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Abstract 

Manufacturing management and operations place heavy emphasis on 
monitoring and improving production performance. This supervision  
is accomplished through strategies of manufacturing performance 
management, a set of measurements and methods used to monitor 
production conditions. Over the last thirty years the most prevalent 
measurement of traditional performance management has been overall 
equipment effectiveness, a percentile summary metric of a machine’s 
utilization. The technologies encapsulated by Industry 4.0 have expanded 
the ability to gather, process, and store vast quantities of data, creating 
opportunity to innovate on how performance is measured. A new method 
of managing manufacturing performance utilizing Industry 4.0 
technologies has been proposed by McKinsey & Company and software 
tools have been developed by PTC Inc. to aid in performing what they  
both call digital performance management.  

To evaluate this new approach, the digital performance management 
tool was deployed on a Festo Cyber-Physical Lab, an educational  
mock production environment, and compared to a digitally enabled 
traditional performance management solution. Results from a multi-day 
production period displayed an increased level of detail in both the data 
presented to the user and the insights gained from the digital performance 
management solution as compared to the traditional approach. The time 
unit measurements presented by digital performance management paint a 
clear picture of what and where losses are occurring during production 
and the impact of those losses. This is contrasted by the single summary 
metric of a traditional performance management approach, which easily 
obfuscates the constituent data and requires further investigation to 
determine what and where production losses are occurring. 

 
 
 
 
 
 
 
 
 
 

 
Keywords: Industry 4.0, performance management, manufacturing, 
industrial internet of things, IIoT, overall equipment effectiveness, OEE, 
digital performance management, DPM  
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1 Introduction 

Manufacturing management and operations serve a primary role in 
monitoring and assessing the state of production on the factory floor. This 
evaluation is accomplished using manufacturing performance 
management, a set of measurements and strategies used to determine the 
health of a production environment or process. Performance management 
and measurement became a primary focus of manufacturing operations in 
the late 1980’s and through the 1990’s, at which time heavy inquiry into the 
topic and performance measurement proposals were presented [1, 2]. This 
change was prompted by many factors including the prevalent 
technological advances of the time, a shift in working conditions, 
production improvement methodologies, and market competition [2, 3]. 
While dissatisfaction with the performance measurements and a 
recognition of the value of changing such metrics with improvements in 
technology were voiced at the time [2, 3], performance management and 
measurement have seen little change since the adoption of Overall 
Equipment Effectiveness (OEE), a measure derived from Seiichi 
Nakajima’s Total Productive Maintenance [4, 5]. 

Three decades later, a vast advancement in technology has occurred, 
providing ample opportunity to change and improve performance 
measurements. The technologies encapsulated by Industry 4.0, the fourth 
industrial revolution, allow for greater access to detailed data from 
widespread adoption of industrial computerization [6, 7]. The availability 
of such large quantities of autonomously recorded discrete data should  
be a driving force for performance measurements to evolve beyond 
summary metrics designed for manual recording. McKinsey & Company 
have presented a solution that may accomplish this shift in performance 
measurement [8-10]. This new strategy has been developed into a 
deployable software solution by PTC Inc. [11], though it has yet to receive 
academic evaluation. 

The purpose of this research is to determine the current state of using 
Industry 4.0 technologies to gather performance management metrics, 
evaluate new digital performance management tools and strategies, and 
explore further means of intelligently collecting and visualizing 
manufacturing performance data. To accomplish this both a traditional 
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and digital performance solution will be deployed on a mock production 
system and a multiday production schedule will be executed. The data 
from this period will facilitate answering the following questions: 

• Does the McKinsey & Company measurement strategy presented 
by the PTC Thingworx Digital Performance Management solution 
generate a better or more detailed representation of production 
conditions as compared to traditional OEE based strategies, and in 
what production environments does the Digital Performance 
Management tool prove to be of value? 

• Using current industrial connectivity tools, can new performance 
management strategies and performance measurements be 
applied to existing production systems utilizing the granular data 
from Industrial Internet of Things (IIoT) technologies to provide 
improved, detailed, and customized production insights? 
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2 Published Work 

This chapter is composed from a paper entitled “Digital Performance 
Management: An Evaluation of Manufacturing Performance Management 
and Measurement Strategies in an Industry 4.0 Context” which is  
being prepared for submission for publication to the Journal of 
Manufacturing Systems, published by the Society of Manufacturing 
Engineers (SME). I hereby confirm that the use of this article is compliant 
with all publishing agreements. 

2.1 Introduction 

Manufacturing management and operations frequently concern 
themselves with production performance and process improvement. 
Understanding of these issues necessitates a means to determine the 
current state on the factory floor and track improvement. This production 
monitoring is performed using manufacturing performance management 
strategies and tools. The primary facet of performance management 
consists of the measurements that indicate the health or efficiency of the 
manufacturing process. 

Performance management in manufacturing came into focus in the late 
1980s and through the 1990s, with numerous papers and performance 
measurement proposals [1, 2]. This shift in thinking came about from a 
number of factors including technological advances, changing work 
conditions, production improvement strategies, and market competition 
[2, 3]. Dissatisfaction with performance measures and the need to change 
those metrics with time and technology were also recognized during this 
period [2, 3]. However, performance measurement has seen little change 
since the general adoption of Overall Equipment Effectiveness (OEE), the 
diagnostic measure introduced with Seiichi Nakajima’s Total Productive 
Maintenance [4, 5]. 

A plethora of technological innovation has occurred since the turn of 
the twentieth century, creating ample opportunity to further change 
performance measures. With the advent of Industry 4.0, the fourth 
industrial revolution, the ability to take advantage of more data from 
previous industrial computerization has grown greatly [6, 7]. Innovations 
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in sensors, data storage, and computer processing facilitate the capture, 
logging, and processing of large amounts of discrete data. This newfound 
data granularity should drive performance measurements to grow above 
previous summary metrics designed for manual recording.  

2.2 Literature Review 

It is important to identify that manufacturing performance management is 
not quality management. While it may incorporate parts of quality 
management systems and strategies such as six sigma and statistical 
process control, performance management is distinct in its overall 
management of production performance rather than just product quality. 
Performance management is also different from strategies such as lean 
manufacturing and just-in-time inventory management systems, though it 
does support those strategies and incorporates many of their elements. 
Manufacturing performance management is best defined as a set of 
measurements and methods used to determine the health of a production 
environment or process that monitors the effect of changes and 
improvements upon the observed assets.  

