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ABSTRACT

Integrating deep generative models into urban form generation is an innovative and promising approach
to support the urban design process. However, most deep generative urban form models are based on
image representations that do not explicitly consider topological relationships among urban form ele-
ments. Toward developing an urban form generation framework aided by deep generative models and
considering topological information, this paper reviews urban form generation, deep generative mod-
els/deep graph generation, and the state of the art of deep generative models in architectural and urban
form generation. Based on the literature review, a topology-based urban form generation framework aided
by deep generative models is proposed. The hypotheses of street network generation by deep generative
models for graph generation and plot/building configuration generation by deep generative models/space
syntax and the feasibility of the proposed framework require validation in future research.

1. Introduction

According to National Unions (2014), 66% of the world’s popula-
tionis expectedtolive in urban areas by 2050. By 2030, the global
urban area will triple compared with that of the start of the twen-
tieth century (Seto, Glineralp, and Hutyra 2012). An increasing
significance is attached to urban design to fulfil the requirement
of rapid urbanization.

Urban design is a complicated process. The UK's former Social
Science Research Council located the discipline of urban design
at ‘the interface between architecture, landscape architecture,
and town planning, drawing on the design tradition of archi-
tecture and landscape architecture and the environmental man-
agement and social science tradition of contemporary plan-
ning’(Bentley and Butina 1991). Carmona (2021) argues urban
design is not only a simple interface but also encompasses and
sometimes subsumes many disciplines and activities, such as
architecture, town planning, landscape architecture, surveying,
property development, environmental management, and pro-
tection, etc. Cowan (2001) has similar arguments to Carmona
and contends that producing an urban design framework or
masterplan needs a lot of skills, such as interpreting policy,
assessing the local economy and property market; appraising
a site or area in terms of land use, ecology, landscape, ground
conditions, social factors, history, archaeology, urban form and
transport, managing and facilitating a participative process,
drafting and illustrating design principles, and programming
the development process. Urban designers need to consider all
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these aspects and work with various clients frequently with con-
flicting interests and aims. Instead of one single solution, varied
solutions have to be developed. The process requires a lot of
time and labour. When drawing urban masterplans, designers
should define the street network, blocks, parcels, and buildings
(Miao et al. 2018a). In the early stage of urban design, urban
designers have to spend a lot of time in designing urban forms
with different characteristics. Extensive urban forms are required
in the early stage of urban design to ensure high urban perfor-
mance in the final construction.

To improve the efficiency and creativity of urban design, mul-
tiple generative urban design methods have been put forwards,
which are effective in urban design to some extent (Beirdo,
Duarte, and Stouffs 2011; Luca 2007; Miao et al. 2017a; Miao
et al. 2018a; Rakha and Reinhart 2012). However, the influence
of these approaches is still limited in the mainstream practice
of urban design. These urban form generation methods are
based on procedural modelling with a series of manually defined
rules. Although these approaches significantly reduce the cost of
designing urban forms, many tedious processes are still required
as these rules are hand-engineered and inflexible to use (Hart-
mann et al. 2017). For example, repetitive manual tuning of
many parameters is demanded to generate urban forms similar
to targeted real urban forms.

With the rapid development of artificial intelligence (Al),
technology is updated continuously, especially machine learn-
ing. Machine learning gives computers the ability to learn how
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to perform a given task from demonstrations without being
explicitly programmed (Samuel 2000). With Al, people will not
need to define the rules manually as discussed above. Instead,
the ‘rules’ can be learned from data. It revolutionized many
scientific fields, such as computer vision and natural language
processing. Deep generative models, an approach of machine
learning that learns from and interprets data to synthesize
designs through multiple layers of artificial neurons, have shown
the ability to generate realistic images of faces and everyday
objects (Karras, Laine, and Aila 2019; Ruthotto and Haber 2021;
Wang et al. 2018; Zhu et al. 2017). Many researchers have made
a lot of effort to translate this success to the urban form gener-
ation. Hartmann et al. (2017) and Kempinska and Murcio (2019)
attempt to generate road network layouts automatically by deep
generative models. Shen et al. (2020) put forward an urban filling
method assisted by deep generative models.

However, most urban form generation approaches assisted
by deep generative models rely on pixel or image representa-
tions. There are limitations of this data format, although the data
format of the two-dimensional (2D) images seems compatible
with the representation of the urban design which is mainly
demonstrated through city plans and drawings. The urban space
is complicated and topologically associated, and the topology
is important in urban form. Images only encode topology infor-
mation implicitly. On the other hand, graphs encode topology
information explicitly. This potentially makes graphs a more suit-
able representation for modelling urban forms and in turn apply-
ing machine learning to urban forms. A promising method to
generate urban forms with topological information is deep gen-
erative models for graph generation, which is a novel research
topic in general (Borgwardt et al. 2020; Kriege and Mutzel 2012;
Orsini, Frasconi, and Raedt 2015). To date, most works have
considered the problem of generating graphs corresponding
to molecules (Cao and Kipf 2018; Jin, Barzilay, and Jaakkola
2018; Popova et al. 2019; Samanta et al. 2019; You et al. 2018a).
Astrazeneca uses such models for drug discovery (Mercado et al.
2020). Only a handful have considered the problem of generat-
ing graphs corresponding to street networks (Chu et al. 2019;
Owaki and Machida 2020). Molecules are small graphs while
street networks are very large graphs, so the problems are dif-
ferent. To generate urban form with topological information, we
should understand the topological information of urban form
first. Space Syntax, a technique developed under the theory of
city as flows, is a well-known quantitative analysis approach to
describe urban form based on topology. Regarding the configu-
rational relations, urban space is represented as a graph in which
discrete spatial elements (e.g. convex space, segment, axial line,
or isvoist') are shown as nodes, and the connection between
each other is denoted as an edge (UCL Space Syntax 2021).

This research aims to develop a topology-based urban
form generation framework aided by deep generative mod-
els. The studies on urban form generation, deep generative
models/deep graph generation, and the application of deep
generative models in urban form generation are reviewed. Con-
sequently, there are three parts to this review. We review the
approaches to urban morphology, urban form elements, classi-
fication of urban forms, and generative urban design models in
section 2, and deep generative models/deep graph generation
in section 3, and the state of the art of deep generative models

in architectural and urban form generation based on topology in
section 4. Following these reviews, a topology-based urban form
generation framework aided by deep generative models is pro-
posed in section 5. Finally, section 6 summarizes the study and
puts forward an outlook on future research.

2. Areview of urban form generation

This subsection presents the review of urban form generation by
introducing approaches to urban morphology, urban form ele-
ment, classification of urban form, and generative urban design
models.

