
Measurement: Sensors 33 (2024) 101114

Available online 12 March 2024
2665-9174/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Investigation and implementation of digital software architecture based on
internet of things

Jie Liu a, Boxiang Gong b,*, Lan Yang c

a Guizhou Light Industry Technical College, Guiyang, 550000, Guizhou, China
b Guizhou Xishan Technology Co., Ltd., Guiyang, 550081, Guizhou, China
c Guizhou City Vocational College, Guiyang, 550025, Guizhou, China

A R T I C L E I N F O

Keywords:
Digital software architecture
Internet of things
Data preprocessing
Data mining
Cluster analysis

A B S T R A C T

Application systems are becoming increasingly complex, and software system architecture plays an increasingly
important role in the software development process. In view of the problems of the traditional software archi
tecture, such as slow data processing speed, poor stability of the architecture and low accuracy of data classi
fication, this paper studied the digital software architecture based on the Internet of Things (IoT) technology, and
conducted data pre-processing on the data collected by sensors, mainly including data reading, data cleaning,
data transformation and data reduction. Through experiments, it could be found that the accuracy of digital
software architecture using data preprocessing for data classification was more than 93.52%, and the average
accuracy of 10 experiments was 94.55%. At the same time, the digital software architecture based on the IoT was
tested, and it was found that both the execution time and the original memory were better than other digital
software architecture. The overall performance of digital software architecture based on the IoT was better.

1. Introduction

The digitization, networking, informatization, and globalization of
social development are one of the characteristics of the new century.
With the rapid development of computer network and information
technology, as well as the rapid development of the global economy, in
order to make the software architecture system more in line with peo
ple’s needs, the goal of software design has gradually changed between
data structure and algorithm research, and the focus of research has
shifted to the design of the software architecture system. In the envi
ronment of the IoT, the behavior of entities in most software architecture
applications is often affected by message exchange, and the behavior of
entities is concurrent, independent, and self evolving. For traditional
software architecture, it is not determined by the behavior of each part.
This would affect the performance of the entire architecture, which is
not conducive to meeting people’s growing needs, and there are also
some shortcomings. Therefore, this paper would study the digital soft
ware architecture based on the IoT, so that the behavior of each area in
the software architecture can be determined, and all data operations can
occur on the architecture, so as to improve the speed of digital software
architecture and the accuracy of processing different data, and over
come the shortcomings of traditional software architecture.

Digital software architecture is a series of related abstract patterns
used to guide the design of all aspects of large software systems. It is a
sketch of a system that describes the abstract components that directly
constitute the system and the connections between the components.
Digital software architecture can also guarantee the security, perfor
mance and maintainability of the software system. Simmhan Yogesh
believed that the data-driven IoT software platform was critical to the
realization of manageable and sustainable intelligent utilities and the
development of new applications. Therefore, he proposed to use soft
ware architecture to solve two key operational activities in intelligent
utilities: the IoT structure for resource management and data for
decision-making [1]. Saavedra Sueldo Carolina proposed a software
architecture design method that integrated discrete event process sim
ulators with robot operating systems, allowing for easy exchange of
information between factory components [2]. Biondi Alessandro pro
posed a visionary software architecture, which allowed deep learning
and ensures the security and predictability of the architecture through
design. At the same time, in order to achieve this goal, the architecture
integrated a variety of different technologies [3]. Ashtari Talkhestani
Behrang proposed an intelligent digital twin software architecture. The
software architecture system could realize plug-in and production,
synchronize with real assets, actively obtain data from the real

* Corresponding author.
E-mail addresses: jieliu324627@163.com (J. Liu), xskjgbx@163.com (B. Gong), 2542578983@qq.com (L. Yang).

Contents lists available at ScienceDirect

Measurement: Sensors

journal homepage: www.sciencedirect.com/journal/measurement-sensors

https://doi.org/10.1016/j.measen.2024.101114
Received 11 July 2023; Received in revised form 23 February 2024; Accepted 11 March 2024

mailto:jieliu324627@163.com
mailto:xskjgbx@163.com
mailto:2542578983@qq.com
www.sciencedirect.com/science/journal/26659174
https://www.sciencedirect.com/journal/measurement-sensors
https://doi.org/10.1016/j.measen.2024.101114
https://doi.org/10.1016/j.measen.2024.101114
https://doi.org/10.1016/j.measen.2024.101114
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Measurement: Sensors 33 (2024) 101114

2

environment, and simulate capabilities, thus emphasizing the added
value of digital twins in intelligent automation systems [4]. However,
these scholars’ research on software architecture is not comprehensive
enough, and the research on digital software architecture can be better
based on the IoT.

With the continuous expansion of the application scope of the IoT,
the research on the IoT in software architecture has become increasingly
hot. How to better build an excellent software architecture is the focus of
many scholars’ research, and has achieved some results. Picone Marco
proposed a new edge digital twin software architecture model through
the IoT system based on digital twins, making it possible for lightweight
replication of physical devices, and providing an efficient digital
abstraction layer to support autonomous and standard collaboration of
things and services [5]. Hajvali Masoumeh provided a software archi
tecture for the medical system based on the IoT. The purpose was to
solve some non Functional requirement of the medical system, explain
the proposed architecture through the view method, and use graph
transformation to transform the model and express the semantics of the
operation [6]. Lamonaca Francesco proposed a Structural health
monitoring-IoT based on the IoT paradigm, which was used to monitor a
building locally. He used multiple sensors to collect information and
used this information to identify potential hazardous damage. The
proposed software architecture was a method to meet the synchroni
zation requirements [7]. Jacob Pramod Mathew believed that the IoT
did not allow the use of common software architecture in different
fields, but allowed adjustments according to user requirements. It pro
vided suggestions for solutions and improvements of different software
architecture types, and the interaction between identified software ar
chitecture elements would provide better help for different software
architecture to analyze different types of software architecture of the IoT
[8]. In general, the research content of the IoT in software architecture is
more, but the research content of digital software architecture based on
the IoT is less. In order to improve this content, this paper would inte
grate the IoT to study digital software architecture.

