
Expert Systems With Applications 245 (2024) 123070

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Surrogate indirect adaptive controller tuning based on polynomial response
surface method and bioinspired optimization: Application to the brushless
direct current motor controller
Alam Gabriel Rojas-López a, Miguel Gabriel Villarreal-Cervantes a,∗,
Alejandro Rodríguez-Molina b

a Mechatronics Section, Postgraduate Department, Instituto Politécnico Nacional - Centro de Innovación y Desarrollo Tecnológico en Cómputo, Mexico
City 07700, Mexico
b Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Mexico City 06720, Mexico

A R T I C L E I N F O

Keywords:
Online controller tuning
Indirect adaptive controller tuning
Surrogate model
Response surface method
Bioinspired optimization algorithms
BLDC motor

A B S T R A C T

The increment of autonomous systems has stimulated the research of new controller tuning techniques to face
the unpredictable disturbances and parametric uncertainties inherent in any autonomous system that affect its
performance. The indirect adaptive controller tuning approach based on the general dynamic model (IACTA-
GDM) and bioinspired optimization is one of the most successful elections facing parametric uncertainties and
disturbances, which are intricate to handle by other controller tuning techniques. However, this controller
tuning approach is limited by the complexity of the dynamic model due to the computational burden,
restricting its application to relatively small systems or systems with slow responses where the tuning is
updated at large time intervals. The present work proposes a novel surrogate indirect adaptive controller tuning
approach based on the response surface method (SIACTA-RSM) to address computational burden limitations.
The proposal is tested on the speed regulation controller of a brushless direct current motor, with the aim
of reducing the speed regulation error and the control system’s power consumption. The closed-loop system
performance and the required computational time obtained by the proposed SIACTA-RSM are compared to
the ones of a well-established IACTA-GDM. The descriptive and inferential statistics, as well as graphical
comparisons, show that the system performance obtained by the SIACTA-RSM proposal is as competitive as
the IACTA-GDM approach, keeping a mean difference among the results by up to 3.18% while reducing the
computational burden of IACTA-GDM by up to 90%. These outcomes show that the SIACTA-RSM proposal is
a reliable alternative to overcome the computational burden limitations that affect the IACTA-GDM approach
while maintaining competitive performance.
1. Introduction

1.1. Background

In the last decades, the dependency on robotic/mechatronic sys-
tems has increased (Setchi, Dehkordi, & Khan, 2020) in many fields,
making the human–robot collaboration a common trend (Arents et al.,
2021; Spatola, Kühnlenz, & Cheng, 2021). In this sense, there are
some cases where human work requires the aid of automated systems,
like in hazardous environments (Stock-Homburg, 2022). Because of
this, there is an unquestionable tendency towards autonomous expert
systems (Gnambs & Appel, 2019; Kuru & Yetgin, 2019; Luckcuck,
Farrell, Dennis, Dixon, & Fisher, 2019; O’Sullivan et al., 2019; Rizk,
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Awad, & Tunstel, 2019; Shi & Zhang, 2021), even if they are applied
in safe conditions, due to their accuracy and reliability. This implies
that autonomous expert systems are increasingly being implemented
into more complex and demanding applications, which means that
the performance of a system of this kind is not only affected by
its own requirements but also by unpredictable external and internal
agents (Nagy, Lăzăroiu, & Valaskova, 2023).

Despite the employed system type, its performance (accuracy, reli-
ability, robustness, etc.) relies on the control strategy (Bubnicki, 2005;
Edwards & Spurgeon, 1998; Hull, 2013; Leigh, 2004; Liu & Yao, 2016).
Various control strategies have been developed to guarantee the con-
vergence of the system error to zero in a finite time (Chen, 1998; Khalil,
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2002). Nevertheless, the behavior of the closed-loop system response
depends on the controller tuning. Controller tuning consists of finding
the control parameters that satisfy the established performance require-
ments (Åström & Hägglund, 2006; Foley, Julien, & Copeland, 2005).
This process is of utmost importance because the accuracy with which
the established criteria are met depends on it (Passino, Yurkovich, & Re-
infrank, 1998; Smith, 2009). There is a wide variety of controller tuning
methods and different classifications of them, where one of the most
popular separates them into four groups (Borase, Maghade, Sondkar, &
Pawar, 2021; Rodríguez-Molina, Mezura-Montes, Villarreal-Cervantes,
& Aldape-Pérez, 2020; Villarreal-Cervantes & Alvarez-Gallegos, 2016).

The first one is the analytic method, where the tuning is performed
offline through mathematical tools related to control theory, where
the closed-loop stability of the system is analyzed. Also, this method
relies on the characteristics of the system model. If the model is
linear, the Root Locus Method or Frequency Response Analysis (Bode,
Nyquist, and Nichols diagrams) could be employed (Alyoussef & Kaya,
2022; Beudaert, Franco, Erkorkmaz, & Zatarain, 2020; Miyani & Sant,
2022; Osman & Zhu, 2017; Zacher, 2023; Zanasi, Cuoghi, & Ntogra-
matzidis, 2011). On the other hand, if it is nonlinear, approaches based
on Lyapunov analysis are employed (Cai, Su, Dai, Lin, & Lin, 2009;
Makhamreh, Trabelsi, Kükrer, & Abu-Rub, 2021; Wang, Liu, & Chen,
2013).

The second tuning method is based on heuristics, where the tun-
ing is conducted offline, implementing empirical rules based on the
system response (open and closed loop) and characteristics like fre-
quency, overshoot, response time, etc. The data can be obtained ex-
perimentally or in simulation. There are different techniques in this
class like Ziegler–Nichols, Cohen–Coon, Armstrong–Hagglund, Tyreus–
Luyben, Ciancone–Marlin, Chien–Hrones–Reswick (Aisuwarya & Hi-
dayati, 2019; Anitha & Gopu, 2021; Azman et al., 2017; Dang &
Gostomski, 2021; Hambali, Masngut, Ishak, & Janin, 2014; Meshram
& Kanojiya, 2012; Wang et al., 2019). These techniques have a mathe-
matical background but are also influenced by the user experience.

