversion stages in the cloud phase, while in the IoIT device phase, they are concentrated in Flashing and Inference modules,
s presented in Table 3.

In conclusion, the integration of TinyMLOps into the context of IoIT devices is a multifaceted journey, intricately weaving
ogether specialised technologies like TensorFlow Lite [109], ONNX runtime [110], OTA (Over-the-air) [111], and more. As
elineated in this section, this process is not an one-size-fits-all solution; rather, it adapts to the unique demands of low-end and high-
nd devices at various stages, from the cloud-based training and optimisation to the IoIT device-specific flashing and inference. By
arnessing these diverse tools and techniques, organisations can navigate the ever-evolving landscape of IoIT with finesse, delivering
fficient and intelligent devices that cater to a wide spectrum of applications and use cases, followed by some specific challenges
hich current researches aim to solve.

. Discussion

After conducting an in-depth review of the literature and subsequent analyses, several research and development guidelines
merge. These guidelines serve as valuable indications of persistent challenges and promising research trends, supporting future
orks. In this section, we summarise the challenges of the presented convergence of embedded systems, edge computing, and
achine learning, revisiting key aspects to be considered. The main strategies and promising technical solutions to address these

hallenges are also identified. Finally, perspectives and research directions are envisioned, paving the way for new developments
n this area.

.1. Research challenges

The previously discussed convergence of embedded systems, edge computing, and machine learning within the realm of the IoIT
resents a multitude of challenges, each with its own set of constraints and expected obstacles. The primary identified challenges
an be summarised as follows:

• Resource constraints: there is a need for proper reasoning of the computational resource constraints of the employed
electronics. Edge devices will typically operate with limited computational power, memory, and energy resources, making it
challenging to execute complex machine learning algorithms properly. In this sense, the balancing of computational resources,
energy efficiency and affordability will be a common guiding factor in IoIT applications;

• Adaptability: this is related to the possibility of IoIT deployment on multiple different locations, changing the context of the
monitored scenarios. Nowadays, context switching presents itself as an important challenge to be tackled in most applications.
IoT scenarios are usually defined by the presence of countless interconnected devices distributed across diverse geographic
14

locations and operating in a wide range of contexts, which necessitate a comprehensive approach to the adaptation and
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customisation of ML/DL models. The inherent complexity of these ecosystems is further complicated by their dynamic and
changing nature, where situations can change quickly. As a result, edge models require adaptability in order to satisfy the
demands of ever-changing IoT scenarios [112];

• Security and data preservation: ensuring data privacy and security in IoIT deployments is crucial but challenging. Processing
sensitive data at the edge necessitates robust security measures to safeguard against potential breaches or unauthorised access.
Nevertheless, the additional complexity of ensuring security may conflict with existing resource constraints and adaptability
requirements;

• Interoperability: this is another pressing challenge with increasing relevance in new applications. It was discussed that IoIT
ecosystems comprise heterogeneous devices and platforms, requiring seamless communication and interoperability to facilitate
efficient data exchange and collaboration. In this scenario, scalability is also a concern, as IoIT systems must accommodate
a growing number of connected devices and handle increasing data volumes effectively. Furthermore, some applications
demand real-time processing at the edge, imposing strict latency constraints and further complicating resource management
and optimisation efforts.

The existence of these challenges highlights the necessity to keep improving IoIT systems. Overall, these challenges may become
bstacles to the deployment of intelligent devices in this new era of IoT, but some perspectives are promising to alleviate them.

IoIT involves deploying machine learning models directly on edge devices for local data processing, thereby reducing latency
nd bandwidth usage. Adopted computing approaches will distribute computing tasks across edge devices, optimising resource
tilisation and scalability. Moreover, federated learning may enable collaborative model training across distributed edge devices
hile preserving data privacy, which is a critical consideration in IoIT environments.

In this article, we defined a taxonomy to categorise the adopted embedded devices: ‘‘High-end’’ and ‘‘Low-end’’. The criteria for
lassification are energy efficiency, affordability, and sufficient processing capacity, which we identified as fundamental character-
stics. As discussed before, while high-end devices have greater computational power, low-end devices have lower computational
ower but are sufficient for small tasks that require some level of intelligence. In this sense, an important consideration is the use
f hardware acceleration, such as the use of a GPU (Graphics Processing Unit), TPU (Tensor Processing Unit), and FPGA (Field
rogrammable Gate Array), which will typically enhance the performance of machine learning inference on edge devices. Software
ptimisation techniques, including model compression, quantisation, and pruning, may also help to reduce the computational and
emory requirements of machine learning models, making them suitable for deployment on resource-constrained edge devices. All

hese aspects are crucial to achieving the expected goals within the defined budget.
It is also noticeable that each enabling technology for IoIT offers distinct advantages and limitations. Edge computing, for

nstance, reduces latency and improves privacy by processing data locally but is constrained by limited computational power and
torage capacity compared to cloud servers. Machine learning at the edge enables real-time decision-making and preserves data
rivacy but faces challenges in optimising models for edge deployment. Wireless communication technologies facilitate seamless
onnectivity between edge devices but are susceptible to bandwidth limitations and security vulnerabilities. Future works should
hen be concentrated in reducing the gap between the expected performance and the existing hardware/software landscape, taking
dvantage of new technological tools and methods.