Due to the wide range and scope of the IoT, experts and researchers
in different fields have different starting points for their research on the
IoT. The IoT can extend traditional information networks to a wider
physical world, which is also the trend of information technology
development and would have a profound impact on the development of
economy, society, production, and life. For this reason, this paper would
use the IoT to study the digital software architecture, and provided a
reference for the flexible and efficient application of the IoT. At the same
time, this was also to overcome the problems of slow data processing
speed and poor stability of the traditional digital software architecture,
and help digital software architecture develop better.

2. Digital software architecture design

Software architecture can impact data analysis in a variety of ways in
real-world applications, and distinct architecture types and design phi
losophies each have special benefits and use cases. In order to effectively
support data analysis and business decisions, it is vital to select the
suitable software architectural design mode in practical application
based on the unique business requirements and circumstances. An event-
driven software architecture design approach called “part-driver archi
tecture” uses events to start the system’s execution. Event-driven ar
chitecture has the potential to facilitate real-time data flow processing
and analysis in the field of data analysis. Every transaction, for instance,
can be thought of as an event in a financial trading system, and the
system can process and analyze transaction data fast using an event-
driven methodology to keep an eye on risks and market dynamics in
real time. A popular software architecture design mode called “layered
architecture” separates the system into several levels, each of which is in
charge of carrying out particular tasks. A hierarchical architecture can
assist in the division of data into various layers in the field of data
analysis. To better support business analysis and decision making, data

can be managed and kept at multiple granularities in the banking sys
tem, for instance.

Modern business contexts see a tremendous rise in the volume and
complexity of data. The massive volume of data gathered from several
channels and sources is a significant obstacle to conventional data
processing techniques. The inefficiency of traditional data processing
methods in handling such massive volumes of data restricts the precision
and effectiveness of data analysis. The diversity of data is a significant
problem for current software designs for processing and evaluating data,
in addition to the volumetric barrier. Different processing and analysis
techniques are needed for different kinds of data, including unstruc
tured, semi-structured, and structured data. Thus, traditional software
architectures face challenges in processing and analyzing these diverse
kinds of data efficiently. Organizations must implement new software
architectures and technologies to overcome these obstacles and raise the
caliber and productivity of data processing and analysis. Simulta
neously, it must prioritize safeguarding data security and privacy,
enhancing the system’s maintainability and scalability, and encouraging
data integration and exchange among various applications and systems.

2.1. IoT architecture

Large-scale software systems are designed and implemented using
digital software architecture, a high-level abstraction that addresses the
characteristics, behavior, and structure of the system. One of the
fundamental ideas of digital software architecture is modular design,
which separates the system into separate, reusable modules to increase
the software’s maintainability and reusability. The ability to execute
software development and testing concurrently thanks to the modular
design lowers the complexity and expense of the development process.
One of the theoretical pillars of digital software architecture is abstract
hierarchy, which separates complicated systems into several abstract
levels, each concentrating on a distinct element. Another theoretical
foundation of digital software architecture is event-driven design, which
uses events to start the system’s execution process. The system’s ability
to manage asynchronous and non-blocking scenarios is enhanced by its
event-driven architecture, which also boosts concurrency performance
and reaction time.

The architecture of the IoT has many different characteristics.
Compared with traditional internet communication and mobile
communication, the related devices of the IoT are also developed and
updated based on the characteristics of the IoT or existing network de
vices [9,10]. Its characteristics are as follows:

(1) The terminal modes of the IoT are becoming more and more
numerous, with a very large scale. The development of the IoT
would lead to more network terminals being connected to the
IoT, and different applications would spawn more IoT terminal
models [11,12]. How to connect multiple IoT terminals with
different power to the IoT is one of the problems that need to be
solved urgently in the current software architecture of the IoT.

(2) The amount of data is huge. IoT sensing systems often collect a
large amount of IoT data in real-time [13]. For most terminals,
the data collected in real-time can lead to changes in a large
amount of data, which would impose a heavy burden on the
operation of IoT framework software.

2.2. Architecture design

The structure, behavior, and characteristics of an Internet of Things
(IoT) system are covered by the high-level abstraction known as the
software architecture. It serves as a guide for the design and imple
mentation of IoT systems. A set of fundamental principles must guide the
design and implementation of the IoT software architecture in order to
guarantee the system’s dependability, maintainability, scalability, and
security. The following article will outline the fundamentals of IOT

J. Liu et al.

Measurement: Sensors 33 (2024) 101114

3

software architecture design: First, modular architecture One of the key
tenets of the Internet of Things’ software architecture is modular design,
which separates the system into separate, reusable modules with distinct
interfaces and functions. The system’s scalability, maintainability, and
reusability can all be enhanced via modular architecture. (2) Security of
data One of the key tenets of the Internet of Things software architecture
is data security, which calls for the system to have adequate data
availability, confidentiality, and integrity. (3) Sustainability One of the
key tenets of the Internet of Things’ software architecture is maintain
ability, which calls for an easily upgradable and maintained system.
System stability, maintainability, and upgradeability must all be taken
into account during the maintainability design process. Maintainability
can lower the system’s maintenance costs and complexity while
increasing the system’s availability and dependability. (4) Security One
of the key tenets of digital software architecture is security, which calls
for adequate security performance, including data availability, confi
dentiality, and integrity. The security principle guarantees the stability
and dependability of the system and gives it the ability to fend off
numerous security threats and attacks.