The third tuning method considers the tuning problem as an op-
timization problem like the one in (1), where  (𝝓) = {f1,… , f𝑛} is
the set of objective functions (that quantify the control performance
of given controller parameters), 𝑔𝑖 is the 𝑖th inequality constraint, ℎ𝑗
is the 𝑗th equality constraint, and l.b. and u.b. are the lower and
upper boundaries of the vector of design variables 𝝓 (controller pa-
rameters). It is worth pointing out that the optimization problem is
also subject to the dynamic model of the system, which makes the
objective functions and the constraints time-dependent, according to
the changes in the states of the system 𝒙(𝑡) and its control inputs 𝒖(𝑡).
Then the established optimization problem is solved offline by an op-
timizer (Benitez-Garcia, Villarreal-Cervantes, & Mezura-Montes, 2022;
Fang, Chen, & Li, 2011; Habbi, El Houda Gabour, Bounekhla, & Boud-
issa, 2021; Mamizadeh, Genc, & Rajabioun, 2018; Pareek, Kishnani,
& Gupta, 2014; Rojas-López, Villarreal-Cervantes, Rodríguez-Molina, &
García-Mendoza, 2020; Serrano-Pérez, Villarreal-Cervantes, González-
Robles, & Rodríguez-Molina, 2020; Serrano-Pérez, Villarreal-Cervantes,
Rodríguez-Molina, & Serrano-Pérez, 2021; Sinha, Prasad, & Patel, 2009;
Wang, Juang, & Chan, 1993; Wenge, Deyuan, Siyuan, Shaoming, &
Zeyu, 2010).

min
𝝓∈R𝑛𝜙

 (𝝓)

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥̇ = 𝑓 (𝒙(𝑡), 𝒖(𝑡),𝝓)

𝑔𝑖(𝝓) ≤ 0, 𝑖 = 1,… , 𝑟

ℎ𝑗 (𝝓) = 0, 𝑗 = 1,… , 𝑠

l.b. ≤ 𝝓 ≤ u.b.

(1)

These three first controller tuning methods have their perks but
share a common disadvantage. They tune the controller offline be-
fore the task is executed, which makes it essential to know all the
2

conditions under which the system will operate. In most real-world
cases, this might be complicated when they face parametric uncer-
tainties and external disturbances. To avoid this, the fourth tuning
method, known as the adaptive controller tuning method, stands out.
This method is divided into direct and indirect adaptive variants.
In the direct adaptive variant, an explicit reference model is em-
ployed to make comparisons against the signals of the plant, where
the explicit reference model also has to be known a priori, making
this variant as limited as the three previous controller tuning meth-
ods (Alavi, Akbarzadeh, & Farughian, 2011; Aliman, Ramli, Mohamed
Haris, Soleimani Amiri, & Van, 2022; Boubakir, Labiod, & Boudjema,
2021; Chang, Hwang, & Hsieh, 2002; Gholaminejad, Khaki-Sedigh,
& Bagheri, 2016; Higashiyama et al., 2000; Ortega, Praly, & Tang,
1987; Zhu, Gao, & Huang, 2022). On the other hand, the indirect
adaptive variant changes the explicit reference model to an adjustable
predictor, based on the general dynamic model (GDM) of the system,
whose output is compared to the plant signals. Then, the predictor is
updated concurrently with the controller at each time interval. This
approach makes the control tunning be considered entirely online and
better in the handling of parametric uncertainties and external distur-
bances (Rodríguez-Molina, Villarreal-Cervantes, & Aldape-Pérez, 2019;
Rodríguez-Molina, Villarreal-Cervantes, Álvarez-Gallegos, & Aldape-
Pérez, 2019; Rodríguez-Molina, Villarreal-Cervantes, Serrano-Pérez,
Solís-Romero, & Silva-Ortigoza, 2022; Villarreal-Cervantes, Rodríguez-
Molina, García-Mendoza, Peñaloza-Mejía, & Sepúlveda-Cervantes, 2017
;Villarreal-Cervantes, Rodríguez-Molina, & Serrano-Pérez, 2021). Nev-
ertheless, it has to be noted that indirect adaptive controller tuning
has a drawback. As the controller parameters are updated at fixed
time intervals through the execution of the task, the indirect method
has the highest computational burden among all the remaining tuning
approaches (as it computes multiple simulations iteratively within brief
time intervals), limiting its application to small/simpler systems. Con-
sidering this limitation, investigations like Villarreal-Cervantes et al.
(2021) have been developed to face computational burden. Such work
implemented an asynchronous activation of the indirect adaptive con-
troller tuning, limiting the computational cost for the online controller
tuning process to the interval when required. Even if this approach
reduces by up to 60% the computational cost related to the controller
tuning, it still requires computing the dynamic model of the system,
which can be very complex.

In the computer systems research field, some methods based on
pattern recognition techniques have been developed to obtain a sim-
plified system model. One of the most popular is surrogate modeling
(SM), which started as a statistical tool called meta-models or emulators,
which were used to work with large amounts of data (Bliek, 2022;
Gramacy, 2020). These methods based on pattern recognition tech-
niques evolved, creating different machine learning approaches to get
surrogate models (Cohen, 2021). There are diverse methods to obtain
the surrogate model of a complex system, such as Gaussian Process
Regression, Support Vector Machines, Artificial Neural Networks, and
Bayesian Linear Regression (Gramacy, 2020; Iuliano & Pérez, 2016;
Koziel & Leifsson, 2013), where optimizers are implemented to ap-
proximate the outputs of the regression systems to the values of an
initial data set (Jones, 2001). Moreover, one of the most popular
methods is the response surface methodology (RSM) (Chelladurai et al.,
2021; Jiang, Zhou, & Shao, 2020; Sobester, Forrester, & Keane, 2008)
because of its simplicity in implementing a multivariate-multitarget
polynomial regression. Despite these methods have been employed in a
wide variety of applications like optimal design (Liu, Meng, Yuan, Ren,
& Chen, 2023), safety-maintenance operations (Suganya, Swaminathan,
& Anoop, 2023), vulnerability analysis (Jiang, Xia, Yao, Sun, & Xia,
2023), among others, little has been done in the controller tuning. Next,
a summarization of works related to the surrogate modeling techniques

applied to controller tuning methods is described.
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Fig. 1. Histogram of SM applied to controller tuning approaches.
1.2. State-of-the-art about surrogate models applied to controller tuning
methods

Table 1 presents a compilation of works related to surrogate models
applied to controller tuning. The reference work and its publication
year are presented in the first column. The second column refers to
the category of a proposed taxonomy related to the controller tuning
method based on surrogate models: surrogate optimization-based con-
troller tuning method (SOCTM), surrogate direct adaptive controller
tuning method (SDACTM), or surrogate indirect adaptive controller
tuning method (SIACTM). A more detailed description of the proposed
taxonomy will be given shortly. The third column describes the kind
of surrogate modeling method employed. Finally, the fourth column
regards the optimization algorithm implemented, where in some of the
works, this column is reported as ‘‘itself’’ because some surrogate model
incorporates an optimization process.

The taxonomy of the second column might be complicated to cat-
egorize because many works refer to themselves as adaptive or online
approaches, when they do not necessarily perform controller tuning in
this way. However, the following information helps to identify their
category according to all the previous information:

• Surrogate optimization-based controller tuning method (SOCTM):
The optimizations are assisted/performed by surrogate models,
and the optimization problem related to the controller tuning is
solved offline. The controller parameters are constant during the
task execution. Even if the surrogate model or optimization is
obtained in a real plant, all those tests are done only to acquire
fixed controller parameters.

• Surrogate direct adaptive controller tuning method (SDACTM):
A surrogate model is obtained offline (even if done in a real
plant) considering the whole time to be executed and sometimes
different conditions applied to the experiment. The model is then
used as a reference model during the adaptive controller tuning.
In this approach, the controller parameters vary over the task
execution in short time intervals, but the reference model remains
the same during the execution.