The most widespread application of performance management is 
through the use of overall equipment effectiveness (OEE) as a 
measurement [5, 12-14]. OEE was introduced in the 1980’s by Seiichi 
Nakajima as a diagnostic measure and performance analysis tool to be 
used as the foremost element of total productive maintenance (TPM) [4, 
15]. By itself, TPM is not performance management, but rather a regular 
maintenance strategy with the goal of reducing machine downtime. 
However, OEE has generally been divorced from TPM and its strategies. 
The original OEE calculation result is a conglomerate percentage of a 
machine’s availability, performance efficiency, and rate of quality products 
(quality rate) as seen in the following equations from Nakajima: 

 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 × 𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝐴𝐴𝐴𝐴𝑃𝑃,  (2.1) 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑂𝑂𝑇𝑇𝑂𝑂
𝑃𝑃𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃 𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝑃𝑃𝑂𝑂 𝑇𝑇𝑂𝑂𝑇𝑇𝑂𝑂

 , (2.2) 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 = (𝐼𝐼𝑃𝑃𝑂𝑂𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑂𝑂 𝑇𝑇𝑂𝑂𝑇𝑇𝑂𝑂×𝑃𝑃𝑂𝑂𝑃𝑃𝐴𝐴𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃 𝑈𝑈𝑂𝑂𝑂𝑂𝐴𝐴𝑃𝑃)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑂𝑂𝑇𝑇𝑂𝑂

, (2.3) 

 𝑅𝑅𝐴𝐴𝐴𝐴𝑃𝑃 𝑃𝑃𝑃𝑃 𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑄𝑄𝑃𝑃𝐴𝐴𝑃𝑃 = (𝑃𝑃𝑂𝑂𝑃𝑃𝐴𝐴𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃 𝑈𝑈𝑂𝑂𝑂𝑂𝐴𝐴𝑃𝑃−𝐷𝐷𝑂𝑂𝐷𝐷𝑂𝑂𝐴𝐴𝐴𝐴𝑂𝑂𝐷𝐷𝑂𝑂 𝑈𝑈𝑂𝑂𝑂𝑂𝐴𝐴𝑃𝑃)
𝑃𝑃𝑂𝑂𝑃𝑃𝐴𝐴𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃 𝑈𝑈𝑂𝑂𝑂𝑂𝐴𝐴𝑃𝑃

. (2.4) 

These three components are meant to capture six loss categories including 
equipment failure, setup, idling and small stops, non-ideal process  
speed, product defects, and startup yield losses [4]. Changes in OEE  
over time may be monitored to identify machine issues and track  
improvement efforts. 
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The general adoption of OEE as a performance metric has created 
several issues. The foremost of these is the use of OEE as a comparator 
between production lines, factories, and companies [5] rather than 
comparing a single machine to itself as intended. While Nakajima 
proposed an ideal OEE of 85% or greater [4], maximizing utilization is not 
desirable for non-bottleneck processes and optimization of OEE for any 
asset is a complex affair. OEE is also not a statistically valid measure, and 
by its nature as a percentage resulting from different constituent 
measurement units, often conceals what is happening to production 
quality and output [5]. 

Recognizing that original OEE is limited to a single machine and only 
a few component variables, several attempts have been made to modify or 
alter the calculations to account for more assets and losses on the factory 
floor. Proposals have been made for OEE calculations for various 
production line layouts [16], or factory level throughput efficiency 
measures [17]. Thorough literature reviews have been conducted on  
OEE variations and proposed OEE based metrics, showing that the 
proposed changes and measures either expand the scope of the calculation 
beyond individual equipment, or include additional performance losses to 
the component calculations [16, 18]. However, these new metrics follow 
the same pattern of reducing data to a few component numbers 
representing the performance of the machinery in their defined scope, 
often ending in a single metric. These one number summary measures 
obfuscate the factors that create them by reducing many inputs of differing 
units to a single output [5]. While these variant calculations seek to 
improve OEE through situational customization, they do not innovate on 
the method of measurement. 

Changing performance measures is vital for enterprises to remain 
competitive, but the correct things must be measured for the change to be 
effective. The general dissatisfaction evidenced by the variations of OEE 
are consistent with the trends identified by Dixon regarding changing 
performance management systems. Dixon also identified general issues 
with performance management systems overemphasizing cost based 
measures while neglecting non-financial metrics [3]. Following a survey of 
manufacturing executives, Schmenner and Vollmann further identified 
overemphasized performance measures that produce inefficient and 
ineffective managerial actions, including both machine and labor 
efficiencies [19]. In addition to these findings, it is also important to 
recognize that great advances in technology have occurred since the 
inception of OEE in performance management that should drive changes 
to performance metrics.  

A data driven utilization of industrial computerization, Industry 4.0 
and like initiatives are characterized by technologies driving 
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manufacturing improvement. This primarily involves the Industrial 
Internet of Things (IIoT), a network of digitally enabled production assets 
[6, 7]. Industry 4.0 and the IIoT are requiring data communication to be 
real-time and metrics to be readily visualized [6]. These requirements pair 
well with performance management, as it has been recognized that 
performance measurements need to be gathered and presented in real- 
time to be of value [3, 19].  

Several IIoT architectures and frameworks have been proposed to 
measure performance management metrics. Many of these proposals 
utilize IIoT to gather the component data and or calculate OEE, or OEE 
based measures [20-22]. Others use IIoT to measure production quality, the 
data from which could be fed into OEE calculations [23, 24]. Though not 
focused on performance management, further IIoT based production 
measurement proposals have been made for gathering granular 
production data [25-27]. More detailed frameworks put forth specific data 
communications protocols, including Message Queuing Telemetry 
Transport (MQTT) and Zigbee [21, 25]. None of these proposals attempt to 
generate new performance metrics or management strategies with the 
granular data achievable from IIoT technologies. 

Beginning in 2019, McKinsey & Company put forth the principles of an 
alternative performance management strategy with emphasis on taking 
advantage of digital technologies [9]. This new thought process focused on 
making proper metric comparisons, accurately capturing and distributing 
data, real-time data based alerts, and enterprise spanning performance 
understanding and dialogue [9]. Their new strategy would take shape as 
Performance Management 2.0 with further focus on dissolving siloed or 
department segregated data and forming enterprise spanning data sources 
and actionable insights from granular data and reports [8]. Further 
emphasis on Industry 4.0 technology and digital transformation would 
evolve Performance Management 2.0 into Digital Performance 
Management (DPM), maintaining the aforementioned principles while 
focusing on utilizing technology to achieve the granular data capture and 
single data silo of the previous iteration [10]. A commercial software tool 
has been developed by PTC Inc. (PTC) based on and named after DPM, 
solidifying the principles of the new strategy using time based 
measurements rather than an OEE based calculation or metric [10, 11]. 
However, the DPM strategy and tool have yet to receive academic 
evaluation regarding their effectiveness. 