As the design model blueprint of the whole software system, software
architecture is the soul of software design and implementation [14,15].
The quality of software architecture system design and performance
directly determines the important characteristics of software in all as
pects. From the current software development process, the design of
software system architecture usually starts from the actual requirements
of the software, considering many factors such as concurrency and dis
tribution, and focuses on user needs. The main purpose of the digital
software architecture system design researched by the IoT is to deter
mine the flexibility of system customization and the diversity of pro
cesses, so that the software architecture can be set more easily in the
configuration mode [16–18].

Digital software architecture aims to direct the design of all major
software system components, assisting architects in providing a frame
work for workable system design solutions that satisfy various client
needs. In addition, a guarantee for the software system’s performance,
security, and maintainability can be given by the digital software ar
chitecture. The following are the primary issues that the digital software
architecture is addressing:

1. System stability: A stable system framework can be provided by
digital software architecture, ensuring that the system can function
steadily under a variety of conditions.2. Flexibility of the system: Digital
software architecture can offer a flexible system design that allows the
system to adjust to changing requirements and various application
scenarios.3. System performance: The system can maintain high per
formance under a variety of conditions thanks to digital software ar
chitecture, which can efficiently optimize performance. In summary, the
digital software architecture is intended to assist developers in creating
software systems that are high-quality, dependable, flexible, and
maintainable by addressing specific challenges or areas such as system
stability, flexibility, performance, etc. The schematic diagram of the
digital software architecture based on the IoT is shown in Fig. 1.

2.3. Module function introduction

The fundamental building blocks of a software architecture are its
modules and components, each of which has distinct roles and duties.
The precise definition of the modules and components in the software
architecture, together with an explanation of their functions, can be
found below: The fundamental building component of a software ar
chitecture is a module, which is a function code block that may be
executed separately and has certain independence and encapsulation.
Every module in the system has a unique interface and purpose for

Fig. 1. Schematic diagram of digital software architecture based on IoT.

J. Liu et al.

Measurement: Sensors 33 (2024) 101114

4

carrying out a task. One of the key tenets of software architecture design
is modular design, which enhances the system’s scalability, maintain
ability, and reusability by breaking it up into several modules. A mod
ule’s functional explanation Encapsulation: To achieve modularization
and code reuse, a module can contain code and work together. Inde
pendence: The module has the ability to operate alone and has a sepa
rate input/output interface for easy communication with other modules.
Reusability: The module’s functions can be applied again to cut down on
duplication of work and boost productivity. Maintainability: Code can
be made more maintainable and less difficult and expensive to maintain
by encapsulating and promoting module independence.

The sophisticated unit that makes up the software architecture is
called a component. It is a unique module with greater autonomy and
professionalism. A component is typically a piece of software that may
be installed and operated on its own, offering a range of interfaces for
external interaction in support of certain business needs. A sophisticated
software architecture can be formed by components working together.
Interpretation of components’ functions: Professional: Professional and
targeted components typically concentrate on particular commercial or
functional areas. Independence: To lessen system coupling and increase
system scalability and maintainability, components can be installed,
operated, and upgraded independently. Interactivity: The system’s so
phisticated business logic can be accomplished by components working
together and interacting through interfaces.

The proper division and design of modules and components in a
software architecture can enhance the system’s overall performance,
maintainability, and scalability. Simultaneously, adhering to the open
ness and standardization principles can improve the system’s ability to
integrate and work with other systems.

According to the analysis of the functional modules of the digital
software architecture system, the functional module structure diagram
of the digital software architecture is divided to achieve the intended
functions. The module structure diagram of the digital software system
architecture based on the IoT is shown in Fig. 2.

2.3.1. User management module
After the user first accesses the user information management

module, the system would grant different permissions to different users
based on their registered identity, automatically determining whether
the user has access to the subfunction module. If the user has this
permission, the system would display the user information query
interface. By providing two key information: user account and user
name, one can directly log in to the system, and the user who logs in can
have certain permissions. After finding qualified users, they would be
displayed in a list below, allowing users to access the user information
viewing interface through a link. The user information would be dis
played in plain text.

2.3.2. Data processing module
The data processing module is a specialized module for managing

data storage. The bottom layer of this model can use different types of
databases to process data information. After processing the information,
a model that provides reference materials to the upper layer would bring
some benefits. All other module data needs to be stored and processed
through the module.

The data storage module is divided into frontend and backend. The
front-end is a part that is unrelated to specific information, ensuring that
even with special devices, shared information can be provided exter
nally. The front-end includes the following modules:

Data access module: This model uses the upper layer of the data
access module. This supports data replication and analysis based on
relationships, and supports delayed loading of data information. For
special input data, it is necessary to call the backend for specific
implementation.

Model management module: This module provides an upper level
framework for analyzing data models. Each data model is equivalent to a
“class”, and developers must determine all data models that should be
used based on this standard. Each field in the model must have a type,
which can be any content specified in type control.