• Surrogate indirect adaptive controller tuning method (SIACTM):
The surrogate model is updated during the task execution in short
time intervals, so this model dynamically changes during the task.
Also, the parameters of the controller vary in these intervals. This
tuning method is of interest in this work.

Analyzing the aforementioned works, a histogram is presented in
Fig. 1, where the research items are divided firstly by year (since 2010)
and secondly by their surrogated-based tuning approach considering
the proposed taxonomy. It is observed that the strategy of controller
tuning based on surrogate models clearly is a recent area of inves-
3

tigation, with only a few works (less than fifty) in the last decade.
Fig. 2. Controller tuning works based on SM.

However, there is an increasing number of investigations/applications
of surrogate models applied in controller tuning, particularly in the
SOCTM approach. Moreover, in the last three years, there has been
an interest in the SDACTM approach due to its advantages over the
other approaches. Nevertheless, Fig. 2 shows that IACTM and SIACTM
have been less studied than SOCTM, with less than half of the investi-
gations (43.75%). Furthermore, there is a particular lack of research
on SIACTAM (the method of interest for the present work), whose
representation is only 10.41%.

For more detailed information, Fig. 3 presents the surrogate models
that were applied in each tuning approach, where the surrogate models
in red indicate that they have not been applied. It stands out that
the kNN method has never been applied in any work about con-
troller tuning, even though it has been applied in surrogated-assisted
constrained optimization problems with acceptable results (Miranda-
Varela & Mezura-Montes, 2016). Another highlight is that the Gaussian
Process (GP) has been applied in 56% of the works. The GP represents
more than 50% of the SOCTM and the SDACTM applications in those
works. In particular, in the controller tuning method of interest for
this paper, i.e., in the SIACTM, the most used surrogate model is the
GP, which is observed in the 80% of the related works, while the
remaining (20%) use ANN (see Fig. 3(c)). Then, to the best of the
author’s knowledge, the surrogate model based on RSM has not been
investigated in the SIACTM.

On the other hand, it is noteworthy that ANN is the second most
implemented method among surrogate model techniques with 24% of
the works. This is because deep learning neural networks can achieve
highly accurate surrogate models of the system, and they have shown
their effectiveness in diverse applications (Brunton & Kutz, 2022; Dong,
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Table 1
Surrogate model applied to controller tuning.

Reference Tuning method Surrogate model Optimization algorithm

Parnianifard, Rezaie, Chaudhary, Imran, and Wuttisittikulkij (2021) SOCTM GP PSO
Pan and Das (2015) SOCTM GP itself
Leavy, Xu, Filizadeh, and Gole (2019) SOCTM GP, MARSa itself
Taha, Bakr, and Emadi (2020) SOCTM S-M itself
Yang, Gaida, Bäck, and Emmerich (2015) SOCTM GP EGO
Faruq, Abdullah, Fauzi, and Nor (2011) SOCTM RBF GA
Zhu, Piga, and Bemporad (2022) SOCTM RBF GLISP
Zhao, Alimo, Beyhaghi, and Bewley (2019) SOCTM RSM 𝛥-DOGS
Bowels, Xu, and Chen (2015) SOCTM GP BO
Pirayeshshirazinezhad, Biedroń, Cruz, Güitrón, and Martínez-Ramón (2022) SOCTM GP, ANN, SVM itself
Gurung, Naetiladdanon, and Sangswang (2021) SOCTM SVM, ANN, RF BA
Chen and Xu (2015) SOCTM GP BO
Schillinger et al. (2017) SOCTM GP BO
Frasnedo et al. (2015) SOCTM GP BO
Price, Radaideh, and Kochunas (2022) SOCTM ANN ES, DE, PSO, GW, HH, MF
Pai, Nguyen, Prasad, and Rajendran (2022) SOCTM ANN NSGA-II
Amini et al. (2022) SOCTM GP GA
Kim, Lee, Kim, Park, and Lim (2022) SOCTM GP Gradient Descent
McClement et al. (2022) SOCTM ANN RL
Lima, Alves, and Araujo (2020) SOCTM GP DACE
Hosamo, Tingstveit, Nielsen, Svennevig, and Svidt (2022) SOCTM ANN, SVM, GP NSGA-II
Bhattacharya et al. (2021) SOCTM GP BO
Yang, Emmerich, Deutz, and Bäck (2019) SOCTM GP MOBGO
Pinto, Deltetto, and Capozzoli (2021) SOCTM ANN RL
Breschi, van Meer, Oomen, and Formentin (2021) SOCTM GP BO
Büchler, Calandra, and Peters (2019) SOCTM GP BO
Petrusev et al. (2023) SOCTM ANN RL
Antal, Péni, and Tóth (2022) SOCTM GP BO
van Niekerk, le Roux, and Craig (2022) SDACTM GP BO
Liu, Patton, and Shi (2022) SDACTM GP BO
Sorourifar, Makrygirgos, Mesbah, and Paulson (2021) SDACTM GP BO
Stenger, Ay, and Abel (2020) SDACTM GP BO
Sabug, Ruiz, and Fagiano (2022) SDACTM SMGO-𝛥b itself
Fernandez-Gauna, Graña, Osa-Amilibia, and Larrucea (2022) SDACTM RBF GS, RL
Zhang, Lu, et al. (2022) SDACTM LTI SA
Petsagkourakis et al. (2022) SDACTM GP BO, RL
Yin, Zhang, Jiang, and Pan (2020) SDACTM SVM SMPSO
Kontes, Valmaseda, Giannakis, Katsigarakis, and Rovas (2014) SDACTM SVM itself
Shin, Smith, and Hwang (2020) SDACTM ANN LM
Yin, Zhao, Lin, and Karcanias (2020) SDACTM SVM GDE-3, MOEA, MOPSO, MOGOA, NSGA-III
Martins, Rodrigues, Loureiro, Ribeiro, and Nogueira (2021) SDACTM ANN PSO
Kudva, Sorouifar, and Paulson (2022) SDACTM GP DRACO
Lü, Zhu, Huang, Jiang, and Jin (2010) SDACTM ANN DE
Mowbray, Petsagkourakis, del Rio-Chanona, and Zhang (2022) SDACTM GP RL
Roveda, Forgione, and Piga (2020a) SIACTM GP BO
Chen and Cheng (2021) SIACTM GP BO
Roveda, Forgione, and Piga (2020b) SIACTM GP BO
Šafarič, Bencak, Fister, Šafarič, and Fister (2020) SIACTM ANN ES, DE, PSO, BA
Lu, González, Kumar, and Zavala (2021) SIACTM GP BO

a RBF type.
b RSM type.
Wang, & Abbas, 2021; Geneva & Zabaras, 2020; Qian, Kramer, Pe-
herstorfer, & Willcox, 2020). However, it is essential to keep in mind
that the deep learning approach, specifically deep ANN, has only been
applied in SOCTM and SDACTM so far. This is because the training
of the ANN is performed before the system operation due to its high
computational burden. In the SIACTM, attempts have been made to use
deep learning techniques as surrogate models. However, only Šafarič
et al. (2020) includes a single-layer ANN with a single neuron in the
SIACTM, which, according to Dong et al. (2021), is not indicative of a
deep learning approach because it lacks several layers and numerous
neural nodes.