The purpose of this research is to evaluate the McKinsey & Company 
Digital Performance Management strategy as deployed by the Digital 
Performance Management tool developed by PTC, and to compare that 
solution and how it measures and presents performance measurements 
with a traditional OEE based performance management strategy. To make 
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this comparison between traditional and digital performance 
management, data will be gathered from a multi-day production schedule 
using the four-station model of a Festo Cyber-Physical Lab (FCPL), a 
commercially available educational mock production environment. Both 
performance management solutions will be run during production and the 
gathered data will be compared following the production period. The goal 
of this comparison is to highlight differences in the insights gained from 
the two performance management strategies, and to ascertain how IIoT 
may change performance management in the light of Industry 4.0. 

2.3 Methodology 

The Festo Cyber-Physical Lab (FCPL), shown in Figure 2.1, is a 
commercially available educational mock production environment, 
consisting of four stations including a magazine module, measuring 
module, drilling module, and output module. The workpiece used by this 
four-station model is the front cover of a simplified mobile device, shown 
in Figure 2.2. These parts are transported between stations using carriers 
that ride on conveyors. Each carrier supports a pallet on which the  
parts are held in a workpiece reception jig. Each carrier is also tagged  
using Radio Frequency Identification (RFID) containing information on  
the carrier itself, the held part status, process destinations/ work 
instructions, and job order information. Each station has a stopper unit that 
halts carriers in the correct position for the application of the station to be 
performed and releases the carrier afterward. Each stopper has a post that 
interfaces with a slot in the part carrier to stop it. The post is pneumatically 
retracted to allow the carrier to continue traveling on the conveyor after  
a process is completed.  

Station one, the magazine module shown in Figure 2.3, places parts on 
the carriers. When a carrier stops at the module, sensors check to ensure 
that a workpiece is not already present on the carrier. If the carrier is  
empty, the unit consisting of the inventory magazine and part isolation 
system is lowered close to the carrier’s workpiece reception jig. A single 
part is isolated from the rest of the inventory with pneumatically actuated 
inlay strips, preventing excess inventory from falling with the part to be 
released. Another set of inlay strips then release the isolated single  
part onto the carrier, the magazine and isolation system unit moves 
upward and resets to prepare for the next part, at which point the  
carrier is released.  
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Figure 2.1: Festo Cyber-Physical Lab, showing the output module (left) and the 
magazine module (right). 

 

 
Figure 2.2: FCPL workpiece, the front cover of a simplified mobile device. 
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Figure 2.3: FCPL magazine module. 

 
Station two, the measuring module shown in Figure 2.4, inspects parts 

to ensure they were placed on the conveyor in the correct direction. 
Carriers are stopped under a pair of optical laser distance sensors, which 
take a differential measurement between the areas just to the left and right 
of the part center. When the workpieces are correctly oriented on the 
conveyor the primary upward face of the part will be on the right and a 
lower pocket in the part will be on the left. If the part is correctly oriented 
and is seated properly in the workpiece reception jig, the carrier RFID will 
be written with instructions to proceed to the drilling station for processing 
and the part data is written into the Manufacturing Execution System 
(MES). If the part does not pass this inspection the RFID will instead be 
written to send the part to the scrap tray at the output station, again 
reporting the part status to the MES. Once the inspection is completed and 
the information recorded on the carrier RFID tag and in the MES, the 
carrier is released to continue to the next station. 
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Figure 2.4: FCPL measuring module. 

 

 
Figure 2.5: FCPL drilling module. 
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Station three, the drilling module shown in Figure 2.5, performs a mock 
drilling operation for the four corner holes in the workpiece. When a carrier 
stops at the drilling station the RFID tag is read to determine if the 
operation should be performed as dictated by the result of the inspection 
at the measuring module. If the part is marked for scrap the carrier is 
immediately released. Otherwise, sensors are read to determine if the part 
is present, correctly seated in the jig, and free of obstructions above the 
part. If these conditions are met the mock drilling operation begins, starting 
the drill motors and plunging toward the holes on the left side of the part. 
The drill bits then retract, and a pneumatic actuator moves the drills to the 
right, where they repeat the plunge and retract motion. The drill motors 
are then powered off, move back to their initial position on the left, and the 
carrier is released. 

Station four, the output module shown in Figure 2.6, removes parts 
from the carriers and deposits them in either good or scrap trays. When a 
carrier stops at the module, data regarding if the part is marked as good or 
scrap is read from the MES and sensors check to determine if a part is 
present on the carrier. A pneumatic actuator moves a gripper down to the 
part where the gripper closes to pick up the workpiece. The actuator then 
retracts and according to the data from the MES, moves either left or right 
toward the good or scrap output trays respectively using a motor and belt. 
Once in the depositing position of the appropriate tray, the gripper  
opens and releases the part. Once the part has cleared the drop area as 
detected by the breaking of an infrared beam, the gripper unit returns to 
the center position and the empty carriage is released to receive another 
part at station one. 

The testing period will consist of three shifts of eight hours each, 
conducted over the course of three days. Each of these phases will attempt 
to produce as many parts as possible in the given time while also 
attempting to minimize downtime. Data will be captured during 
production and processed using both traditional and digital performance 
management solutions. Between testing phases, improvement efforts  
will be undertaken to increase the productivity of the FCPL. These 
improvements will utilize the available changeable parameters of the  
four stations as summarized in Table 2.1 and changes will be made 
according to the data insights gathered during the previous production 
phase. Table 2.2 details the initial ideal cycle times for each station.  
Any change to these cycle times as a result of improvement efforts will be 
applied to the performance management solutions to generate accurate 
performance calculations. 
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Figure 2.6: FCPL output module with the gripper over the good part tray. 