The front-end abstracts public logic unrelated to specific data storage
engines, while the back-end is responsible for implementing various
interfaces required by the front-end. Therefore, different data storage
engines require different independent backends.

2.3.3. Application interaction module
The application interaction module is responsible for displaying the

operation information of the system and providing the function of
interaction with users, so that developers can better create a more
excellent software architecture. This module is based on the architecture
of “model-view-controller”. The model module is mainly responsible for
communicating with specific organizations and storing data information
collected by sensors based on the organization’s language. When the
data of the module changes, it is necessary to notify the view module of
the updated view content, which also prompts the view module to
frequently query its data. The view module is mainly responsible for
reading data from the model layer and presenting the data in a specific
way. At the same time, it is responsible for completing direct interaction
with end users and sending user information input to the controller,
which informs the model of specific changes in data. In order to avoid
damaging the characteristics of the entity, the application interaction
module would complete data exchange with the entity through special
protocol messages, without the need for a central information server,
which is an inevitable requirement for improving interface rendering
performance. The network parameter interface is shown in Fig. 3.

The application message would organize all the application data
parameters in the original terminal settings interface into this table for
reference. The specific expression is as follows:

lineDelayt =

(
lineLength

x

)

∗
3
2

(1)
Fig. 2. Module structure diagram of digital software system architecture based
on the IoT.

J. Liu et al.

Measurement: Sensors 33 (2024) 101114

5

Among them, x is the reaction speed for interface interaction.

3. Data pre-processing of digital software architecture

The concept of data pre-processing is that before using mature al
gorithms to estimate the performance model, a lot of processes need to
be carried out on the original data, so that it can meet the requirements
of relevant models for data pre-processing, and improve the model’s
utilization of data [19,20]. After preliminary processing, the data would
be further corrected and error files would be removed. Duplicate files
are merged, and missing files are added. The required files are selected
and integrated together, and then the data required for optimizing the
model is optimized. The data preprocessing stage is an important and
complex process before data analysis. Its importance lies not only in
ensuring the accuracy and timeliness of the data, but also in removing
irrelevant data from data collection and logs, so that the data has evi
dence to follow and can well meet the needs of analysis and processing
work [21]. The data processing process is shown in Fig. 4.

3.1. Data reading

Sensors collect data from the real world and theoretically integrate it
with the real world. Through scientific research and technological
development in recent years, stable, mature, and high-performance
sensors are being used for monitoring, and sensors are being devel
oped and distributed to more monitoring points to obtain more infor
mation from the real world [22,23]. However, due to the large number
of data analysis points and complex formats, a significant amount of data
may be generated. If most of the abnormal data in these data cannot be
accurately identified, incomplete data would not be covered in a timely

manner, which would be unfavorable for data analysis. Monitoring data
with large errors or poor status often leads to errors in numerical anal
ysis, which also makes subsequent data analysis more difficult. There
fore, it is necessary to first read the data obtained from the sensor, and

Fig. 3. Network parameter interface.

Fig. 4. Data preprocessing flowchart.

J. Liu et al.

Measurement: Sensors 33 (2024) 101114

6

then perform preprocessing.
Assuming that the dataset obtained by the sensor is Y and dataset Y

contains m fault types, the specific calculation expression is as follows:

F(Y)=
∑m

i=1

∑Ki

j=1
qij log2

1
qij

∗ γ (2)

Among them, qij belongs to [0,1], and γ = m/K is the equilibrium
factor.

According to the threshold, if the value of the information entropy of
the data obtained by the sensor during the time period is greater than the
threshold, the formula is as follows:

F(P)= ln

[
∑m

i=1

∑Ki

j=1
qij log2

1
qij

∗ γ

]

>Fave =
1
O

∑m

i=1

∑Ni

o=1
Q(Yio)log2

1
Q(Yio)

∗

(3)

At this point, these data are high entropy data. The higher the in
formation entropy of data, the higher the priority.

3.2. Data cleansing

Due to defects in the algorithm or malfunctions during transmission,
different accounts may correspond to the same set of descriptions,
resulting in duplicate data. When there is a lot of duplicate information,
it is easy to make wrong decisions in the complete information. Creating
only one piece of information at the same time can serve as a principle to
solve duplicate information, which can delete multiple pieces of infor
mation based on the verification time information. To ensure data
continuity, if data loss occurs, it is necessary to supplement the lost
location. The specific measures for cleaning data are as follows:

(1) The most common value is inserted into the missing space. The
existing monitoring data has been subjected to regression anal
ysis and processing, and the values that are most likely to be
cleaned have been inferred.

(2) The data that needs to be cleaned is directly ignored. There is a
large amount of data in the software architecture, and ignoring a
small part of the data that needs to be cleaned has little impact on
the overall data preprocessing, which can be ignored basically.
The drawbacks of this method are also obvious. When the object
being checked is an object with a lower sampling frequency, data
loss and distortion may occur. The specific expression is as
follows:

Xi =
∑n

j=1
μijxij(t)ij (4)

In the formula, μij is the posterior probability of echo i from target j,
and xij is the observed value of echo i in target j tracking gate.

3.3. Data transformation

Heterogeneous survey anomaly data in databases of different for
mats, scales, and locations are integrated. The data comes from many
subsystems, and there is also an issue of abnormal data conversion,
which leads to significant differences in data types. When the data is
different, a table would contain different subsystems to analyze the data.
Therefore, data transformation before data processing is a very impor
tant step, which would quickly increase the speed of analysis.