Some other highlights concern the optimization algorithm em-
ployed. Firstly, the BO algorithm was the most implemented with the
33.3% of applications, which may be related to the fact that BO requires
fewer function evaluations (Roveda et al., 2020a). However, in Lan,
Tomczak, Roijers, and Eiben (2022), it is shown that fewer function
evaluations do not necessarily imply a faster solution, which is helpful
in the SIACTM to provide the controller gains within the required
short time intervals. Secondly, 12.5% of the works do not require
4

an optimization algorithm, as the surrogate modeling incorporates an
optimization process. Also, only three applications (6.25%) employed
deterministic optimization algorithms, while the rest adopted stochastic
optimization techniques.

Finally, in a more particular analysis, it is worth mentioning that the
works of SIACTM analyze mostly the controller’s performance, leaving
aside the analysis of the computational time required to solve the online
controller tuning. The computational time analysis is an essential as-
sessment to give information about the experimental use of the SIACTM
on a test-bed platform because the SIACTM must produce results within
short periods (which may be a limitation in the SIACTM), resulting
in a challenging task. Also, the works related to the SIACTM do not
change the conditions of the experiments to analyze the limitations and
characteristics of their proposals.

As can be observed from this information, the surrogate assisted
controller tuning is a recent and increasing field of research. However,
in a more specific way, the SIACTM is still an unaddressed topic, espe-
cially regarding using surrogate models based on the RSM method. In
addition, there is a gap in formal methodologies to address the SIACTM
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Fig. 3. SM implemented by controller tuning approach.
based on RSM and bioinspired optimization, and this represents a
recent research direction whose benefits and drawbacks have not been
well examined.

1.3. Contributions

Considering the increase in applications of autonomous systems that
require improved control techniques to face parametric uncertainties
and external disturbances, this research makes significant contribu-
tions to the field of adaptive control. It addresses the current gap
in state-of-the-art analysis and introduces a novel approach for the
surrogate indirect adaptive controller tuning method. Next, the main
contributions of the work are presented:

• The proposal of a generalized approach for surrogate indirect
adaptive controller tuning: This work presents an innovative
general approach for surrogate indirect adaptive controller tun-
ing based on the RSM and bioinspired optimization. The pro-
posal deals with the computational burden limitations that affect
the well-established indirect adaptive controller tuning approach
based on the model of the system, giving a tool to implement
indirect adaptive controller tuning to expert systems. Moreover,
the proposed approach can be applied to any system as long as it
meets the conditions and assumptions listed in Section 2.6.

• The application of the proposal to the BLDC motor controller
and the comparative statistical study with other approaches:
Considering to demonstrate the characteristics of the proposed
approach, it is applied to the Brushless Direct Current (BLDC) mo-
tor study case. This system is selected considering its increasing
popularity in industrial, commercial, and research fields (Sakun-
thala, Kiranmayi, & Mandadi, 2017). Also, its properties, like
a fast response, susceptibility to noise, and complexity of con-
trol (Mohanraj et al., 2022) make the proposed approach an
interesting option for future BLDC motor applications. Moreover,
the formal statistical study comparing the unaddressed proposal
of SIACTM based on the RSM and the traditional IACTM based
on GDM is evaluated by considering the controller performance
and the computational burden related to the online controller
tuning problem. This study aims to better clarify the proposal’s
advantages and limitations through different experiment condi-
tions where the parametric uncertainties and disturbances are
increased. This also will become an important reference for prac-
titioners and researchers who want to adopt the proposed SIACTM
in their applications by providing information about the ben-
efits and drawbacks of the proposal, as all the methodology,
characteristics, and limitations are described.

.4. Structure of the work

The present work has the following structure. Section 2 explains the
eneralized form of the surrogate indirect adaptive controller tuning
pproach proposal, defining its form of operation, its stages, and the
5

ptimization algorithms employed. Section 3 presents the dynamic
model of the BLDC motor and its controller to be optimally online
tuned through the proposal, as well as the proposal’s particularities for
this case study. The experimentation results are portrayed in Section 4,
where statistical comparisons (descriptive and inferential) regarding
system performance and the computational burden are discussed, and
graphical comparisons about the speed regulation and power consump-
tion of the BLDC motor are analyzed. Finally, Section 5 discusses the
conclusions and highlights of the present work.

2. Surrogate indirect adaptive controller tuning approach

The surrogate indirect adaptive control tuning implements two
adaptation stages for a given instant of time at which the tuning process
is performed. Fig. 4 illustrates the operation of these stages. As can
be seen, different time intervals are employed in the proposed control
tuning strategy. Some descriptions, as well as hints, are detailed below.

• 𝑡𝑝 represents the present time during the execution of the system.
• 𝛥𝑇𝑈 is the update time interval. Once 𝑡𝑝 reaches this interval,

the two stages of the proposal are performed. This will occur
periodically each 𝛥𝑇𝑈 .

• 𝛿𝑡𝑙 is the time interval related to the system’s sampling. The
intervals should be within a representative range. If they are too
wide, they might not represent changes in the system execution.
On the other hand, if they are too short, there might be an
oversampling of repetitive information (approximated similar val-
ues). Also, the sensor system might not accomplish the sampling
(sensing/transducing/filtering) if the intervals are too short. As a
recommendation, 𝛿𝑡𝑙 should be shorter than 𝛥𝑇𝑈 , i.e., 𝛿𝑡𝑙 ≤ 𝛥𝑇𝑈 .

• 𝑇𝐼 denotes the identification period that employs 𝑛𝑙 samplings
taken each 𝛿𝑡𝑙, resulting in the period 𝑇𝐼 = [𝑡𝑝 − 𝑛𝑙𝛿𝑡𝑙 , 𝑡𝑝]. The
samples are gathered into a vector that represents the output of
the real system 𝒚, which is used to update a reference model
𝒚 = 𝑓 (𝒙(𝑡),𝒂). The update of the reference model is achieved
by finding the new constant parameter of the reference model
𝒂∗ that makes 𝒚 ≈ 𝒚. 𝑇𝐼 period can be shorter or wider than
the 𝛥𝑇𝑈 time interval, and is only limited by the quantity of
information employed (based on the 𝑛𝑙 samplings), relying more
on the computational capacity of the system. This period should
be wide enough to cover changes in the system but sufficiently
short to compute the identification and prediction stages.