2.1. Approaches to urban morphology

Different approaches have different perspectives on under-
standing urban form. Kropf (2022, 2017) proposed four broad
approaches, namely, typo-morphological, configurational,
historico-geographical, and spatial analytical. Oliveira (2016)
presented four similar main morphological approaches: the
historico-geographical approach, process typological approach,
space syntax, and spatial analysis. Shi, Fonseca, and Schlueter
(2017) reviewed the approaches to urban morphology and
put forwards five approaches: historico-geographical approach,
complex-systematic approach, typological approach, functional
zoning, and defining the constraints that build up an urban
design prototype. This section presents the following four
approaches to urban morphology, i.e. historico-geographical
approach, configurational approach (Space Syntax), typologi-
cal approach, and spatial analytical approach. The historico-
geographical approach and spatial analytical approach have the
same origin of the geography field, and the typo-morphological
and configurational approaches come from the fields of archi-
tecture and urbanism (Kropf 2017).

(1) Historico-geographical approach

The historico-geographical approach to urban morphology
explains the urban form through analysis of urban constituent
elements and the process of urban development. This approach
originated from the early 19 century when people attempted to
identify and explain the diversity of places, such as von Hum-
boldt’s holistic approach to geography, cultural landscape, and
urban geography (Kropf 2017). The research of German geogra-
phers in the early twentieth century had an significant influence
on urban morphology until the 1930s. A lot of research was
conducted on the plan of medieval towns in Germany (Oliveira
2016; Zhang 2010). Most of the research focused on the layout
and rarely considered the integration of urban social, economic,
and architectural research. A town should be regarded as an
organism in a regional economic system rather than merely a
layout (Hofmeister 2022). After the 1930s, this approach lost
weight in German human geography. However, the historico-
geographical approach gained new vitality and further devel-
oped in UKwhen MRG Conzen emigrated to the UK. Conzen pub-
lished ‘Alnwick, Northumberland: A Study in Town-Plan Anal-
ysis’ and provided a comprehensive framework for analysing
and designing the urban physical forms (Conzen 1960). The



method of urban form evolution in the process of urban devel-
opment was utilized to analyze urban elements: streets and
their arrangement in a street system, plots and their aggre-
gation in blocks, and block plans of buildings. Afterward, the
historico-geographical approach was consistently developed by
the Urban Morphology Research Group (UMRG) at the Univer-
sity of Birmingham established by Jeremy Whitehand in 1974.
There were many well-regarded researchers in UMRG, such as
Kropf, Lilley, Slater, and the research topics included medieval
towns, suburban expansion and transformation in the twentieth
century, the relationship among urban economics, real estate
development mechanisms, and urban forms, etc. (Kostof 1999a,
1999b; Kropf 2022, 2011, 2022, 2017; Lilley 2009; Slater 1990).
The historico-geographical approach focuses on hierarchy
and time (Shi, Fonseca, and Schlueter 2017). The research objects
of the urban landscape include the town plan, the building fab-
ric and land, and building utilization (Conzen 1960). The town
plan has a hierarchy of plan elements, including streets, plots,
and buildings (Conzen 1960). In terms of time, this approach is
an evolutionary research approach analyzing the chronological
sequence of town plans. The historico-geographical approach
explains the settlements’ complexity through the elements’
morphogenetic processes at different levels (Kropf 2017).

(2) Configurational approach

The ideas of the configurational approach stem from the
mathematical and quantitative study of architectural and urban
forms conducted in the 1960s, especially in the UK. Inspired
by the allometric studies (Thompson 1992) and the analytical
potential of graph theory and topology (Euler 1741), many stud-
ies have been conducted on the configurational approaches.
These approaches focus on the geometric and topological
attributes of built form to understand the relationships among
different measures and attributes and how spatial configura-
tions influence the use of urban buildings and environments
(Kropf 2017). Besides, these approaches also aim to predict
and improve the function and performance of architectural
and urban forms. The research methods of the configurational
approach include topological and quantitative methods, com-
binatorial analysis, and the idea of possible forms (Kropf 2017).
There are four similarities in the configurational approaches.
Firstly, the elements are defined by positions in the configura-
tion. Secondly, the interdependence of geometric parameters
is demonstrated through the exploration of forms and config-
urations. Thirdly, the spatial form is the result of the generation
process. Fourthly, the formis generated by local generative rules.

Space syntax is an acknowledged configurational approach.
Similar to spatial analytical approaches, space syntax argues that
the configuration is complex and emergent and the global con-
figuration develops from local processes (Batty 2007). The the-
oretical basis of space syntax is the relations between spatial
structure and movement (Hillier 1996). Configuration of urban
form is the primary generator of movement (Hillier et al. 1993).
In terms of form notion, space syntax emphasizes the space and
spatial configuration rooted in the analysis of buildings (Hillier
2003). Spatial configuration means the relationships between
two spaces in a global system considering relationships with
all the other spaces in the system rather than only considering
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the spatial relationship between two spaces (Hillier, Hanson, and
Graham 1987). In the urban scale, space syntax mainly focuses
on the voids of structure and the urban form is presented as a
graph constituted by discrete spatial elements, such as convex
space, axial line, segment, or isvoist (Hillier 2003). The topo-
logical measures can be extracted from graphs to quantify the
characteristics of spatial configuration. Integration and choice
are two main measures reflecting two elements of movement:
the selection of a destination and the selection of route. Integra-
tion measures accessibility and choice measure the passing flow.
Space syntax can be developed as interpretive models to ana-
lyze, describe, explain, and predict spatial and socio-economic
phenomena, such as urban movement, urban crime, centrality,
spatial intelligibility (UCL Space Syntax 2021). Besides, space syn-
tax can be utilized to help generate urban form and predict the
distribution of building use based on topology (Al-Sayed 2013;
Thirapongphaiboon and Hanna 2019; Xie 2011).

(3) Typological approach

The typological approach refers to typo-morphological
approach or process typological approach. This approach devel-
oped based on the architectural and urban design practice and
education in the first half of 20 century, mainly in France and
Italy. The typological approach studies the built environment as
a context for development and formative processes and evolu-
tion of building types to inform architectural and urban design
proposals (Cataldi, Maffei, and Vaccaro 2002). It aims to develop
a design with local tradition and in harmony with the context.
Saverio Muratori was a representative of researchers support-
ing this approach in the early stage who combined the research
methods of architectural typology and urban morphology to
protect the sense of historical continuity in architectural and
urban design through the study of architectural and urban his-
tory (Cataldi 2003). These researchers opposed modernist archi-
tecture and emphasized the protection of historical and cultural
heritage in the 1950s and 1960s (Zhang 2010). Afterward, Canig-
gia, Rossi, and Krier were another three influential researchers.
Caniggia connected the urban typological processes to the dif-
ferent phases of urban history (Cataldi 2003). Rossi (1999)
defined typology as elements that cannot be further reduced.
Rossi’s typological approach mainly reflected people’s way of
living rather than a physical form itself. He argued that a city
should be built with the typology of the city. Many European
cities developed with the remained urban physical form and
evolving programme behind the form. Krier (1984) proposed to
guide design through typological study and imitated the pre-
industrial cities for design. However, the typology of a city is not
always constant, and the urban elements are continuously trans-
forming with the change in people’s lifestyles (Moundon 2022).
Thus, the prediction of urban typology in the future through the
study of the evolution of people’s lifestyles is important in urban
form generation (Shi, Fonseca, and Schlueter 2017).