 

Table 2.1: FCPL Station Changeable Parameters 

Parameter Value Range Default Value Station 
Conveyor speed 100 mm/s – 50 mm/s 100 mm/s All 

Drilling operation Left Set, Right Set, Both Both Sets Drilling Module 

Gripper horizontal 
motor speed 

0 mm/s – 800 mm/s 60 mm/s Output Module 

Acceptable differential 
measure limit 

49 mm – 0 mm 2 mm Measuring Module 

Pneumatic pressure 0 Bar – 10 Bar 5 Bar All 
 
 

Table 2.2: FCPL Initial Ideal Cycle Times 

Station Ideal Cycle Time (initial setup) 
Magazine Module 3.3 seconds 
Measuring Module 4.4 seconds 

Drilling Module 10.9 seconds 
Output Module 10.1 seconds 
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Data will be gathered from the Siemens S7-1500 Programable Logic 
Controllers (PLC) of each station of the FCPL. Each station’s PLC operates 
on the same hierarchical level and are networked together. The PLCs are 
connected via ethernet to a computer hosting a PTC Inc. ThingWorx 
Kepware Server (v6.13), a configurable Open Platform Communications 
(OPC) server utilizing various drivers to facilitate communication with 
industrial equipment over diverse protocols. The ThingWorx Kepware 
server (Kepware) then streams this data to a cloud hosted instance of 
ThingWorx (v9.3.4), an IoT development platform, via a gateway entity. 
This gateway facilitates reading the PLC tags in other ThingWorx entities, 
such as those representing the stations of the FCPL, as well as writing 
certain Kepware proxy tags (local variables). See Figure 2.7 for an 
illustration of the data flow architecture.  

The traditional performance management solution will intake data 
read by the gateway entity as linked properties. As these properties 
update, ThingWorx will perform the necessary calculations for OEE and 
its components. After each recalculation the generated metrics and the 
constituent data will be recorded in a database inside ThingWorx for later 
retrieval and review. Generated metrics will also be available as they are 
calculated for operator review.  

 

Figure 2.7: Performance management solution data flow architecture. 
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Data going into the digital performance management solution will first 
be gathered and processed by an administrative entity to calculate, clean, 
and direct data to the required inputs. Based on incoming tag values, the 
administrative entity will generate appropriate production counts and  
will standardize various error signals and data into a unified format  
and tag. These processed values are then written to proxy tags in  
Kepware, where they can be read back into ThingWorx by entities 
representing the individual stations of the FCPL. These entities were 
automatically generated in ThingWorx by the Digital Performance 
Management product from PTC Inc. after they were defined within an 
included web-based operator reporting and data visualization display, or 
dashboard. This dashboard also allows for defining standard error 
reporting codes, production schedules, materials, job orders, and 
production demand. These definitions facilitate the automatic processing, 
recording, and later retrieval of production data in the digital performance 
management solution.  

2.4 Results 

2.4.1 Production Period Summary 

Following the testing period, the data from both the traditional and digital 
performance management solutions was exported, cleaned, and analyzed. 
A total of 7051 parts were processed over the three-day production 
schedule (see Table 2.3). Improvement efforts between testing days 
resulted in a 36.6% increase in parts produced on the last day as  
compared to the first. The overall quality of parts processed was 99.53% 
good product.  

Table 2.3: Production Breakdown by Day 

Period Parts Produced Parts Scrapped 
Day 1 2187 13 
Day 2 1843 7 
Day 3 2988 13 
Total 7018 33 

A machine breakdown occurred late on the second day of the test, 
resulting in a drop in production on that day. This machine failure 
occurred in the magazine module’s part isolation system, which had 
experienced occasional errors at the end of the first day and in the early 
hours of the second day. At six hours into the shift (14:00 hours of 
production) the part isolation system began to detrimentally misbehave, 
failing to drop parts correctly and jamming frequently. Within a few 
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minutes the pneumatically actuated inlay strips had seized and would no 
longer release a part without manual assistance. Galling between the upper 
set of inlay strips and their housing was determined to be the cause of the 
issue and was remedied with appropriate application of machine grease. 
The problem identification, partial disassembly, lubrication, and 
reassembly of the system resulted in 73 minutes of unplanned downtime 
for maintenance. The downtime duration recorded at each station differs 
slightly due to other automatically reported loss statuses (i.e., emergency 
stop, conveyor output jam) caused by the maintenance being performed. 
Another seven minutes of unplanned maintenance occurred on the third 
production day to remove excess grease that had begun to leak onto the 
parts being released and inhibit their transfer onto the part carriers. 

As guided by the in-process data being received from the performance 
management solutions, improvement efforts were undertaken between 
testing phases. These improvements would take place at the bottleneck 
process identified by the performance management systems. 
Improvements would focus on reducing the cycle time of the production 
limiting station utilizing the available changeable parameters identified  
in Table 2.1.  

At the end of the first testing phase both traditional and digital 
performance management solutions showed that the drilling module acted 
as the system bottleneck. To decrease the cycle time at that station the 
drilling operation parameter would be changed from the default of drilling 
both hole sets to just drilling the left set. This would remove the horizontal 
traversal of the drills and reduce the cycle time from 10.9 seconds to 4.9 
seconds. In a real production environment this would be akin to adding 
another set of drills to machine all four corner holes at the same time. In 
addition, the pneumatic pressure of the system was raised from the default 
5 Bar to 6 Bar. This pressure increase was taken in reaction to the errors 
seen at the end of the first day on the magazine module and increase the 
consistency of that process. Changing the pneumatic pressure had a 
negligible effect on ideal cycle times.  

At the end of the second testing phase both performance management 
solutions agreed that the output module had become the bottleneck 
process. To alleviate this station’s restriction on production the gripper 
horizontal motor speed was increased from the default 60 mm/s to the 
maximum 800 mm/s. This new speed should not be reached in normal 
operation as limited acceleration rate would require the full stroke length 
of the horizontal axis to achieve that speed. However, this new setting 
raised the achievable speed of a normal half stroke operation between the 
center and an output tray to over 300 mm/s and decreases the cycle time 
from 10.1 seconds to 6.6 seconds, as shown in Table 2.4. 
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Table 2.4: FCPL Final Ideal Cycle Times 

Station Ideal Cycle Time  
(After Improvements) 

Difference from Initial 
Ideal Cycle Time 

Magazine Module 3.3 seconds ±0.0 seconds 
Measuring Module 4.4 seconds ±0.0 seconds 

Drilling Module 4.9 seconds -6.0 seconds 
Output Module 6.6 seconds -3.5 seconds 
 

2.4.2 Traditional Performance Management 

Reviewing the testing results from a traditional performance management 
solution can be done in three layers of increasing detail. The first of these 
is the OEE metric, followed by the component measures (availability, 
performance efficiency, and quality rate), and lastly the constituent data 
that forms the component measures. At the beginning of each day, the data 
used in the calculations were reset, allowing for the individual days to be 
measured independent of each other. The ideal cycle time was also 
updated for the drilling and output modules as improvements were made 
to them between phases. 