• 𝑇𝑃 represents the prediction period that simulates the future
behavior of 𝑚𝑙 future intervals 𝛿𝑡𝑙, resulting in 𝑇𝑃 = [𝑡𝑝, 𝑡𝑝+𝑚𝑙𝛿𝑡𝑙].
The simulation of this period uses the updated reference model
𝒚 = 𝑓 (𝒙(𝑡),𝒂∗,𝒌) to find the new controller parameters 𝒌∗ that
improve a desired performance indicator of the system. Once the
𝒌∗ values are calculated, they are implemented into the adjustable
controller. Then, the system will operate normally until the next
update tuning interval 𝛥𝑇𝑈 . Like 𝑇𝐼 , this period should be short
enough to compute the identification and prediction stages within

the 𝛥𝑇𝑈 interval.
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Fig. 4. Online controller tuning operation scheme.
Considering the mentioned hints, the specific description of the
roposal is as follows.

Let 𝒙 = [𝑥1,… , 𝑥𝑛𝑥 ]
𝑇 ∈ R𝑛𝑥 , 𝒖 = [𝑢1,… , 𝑢𝑛𝑢 ]

𝑇 ∈ R𝑛𝑢 , and 𝒚 =
[𝑦1,… , 𝑦𝑛𝑦 ]

𝑇 ∈ R𝑛𝑦 be respectively the state, input signal, and output
signal vectors of the dynamic system (2), where 𝐂 ∈ R𝑛𝑦×𝑛𝑥 is the
relationship matrix between the states and outputs of the system.

𝒙̇(𝑡) = 𝑓 (𝒙(𝑡), 𝒖(𝑡))
𝒚(𝑡) = 𝐂𝒙(𝑡) (2)

Suppose that the system execution at the present time 𝑡𝑝 has reached
its update interval 𝛥𝑇𝑈 . At that moment, the adaptive mechanism of the
controller will execute the following two stages.

2.1. Polynomial RSM-based identification stage

Instead of using the computationally expensive GDM approach to
obtain a reference model, the Response Surface Method (RSM) (Khuri
& Mukhopadhyay, 2010; Tenne & Goh, 2010; Walpole, Myers, Myers,
& Ye, 1993) is implemented.

Assume that the output 𝒚 of the dynamic system (2) is to be
estimated by 𝒚 = [𝑦1,… , 𝑦𝑘,… , 𝑦𝑛𝑦 ]

𝑇 ∈ R𝑛𝑦 through a multivariate-
multitarget polynomial model. This can be achieved by RSM modeling
(a surrogate model technique) (Jiang et al., 2020; Myers, Montgomery,
& Anderson-Cook, 2016; Ross, 2020).

Before starting, it is important to describe some concepts. Consider
that an instance (an observation) is formed by input 𝒙̃𝑙 and output
𝒚𝑙 attributes (input and output dynamic system’s features) at a spe-
cific time, i.e., the 𝑙th instance (𝑙 ∈ {1,… , 𝑛𝑙}) is the set {𝒙̃𝑙 , 𝒚𝑙}
at the next specific time 𝑡𝑙 + 1 for the output features 𝒚𝑙 and, at
the time 𝑡𝑙, for the input features 𝒙̃𝑙 (considering that 𝒚(𝑡𝑙 + 1) =
∫ 𝑓 (𝒙(𝑡𝑙), 𝒖(𝑡𝑙)) 𝑑𝑡 is the relation between inputs and outputs features),
where 𝒚𝑙 = [𝑦𝑙1,… , 𝑦𝑙𝑘,… , 𝑦𝑙𝑛𝑦 ]

𝑇 ∈ R𝑛𝑦 is the vector formed by the 𝑛𝑦
output attributes at the next specific time 𝑡𝑙 + 1, and 𝒙̃𝑙 = [𝒙𝑙 , 𝒖𝑙]𝑇 =
[𝑥𝑙1,… , 𝑥𝑙𝑛𝑥 , 𝑢

𝑙
1,… , 𝑢𝑙𝑛𝑢 ]

𝑇 = [𝑥𝑙1,… , 𝑥𝑙𝑛𝑥+𝑛𝑢 ]
𝑇 ∈ R𝑛𝑥+𝑛𝑢 is the vector formed

by 𝑛𝑥 + 𝑛𝑢 input attributes at the time 𝑡𝑙.
Considering the aforementioned information, the polynomial model

of 2nd degree that reproduces the behavior of the 𝑘th output at 𝑙th
instance is given by 𝑦̌𝑙𝑘 (3), where the set {𝛽𝑘,0, 𝛽𝑘,𝑖, 𝛽𝑘,𝑖,𝑗} represent the
coefficients of the polynomial (Khuri, 2006).

𝑦̌𝑙𝑘 = 𝛽𝑘,0
⏟⏟⏟

𝑏𝑖𝑎𝑠

+
𝑛𝑥+𝑛𝑢
∑

𝑖=1
𝛽𝑘,𝑖𝑥

𝑙
𝑖

⏟⏞⏞⏞⏟⏞⏞⏞⏟
1st degree terms

+
𝑛𝑥+𝑛𝑢
∑

𝑖=1

𝑛𝑥+𝑛𝑢
∑

𝑗≥𝑖
𝛽𝑘,𝑖,𝑗𝑥

𝑙
𝑖𝑥

𝑙
𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2nd degree terms

(3)

Fig. 5 depicts how the proposed polynomial aims to replicate the
behavior of the real system by considering multiple samples/instances
over a defined identification period 𝑇𝐼 . To create a form that represents
the behavior of all the 𝑛𝑙 instances, which cover a period 𝑇𝐼 , of each
𝑘th output, use the following:

• Consider a vector 𝜷̌𝑘 ⊆ {𝛽𝑘,0, 𝛽𝑘,𝑖, 𝛽𝑘,𝑖,𝑗} = [0𝛽𝑘,1 𝛽𝑘,… ,𝑚 𝛽𝑘,… ,
𝜈−1𝛽𝑘]𝑇 ∈ R𝜈 as the coefficient vector of the polynomial (a.k.a.
regressor parameters), corresponding to the 𝑘th estimated output
grouped in the vector 𝒚̌𝑘 = [𝑦̌1𝑘,… , 𝑦̌𝑙𝑘,… , 𝑦̌𝑛𝑙𝑘 ]

𝑇 ∈ R𝑛𝑙 . It is
important to consider which polynomial degree will be applied;
6

Fig. 5. Online RSM identification by polynomial regression.

for a 1st degree polynomial, only the independent terms are
considered, giving 𝜈 = 𝑛𝑥+𝑛𝑢+1 independent terms. On the other
hand, if a 2nd degree polynomial is employed, the total terms are
𝜈 = (𝑛𝑥+𝑛𝑢+1)(𝑛𝑥+𝑛𝑢+2)

2 .
• Create an input feature vector for the 𝑙th instance, which includes

a constant value, resulting in 𝒙̌𝑙 ⊆ {1, (𝒙̃𝑙)𝑇 } = [1, 𝑥̌𝑙1,… , 𝑥̌𝑙𝜈−1]
𝑇 ∈

R𝜈 , where the elements of the vector follow that 𝑥̌𝑙𝑖 = 𝑥𝑙𝑖 ∀ 𝑖 ∈
{1,… , 𝑛𝑥+𝑛𝑢} (for the independent terms) and {𝑥̌𝑙𝑛𝑥+𝑛𝑢+1,… , 𝑥̌𝑙𝜈−1}