(4) Spatial analytical approach
The spatial analytical approach mainly focuses on people’s

activity as sets of spatial interaction. It utilizes a series of quan-
titative methods, such as mathematical models (entropy-based,
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fractal, and other non-linear forms in particular), agent-based
models, cellular automata, graph theory, and network analysis
(Kropf 2017). This approach originates from initial analytical
ideas, such as economic geography and the dynamic models
of urban structure (Adams 2005; Thiinen 1966). According to
the spatial analytical approach, cities are complicated adaptive
systems involving the relationships of social and economic inter-
actions and settlements’ physical forms. In a city, there are flows
of people and resources (including natural flows, such as sun-
light, wind, and water, and people-related flows, such as goods,
energy, information, and waste) (Batty and Cheshire 2011; Kropf
2022). Flows mean the changes occur among points defined by
locations and time in Eulerian and Lagrangian frames of refer-
ence (Batty and Cheshire 2011). The city is regarded as a network
of flows (Batty 2013). The pattern of people and resource flows
generate urban physical forms and are also influenced by urban
physical forms. Thus, in the early phase of projects, designers
should figure out the principles and relationships of flows in
the system. The elements are defined and differentiated by their
positions in a structure or configuration. The interrelationships
of elements and the elements working as a whole are analyzed.
The form and structure are the results of the generative process
of formation and transformation.

2.2. Urban form elements

The urban physical form consists of several elements. Scheer
(2001) divided the urban forminto five layers, i.e. site, superstruc-
ture (e.g. highways and boundaries before urban settlements),
infill (e.g. paths, plots), buildings, and objects (e.g. vegetation,
fences). Beirao et al. (Beirdo 2012) proposed City Ontology with
five main elements, i.e. networks, blocks, zones, landscapes, and
focal points. In Koenig’s model of DecodingSpace, the urban
form consisted of three basic urban elements, i.e. street net-
works, parcels, and buildings (Miao et al. 2017a). Oliveira pro-
posed that all cities and their urban tissues were comprised of
four urban elements, i.e. streets, street blocks, plots, and build-
ings (Oliveira 2016). A well-accepted simple urban form includes
three basic elements, i.e. streets, plots, and buildings (Conzen
1960; Kropf 2022, 2017; Moundon 2022; Whitehand 2022). Sin-
gle space shelters are organized to create buildings; buildings
and enclosures are combined to generate plots; plots and routes
form streets (Kropf 2017). These urban elements come together
organically and form a compositional hierarchy.

Street network is public and democratic of the city, where we
meet and interact in social terms. Streets define the street blocks
and are accessible to everyone (Oliveira 2016). There are many
categories of streets with different functions, shapes, sizes, and
relations to other streets. The characters of streets are affected
by plots on one or two sides of the street, the buildings of their
height, the location of buildings in plots (the distance from build-
ings and street), the length of frontage, and the distribution of
the movement of pedestrians and vehicles (Gehl 2011; Oliveira
2016).

Plotis also known as parcel, property, and lot. The plot system
is the organizational framework of urban form separating the
public domains and the different private domains (Bobkova et al.
2019). The definition of plots involves the relation of the plot to
the street, the position of the plot within the plot system, and the

shape, dimension, and proportion of the plot. The plots influence
the buildings within these plots and further affect the urban
landscape. The dimension of street blocks and plots is a signif-
icant element in describing the physical urban form. In general,
the dimension of blocks and plots increases from the historical
centre to the peripheral parts of the city except for some con-
ditions, such as the fringe belt (Oliveira 2016). On the contrary,
the number of plots per street block decreases from the histor-
ical centre to the peripheral parts of the city generally (Oliveira
2016).

Building is one of the most important and visible elements
of urban form. Buildings have the character of the positions in
plots, the dimension of buildings and the utilization of buildings,
etc. The position of buildings within their plots is an important
characteristic of urban form. According to Oliveira (2016), build-
ings were aligned continuously in an apparent organization in
most cities before the end of the nineteenth century. However,
many theories developed over the twentieth century support-
ing the variation in the position of buildings within plots. There
are two critical indicators of building dimension: building height
and the relationship between building height and the width of
the street where the buildings are located. The building height
and street width influence the sense of street space. The sense of
eclosure in street space increases if the ratio of building height
to street width increases. The utilization of buildings lays out the
activities within a building. The use of buildings includes residen-
tial, commerecial, service, mix of use, etc. There are other essential
characteristics of buildings, such as facade, building material,
organization of dwellings.

2.3. Classification of urban forms

The urban form demonstrates a series of repeating arrange-
ments or configurations of urban elements: street networks,
plots, and buildings (Conzen 1960; Kropf 2022, 2017; Moundon
2022; Whitehand 2022). The repeating patterns are regarded
as form types and represent the organization of urban form.
Different types of urban elements are combined in different pat-
terns (streets incorporate plots and plots incorporate buildings)
and generate different types of urban forms. There are vari-
ous classification methods for urban form. Table 1 shows the
classification of urban forms, including urban indicators for clas-
sification, urban form types, and classification method. Table 2
demonstrates the most used urban indicators quantifying urban
form, i.e. connectivity, centrality, density, dimension, shape, and
usage.

In summary, the urban indicators describing urban elements
are utilized to classify urban types. The most used indica-
tors quantifying urban form are connectivity, centrality, den-
sity, dimension, shape, and usage. The most used classification
methods are clustering analysis and self-organizing maps (SOM).
The different urban form types result from the classification of
urban forms using different urban indicators and classification
methods.

2.4. Generative urban design models

There are multiple urban form generation models. In this section,
several widely accepted urban generative design models are
introduced.