Due to the fact that the information collected by various sensors
cannot be directly transformed into useable data, some processing
methods need to be used to convert the digital signals collected by
sensors into numerical values that can reflect structural characteristics.
The transformation formula is as follows:

Xi =T(Y − M0) + A (5)

In the formula, Xi is the value after scaling transformation, and M0 is
the initial value of the parameter.

The data collected by wireless sensors can be represented by any
variable, and the probability distribution of any variable can be used to
characterize the uncertainty of all events:
[

Y
Q(Y)

]

=

[
Y = Y1 Y = Y2⋯Y = Yi⋯Y = Ym

Q(Y1) Q(Y2)⋯Q(Yi)⋯Q(Ym)

]

(6)

Among them, Q(Y) = {Yi|0≤ Q(Yi)≤ 1∪
∑n

i=1Q(Yi) = 1}.

3.4. Data reduction

Although some data exists, it has no effect on data processing and can
also affect the efficiency of the entire data processing. Therefore,
reducing data is very necessary. Based on the principle of maintaining
data quality as much as possible, the data volume is refined to the
maximum extent possible. There are two main methods: selection
behavior and data sampling. Selection behavior is used as the basis for
data reduction, which includes pruning, finding formulas, and other
contents. Pruning is the removal of attributes that have little or no
impact on data processing; Branch is the main feature of comparing two
sets of data, completing content with similar features; Searching for a
formula is to find the relationship between two or more data, which is
used to determine anomalies and compare states. The foundation of
finding good relationships is relationships, and it is necessary to uncover
big relationships. By selecting attributes, the features of the data can be
effectively seen, reducing the size of the data. Data sampling is usually
carried out using mathematical methods, which replace lengthy data
with simple and efficient indicators or data representations, making the
entire dataset more efficient and reliable.

The task of time alignment is to align the observation data from
different sensors with different sampling intervals to a unified fusion
time interval. The specific expression is as follows:

x̂i(m)= b1

∑m

i=1
xi + b2

∑m

i=1
i ∗ xi (7)

Among them, b1 = − 2/m.

4. Experiment part of digital software architecture based on IoT

This experiment aims to investigate digital software architecture
design and optimization techniques in an Internet of Things (IoT)
context. We will investigate ways to increase the effectiveness of data
collection, processing, and transmission while maintaining system
dependability and safety by examining the actual sensor data. The real
set of data used in this experiment is derived from Company A’s data.
The data is gathered on the network by means of the crawler software.
The majority of the data consists of specific personnel’s activity details,
such as time stamp, location, and kind of action. To get rid of duplicate
data and outlier values, the data set is cleaned and preprocessed.

Throughout the experiment, make the following assumptions: (1)
IOT devices and sensor nodes are capable of stable, accurate operation.
(2) During data transmission, it can be accurately categorized and
identified. (3) It is capable of efficiently gathering, analyzing, and
sending sensor data.

The following steps make up the experiment:A. Data collection:
Utilize the smart home company’s sensor nodes to gather information on
a predetermined interval.B. Preprocessing the data: remove impurities,
clean up, and extract features from the gathered information.C. System
performance evaluation: Measure metrics like packet loss rate, latency,
and data transmission time to assess the system’s dependability and
performance.

The following are the particular cases, constraints, and metrics of the
Internet of Things-based digital software architecture assessment: The
architecture can be utilized to create a more effective, convenient, and

J. Liu et al.

Measurement: Sensors 33 (2024) 101114

7

secure living and working environment in the areas of smart homes,
intelligent transportation, medical, and other situations, as well as
intelligent management and control of various goods and equipment.
The essential component of the Internet of Things architecture is the
cloud platform layer of software, which enables the management, stor
age, and analysis of diverse data while offering the required service
support for higher-level applications. The following are the primary
index parameters used in the Internet of Things-based digital software
architecture evaluation: The Internet of Things system’s level of intel
ligence and performance are measured by the intelligent performance
index. Safety performance indicators: These are metrics for the Internet
of Things system’s security and preventive measures. Reliable perfor
mance indicators: These speak to the Internet of Things system’s
dependability and productivity.

A lot of data can be collected through sensors in the IoT. Classifying
and subdividing these data would help eliminate unimportant data and
help digital software architecture run faster. The data preprocessing
method is used to classify 100,000 pieces of data collected by the sensor,
and it is found that it can effectively improve the accuracy of data
classification of the digital software architecture based on the IoT. In
order to avoid accidents in the experiment, an iterative experiment was
carried out, and the obtained data was classified. This experiment was
repeated 10 times, and there may be some minor changes or improve
ments between each experiment, so that the experimental data can be
more scientific and reasonable and accurate conclusions can be drawn.
The results obtained from 10 experiments were also compared to a
digital software architecture based on data mining and cluster analysis.
The specific comparison results are shown in Fig. 5.