The OEE metric for the testing data is shown in Figure 2.8 on the 
vertical axis with cumulative production hours on the horizontal axis. The 
drilling and output modules can be identified as the bottlenecks due to 
their being the greatest OEE during a given day. This correlation between 
greatest OEE and bottleneck processes is due to the nature of the system. 
The FCPL has a limited number of part carriers and does not create excess 
inventory between stations, meaning faster modules cannot operate at a 
pace greater than the bottleneck process cycle time. The high OEE to 
bottleneck relation is also inherent to lean balanced production lines for 
similar reasons, as maximizing OEE for non-bottleneck processes creates 
surplus work in progress inventory. 

Over the course of the three-day testing period, both the bottleneck 
OEE and average OEE decreased despite a significant increase in the 
number of parts produced. Additionally, the OEE of the output module  
on day one was very near that of the drilling module bottleneck,  
explaining the lack of increased production rate the following day  
where the output module became the bottleneck. The effect of the 
unplanned downtime maintenance event is apparent from the negative 
slopes beginning at 14:00 hours of production. Day three showed an 
increase in OEE for all stations except the output module, which decreased 
from the first day’s 76.6% to 68.5% while production between these two 
days increased by over a third. 
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Figure 2.8: OEE of the FCPL stations over the cumulative production time. 

 
Breaking OEE into its component parts should yield further insight 

regarding the trends seen in the parent measure. A plot of availability, 
shown in Figure 2.9, displays the ratio of operating time, or uptime, to 
planned production time (see Equation 2). As such the unplanned 
maintenance downtime on day two is readily apparent, creating a large 
drop in availability roughly between 14:00 and 15:15 production hours. 
Outside of this event there are two notable exceptions to the general  
trend of near 100% availability: the obvious drop in availability at the 
drilling module during day two, and the low starting points of the 
measuring and output modules on days one and three respectively. The 
latter anomalies are due to short periods of downtime early in the shift, 
lowering the availability ratio immediately but approaching normalcy as 
more uptime accrued during the day. The drilling module availability  
drop is also due to downtime, though it does not recover and stabilizes 
around 80% availability. The reasons for this trend will be examined 
further when investigating availability’s constituent data. Other than the 
noted exceptions, availability stayed near 100% and has only a minor 
impact on OEE. 
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Figure 2.9: FCPL availability over the testing period. 

 
A plot of performance efficiency, shown in Figure 2.10, can be 

summarized as the ratio between the ideal effective production time, 
representative of producing at the ideal cycle time, and operating time. 
Some noise is present in the data during the unplanned maintenance 
downtime period due to errant signals during maintenance. The similarity 
between performance efficiency and OEE in this data shows the former to 
be the driving component of the latter, and thus many of the observations 
regarding OEE apply to performance efficiency as well. This includes the 
decrease in the metric at the bottleneck process despite an increase in units 
produced. Notable here however, is the tightening range of the 
performance efficiency and OEE values between stations. This trend is 
indicative of the smaller range of the cycle times between stations that 
occurred because of the improvements made, resulting in less backup at 
the bottleneck station and less idle time waiting for carriages at the non-
bottleneck stations.  

The quality rate, shown in Figure 2.11, is the ratio between the number 
of good parts produced and the total parts processed. The measuring 
module is the only station of the FCPL that reports part quality and 
produces scrap parts. Losses from passing scrap along in the drilling and 
output modules are captured in lengthened cycle times between good 
parts and thus are assumed to have a quality rate of 100% to avoid double 
counting the lost time. The magazine module is also assumed to have a 
perfect quality rate as bad parts cannot be identified at that stage. The only 
notable anomaly present in the quality rate data from the measuring 
module is a short but sharp drop at the beginning of day two (8:00 
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production hours). This reduction in quality is due to the second part 
processed that day being marked as scrap. This resulted in a single data 
point showing a 50% quality rate, after which the quality rate quickly 
recovered (see Figures 2.12 and 2.13). Outside of the first fifteen minutes of 
day two the quality rate stayed above 98% (see Figure 2.12), having only a 
minor effect on OEE. 

 

Figure 2.10: FCPL performance over the testing period. 

 

Figure 2.11: Measuring module reported quality rate over testing period. 



20 

Figure 2.12: Detail of the measuring module reported quality rate between  
98% and 100%. 

 

Figure 2.13: Defective units over cumulative production hours, reset at the 
beginning of each day. 

 
Actual operating time provides insight into the drop in availability 

observed at the drilling module on the second day of testing. Actual 
operating time is deduced from measuring downtime and subtracting  
it from the planned production time. The downtime recorded during 
testing, shown in Figure 2.14, shows the reasoning behind the drop in 
availability at the drilling module on the second testing day. The 
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cumulative recorded downtime data shows the drilling module downtime 
increasing at a steady rate of approximately 12 minutes per hour 
throughout the day (1.19 hours total), excluding the unplanned 
maintenance downtime between roughly 14:00 and 15:15 production  
hours when all stations experienced downtime. However, without further 
investigation past this final level of discretization for OEE, the cause  
of this additional 1.19 hours of downtime accumulation cannot be 
determined. Additionally, reporting only final values for the day would 
not reveal this trend but would only show the final difference in downtime 
between the drilling module and the other stations.  

 

Figure 2.14: FCPL daily downtime over testing period. 

 
From examining OEE and the data that forms it, several insights have 

been gleaned: 
• Due to the nature of the process the module with the highest OEE 

can be identified as the bottleneck. From this correlation it is 
evident that improvements between testing phases shifted the 
bottleneck from the drilling module to the output module.  

• A machine failure requiring an unplanned maintenance event 
lowered availability and OEE for all stations between 
approximately 14:00 and 15:15 production hours.  

• Despite an increase in production and decreased cycle time the 
performance efficiency and OEE at the output module was 
reduced between the first and third day of testing. 
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• The availability at the drilling module on the second day of testing 
was decreased due to a steady accumulation of 1.19 additional 
hours of downtime over the course of that day. 

• The range of the four station’s OEE and performance efficiency 
decreased due to process improvements during the testing period, 
balancing cycle times across the entire FCPL and showing 
increased utilization overall. 

2.4.3 Digital Performance Management 

Results presented by the digital performance management solution come 
in two forms, namely waterfall and pareto charts, and can be viewed for 
the FCPL as a whole or by individual station. The DPM solution 
autonomously differentiates data by day, ensuring the three phases can be 
assessed independently. Ideal cycle times were updated through the 
dashboard for the drilling and output modules following the inter-phase 
improvements. Data was recorded from the dashboard output and the 
visualizations are recreated here for consistency and clarity.  