⊆
{

𝑥𝑙𝑖𝑥
𝑙
𝑗
|

|

|

∑𝑛𝑥+𝑛𝑢
𝑖=1

∑𝑛𝑥+𝑛𝑢
𝑗≥𝑖 𝑥𝑙𝑖𝑥

𝑙
𝑗

}

(for the interaction terms). To
clarify how an input vector is formed when a second-degree
polynomial is implemented, the following example is provided:
consider 𝑛𝑥 + 𝑛𝑢 = 2, the resulting 𝑙th input vector is 𝒙̌𝑙 =
[1, 𝑥̌𝑙1, 𝑥̌

𝑙
2, 𝑥̌

𝑙
3, 𝑥̌

𝑙
4, 𝑥̌

𝑙
5]

𝑇 = [1, 𝑥𝑙1, 𝑥
𝑙
2, 𝑥

𝑙
1𝑥

𝑙
1, 𝑥

𝑙
1𝑥

𝑙
2, 𝑥

𝑙
2𝑥

𝑙
2]

𝑇 . Then, a matrix
that groups all of the feature vectors for all 𝑛𝑙 instances is formed
as 𝐗̌ = [(𝒙̌1)𝑇 ,… , (𝒙̌𝑛𝑙 )𝑇 ]𝑇 ∈ R𝑛𝑙×𝜈 .

Representing all 𝑛𝑙 instances of (3) in a matrix form for the 𝑘th
output regressor results in (4).

𝒚̌𝑘 = 𝐗̌𝜷̌𝑘 (4)

The general form of a regressor expressed as a multivariate-
multitarget polynomial function for all of the 𝑛𝑦 outputs simultaneously
is presented in (5), where 𝐗 = 𝐈𝑛𝑦 ⊗ 𝐗̌ ∈ R(𝑛𝑦⋅𝑛𝑙 )×(𝑛𝑦⋅𝜈) is the Kronecker
product between an identity matrix 𝐈𝑛𝑦 ∈ R𝑛𝑦×𝑛𝑦 and the matrix 𝐗̌,
resulting in a diagonal matrix formed by 𝑛𝑦 matrices 𝐗̌. Also, 𝜷 =
[𝜷̌1,… , 𝜷̌𝑘,… , 𝜷̌𝑛𝑦 ]

𝑇 ∈ R𝑛𝑦⋅𝜈 is the vector constructed by 𝑛𝑦 coefficient
vectors 𝜷̌ , and 𝒚 = [𝒚̌ ,… , 𝒚̌ ,… , 𝒚̌ ]𝑇 ∈ R𝑛𝑦⋅𝑛𝑙 is the vector formed
𝑘 1 𝑘 𝑛𝑦
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Fig. 6. Surrogate indirect adaptive controller tuning method based on RSM.
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by 𝑛𝑦 output vectors 𝒚̌𝑘.

𝒚 = 𝐗𝜷 (5)

To achieve a regression function that equalizes the 𝑙th instance of
𝑘th output with the corresponding value of a real dynamic system,

.e., 𝑦𝑙𝑘 = 𝑦𝑙𝑘, it is necessary to find the multivariate-multitarget poly-
nomial coefficients values 𝑚𝛽𝑘 | 𝑚 ∈ {0, 1,… , 𝜈} of 𝜷 that accomplish
such equality.

The values of 𝜷 are calculated through the Least Squares Method
LSM) (Myers, Montgomery, Vining, & Robinson, 2012; Weisberg,
005), which aims to minimize the squared error between the real
nd approximation functions, resulting in the objective function J =
1
2 (𝒚̊ − 𝐗𝜷)𝑇 (𝒚̊ − 𝐗𝜷), where all the 𝑛𝑙 instances sampled from all
the 𝑛𝑦 outputs of the real system are gathered in the vector 𝒚̊ =
𝑦11,… , 𝑦𝑛𝑙1 ,… , 𝑦1𝑛𝑦 ,… , 𝑦𝑛𝑙𝑛𝑦 ]

𝑇 ∈ R𝑛𝑦⋅𝑛𝑙 .
Therefore, the optimization problem is formally stated as (6).

min
𝜷

J (6)

To solve (6), the optimality condition of first order must satisfy
.e., 𝜕J

𝜕𝜷
= 0, which results in (7).

1
2
(𝒚̊ − 𝐗𝜷)𝑇 (−𝐗) + 1

2
(−𝐗)𝑇 (𝒚̊ − 𝐗𝜷) = 0 (7)

The coefficients of the regressor 𝜷
∗

that satisfy (7) result in (8).

𝜷
∗
=
(

𝐗
𝑇
𝐗
)−1

𝐗
𝑇
𝒚 (8)

Once the best coefficients of the regressor 𝜷
∗

are obtained, the
inal estimated output given by the regressor output 𝒚 ∈ R𝑛𝑦 can be
alculated with (9), where 𝒙̂ = [1, 𝑥1,… , 𝑥𝜈−1]𝑇 ∈ R𝜈 is the vector of 𝜈
erms of the polynomial regressor constructed by the input attributes.

̂ = (𝐈𝑛𝑦 ⊗ 𝒙̂𝑇 )𝜷
∗

(9)

This final form reproduces the behavior of all the instances of 𝒚̊,
hence estimates the output of the dynamic system 𝒚(𝑡) in (2), with the
nput attributes 𝒙̂. Finally, it is worth pointing out that this method
equires that the number of instances 𝑛𝑙 must be greater than the
umber of terms of the polynomial 𝜈, i.e., 𝑛𝑙 ≥ 𝜈.

2.2. Surrogate-assisted prediction stage

Once the surrogate reference model (𝒚 = 𝑓 (𝒙̂, 𝜷
∗
)) is obtained, it

can be used as the dynamic model to simulate future behaviors over a
prediction period 𝑇𝑃 = [𝑡𝑝, 𝑡𝑝+𝑚𝑙𝛿𝑡𝑙]. This prediction is used to improve
desired performances or criteria. To accomplish this, an optimization
problem is stated as in (10). Where  (𝒌) = {f1,… , f𝑛} is the set of 𝑛
7

objective functionals related to the controller tuning, and 𝑔𝑖 and ℎ𝑗 are
the 𝑖th and 𝑗th inequality and equality constraints, respectively. Also,
𝒌 ∈ R𝑛𝑘 is the controller parameter vector of 𝑛𝑘 elements, with its own
lower and upper boundaries (𝒌𝑚𝑖𝑛 and 𝒌𝑚𝑎𝑥, respectively). It is impor-
tant to notice that the optimization problem is subject to the surrogate
reference model rather than the general dynamic model (GDM). Finally,
this optimization problem can be solved by any bioinspired algorithm,
and the obtained control parameter vector 𝒌 is then implemented in the
adaptive controller of the plant until the next update interval +𝛥𝑇𝑈 .

min
𝒌∈R𝑛𝑘

 (𝒌)

.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒚 = 𝑓 (𝒙̂, 𝜷
∗
,𝒌)

𝑔𝑖(𝒌) ≤ 0, 𝑖 = 0, 1,… , 𝑟

ℎ𝑗 (𝒌) = 0, 𝑗 = 0, 1,… , 𝑠

𝒌𝑚𝑖𝑛 ≤ 𝒌 ≤ 𝒌𝑚𝑎𝑥

(10)

The form that the polynomial RSM-based identification stage and
he surrogate-assisted prediction stage of the proposed approach in-
eract is depicted in Fig. 6, where the adjustable predictor takes the
nformation of the plant (a dataset of 𝑛𝑙 samples gathered every 𝛿𝑡𝑙) to

form the final regressor used in the prediction stage to set the controller
gains.