Since we want to enable the implementation of efficient and compact machine learning models suitable for running on resource-
onstrained devices, TinyML will be a guiding point. However, hardware and software elements must be considered in a combined
erspective, since the development and deployment of compressed artificial intelligence models is also critical for the limited
omputational resources of embedded devices. These models should be designed to be lightweight and have reduced memory and
rocessing requirements while maintaining acceptable accuracy levels.

.2. Perspectives and future directions

The ongoing advancements in the Internet of Intelligent Things offer valuable insights into promising research trends. In fact,
hese insights serve as crucial guideposts for the evolution of this application domain. This subsection compiles various perspectives
nd research directions gathered from the performed literature review and discussions.

From an initial perspective, knowledge transfer emerges as a machine learning research challenge, as models developed in a
articular context may not be easily relevant in another. In order to adjust to contextual differences, the ability to employ incremental
earning principles becomes critical. In this context, Federated Learning comes as a promising approach that has attracted increasing
ttention in this regard. In fact, it enables models to be trained locally on edge devices using their data, reducing the need for
entralised data aggregation that might be impractical or even impossible in some IoT scenarios [113].

Adopting federated learning within the Internet of Intelligent Things paradigm offers several compelling benefits. Firstly, it
ddresses privacy concerns by enabling model training directly on edge devices without the need to transmit sensitive data to
entralised servers, thus preserving data privacy and security. Secondly, federated learning reduces the communication burden
n networks by leveraging local computation, making it particularly suitable for IoT environments with limited bandwidth or
ntermittent connectivity. This approach also enhances scalability as it distributes the computational load across numerous edge
evices, allowing for the training of large-scale models without overwhelming individual devices or network infrastructure. Doing
o, federated learning may promote adaptability by enabling models to be fine-tuned on diverse data sources, reflecting the unique
haracteristics and contexts of individual devices or user preferences. Nevertheless, while there are advantages, it also poses
15

hallenges that include increased complexity in training and aggregation, particularly due to heterogeneity among edge devices. For
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the IoIT landscape, however, the compelling opportunities may still favour the adoption of federated learning in many scenarios,
notably in efficient 5G and 6G networking settings [114,115].

Approaches like federated learning may help to mitigate the challenges of concept drift, but they may require high computational
nd energy costs, which contrasts with lower-cost and long-range technologies, such as LoRaWAN [113]. In this way, the
nvestigation of concept drift in different locations of IoIT devices is a highly relevant academic challenge in the machine learning
rea, being recently addressed in the literature [116–118].

The federated learning concept also needs to deal with the limited computational resources of IoIT devices, which may be ill-
uited for both model training and inference tasks due to their computational resource constraints [119]. Typically, for this type of
‘learning’’, there is a scenario in which the inference devices belong to a class of devices with limited resources, while the training
evices constitute another class with more capacity intended exclusively for training. Although the federated learning approach
llows inference devices to collaborate when training models locally, the problem of scaling training from multiple inference devices
o just one more powerful training device becomes evident [120]. This is due to the need for maintaining training efficiency since
ynchronising and aggregating models from distributed inference devices into a single training device can overwhelm it, which makes
calability an even more complex issue [121]. At this point, variations like Split Learning have emerged to enable collaborative model
raining without sharing raw data between devices. Split learning is particularly well-suited for scenarios where data privacy is a
oncern, which can be a valuable addition to the toolbox of machine learning techniques for IoIT applications [115].

In addition to the lack of computational resources in embedded devices, little is known about the capacity of conventional
latforms to execute TinyML models for long periods. Moreover, it may be not straightforward to know which architectures and
asks can be supported and how they behave in a real scenario. This aspect makes device deployment in the Internet of Intelligent
hings problematic, being an inherently embedded systems challenge [122]. Due to the fundamental nature of these devices,
rocessing capacity and available memory are severely limited. Because of these limitations, conventional machine learning and
eep learning architectures are frequently beyond the reach of these embedded applications, opening up space for comprehensive
esearch in the field of optimising existing architectures, as well as creating lightweight and efficient architectures aimed specifically
t implementation in the context of IoIT [123].