A cumulative waterfall chart is shown in Figure 2.15a, combining data 
from all four stations over the three-day testing period, which sums the 
four station’s planned production of three 8-hour shifts for a total of 96 
total production hours. This total planned production time is the leftmost 
column of the waterfall charts presented by DPM. The columns following 
this subtract time in various loss categories, such as unplanned downtime. 
A key measurement from these waterfall charts is the effective production 
time, which is a result of subtracting the reported losses from the planned 
production time. From this cumulative view, DPM shows an effective 
production time of 45.23 hours out of the 96 total scheduled production 
hours. When differentiated by day, each view having a total planned 
production time of 32 hours from the sum of the four station’s individual 
8-hour shifts, (see Figure 2.15b, c, and d) the FCPL shows a decrease in 
effective time between the first and last day of testing, with increases in all 
loss categories except scrap. The unplanned maintenance event on day two 
is also apparent by the increase in unplanned downtime on that day. 

The time loss categories are further expounded upon through pareto 
charts, which detail the individual loss reasons in each category. The pareto 
charts presented by DPM show the loss reasons that constitute a category 
in order of greatest to least impact. A line accompanies each set of bars 
showing the percentage of the category accounted for as the reasons are 
listed. The cumulative FCPL speed loss pareto chart, shown in Figure 2.16, 
visualizes the large difference between the loss category’s two reasons, the 
automatically reported conveyor output jam and manually reported 
general speed loss events. Conveyor output jams are caused by a backup 
of carriages on the conveyor ahead of a station preventing the release of a 
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processed part from the reporting station. DPM reported that 1878 
conveyor output jam events summed to 2.04 hours of lost time. General 
speed losses are manually reported by the operator as any time not 
accounted for by other loss reasons, primarily encapsulating non-
bottleneck stations waiting for part carriers and running over their ideal 
cycle time as they slow to the pace of the bottleneck. For example, on day 
three the magazine module’s average cycle time increased by an average 
of 4.64 seconds as it had to wait for parts to arrive for inspection. Over the 
3001 parts it processed that day this extra waiting time accumulated into 
3.87 hours of general speed loss (see Figure 2.23c). 

 

 

Figure 2.15: Waterfall charts using the combined data from all four stations of the 
FCPL (a) over all three days of testing, (b) on the first day of testing, (c) on the 
second day of testing, and (d) on the third day of testing. 

(d) 

(a) (b) 

(c) 
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Inspecting the pareto chart of the FCPL unplanned downtime on day 
two (see Figure 2.17) sheds further light on the impact of the unplanned 
maintenance event on that day. The obvious impact of performing the 
maintenance is visible, along with additional losses that may have  
been caused by the event including the initial system failure leading to  
the maintenance. Another notable loss on the second day occurred at  
the drilling module. Inspecting the pareto chart of the speed loss of that 
station on that day (see Figure 2.18) shows a significant portion of the  
losses from the combined speed loss pareto chart (see Figure 2.16) can be 
attributed to this location and time, comprising 1.90 hours of the total  
loss of 2.04 hours. Further information from the DPM solution shows that 
the cumulative conveyor output jam losses occurred over 1878 events,  
1746 of which occurred at the drilling module on the second day of testing. 
This data shows an obvious issue at that station resulting in the gradual 
accumulation of speed loss from a plethora of small events. 

Further loss explanation regarding the drop in the FCPL’s effective 
time between the first and third day can be gleaned using the planned 
downtime pareto charts (see Figure 2.19 and Figure 2.20). These charts 
show that cleaning time nearly doubled between the first and last day,  
with an additional 36 minutes of allotted time. Combining this additional 
time with the known 7-minute maintenance event on the third day  
(28 minutes cumulative) and the 26-minute increase in speed loss visible 
between Figure 2.15b and Figure 2.15d results in 90 minutes of loss. This 
additional lost time accounts for 89.6% of the difference in effective time 
between the first and third day, giving specific insight to the reasons 
behind that drop.  
 

 

Figure 2.16: Pareto chart of the speed loss category of the cumulative FCPL data. 
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Figure 2.17: Pareto chart of the unplanned downtime category from the 
cumulative FCPL data. 

 

 

Figure 2.18: Pareto chart of the speed loss category at the drilling module on day 
two of testing. 
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Figure 2.19: Pareto chart of the planned downtime category for the FCPL on day 
one of testing. 

 

 
Figure 2.20: Pareto chart of the planned downtime category for the FCPL on day 
three of testing. 

 
When viewing the stations individually over the testing period, 

totaling 24 hours of planned production from the single station’s three 8-
hour shifts (see Figure 2.21 through Figure 2.25), a correlation between the 
bottleneck station and effective time becomes apparent. In similar fashion 
to the highest OEE and bottleneck station relation, the greatest amount of 
effective time is held by the bottleneck station. This strong correlation 
between high effective time and the bottleneck station occurs for the same 
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reason, namely that the limited number of part carriers restricts in-process 
inventory and slows all stations to the bottleneck pace resulting in input 
starved stations and lengthened cycle times. These waterfall charts also 
show a change in effective production time between the first and last 
testing day for all stations, with the magazine and measuring stations 
increasing and the drilling and output stations decreasing their effective 
time. In a similar manner to the trend in OEE, the range of effective time 
also decreased over the testing period due to process improvements 
balancing the cycle times across the FCPL and increasing utilization. 

 

Figure 2.21: Waterfall charts using combined data over the three testing days of 
each individual station of the FCPL being (a) the magazine module, (b) the 
measuring module, (c) the drilling module, and (d) the output module. 

(d) 

(a) (b) 

(c) 
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Figure 2.22: Waterfall charts for the magazine module (a) on the first day of testing, 
(b) on the second day of testing, and (c) on the third day of testing.  

(a) 
 

(b) 
 

(c) 
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Figure 2.23: Waterfall charts for the measuring module (a) on the first day of 
testing, (b) on the second day of testing, and (c) on the third day of testing. 

(a) 
 

(b) 
 

(c) 



30 

 
Figure 2.24: Waterfall charts for the drilling module (a) on the first day of testing, 
(b) on the second day of testing, and (c) on the third day of testing. 

(a) 
 

(b) 
 

(c) 
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Figure 2.25: Waterfall charts for the output module (a) on the first day of testing, 
(b) on the second day of testing, and (c) on the third day of testing. 