Table 1. Classification of urban forms.
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Reference Urban indicators for classification

Urban form types Classification method

Long, Li, and Hou
2019

Building density and building height

Abrantes etal. 2019 Statistical indicators: population density, population size
and growth, population education level, population
main occupation, levels of motorization, commuting;
Spatial metrics and land use/cover types data: density
index, average nearest neighbour index, average
proximity index, compactness index, dispersion index

Building geometry: size (length, width, height, area,
volume), shape (minimum enclosing area rectangle

Hamaina etal. 2012

compactness indicator); Open space geometry: voronoi
cells area; Building adjacency: party-walls ratio Density:

ground space index, floor space index; Neighbouring:
mean buildings distance, generalized ratio of
distance between the node and the neighbouring
building/height of the neighbouring building; Open
space morphology: sky openness (sky openness),
ground openness (isovist area/disk area, volume of
visible buildings/isovist area)

Dimension: length of block and street, width of block and
street, orientation of block and street, solar orientation
of block and street, block area, built-up area of block,
gross floor area of block, block perimeter; Density:
number of buildings, area perimeter ratio of block,
ground space index of block, block layers (number
of floors), open space ratio of block; Shape: block
proportion, area perimeter ratio of block; Land use:
private space area, public space area, pavement width,
pedestrian area; Network: connectivity, continuity
(angular), global accessibility, local accessibility, global
movement flow, local movement flow

Five principal components on the level of objects: line,
polygon; One principal components on the level of
the composition: buildings, street, and block; Four
principal components for the neighbourhood: density,
homogeneity, network structure, local access; Four
principal components for the scale of municipality:
settlement area, centrality and accessibility, urban
centres

Gil et al. 2012

Schirmer and
Axhausen 2016

Colaninno, Cladera,
and Pfeffer 2011 to buffer area, buildings to convex hull area; Formal

efficiency of building: building area, core area index,

area to perimeter ratio; Complexity of the shape: shape

index |, shape index Il, corners of the building

Density of the urban texture: buildings proximity, buildings

Low building density and building
height, medium building density
and building height, and high
building density and building height

Dense and compact areas of Lisbon
and Porto, consolidated suburban
areas, areas of urban sprawl, areas
of potential urban sprawl, areas of
population growth, rural areas

Clustering analysis

Self-organizing map

12 types Self-organizing maps

K-means statistical
clustering

6 types of blocks and 4 types of streets

2 types K-means cluster analysis
and K-medoid cluster

analysis

Old town, enlargement, XX cen-
tury city, fragmented city,
city of seventies, suburb,
industrial/commercial/special
buildings

Cluster analysis

Koenig et al.’s model consists of three steps (Koenig et al.
2017; Miao et al. 2017a; Miao et al. 2018a; Miao, Koenig, and
Knecht 2017b). Firstly, street networks are generated. Then,
through extraction from the street networks, blocks are defined.
Finally, buildings are placed on the parcels, which are sliced from
blocks. This model has the advantage of being able to generate a
fast prototype of urban design. However, the generation of plots
relies on street networks based on the defined parameter and
initial street segments. Also, no componentis integrated for data
analysis and evolutionary multi-criteria optimization.

Beirdo put forward an urban form generation model called
CltyMaker in 2012. It consists of three modules, i.e. formulation
module, generation module, and evaluation module (Beirdo,
Duarte, and Stouffs 2011; Beirdo 2012). The formulation module
analyses the urban context of the site. The generation module
leverages the generative method of shape grammar. The eval-
uation module evaluates the generated design and leads the
design to meet the target. The rules of urban induction patterns
are used to define the compositional guidelines of the plan, grids
or the main street structure, urban units including squares and

other public spaces, and designing details (e.g. street profiles
and materiality) (Beirdo, Duarte, and Stouffs 2011; Beirdo 2012).
However, this model lacks integrated calculations or tools for
topology evaluation.

Rakha and Renhart’s model (Rakha and Reinhart 2012) has
two steps, i.e. the generation of street networks and buildings
and the optimization based on walkability by genetic algo-
rithms. The advantage of this model is that it can work on terrain.
However, the types of building massing in this model are limited,
and the void open space is not considered.

Luca (2007) utilizes cellular automata and agent-based mod-
elling for generation on the urban and regional scales. This
model has two steps, namely, data collection and form gener-
ation. The forms generated to meet the tasks in the spatial, tem-
poral, and scale hierarchy are based on the dataset. However,
Luca’s model does not generate urban and building functions.

Shi, Fonseca, and Schlueter (2017) propose a general work-
flow with three steps of data collection, generation, and
optimization for simulation-based urban form generation and
optimization modelling. However, the computation cost of the
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Table 2. Urban indicators quantifying urban form.

Indicators Brief descriptions

Reference

Connectivity The spatial interconnection of the segments of networks
(usually street networks), such as node connectivity,

edge connectivity, etc.

The importance of nodes in a network, such as closeness
centrality, betweenness centrality, and degree centrality,
or the separation between where people live and where
they must go for common daily activities.

The certain quantities per unit area, such as floor area ratio,
population density, density of building footprint, etc.

Centrality

Density

Dimension The basic geometrical dimensions of individual objects,

such as height, length, width, etc.

Shape The mathematical features of geometrical dimensions
of individual objects, such as height to width ratio,

compactness index, etc.

The different functions of the environment, such as land
use mix.

Usage

Song and Knaap 2004; Song 2005; Shi, Fonseca, and Schlueter 2017; Boeing
2018; Fleischmann, Romice, and Porta 2020; Lowry and Lowry 2014; Gil et al.
2012; Peaden 2019; Dibble 2016; Clifton et al. 2008; Schirmer and Axhausen
2016; Dempsey et al. 2009

Boeing 2018; Fleischmann, Romice, and Porta 2020; Lowry and Lowry 2014;
Peaden 2019; Huang, Lu, and Sellers 2007; Dempsey et al. 2009iijZSchwarz
2010; Schirmer and Axhausen 2016; Shi, Fonseca, and Schlueter 2017;
Dempsey et al. 2009

Song and Knaap 2004; Song 2005; Long, Li, and Hou 2019; Shi, Fonseca, and
Schlueter 2017; Schwarz 2010; Boeing 2018; Hamaina et al. 2012; Lowry
and Lowry 2014; Gil et al. 2012; Schirmer and Axhausen 2016; Colaninno,
Cladera, and Pfeffer 2011; Peaden 2019; Huang, Lu, and Sellers 2007;
Dempsey et al. 2009; Abrantes et al. 2019; Clifton et al. 2008; Fleischmann,
Romice, and Porta 2020; Dibble 2016; Dovey, Pafka, and Ristic 2018

Song and Knaap 2004; Song 2005; Shi, Fonseca, and Schlueter 2017; Schwarz
2010; Clifton et al. 2008; Boeing 2018; Hamaina et al. 2012; Fleischmann,
Romice, and Porta 2020; Lowry and Lowry 2014; Gil et al. 2012; Schirmer and
Axhausen 2016; Colaninno, Cladera, and Pfeffer 2011; Peaden 2019; Dibble
2016; Abrantes et al. 2019

Shi, Fonseca, and Schlueter 2017; Schwarz 2010; Clifton et al. 2008; Boeing
2018; Hamaina et al. 2012; Fleischmann, Romice, and Porta 2020; Gil et al.
2012; Schirmer and Axhausen 2016; Colaninno, Cladera, and Pfeffer 2011;
Huang, Lu, and Sellers 2007; Dibble 2016; Abrantes et al. 2019

Song and Knaap 2004; Song 2005; Shi, Fonseca, and Schlueter 2017; Schwarz
2010; Clifton et al. 2008; Lowry and Lowry 2014; Gil et al. 2012; Schirmer and
Axhausen 2016; Colaninno, Cladera, and Pfeffer 2011; Peaden 2019; Dibble
2016; Dempsey et al. 2009; Abrantes et al. 2019; Dovey, Pafka, and Ristic
2018

simulation is rather high, and the simulations and analysis in the
research are not validated by measurement data.