The x-axis in Fig. 5 represents the number of experiments, with a
total of 10 conducted. The y-axis represents the accuracy of data clas
sification. Through the study of Fig. 5, the accuracy of digital software
architecture for data classification was effectively improved by using
data preprocessing methods. Compared with other two digital software
architecture, the accuracy of classification had obvious advantages,
which was conducive to improving the utilization of data by the archi
tecture. Among them, the accuracy of digital software architecture using
data preprocessing for data classification was more than 93.52%, and
the average accuracy of 10 experiments was 94.55%. The classification
accuracy of digital software architecture based on data mining and
cluster analysis was below 91.8% and 91.2% respectively. The average
values of the 10 experiments were 4.33% and 4.66% lower than the
digital software architecture using data preprocessing, respectively. The
digital software architecture using data preprocessing had the lowest
classification accuracy for data in the ninth experiment, which was only
93.53%, but it was 2.8% and 5.04% higher than the digital software
architecture based on data mining and cluster analysis, respectively. The
digital software architecture using data mining had the highest classi
fication accuracy for data in the sixth experiment, which was 91.77%,

but it was 2.48% lower than the digital software architecture using data
preprocessing; the digital software architecture using cluster analysis
had the highest classification accuracy for data in the second experi
ment, which was 91.12%, but it was still 3.16% lower than the digital
software architecture using data preprocessing.

Whether an architecture is excellent or not, in addition to the
reasonable allocation of data and the reasons for strengthening data, it
also needs to take into account the time of data processing of the ar
chitecture. If the architecture takes a very long time for data processing,
it is also not possible. However, the digital software architecture using
data preprocessing requires less time to process different amounts of
data, and the processing speed is faster. In order to better reflect its
advantages in data processing speed, the time obtained by processing 1
million pieces of data, 2 million pieces of data, 3 million pieces of data
and other data was compared with the data processing time of digital
software architecture based on data mining and cluster analysis. The
specific comparison results are shown in Fig. 6.

In Fig. 6, the x-axis represents the specific amount of data extracted,
and the unit of these data is 10,000, while the y-axis represents the time
required for processing the extracted data, and the unit is minute. As
shown in Fig. 6, the data preprocessing method effectively improves the
speed of digital software architecture for data processing and reduces
the time required for data processing. Compared with other two digital
software architecture, it has absolute advantages in data processing.
Among them, when the amount of data to be processed is 1 million, the
time required for the digital software architecture using the data pre
processing method is 1.2 min, which is less than 0.7 min and 0.5 min
respectively than the digital software architecture using data mining and
cluster analysis; When the amount of data to be processed is 10 million,
the time required for the digital software architecture using the data
preprocessing method is 6.8 min, which is less than 5.1 min and 7.8 min
respectively than the digital software architecture using data mining and
cluster analysis. When the amount of data to be processed is less than 6
million, the digital software architecture using data mining needs far
more time for data processing than the digital software architecture of
data preprocessing and cluster analysis, especially the digital software
architecture using data preprocessing methods; when the amount of
data to be processed is more than 7 million, the digital software archi
tecture using data mining requires more time for data processing than
the software architecture based on data preprocessing methods, but less
than the software architecture using clustering analysis. To sum up, the
digital software architecture uses data preprocessing methods to process
data, which requires the least time and has the best performance.

The digital software architecture is tested, mainly on the execution
time of the digital software architecture, the success rate of data oper
ation, the occupancy rate of the Central Processing Unit (CPU), and the
memory occupancy rate. The test is carried out by using different data
sets, such as 100,000 pieces of data, 200,000 pieces of data, etc., to
verify the superiority of the digital software architecture based on the

Fig. 5. Comparison of data classification accuracy of three different digital
software architecture.

Fig. 6. Comparison of data processing time required by three different digital
software architecture.

J. Liu et al.

Measurement: Sensors 33 (2024) 101114

8

IoT. The architecture test results are compared with the digital software
architecture based on Service-Oriented Architecture (SOA), Data Mining
(DM), and Cluster Analysis (CA). The specific comparison results are
shown in Table 1.

As shown in Table 1, the digital software architecture based on
different methods is tested. Through many tests, it can be found that the
digital software architecture based on the IoT has advantages in all as
pects, and is superior to other digital software architecture in perfor
mance. With the increase of the amount of data, although the execution
time of the digital software architecture based on the IoT is increasing,
its growth rate is smaller than the other three digital software archi
tecture. At the same time, although the success rate of data operation is
also decreasing with the increase of data volume, the speed of reduction
is lower than that of the other three digital software architecture. For the
CPU share, from 100,000 to 300,000 pieces of data, the increase of
digital software architecture based on the IoT is 4.1%. The digital soft
ware architecture based on SOA, DM and CA is 5.5%, 5.49% and 13.5%
respectively. The CPU share of the digital software architecture of the
IoT is 1.4%, 1.39% and 9.4% lower than those of the three digital
software architecture. For memory occupancy, from 100,000 to 300,000
pieces of data, the increase of digital software architecture based on the
IoT is 2.52%. The digital software architecture based on SOA, DM and
CA is 9.87%, 9.46% and 8.11% respectively. The CPU share of the digital
software architecture of the IoT is 7.35%, 6.94% and 5.59% lower than
those of the three digital software architecture. To sum up, the perfor
mance of the digital software architecture based on the IoT is better in all
aspects. No matter the executed data, or the data’s share of memory and
CPU, it is better than other digital software architecture.

Depending on the needs and application scenarios, the digital soft
ware architecture based on the Internet of Things and the software ar
chitecture based on data mining and clustering analysis each offer
advantages.