(a) 
 

(b) 
 

(c) 
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The DPM visualizations and data provide the following insights: 
• Due to the nature of the process the module with the greatest 

effective production time can be identified as the bottleneck. 
Examining the daily waterfall charts it is evident that the 
bottleneck changed from the drilling module to the output 
module between day one and two due to improvements between 
these days. 

• Over the course of the testing period the effective production  
time at the magazine and measuring modules increased, while  
the effective production time at the drilling and output modules 
decreased. 

• The range of the four station’s effective production times 
decreased over the testing period due to the process 
improvements between phases leading to more balanced cycle 
times across the FCPL. 

• The planned downtime pareto charts show that cleaning time 
roughly doubled between the first and second day, remaining at 
that value into the third day. 

• This increase in cleaning time, a short maintenance period, and a 
small increase in speed losses account of 90% of the additional lost 
time on day three as compared to day one. 

• A total of 1878 conveyor output jam events created 2.04 hours of 
lost time. 1.90 hours of this lost time came from 1746 events 
occurring at the drilling module on day two. 

2.4.4 Performance Management Strategy Comparison 

To compare traditional and digital performance management will be done 
in three parts. First, comparing how each approach presents data to the 
user and how that data can be interpreted. Second, comparing the insights 
provided by both solutions. And lastly, comparing the granularity and 
fidelity provided by each of the performance management strategies. 

A key concept in Industry 4.0 is the visualization of data and how 
different users will require different data depending on their role in the 
enterprise. For example, a machine operator may be interested in the 
specific loss reasons being recorded by their equipment and the impact and 
severity of those events. Such a view is readily available in the DPM toolset, 
containing live data showcasing the recorded events and measuring how 
well current production is meeting the demand on the machine. Custom 
solutions taking the DPM approach will also have the data to create such 
operator-oriented views. From another point of view, a production 
supervisor may not be interested in the details of each machine at any 
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given moment but might instead require a general summary of how 
multiple machines are performing at any point throughout the day. These 
views for end of day performance analysis have been presented in this 
research, though there is value in being able to view such waterfall charts 
at any point during a day or shift to monitor production health live and 
spot potential problems as they are forming and accumulating lost time. 
These different views allow for direct informed action on the factory floor 
and appropriate resource allocation higher up the enterprise. In contrast  
to the available visualizations in the DPM solution, a traditional 
performance management approach has only one set of views, that being 
the OEE measure and its components. To an operator, such a view has little 
to no value as it does not provide ready insights that can help them 
understand underlying problems with their equipment. While there can be 
some appropriate use of the OEE metric over time for a supervisor, such as 
spotting downtime events as they happen or falling utilization over several 
days or more, actionable insights are still absent.  

The primary difference in how traditional performance management 
and digital performance management present their data is in their units  
of measurement. Traditional performance management uses percentages 
in its primary measure of OEE and its component measures of availability, 
performance efficiency, and quality rate. OEE has no context on its own as 
a percentage. Historical data can help contextualize OEE, as trends of 
change can indicate possible issues or improvements. However, no further 
information that can be gleaned from it without additional information. 
Additional context is added when OEE is viewed with its components as 
any obvious similarities between the parent measure and the constituent 
parts will indicate the driving component, as was seen in the testing  
data with performance efficiency. However, the OEE components 
themselves are percentages and suffer from lack of context as well,  
though to a lesser degree. Drops in availability or performance efficiency 
may hint at downtime or speed loss issues but fail to help further  
pinpoint problem origins. Contrasting those measures is quality rate, 
which can succinctly summarize the rate of good parts produced without 
full production numbers.  

The measures of digital performance management use time as their 
sole unit. Time measurements can be immediately understood in the 
fundamental context of a finite resource. With only so many hours in a day, 
week, month, or year, a measure of how much of that time was either 
wasted or effective in making a product becomes invaluable. At a level 
deeper, having the component data breakdown easily into specific 
categories and loss reasons aids in pinpointing where the greatest issues 
are and how much they are affecting production. Additionally, the 
presentation of more than one metric as the default high level output of 
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this strategy forces the user to view key values and their impact on 
production, rather than gloss over a single metric. 

This comparison of context can also be applied to how that data is 
interpreted by the user. In traditional performance management, an 
operator will know that OEE should be at or above some seemingly 
arbitrary number while a supervisor might give special attention to the 
equipment with the lowest OEE attempting to improve the number. At a 
higher level, dissimilar machines performing a variety of tasks may 
compete for resources based on a single metric. Contrasting this, under a 
digital performance management approach an operator will be able to see 
how much of their shift is spent effectively making product and where 
their equipment is losing time. Managers will see and direct attention 
toward specific loss reasons to gain productive time back from them.  

These differences in data presentation and interpretation can be best 
seen by comparing the insights gained from testing. Two specific insights 
that resulted concurrently in the two performance management solutions 
can be expounded on to see this difference, namely the drops in 
effectiveness on the last testing day and the performance and speed loss 
issues at the drilling module on day two. Both approaches agreed that 
effectiveness on the last day was reduced from that observed on the first 
day. Traditional performance management showed this with an 8.1% drop 
in OEE at the bottleneck output module, which could be attributed to a 
similar drop in performance efficiency. In comparison, digital performance 
management showed an additional 1.48 hours of lost time between the first 
and last day, which could be attributed to an increase in planned downtime 
from additional cleaning time, increased unplanned downtime from a 
short maintenance event, and a small increase in speed losses. In this 
example the digital approach pinpoints and quantifies the impact of 
specific reasons for the drop in effectiveness while the traditional approach 
only hints at a performance efficiency issue.  

The second pair of insights to compare is the availability drop and 
speed loss issue at the drilling module on day two. Traditional 
performance management showed that the availability of the drilling 
module on day two was reduced to roughly 80%. From viewing the 
reported downtime, the reason for this availability drop was a steady 
accumulation of an additional 1.19 hours of downtime (compared to the 
next highest downtime) during the duration of that testing day. The  
digital performance management solution instead showed an increase to 
losses from 1746 conveyor output jam events totaling 1.90 hours. While 
both solutions pointed to an accumulation of loss occurring over the course 
of the day, the specificity of the loss reason, its frequency, and the 
quantified impact from the digital approach gives actionable insight to the 
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cause, while the traditional approach would require further inquiry to 
determine the cause. 