2.3. Optimizers

To solve optimization problems, it is important to consider some in-
tuitive notions. The solution of the optimization problem might change
at each update interval 𝛥𝑇𝑈 because any disturbance/uncertainty might
change the problem conditions. Deterministic optimization algorithms
are ineffective because the initial search point is unknown at each
interval. Also, deterministic algorithms based on the gradient of the
dynamic model are limited to using only continuous functions as the
objective functionals and constraints of the optimization problem. Fur-
thermore, those sorts of optimization algorithms are affected by the
system’s parametric uncertainties and unknown disturbances that in-
fluence the completeness of the dynamics. Hence, the optimization
problem related to the indirect adaptive controller tuning is faced
through bioinspired algorithms. These algorithms are unaffected by
parametric uncertainties as they do not require the system’s dynamic
model, discrete or continuous functions do not limit them, and they
do not require a specific start point but a general delimited search
area. The only requirement for their application in the indirect adaptive
controller tuning is to be fast enough to solve the optimization problem
within the update interval 𝛥𝑇𝑈 . Some of the most used bioinspired al-
gorithms in controller tuning problems are Differential Evolution (DE),
Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) (Ka-
chitvichyanukul, 2012; Ouyang & Pano, 2015; Pano & Ouyang, 2014;

Yarat, Senan, & Orman, 2021).
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Consequently, the solution to the optimization problems in the
surrogate-assisted prediction stage is obtained by three optimization
algorithms, DE, PSO, and GA, in their online versions (Rodríguez-
Molina et al., 2022) (hereinafter they will be ODE, OPSO, and OGA,
respectively), where the online versions include the best solution of the
update interval into the initial population of the next interval. This is
done supposing that the changes between intervals do not move far
away the location of the best solution. Next is a brief description of the
optimization algorithms implemented.

The exact DE variant in ODE is the best/1/bin, which has been used
in the online controller tuning approach (Villarreal-Cervantes, Mezura-
Montes, & Guzmán-Gaspar, 2018). The description of the implemented
version of ODE is presented in Algorithm 1. For this algorithm the
mutation and crossover operators are shown in (11) ∀ 𝑗 ∈ {1,… , 𝑛𝑣},
where 𝑛𝑣 is the number of design variables and [𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥] is the
mutation range from where the mutation factor 𝐹 is selected randomly
at each generation. Also, 𝐶𝑟 is the crossover rate that determines the
crossover probability among the population. Finally, 𝑁𝑃 and 𝐺𝑚𝑎𝑥
are the population size and the maximum generations considered, re-
spectively (these two hyperparameters are also used in the bioinspired
optimizers presented below).

Algorithm 1 ODE pseudocode.
Inputs: ⊳ Result from previous update interval (𝝓𝑝𝑟𝑒𝑣), ⊳ Maximum gen-

erations (𝐺𝑚𝑎𝑥), ⊳ Population size (𝑁𝑃 ), ⊳ Boundaries range
([𝝓𝑚𝑖𝑛,𝝓𝑚𝑎𝑥]), ⊳ Crossover rate (𝐶𝑟), ⊳ Mutation factor range
([𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥]), ⊳ Fitness function (𝑓𝑖𝑡𝑛𝑒𝑠𝑠)

.

Output: ⊲ Best solution 𝝓∗.
1: 𝐺 ← 1.
2: Create randomly an initial population 𝚽𝐺 of (𝑁𝑃 − 1) individuals, where

each individual 𝝓 ∈ [𝝓𝑚𝑖𝑛,𝝓𝑚𝑎𝑥].
3: Include 𝝓𝑝𝑟𝑒𝑣 ∈ 𝚽𝐺.
4: Evaluate the 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 of the individuals in 𝚽𝐺.
5: Get the best individual 𝝓𝐺

𝑏𝑒𝑠𝑡 from 𝚽𝐺.
6: while 𝐺 < 𝐺𝑚𝑎𝑥 do
7: Get randomly mutation factor 𝐹 ∈ [𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥].
8: for each 𝝓𝐺

𝑖 ∈ 𝚽𝐺. do
9: Get randomly two individuals 𝝓𝑟1 and 𝝓𝑟2 from 𝚽𝐺, where

𝝓𝑖 ≠ 𝝓𝑟1 ≠ 𝝓𝑟2 .
10: Generate an individual 𝝓𝑛𝑒𝑤, through (11), using 𝝓𝐺

𝑏𝑒𝑠𝑡, 𝝓𝑟1 and 𝝓𝑟2 .
11: Obtain the 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 of 𝝓𝑛𝑒𝑤 by solving (10).
12: Select the one to pass to 𝚽𝐺+1 between 𝝓𝑛𝑒𝑤 and 𝝓𝐺

𝑖 , based on
their 𝑓𝑖𝑡𝑛𝑒𝑠𝑠.

13: end for
14: 𝐺 ← 𝐺 + 1.
15: Get the best individual 𝝓𝐺

𝑏𝑒𝑠𝑡 from 𝚽𝐺.
16: end while
17: 𝝓∗ ← 𝝓𝐺

𝑏𝑒𝑠𝑡.
18: return 𝝓∗.

𝜙𝑛𝑒𝑤,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜙𝐺
𝑏𝑒𝑠𝑡,𝑗 + 𝐹

(

𝜙𝐺
𝑟1 ,𝑗

− 𝜙𝐺
𝑟2 ,𝑗

)

, if 𝑟𝑎𝑛𝑑(0, 1) < 𝐶𝑅 or 𝑗𝑟𝑎𝑛𝑑 = 𝑗

𝜙𝐺
𝑖,𝑗 , otherwise

(11)

In a similar vein, the Algorithm 2 presents the implemented vari-
nt of OPSO, which uses the PSO variant with fully-connected topol-
gy and a inertial factor (Shi & Eberhart, 1998) that takes its val-
es between a proposed range of minimum and maximum velocities,
.e., [𝒗𝑚𝑖𝑛,𝑗 , 𝒗𝑚𝑎𝑥,𝑗 ] ∀ 𝑗 ∈ {1,… , 𝑛𝑣}. The inertial factor is updated with
12) reducing its value at each iteration, producing a fast convergence
ithin a small region (Yang, Yuan, Yuan, & Mao, 2007). Also, the
elocity update function is in (13), and the position update function
s in (14). Finally, the individual and global experience coefficients are
epresented by the constants 𝐶 and 𝐶 , respectively.
8