Nevertheless, although it is unquestionable that these resource-constrained devices lack the necessary capacity to perform
nferences based on high computational cost architectures, there is a notable lack of comprehensive benchmarking studies that
horoughly address a variety of popular embedded hardware platforms, in addition to evaluating a diverse range of ML/DL
rchitectures applied to specific tasks in areas such as computer vision, audio processing, data reduction, among others [122].
he lack of this type of study constitutes a significant gap in current knowledge, emphasising the urgent need for thorough studies
hat provide a clear and comparative view of the capabilities of various embedded devices in terms of ML/DL implementation. Doing
o, it would be feasible to identify the optimal scenarios for employing ML/DL technologies in IoIT devices, as well as to guide the
reation of optimised and personalised architectures to satisfy the specific demands of these constantly evolving devices [124].

In summary, the integration of intelligence into IoT devices opens up a plethora of applications across sectors like medical,
griculture, automotive, and smart cities. However, challenges such as limited computational resources, context switching, security,
nd the need for adaptation in dynamic environments, persist. Federated learning may be promising in addressing some of these
hallenges but it also introduces new obstacles related to computational constraints and scalability. Furthermore, benchmarking stud-
es are lacking in evaluating embedded hardware platforms for ML/DL implementations, highlighting the need for comprehensive
esearch in this area. Ultimately, overcoming these challenges is crucial for the successful deployment of intelligent IoT devices,
nsuring that they meet quality criteria such as energy efficiency, affordability, and adequate processing capacity for real-world
pplications across various domains.

. Conclusions

The Internet of Intelligent Things is a deliberate and ever-changing convergence of embedded systems, edge computing, and
achine learning. In this field, the integration of these three elements is critical for developing increasingly intelligent and efficient

olutions that allow linked devices and systems to interact, make autonomous decisions, and provide novel services. This convergence
eflects an evolution in the aforementioned domains that began in the 1950s, encompassing a still ongoing quest to fully use the
otential of interconnection between embedded devices, data processing near to the points of origin, and improved machine learning
lgorithms.

In the current scenario, we have embedded platforms with sufficient computational resources to guarantee processing at the
dge via Machine Learning/Deep Learning architectures that can be ported to low-end devices, such as microcontrollers (Arduino
ano BLE 33, ESP32, STM32, etc.), which have less computational power than high-end devices such as single-board computers

Raspberry Pi Zero/3/4/5, NVIDIA Jetson, etc.). Both classes will allow the implementation of such AI architectures, defining a
roader area recently named as Tiny Machine Learning (TinyML). This novel area has been consolidating itself in the literature with
orks applied to the domains of smart cities, medical assistance, agriculture, military, autonomous robotics, among many others.
uch possibilities are mainly due to the development of model optimisation techniques, such as Quantisation and Pruning, and the
volution of wireless network technologies that allow the transmission of such optimised models from the cloud environment, where
hey were trained, validated, optimised, converted, and stored, toward IoIT devices spread across multiple locations, allowing them
o update their decision-making functions, completing the Tiny Machine Learning Operations (TinyMLOps) cycle.

This article surveyed research works in this comprehensive area, finding and classifying a number of very recent contributions
16

ocused on the development, analysis, and testing of TinyML models on low and high-end embedded platforms through frameworks
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such as TensorFlow Lite, Keras, TensorFlow Lite Micro, and Edge Impulse. Moreover, we identified challenges that intersect the three
convergent areas that define the Internet of Intelligent Things paradigm, encompassing issues that are related to its distributed nature
(with devices spread across multiple locations and contexts) and resource constraints. Although TinyML is not necessarily IoIT, since
there are many other issues to consider, this article discussed how compressed ML/DL models deployed on embedded devices will
be the central element of Internet of Intelligent Things.

Overall, it was discussed that the identified key challenges predominantly arose from the resource limitations of IoIT edge
evices. These constraints pose significant obstacles to deploying more sophisticated ML/DL architectures that necessitate greater
omputational capabilities. It could be seen that some current research efforts have been centred on the investigation of metrics
ost linked with model correctness and their packaging for implementation on low and high-end systems.

Furthermore, we discovered a research gap in the analysis of how existing models work on platforms when applied to the Internet
f Intelligent Things context, which necessitates smart devices on the edge that consume low energy and that are affordable. When
ringing ML/DL models to the edge, such concerns should foster new research efforts to create a more adequate hardware landscape,
upporting further developments of IoIT-based applications.

Finally, after achieving our expected goals in this survey article, future works will be dedicated to the development of extensive
erformance benchmarking, taking into account a variety of popular low-end and high-end platforms, as well as different ML/DL
odels from different application contexts. This is expected to support the understanding, through metrics on performance and

omputational resource consumption, about the configurations that would better allow the implementation of IoIT devices that
eet the three criteria defined in this work. Doing so, we want to further support the analysis of IoIT solutions, paving the way for
ore transformative developments in this area.
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