This example also highlights comparisons to be made regarding data 
granularity. The traditional performance management solution provides a 
cumulative downtime figure at its most detailed level, while the digital 
performance management approach segregates downtime losses into 
specific loss reasons. The lack of granular data in the traditional approach 
hinders problem resolution as further investigation into the general causes 
of the downtime is required before root cause analysis can continue. On 
the other hand, a digital approach will give specific insight as to the general 
cause of a downtime event and can lead immediately into root cause 
analysis. Additionally, the frequency of when these performance 
management insights are updated and available can be quite different. As 
designed, a traditional approach will take measurements periodically and 
via manual means whereas a digital approach will constantly gather data 
at high refresh rates. With electronically gathered data, a traditional 
approach can achieve these high frequency measurements, but insights are 
only valuable after a sufficient data population has been gathered to 
produce a stable baseline for comparison. Digital approaches, however, 
will have insights available at any time as the measurements taken do  
not need this baseline comparison but instead are an accounting of how 
time was being utilized over the period observed.  

The fidelity of the data composing and presented by the two 
performance management solutions is also apparent in the granularity of 
their data and methods of accounting. By nature, DPM will have equal or 
better fidelity than traditional, manually gathered performance metrics. 
Using units of time, a finite resource, requires that all time be accounted 
for. It is important to acknowledge that manually entered values in a DPM 
system may reduce the fidelity and granularity of the data as rounding 
times and summarization of events can occur in such situations. These 
accounting errors can be mitigated with increased data gathering 
automation, relieving operator reporting responsibility. Electronically 
enabled traditional performance management can aid in increasing the 
fidelity of its data, but the approach still suffers from the limitations of a 
single summary measure wherein the calculation of that measure can 
obfuscate data and blur insights available from the raw measurements. 
Furthermore, the many proposed variations of the OEE metric also suffer 
from the same drawbacks, even when data for those calculations are 
gathered by electronic or computerized means. The availability of these 
variations also lends itself to possible manipulation of the data, picking and 
choosing the metric that may make production look best rather than reflect 
its actual state.  
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2.5 Conclusions 

As stated from the purpose of this research, an evaluation of the McKinsey 
& Company Digital Performance Management strategy as deployed by the 
Digital Performance Management tool developed by PTC Inc. has been 
completed and its results compared to those of a traditional OEE based 
performance management strategy. Digital performance management has 
shown an increase in detail in the insights gained from its measures as 
compared to a traditional OEE based performance management strategy. 
From the comparisons regarding how these two approaches to 
performance management present their data, a definite advantage is seen 
in the detailed time-based figures produced by DPM over the summary 
percentile measures of traditional performance management. The 
conclusions pulled from the comparisons made in evaluating performance 
management include: 

• Industry 4.0 technologies allow for greater speed and fidelity in 
gathering data and should change how performance is measured 
to harness its inherent advantages. 

• Traditional performance management is limited in its use of a 
single summary metric, obfuscating the constituent data and 
reducing available insights regardless of the detail offered by 
digitally gathered input data. 

• Digital performance management presents data in greater detail 
and in a manner that facilitates better understanding of impacts 
on production than does traditional performance management. 

• Performance management and measurement using units of time, 
rather than percentile measures, provide greater understanding of 
production conditions and generates specific and readily 
actionable insights.  

• Time based performance measurement creates higher fidelity 
metrics by requiring an accounting of a finite resource and how it 
is utilized, rather than summarizing data into a normalized 
percentile unit. 

A change in how performance is measured and managed is needed to 
harness the capability of industry 4.0 technologies. Without such changes 
the value of these internet enabled computational innovations is limited by 
a measurement method designed for clipboards and stopwatches. 
Reviewing the production status from both a traditional and digital 
performance management approach shows clear distinctions between 
their form and utility. Insights and contextual measures gained by a data 
rich digital approach are invaluable in pinpointing and quickly resolving  
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manufacturing issues. Additionally, the shift from percentile figures to 
time-based metrics and accounting forms meaningful numbers with direct 
impact and interpretations, removing ambiguity. 
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3 Conclusions 

Analyzing the data from the monitored production period shows several 
key differences in how data is presented between traditional and digital 
performance management and informs the potential of Industry 4.0 in 
changing how manufacturing performance is perceived. It is apparent 
from the lack of detailed insights that a traditional approach to 
performance management is limited in its use of a single summary metric, 
obfuscating constituent data and reducing granularity in its calculation. In 
contrast, a digital approach presents several time-based metrics that 
facilitate understanding of production impacts. These time-based 
measures also ensure high fidelity data by requiring a full accounting of 
the finite resource of time and its utilization, as opposed to a calculated 
summary metric which leaves ample room for ambiguity.  

From these insights it can be concluded that the McKinsey & Company 
measurement strategy presented by the PTC Thingworx Digital 
Performance Management solution does generate a more detailed 
representation of production conditions as compared to traditional OEE 
based strategies. It can also be concluded that new performance 
management strategies and performance measurements can be applied to 
existing production systems using current industrial connectivity tools. 
This enables existing assets to provide the granular data provided by IIoT 
technologies, which when input to new performance management 
solutions like DPM, can provide improved, detailed production insights. 
Additionally, DPM can be applied in any production environment that can 
accurately input data into the solution. Automated data reporting may be 
challenging in high-speed production environments due to the solution’s 
refresh and polling rates. On the other end of the spectrum, processes with 
cycle times on the order of hours or longer will need to customize the 
solution to allow for longer production blocks. DPM is also more beneficial 
in areas of high automation, as the availability of data signals can facilitate 
automated data capture, reaping the benefits of granular data. Manual data 
entry into the DPM system is possible and necessary for unforeseen events 
but does sacrifice data granularity from inevitable operator summarization 
and rounding in their time accounting.  
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3.1 Future Work 

Building upon this work can take several different forms. Applying DPM 
to a larger production environment with continuous part transportation 
can provide better characterization of insights provided by the approach. 
A deployment of DPM on a continuous process that may create product 
using metrics other than a count of units produced would expand the scope 
of this research and determine the value of DPM in those scenarios. As the 
DPM tool iterates and improves, an investigation into the value of any 
additional features would further solidify the value of the switch to a 
digital means of performance management. 

In addressing the human element, research could be conducted 
regarding the use of augmented or mixed reality experiences to digitalize 
manual processes and the application of that data in digital performance 
management. This path, however, would also need to address the issue of 
human resources performance management and the effect of such close 
monitoring of operators and employees. Additionally, study of change 
management techniques regarding the switch between traditional and 
digital performance management would aid enterprises in making that 
transition, but may be hindered by company culture, limited deployment, 
and industry cooperation.  
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