The benefits of digital software architecture based on the Internet of
Things are mostly seen in the following areas: Scalability: By simplifying
the overall architecture and reducing the need for physical device
maintenance and application, the Internet of Things design allows de
vices to be deployed in more places. Greater extensibility to enable a
wider range of application situations. Greater effectiveness. The Internet
of Things can calculate data with strong timeliness, and communication
efficiency is always improving, resulting in decreasing information
transmission delays. Productivity can rise in tandem with the rise in
decision-making rate. Cut costs: By lowering the investment in physical
equipment, the Internet of Things can help businesses invest more in
other areas of improvement and capital applications. This includes
lowering the cost of purchasing and maintaining equipment later on.
Simplified administration: By simplifying the Internet of Things archi
tecture, it is possible to drastically cut down on the amount of man
agement content that is involved in day-to-day operations and instead

concentrate on monitoring actual objects. It can also use the Internet of
Things to provide remote maintenance and troubleshooting in the event
of a failure, which will lessen the workload. More expert data analysis:
With the aid of the Internet of Things platform, certain small and
medium-sized businesses that are comparatively low on technology can
take advantage of the industry’s relatively sophisticated technical re
sources to perform a more expert analysis of the data from their current
operations and identify areas in which they fall short. Boost operability:
The Internet of Things offers robust operability, a wide range of protocol
compatibility, and excellent compatibility. Compatibility can be some
what improved by its linked devices.

The benefits of data mining and cluster analysis-based software ar
chitecture are mostly seen in big data processing, which can efficiently
mine and analyze massive data sets, extract important knowledge and
information, and support decision-making and planning for businesses.
In addition, cluster analysis can assist businesses in grouping and clas
sifying data to improve data utilization and understanding. In conclu
sion, there are benefits to both the Internet of Things-based digital
software architecture and the data mining and clustering analysis-based
software architecture. Businesses should select the right architecture
based on their unique requirements and use cases.

5. Conclusions

In this era of rapid development of information technology, people’s
dependence on computers has also become stronger and stronger. More
and more work is gradually separated from human labor and is
completed by relying on software architecture. Therefore, people have
higher and higher requirements for software architecture. The existing
software architecture can not meet the growing needs of people, and its
processing speed for complex data is relatively slow. In the face of large-
scale data, the traditional software architecture is easy to develop faults
when processing data. This paper studied the digital software architec
ture based on the IoT, and compared it with the traditional software
architecture. It was found that the digital software architecture based on
the IoT was more in line with people’s needs. It also had faster data
processing speed and overall performance. This greatly improved the
efficiency of software research and development, reduced the possible
errors in the process of demand analysis and software architecture
design, and reduced the human resources and costs of the later main
tenance of software architecture.

The following factors primarily illustrate the limitations of the
development and application of Internet of Things-based digital soft
ware architecture: 1. Inadequate institutional standards: Because the
Internet of Things’ architecture spans many different technical domains,
there aren’t enough comprehensive technical standards for it because
there is ineffective coordination and communication between the or
ganizations that create them. This has created certain challenges for the
global adoption and advancement of Internet of Things technologies. 2.
Expensive: The deployment of an Internet of Things-based digital soft
ware architecture calls for a large amount of infrastructure support and
equipment, which might have expensive procurement and operating
costs.3. Concerns about security and privacy: The Internet of Things
technology must gather and examine a lot of data, some of which may
contain private information about an individual. It is crucial to figure
out how to secure these data’s security and privacy.

Funding

This manuscript did not receive funding in form.

Declaration of competing interest

The authors declare that there is no conflict of interest with any
financial organizations regarding the material reported in this
manuscript.

Table 1
Test results of different types of digital software architecture.

Evaluating indicator IoT SOA DM CA

Extract 100,000 pieces of data
Execution time (s) 22 29 31 35
Success rate of data operation (%) 98.81 91.26 90.37 91.55
CPU usage rate (%) 41.2 54.9 58.3 56.7
Memory share (%) 40.36 50.31 48.37 60.28
Extract 200,000 pieces of data
Execution time (s) 28 42 57 66
Success rate of data operation (%) 98.66 90.88 89.71 90.76
CPU usage rate (%) 43.6 61.7 66.8 65.4
Memory share (%) 41.57 54.39 53.26 64.12
Extract 300,000 pieces of data
Execution time (s) 36 59 73 87
Success rate of data operation (%) 98.47 90.41 89.49 90.12
CPU usage rate (%) 45.3 60.4 63.79 70.2
Memory share (%) 42.88 60.18 57.83 68.39

J. Liu et al.

Measurement: Sensors 33 (2024) 101114

9

Data availability

Data will be made available on request.

References

[1] Yogesh Simmhan, P. Ravindra, S. Chaturvedi, M. Hegde, R. Ballamajalu, Towards a
data-driven IoT software architecture for smart city utilities, Software Pract. Ex. 48
(7) (2018) 1390–1416.

[2] Carolina Saavedra Sueldo, I. Perez Colo, M. De Paula, S.A. Villar, G.G. Acosta, ROS-
based architecture for fast digital twin development of smart manufacturing
robotized systems, Ann. Oper. Res. 322 (1) (2023) 75–99.

[3] Alessandro Biondi, F. Nesti, G. Cicero, D. Casini, G. Buttazzo, A safe, secure, and
predictable software architecture for deep learning in safety-critical systems, IEEE
Embedded Systems Letters 12 (3) (2019) 78–82.

[4] Ashtari Talkhestani, Behrang, T. Jung, B. Lindemann, N. Sahlab, N. Jazdi,
W. Schloegl, M. Weyrich, An architecture of an intelligent digital twin in a cyber-
physical production system, Automatisierungstechnik 67 (9) (2019) 762–782, at-.

[5] Marco Picone, Marco Mamei, Franco Zambonelli, A flexible and modular
architecture for edge digital twin: implementation and evaluation, ACM Trans.
Internet Technol. 4 (1) (2023) 1–32.