All the models mentioned above have the steps of data col-
lection and generation. The collected data step includes physi-
cal, social-economic data of the environment, the context of the
site, and users’ preferences. The generation step is the genera-
tion of urban form elements based on generative methods and
constraint sets, and the primary urban form elements include
street networks, plots, and buildings.

3. Areview of deep generative models and deep
graph generation

3.1. Deep generative models

In general, deep generative models are the models with many
layers of stochastic or deterministic variables to approximate
complex and high dimensional probability distributions (Beirdo
2012; Beirdo, Duarte, and Stouffs 2011). According to Turhan and
Bilge (2018), deep generative models can be categorized into
five types, namely, unsupervised fundamental models, Autoen-
coder (AE) based models, autoregressive models, Generative
Adversarial Networks (GAN) based models, and AE-GAN hybrid
models. At the end of 2019, another kind of deep generative
model, i.e. diffusion models, became very popular (Dieleman
2022). These six types of deep generative models are introduced
as follows.

(1) Unsupervised fundamental models

A lot of research has been conducted on using unsuper-
vised fundamental models for texture synthesis and classifi-
cation of handwritten digits, but the generated images are
blurry (Creswell and Bharath 2016; Hu et al. 2018; Ou 2018;

Ruthotto and Haber 2021). Boltzmann Machine, introduced
by Geoffrey Hinton et al. in 1983, aims to search for com-
binations of ‘hypotheses’ satisfying some constrained input
maximally (Turhan and Bilge 2018). Restricted Boltzmann
Machine is inspired by the binary Boltzmann Machine and has
more freedom and flexibility (Ackley, Hinton, and Sejnowski
1985; Fahlman, Hinton, and Sejnowski 1983). Deep Boltzmann
Machines and Deep Belief Networks are more powerful gener-
ative models based on the building block of Restricted Boltz-
mann Machine (Oussidi and Elhassouny 2018). Deep Boltzmann
Machine can generate images based on latent representation by
generative decoders with Gibbs sampling (Salakhutdinov 2015;
Xu, Li, and Zhou 2015) and Deep Belief Network can provide
features from representations at high levels (Salakhutdinov and
Hinton 2009). The unsupervised fundamental models are widely
applied in image processing, speech recognition, information
retrieval, etc. (Fischer and Igel 2012).

(2) Autoencoder models

Autoencoder models are neural networks trained to recon-
struct input as output consisting of two parts, i.e. encoder
and decoder. These models aim to learn the pattern and char-
acteristics of the data distribution and generate new exam-
ples similar to the training examples. There are four kinds of
autoencoder models, i.e. undercomplete autoencoders, denois-
ing autoencoders, sparse autoencoders, and variational autoen-
coders (VAE) (Salakhutdinov 2015; Xu, Li, and Zhou 2015). VAE
is one of the widely used and efficient deep generative models
(Nikolaev 2018). It is a direct model using learned approximate
inference and trained through the gradient based method (Niko-
laev 2018). Through VAE, the input image can be encoded as a
low-dimensional representation storing the inputinformation.



(3) Autoregressive models

Autoregressive models use a linear combination of past val-
ues of valuables to forecast the target variables, and they are very
flexible in dealing with different kinds of time series (Kingma and
Welling 2014). In terms of images, autoregressive models handle
images pixel by pixel rather than whole images (Hyndman 2018).
Masked Autoencoder for Distribution Estimation (MADE), an
autoregressive model modified by autoencoder network, uses
the autoregressive property to forecast the distribution from a
set of samples (Turhan and Bilge 2018). PixelCNN Decoder, an
autoregressive model based on Convolutional Neural Network
(CNN), can generate images conditionally (Uria et al. 2016). Pix-
elRNN uses the dependency between pixels closer together to
generate images sequentially based on Long Short-Term Mem-
ory (LSTM) (Oord et al. 2016). Recurrent Neural Networks (RNN)
are a class of neural networks modelling the information in
sequential order, widely used in time series and natural lan-
guage (Guo and Zhao 2023). However, RNN only performs well
in short-term dependency and has not been proven useful in
long-term dependency. LSTM, a special type of RNN, can seam-
lessly store and repeatedly utilize long-term information (Ous-
sidi and Elhassouny 2018; Tensorflow n.d.). PixelVAE is a VAE
model with an autoregressive model based on pixelCNN for
natural image modelling (Oussidi and Elhassouny 2018). Varia-
tional Lossy Autoencoder learns the global representation for
2D images by combining VAE with neural autoregressive mod-
els, such as RNN, MADE, PixelCNN, and PixelRNN (Gulrajani et al.
2017). Graphgen, GraphRNN, and DeepGMG utilize autoregres-
sive models to generate graphs (Goyal, Jain, and Ranu 2020; Li
etal.2018; You et al. 2018b).

(4) Generative Adversarial Networks (GAN) based models

GAN is based on the game theory of the minimax game,
where a generator and a discriminator compete with each other
(Chen et al. 2017). The generator learns to generate new data
from the stochastic noise and the discriminator learns to distin-
guish the generated fake data from the real data. GAN is one of
the most successful generative models based on deep learning,
especially in generating realistic high-resolution images. Based
on GAN, there are many improved models developed, such as
Conditional Generative Adversarial Networks (CGAN) (Goodfel-
low et al. 2020), Deep Convolutional Generative Adversarial Net-
works (DCGAN) (Gauthier 2014), Style-Based Generator Architec-
ture for Generative Adversarial Networks (StyleGAN) (Radford,
Metz, and Chintala 2016), Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks (CycleGAN) (Kar-
ras, Laine, and Aila 2019), Image-to-Image Translation with Con-
ditional Generative Adversarial Networks (Pix2Pix) (Zhu et al.
2017). Pix2PixHD is also proposed for high-resolution image syn-
thesis and semantic manipulation with conditional GAN (Wang
et al. 2018). In addition to the models for 2D image generation,
GAN is extended to generate three-dimensional (3D) objects
(Wu et al. 2016) and graphs (Fan, Tech, and Huang 2019; Wang
etal.2021).
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(5) Autoencoder-GAN hybrid models

Many studies have been conducted to combine autoencoder
and GAN. VAE/GAN can learn to encode, generate, and discrim-
inate information (Fan and Huang 2019). The discriminative fea-
ture learned by GAN is used as the reconstruction objective of
VAE. Deep perceptual similarity metrics (DeePSiM) uses VAE and
GAN to prevent blurry reconstructed image in image genera-
tion (Anders Boesen Lindbo et al. 2016). Lamb et al. propose
an autoencoder-GAN hybrid model and show that this model
can generate samples with higher quality than standard VAE
(Dumoulin et al. 2017). 3D-VAE-GAN is an autoencoder-GAN
hybrid model for learning an 2D image to 3D model mapping
(Lamb, Dumoulin, and Courville 2016).

(6) Diffusion models

Diffusion models define a Markov chain? of diffusion steps
to add random noise to data gradually, and then train a neu-
ral network that learns to invert the diffusion process to con-
struct expected data samples from the noise (Weng 2021).
Diffusion models were inspired by non-equilibrium thermody-
namics (Sohl-Dickstein et al. 2015) and developed rapidly after
2019, when noise-conditioned score network was proposed
(Song and Ermon 2019). Building on Sohl-Dickenstein et al.'s
research, Ho, Jain, and Abbeel (2020) put forwards denoising dif-
fusion probabilistic models (DDPM), which could match GAN on
image generation. Afterward, Denoising Diffusion Implicit Mod-
els (DDIM) was proposed to accelerate diffusion model sampling
toimprove DDPM (Song, Meng, and Ermon 2020).1n 2021, Nichol
et al. (2021) released GLIDE for text-conditional image synthesis
and Dhariwal and Nichol (2021) demonstrated a better perfor-
mance than GAN with diffusion models. Besides, SR3 and Cas-
caded Diffusion Models (CDM) models were released by Google,
which could convert low-resolution images to high-resolution
(Ho et al. 2022; Saharia et al. 2022).

3.2. Deep graph generation

Graphs are complicated data structures with rich underlying val-
ues, and they can represent relational and structural information,
such as social networks, molecule structures, citation networks,
traffic networks, biology networks. There are many applications
of graph generation, for example, drug design, model archi-
tecture search, network science (Wu et al. 2016). As the wide
application, there is a long development history of graph gen-
eration dating back to the 1960s (Liao et al. 2019). The tradi-
tional graph generative models focus on modelling families of
graphs with specific properties, such as random graphs (Erdds
and Rényi 1960), small-world networks (Erdds and Rényi 1960),
and scale-free graphs (Watts and Strogatz 1998). However, these
models can only model a few statistical properties of graphs
and have limited ability to model complicated dependencies.
Besides, these models only focus on the structural property and
neglect the assignment of labels to individual graph vertices and
edges. Considering the limitations of the traditional methods, an
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Table 3. Limitations of existing deep graph generation.

Technique Domain-agnostic Node labels Edge labels Scalability Reference

MolGAN No Yes Yes No Goyal, Jain, and Ranu
2020

NeVAE No Yes Yes Yes Samanta et al. 2019

GCPN No Yes Yes No You et al. 2018a

LGGAN Yes Yes No No Fan, Tech, and Huang
2019

Graphite Yes Yes No No Grover, Zweig, and
Ermon 2018

DeepGMG Yes Yes Yes No Lietal 2018

GraphRNN Yes No No Yes You et al. 2018b

GraphVAE Yes Yes Yes No Simonovsky and
Komodakis 2018

GRAN Yes No No No Liao et al. 2019

GraphGen Yes Yes Yes Yes Goyal, Jain, and Ranu
2020

NetGAN Yes No No No Bojchevski et al. 2018

GraphAF No Yes Yes Yes Shietal. 2020

Bacciu et al.s model Yes No No Yes Bacciu, Micheli, and
Podda 2020

Liu et al’s model Yes No No Yes Liuetal. 2019

Note: the scalability depends on whether its complexity is linear in m and n.

increasing amount of research pays attention to the deep gen-
erative models that can directly learn from a set of graphs to
generate new and novel graphs with similar properties to the
set or distribution of training graphs. The use of deep generative
models can improve the fidelity of generated graphs. Deep gen-
erative models for graph generation are also called deep graph
generation (Albert and Barabdsi 2002).

According to Guo and Zhao (2023), there are two kinds of
deep generative models for graph generation, namely, uncon-
ditional generation and conditional generation. Unconditional
generation is using deep generative models to learn the distri-
bution based on a set of observed realistic graphs from the real
distribution. Conditional generation is using deep generative
models to learn the distribution based on a set of observed real-
istic graphs and auxiliary information, such as labels, semantic
context, graphs from other distribution spaces, etc.

There are three critical areas in deep graph generation,
i.e. domain-agnostic modelling, labelled graph generation, and
data scalability (Goyal, Jain, and Ranu 2020). Many techniques
have limitations in these areas. Table 3 demonstrates the limi-
tations of deep graph generation techniques. Only Graphgen is
domain-agnostic, data scalable, and with node labels and edge
labels.

In terms of evaluation metrics for deep graph generation,
there are three kinds of methods, namely, statistics-based,
classifier-based evaluation, and self-quality-based evaluation
(Guo and Zhao 2023). Statistics-based evaluation first computes
graph statistics measuring different graph properties (includ-
ing node degree distribution, clustering coefficient distribution,
orbit count distribution, largest connected component, trian-
gle count, characteristic path length, and assortativity) and then
measures the distance between the distributions of generated
graph properties and test graph properties. There are two major
metrics for calculating the distance between two distributions of
graph properties, namely, the Kullback-Leibler Divergence and
the Maximum Mean Discrepancy. There are two ways for the dis-
tance metrics for scalar-valued statistics (including largest con-
nected component, triangle count, characteristic path length,

and assortativity). The first is the calculation of the disparity
between the averaged value of the scalar-valued statistic of the
real graph and the generated graph. The second is the calcu-
lation of the distance between the distribution of the scalar-
valued statistic of the real graph and the generated graph. The
classifier-based evaluation compares the generated graphs and
real graphs through a graph classifier without explicitly defin-
ing the graph statistics, including accuracy-based and Fréchet
Inception Distance-based methods. The classifier is trained on
the real graphs and then is tested on the generated graphs. The
self-quality-based evaluation directly assesses the generated
graphs’ properties, i.e. the generated graph’s validity, unique-
ness, and novelty.

The application of deep graph generation continuously
extends to an increasing number of fields, such as molecu-
lar chemistry, semantic parsing in natural language process-
ing, code modelling, and pseudo-industrial Boolean Satisfiability
instance generation (Guo and Zhao 2023).