[6] Masoumeh Hajvali, S. Adabi, A. Rezaee, M. Hosseinzadeh, Software architecture
for IoT-based health-care systems with cloud/fog service model, Cluster Comput.
25 (1) (2022) 91–118.

[7] Francesco Lamonaca, C. Scuro, D. Grimaldi, R.S. Olivito, P.F. Sciammarella, D.
L. Carnì, A layered IoT-based architecture for a distributed structural health
monitoring system, Acta Imeko 8 (2) (2019) 45–52.

[8] Pramod Mathew Jacob, Prasanna Mani, Software architecture pattern selection
model for Internet of Things based systems, IET Softw. 12 (5) (2018) 390–396.

[9] G. Tsoukaneri, M. Condoluci, T. Mahmoodi, M. Dohler, M.K. Marina, Group
communications in narrowband-IoT: architecture, procedures, and evaluation,
IEEE Internet Things J. 5 (3) (2018) 1539–1549.

[10] J. Mocnej, W.K. Seah, A. Pekar, I. Zolotova, Decentralised IoT architecture for
efficient resources utilisation, IFAC-PapersOnLine 51 (6) (2018) 168–173.

[11] L. Liu, J. Xu, Y. Huan, Z. Zou, S.C. Yeh, L.R. Zheng, A smart dental health-IoT
platform based on intelligent hardware, deep learning, and mobile terminal, IEEE
journal of biomedical and health informatics 24 (3) (2019) 898–906.

[12] I. Cvitić, D. Peraković, M. Perǐsa, M.D. Stojanović, Novel classification of IoT
devices based on traffic flow features, J. Organ. End User Comput. 33 (6) (2021)
1–20.

[13] Hanyur Abdullah, Functional polymer materials in environmental biosensors in the
context of the internet of things, Academic Journal of Environmental Biology 3 (3)
(2022) 60–68.

[14] Lijun Lun, Xin Chi, Hui Xu, Coverage criteria for component path-oriented in
software architecture, Eng. Lett. 27 (1) (2019) 40–52.

[15] Amarjeet Prajapati, A particle swarm optimization approach for large-scale many-
objective software architecture recovery, Journal of King Saud University-
Computer and Information Sciences 34 (10) (2022) 8501–8513.

[16] A.S. Antonov, R.V. Maier, Development and implementation of the Algo500
scalable digital platform architecture, Lobachevskii J. Math. 43 (4) (2022)
837–847.

[17] Marcelo Campo, Analia Amandi, Julio Cesar Biset, A software architecture
perspective about Moodle flexibility for supporting empirical research of teaching
theories, Educ. Inf. Technol. 26 (1) (2021) 817–842.

[18] Varuun Vermane, Multilayer distributed system software architecture based on
aspect service and web service, Distributed Processing System 2 (4) (2021) 52–60.

[19] Dimitry Tegunov, Patrick Cramer, Real-time cryo-electron microscopy data
preprocessing with Warp, Nat. Methods 16 (11) (2019) 1146–1152.

[20] J. Cai, Y. Yang, H. Yang, X. Zhao, J. Hao, ARIS: a noise insensitive data pre-
processing scheme for data reduction using influence space, ACM Trans. Knowl.
Discov. Data 16 (6) (2022) 1–39.

[21] Poornima Unnikrishnan, V. Jothiprakash, Data-driven multi-time-step ahead daily
rainfall forecasting using singular spectrum analysis-based data pre-processing,
J. Hydroinf. 20 (3) (2018) 645–667.

[22] Y. Li, M. Yang, J. Hua, Z. Xu, J. Wang and X. Fang, "A channel attention-based
method for micro-motor armature surface defect detection," IEEE Sensor. J., doi:
10.1109/JSEN.2022.3159293..

[23] Zeng, X., Wang, Z., & Hu, Y. “Enabling Efficient Deep Convolutional Neural
Network-Based Sensor Fusion for Autonomous Driving.” arXiv preprint arXiv
(2022):2202.11231..

J. Liu et al.

http://refhub.elsevier.com/S2665-9174(24)00090-4/sref1
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref1
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref1
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref2
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref2
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref2
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref3
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref3
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref3
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref4
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref4
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref4
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref5
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref5
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref5
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref6
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref6
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref6
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref7
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref7
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref7
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref8
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref8
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref9
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref9
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref9
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref10
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref10
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref11
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref11
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref11
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref12
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref12
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref12
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref13
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref13
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref13
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref14
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref14
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref15
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref15
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref15
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref16
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref16
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref16
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref17
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref17
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref17
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref18
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref18
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref19
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref19
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref20
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref20
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref20
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref21
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref21
http://refhub.elsevier.com/S2665-9174(24)00090-4/sref21

	Investigation and implementation of digital software architecture based on internet of things
	1 Introduction
	2 Digital software architecture design
	2.1 IoT architecture
	2.2 Architecture design
	2.3 Module function introduction
	2.3.1 User management module
	2.3.2 Data processing module
	2.3.3 Application interaction module

	3 Data pre-processing of digital software architecture
	3.1 Data reading
	3.2 Data cleansing
	3.3 Data transformation
	3.4 Data reduction

	4 Experiment part of digital software architecture based on IoT
	5 Conclusions
	Funding
	Declaration of competing interest
	Data availability
	References