4, State of the art of deep generative models in
architectural and urban form generation

Many studies explore applying deep generative models in archi-
tectural and urban form generation (see Table 4). To date, there
have been four kinds of deep generative models applied in archi-
tectural and urban form generation, i.e. GAN, CNN, VAE, and
autoregressive models. According to Table 4, GAN is the most
widely used deep generative model in architectural and urban
form generation. Most generation objectives model properties
relating to building configuration, floor plan, building facade,
building massing, and street network structure. Evaluating the
quality of output is a challenge for deep generative models. The
metrics refer to measures of similarity to determine how simi-
lar the generated architectural and urban forms are to the set
of architectural and urban forms used to train the model. Use-
ful measures of similarity are required to train the model. Oth-
erwise, we cannot define whether the generated architectural
and urban forms have similar properties to the real architectural



Table 4. The application of deep generative models in architectural and urban form generation.
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Technique

Generation objective

Data format

Metrics

Limitation

Reference

Generative
Adversarial
Networks

Deep Convolu-
tional Neural
Networks

Variational

Autoencoders

Autoregressive
Models

Building configuration

Building configuration

Street network

Floor plan

Floor plan

2D building plan, 2D
building facade, 3D
Building massing

Urban pattern

Floor plan
Floor plan

Street network

Building configuration

Building configuration

Urban texture

Street network

Building configuration
Street network

Image

Image

Image

Image

Image
Image/voxel

Image

Graph
Graph

Image

Image

Image

Image

Image

Voxel
Graph

Visual comparison between generated
form and real form

Visual evaluation and quantitative
evaluation (form diversity assessed

with quantity, density, and geometry

indicators)

Visual evaluation and statistical
evaluation (city block area,

compactness, city block aspect ratio)

Footprint, programme, orientation,
thickness & texture, connectivity,
and circulation

The distribution of number of satellite
urban centres, the distribution of
radial profile classes, typical radial
profile

realism, diversity, and compatibility

Liveability, sleepability, cookability,
sustainability

Edge overlap

The overlapping area and difference of
vertices positions
/

Number of nodes, number of edges,
average node degree, total edge
length, average edge length

/

Perceptual (Fréchet Inception
Distance); urban planning (density,
connectivity, reach, convenience);
Diversity metric

Metrics is subjective.

May producing invalid designs,
difficulty in learning
abstract density functions
in high-dimensional
spaces, potential to fall
into sub-optimal solutions,
neglecting the quantitative
evaluation of similarity
between the design outputs
and training data

Structures close to each other
cannot be sufficiently
captured; the vertical
level is not considered;
post-processing lacks a
step to consistently enforce
large-scale structures; there
is only limited control over
the output; generation
can only be based on
the training of one street
network.

Low image quality, without
considering structural
load-bearing, output data
format of pixel which cannot
be used by designer

/

Limited control of synthesis,
high performance
computational resources
and long computation time,
Novelty, a lack of training
data

A lack of interpretability and
ability for fine-tuned control

/

Only considering function in
design scope, limited design
data for training, a lack of
quantitative evaluation for
generated design

Generation can only be based
on the training of one street
network.

Low quality of output,
generation can only be
based on the training of one
street network.

/

No evaluation for the
application; a lack of
interpretability for using the
2D image editing approach
in3D

Low quality of generated
images, a lack of inter-
pretability, low ability to
evaluate the quality of
outputs

long training times

Generation can only be based
on the training of one street
network.

Shen et al. 2020

Quan 2022

Hartmann et al. 2017

Chaillou 2019

Huang and Zheng 2018
Newton 2019

Albert et al. 2018

Nauata et al. 2020
As, Pal, and Basu 2018

Owaki and Machida 2020

Lin, Jabi, and Diao 2020

Rhee and Krishnamurti 2020

Campo, Carlson, and
Manninger 2021; Campo,
Manninger, and Carlson
2020

Kempinska and Murcio 2019

Miguel et al. 2019
Chuetal. 2019




10 (& B.LINETAL

and urban forms used to train the model. There are various
metrics to evaluate the qualities of architectural and urban forms
generated by the deep generative models. The metrics can be
categorized into two groups, namely, visual metrics and statis-
tical metrics. There are two kinds of statistical evaluation. One
is scoring the indicators manually, and the other one is quan-
titative indicators, such as density, area, and connectivity. Most
models use image representations to generate the architectural
and urban forms. However, the architectural and urban spaces
are complicated and topologically associated. These models
neglect the topological relationship among architectural and
urban elements. This topological information is modelled in the
corresponding graph or network representation of architectural
and urban spaces. On the other hand, image representations
do not explicitly encode topological information and therefore
deep generative models based on such representations gen-
erate architectural and urban spaces with inaccurate or highly
unusual topology. The other common limitations of these stud-
ies include the low quality of design output, limited control over
the design output, long training time, limited training data, and
training based only on one single example.

5. Topology-based urban form generation
framework aided by deep generative models

Through the literature review, two hypotheses are raised:

Deep generative models for graph generation can be used for
street network generation based on topology.

Deep generative models and space syntax can be used
for plot and building configuration generation based on

topology.

Based on the two hypotheses, a topology-based urban form
generation framework aided by deep generative models is pro-
posed to overcome the most common limitations of previous
studies of deep generative models in architectural and urban
form generation:

rarely considering topological relationships among urban
form elements

low quality of design output

limited control over the design output

limited training data

training based only on one single example

The topology-based urban form generation framework aided
by deep generative models consists of six modules, i.e. the
establishment of the dataset, the selection of sub-datasets, the

street network generation, the selection of generated street net-
works, the plot and building configuration generation, and the
selection of generated plots and building configurations (see
Figure 1). The user-machine interaction workflow is presented in
Figure 1. Among the six modules, establishment of the dataset,
street network generation, and plot and building configuration
generation are highly automized, and the other three parts
require the participation of designers.

This framework consists of tools, data, and interfaces.
The tools include clustering analysis or SOM for division of
sub-dataset, deep generative models for graph generation, and
deep generative models/space syntax for plot and building con-
figuration generation. The urban forms are made up of street
networks, plots, and building configurations, and there are
three interfaces, i.e. sub-dataset decision interfaces, design deci-
sion interface for street networks, design decision interface for
plots and building configurations. These interfaces achieve the
interaction between designers and the machine and allow the
designers to influence the process of design generation. Figure 2
demonstrates the detailed workflow of the proposed frame-
work. In the establishment of the dataset, the data of urban form
(including street network, plot, and building configuration) is
classified into different types, making up several sub-datasets, by
the classification method of clustering analysis or SOM through
the urban indicators of connectivity, centrality, density, dimen-
sion, usage, and shape. Through the sub-dataset decision inter-
face, designers select a sub-dataset whose urban form fits the
site for learning, considering the context of the site. Then, the
street networks in the sub-dataset are used for training, and new
street networks are generated by deep generative models for
graph generation. In these generated street networks, an opti-
mum street network is selected by designers through the design
decision interface. Afterward, space syntax is used to analyze the
centrality of the generated street network and the street net-
works from the selected sub-dataset. Based on the training of a
pair of street network centrality analysis maps and plot/building
configuration maps from the sub-dataset, new plots and build-
ing configurations are generated with the input of the gener-
ated street network in the last step by deep generative models.
Through the design decision interface, designers choose a set of
plots and building configurations from the generated plots and
building configurations. This set of plots and building configu-
rations, together with the generated street network selected by
designers, makes up the generated urban form as design output.
This generated urban form is stored in the urban form dataset
simultaneously.

This framework combines the four approaches to urban mor-
phology, i.e. historico-geographical approach, configurational
approach, typological approach, and spatial analytical approach.

() user  [_] Machine

Street network
generation

Selection of sub-
datasets

Establishment of
the dataset

{

Selection of
generated plots
and building
configurations

Plot and building
configuration
generation

Selection of
generated street
networks

FUEE

: Design

output

Figure 1. The user-machine interaction workflow of the topology-based urban form generation framework aided by deep generative models.
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Figure 2. The detailed workflow of the topology-based urban form generation framework aided by deep generative models.

According to historico-geographical approach, the proposed
framework dissects the urban form into three components, i.e.
street networks, plots, and building configurations. The configu-
ration approach is reflected by generating urban forms based on
topology. The structures of urban forms, i.e. street networks, are
presented as graphs. The trained deep generative model gen-
erates new urban forms with similar geometric and topological
attributes to the urban forms in the training set. In the plot and
building configuration generation, space syntax is leveraged to
analyze the centrality of street networks. Besides, this frame-
work utilized a typological approach to divide the urban form
dataset into several sub-datasets for users to select. In addition,
the spatial analytical approach is applied in the plot and building
configuration generation. In this stage, the city is regarded as a
network of flows visualized through the street network centrality
analysis map. Deep generative models learn how flows generate
urban physical forms through pairs of street network central-
ity analysis maps and plot/building configuration maps. Plots
and building configurations are defined and differentiated by
their positions by trained deep generative models in the street
network generated in the last step.

Besides, this framework overcomes the most common limi-
tations of the previous applications of deep generative models
in urban form generation. The limitation of rarely considering
topological relationships among urban form elements is sur-
mounted by using deep generative models for graph gener-
ation, deep generative models, and space syntax to generate
urban forms based on topology. Besides, the training of deep
generative models for graph generation (such as Graphgen)
and deep generative models (such as Pix2PixHD) is based on
multiple data. Also, the limitation of low-quality design output
is overcome through deep generative models that can syn-
thesize high-resolution images, such as Pix2PixHD. In addition,
designers’ controllability of the model can be improved by divid-
ing the urban form dataset into several sub-datasets based on
typology. Designers can influence the design process by select-
ing the sub-dataset based on typology of urban form and by
choosing the optimum street network and the optimum set of
plots and building configurations from the generated street net-
works and generated plots and building configurations, respec-
tively. Moreover, the problem of limited training data can be
surmounted through data collection from OpenStreetMap and

Digimap, which contain data on street networks, plots, and
building configurations for most urban areas.

6. Conclusion and outlook

In this research, a critical literature review is conducted. At
first, the urban form generation is reviewed. The approaches
to urban morphology are presented, i.e. historico-geographical
approach, configurational approach, typological approach, and
spatial analytical approach. The main urban form elements of
street networks, plots, and buildings are demonstrated. The
urban form classification is conducted using the different urban
indicators and classification methods of clustering analysis or
SOM. The well-accepted urban indicators include connectivity,
centrality, density, dimension, usage, and shape. Most genera-
tive urban design models involve the steps of data collection and
generation. The main urban form elements generated include
street networks, plots, and buildings. Then, deep generative
models and deep graph generation are reviewed. All the six
types of deep generative models (i.e. unsupervised fundamen-
tal models, autoencoder models, autoregressive models, GAN
based models, autoencoder-GAN hybrid models, and diffusion
models) might be helpful for urban form generation. Afterwards,
the state of the art of deep generative models in architectural
and urban form generation is presented. The most common
limitations of previous studies of deep generative models in
architectural and urban form generation include:

e rarely considering topological relationships among urban
form elements

low quality of design output

limited control over the design output

limited training data

training based only on one single example

Through the literature review, two hypotheses are raised:

e Deep generative models for graph generation can be used for
street network generation based on topology.

e Deep generative models and space syntax can be used
for plot and building configuration generation based on
topology.
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Based on the two hypotheses, a topology-based urban form
generation framework aided by deep generative models is
proposed to overcome the five most common limitations of
previous studies of deep generative models in architectural
and urban form generation mentioned above. This frame-
work integrates historico-geographical approach, configura-
tional approach, typological approach, and spatial analytical
approach acquired from the review of approaches to urban
morphology in section 2.1. There are six modules in this frame-
work, i.e. the establishment of the dataset, the selection of
sub-datasets, the street network generation, the selection of
generated street networks, the plot and building configuration
generation, and the selection of generated plots and building
configurations. This framework has three kinds of data, three
tools, and three interfaces. The urban forms are composed of
street networks, plots, and building configurations summarized
from the review of urban form elements in section 2.2. The tools
used in the framework include clustering analysis or SOM for
urban form classification, deep generative models for graph gen-
eration leveraged for street network generation, and deep gen-
erative models/space syntax used for plot and building configu-
ration generation. These tools are summarized from the review
of classification of urban forms in section 2.3, deep generative
models in section 3.1, deep graph generation in section 3.2, and
approaches to urban morphology in section 2.1. The three inter-
faces, including sub-dataset decision interface, design decision
interface for street networks, and design decision interface for
plots and building configurations, allow the designers to inter-
vene in the design process, which overcomes the common limi-
tation of restrained control over the design output by the users
in the previous studies summarized in the state of the art of deep
generative models in architectural and urban form generation in
section 4.

However, this framework is still at a conceptual level. The
classification of urban form based on typology using clustering
analysis and SOM in the step of data collection and analysis is
validated by previous studies. However, the generation of street
networks using deep generative models for graph generation
and the generation of plot and building configurations using
deep generative models and space syntax are still hypotheses.
In future research, these hypotheses and the feasibility of the
proposed framework will be validated through a design practice
methodology engaging inputs in concert with the digital gener-
ation. We will qualitatively evaluate the rationality of the design
output and quantitatively test whether the urban form type of
the output is the same as the type of the urban forms in the
selected sub-dataset through the urban indicators of connectiv-
ity, centrality, density, dimension, shape, and usage. Besides, the
technology acceptance model will be utilized to obtain feedback
from early users of the proposed framework through a survey
and further improve the proposed framework.

Notes

1. An isvoist means a group of points visible from a defined vantage point
and related to the environment (Benedikt 1979).

2. Markov chain is a chain formed by a sequence of possibilities of states in
a long-run steady-state level in which the probability of a state relies on
the previous state (Glantz and Mun 2011).
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