1 2
Algorithm 2 OPSO pseudocode.
Inputs: ⊳ Particle from previous update interval (𝝓𝑝𝑟𝑒𝑣), ⊳ Maximum gen-

erations (𝐺𝑚𝑎𝑥), ⊳ Swarm size (𝑁𝑃 ), ⊳ Position boundaries range
([𝝓𝑚𝑖𝑛,𝝓𝑚𝑎𝑥]), ⊳ Velocity boundaries range ([𝒗𝑚𝑖𝑛, 𝒗𝑚𝑎𝑥]), ⊳ Individual
experience coefficient (𝐶1), ⊳ Global experience coefficient (𝐶2), ⊳
Fitness function (𝑓𝑖𝑡𝑛𝑒𝑠𝑠)

.

utput: ⊲ Best solution 𝝓∗.
1: 𝐺 ← 1.
2: Create randomly a swarm with positions 𝚽𝐺 and velocities 𝐕𝐺 of (𝑁𝑃 −1)

particles, where each particle values 𝝓 ∈ [𝝓𝑚𝑖𝑛,𝝓𝑚𝑎𝑥] and 𝒗 ∈ [𝒗𝑚𝑖𝑛, 𝒗𝑚𝑎𝑥].
3: Include 𝝓𝑝𝑟𝑒𝑣 ∈ 𝚽𝐺.
4: Evaluate the 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 of the particles in 𝚽𝐺.
5: Create a memory of the particles’ best positions 𝚽𝑜𝑤𝑛 and the best global

position 𝝓𝑔𝑙𝑜𝑏𝑎𝑙.
6: while 𝐺 < 𝐺𝑚𝑎𝑥 do
7: Update inertia factor 𝛚 using (12) .
8: for each 𝝓𝐺

𝑖 ∈ 𝚽𝐺 do
9: Update the velocity 𝒗𝐺+1

𝑖 using (13).
0: Update the position 𝝓𝐺+1

𝑖 using (14).
1: Obtain the 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 of 𝝓𝐺+1

𝑖 by solving (10).
2: Update 𝝓𝑜𝑤𝑛

𝑖 if 𝝓𝐺+1
𝑖 is better, based on their 𝑓𝑖𝑡𝑛𝑒𝑠𝑠.

3: end for
4: Update 𝝓𝑔𝑙𝑜𝑏𝑎𝑙 if the best element of the swarm 𝚽𝐺+1

𝑏𝑒𝑠𝑡 is better,
based on their 𝑓𝑖𝑡𝑛𝑒𝑠𝑠.

5: 𝐺 ← 𝐺 + 1.
6: end while
7: 𝝓∗ ← 𝝓𝑔𝑙𝑜𝑏𝑎𝑙.
8: return .𝝓∗.

ω𝑗 = 𝑣𝑚𝑎𝑥,𝑗 −
𝐺

𝐺𝑚𝑎𝑥

(

𝑣𝑚𝑎𝑥,𝑗 − 𝑣𝑚𝑖𝑛,𝑗
)

,∀ 𝑗 ∈ {1,… , 𝑛𝑣} (12)

𝒗𝐺+1
𝑖 = 𝛚 ⋅ 𝒗𝐺𝑖 + 𝑟𝑎𝑛𝑑(0, 1) ⋅𝐶1

(

𝝓𝑜𝑤𝑛
𝑖 − 𝝓𝐺

𝑖
)

+ 𝑟𝑎𝑛𝑑(0, 1) ⋅𝐶2
(

𝝓𝑔𝑙𝑜𝑏𝑎𝑙 − 𝝓𝐺
𝑖
)

(13)

𝝓𝐺+1
𝑖 = 𝝓𝐺

𝑖 + 𝒗𝐺+1
𝑖 (14)

Similarly, the Algorithm 3 presents the variant of OGA used in
this work, which includes a real-coded GA with Simulated Binary
Crossover (SBX) and Normally Distributed Mutation (NDM). In this
implementation, the parents are selected to produce offspring through
a tournament, creating a subset of 𝑇𝑠 elements (tournament size) ran-
domly selected from the population, whose best individual in the subset
is selected as a parent for the offspring. The simulated binary crossover
(SBX) function is presented in (15) and (16), with a distribution index
𝜂𝑐 . The NDM function is in (17), where 𝜇 is the mutation factor and
𝝈𝜇2 is the variance of the distribution. This mutation variant ensures
that the variation will be within the vicinity of the original individ-
ual (Kramer & Kramer, 2017; Mirjalili, 2019; Song, Wang, & Chen,
2019).

𝝍 𝑖+1 =0.5
(

(1 + 𝛽)𝝓𝑝1 + (1 − 𝛽)𝝓𝑝2

)

𝝍 𝑖+2 =0.5
(

(1 − 𝛽)𝝓𝑝1 + (1 + 𝛽)𝝓𝑝2

) (15)

𝛽 =

⎧

⎪

⎨

⎪

⎩

(2𝑢)
1

𝜂𝑐+1 , if 𝑢 ≤ 0.5
(

1
2(1−𝑢)

)
1

𝜂𝑐+1 , otherwise
, where 𝑢 = 𝑟𝑎𝑛𝑑(0, 1) (16)

𝝍 𝑖 =

{

𝝍 𝑖 + (0,𝝈𝜇2), if 𝑟𝑎𝑛𝑑(0, 1) < 𝜇
𝝍 𝑖, otherwise

(17)

2.4. General overview of the SIACTM-RSM

The Algorithm 4 presents the general form of implementation of
adaptive controller tuning proposal and how the aforementioned iden-
tification and prediction processes interact. It is observed that there
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Algorithm 3 OGA pseudocode.
Inputs: ⊳ Result from previous update interval (𝝓𝑝𝑟𝑒𝑣), ⊳ Maximum gen-

erations (𝐺𝑚𝑎𝑥), ⊳ Population size (𝑁𝑃 ), ⊳ Boundaries range
([𝝓𝑚𝑖𝑛,𝝓𝑚𝑎𝑥]), ⊳ Tournament size (𝑇𝑠), ⊳ Distribution index (𝜂𝑐), ⊳
Mutation rate (𝜇), ⊳ Mutation variance (𝝈𝜇

2), ⊳ Fitness function
(𝑓𝑖𝑡𝑛𝑒𝑠𝑠)

.

Output: ⊲ Best solution 𝝓∗.
1: 𝐺 ← 1.
2: Create randomly an initial population 𝚽𝐺 of (𝑁𝑃 − 1) individuals, where

each individual 𝝓 ∈ [𝝓𝑚𝑖𝑛,𝝓𝑚𝑎𝑥].
3: Include 𝝓𝑝𝑟𝑒𝑣 ∈ 𝚽𝐺.
4: Evaluate the 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 of the individuals in 𝚽𝐺.
5: while 𝐺 < 𝐺𝑚𝑎𝑥 do
6: Set an empty offspring population 𝚿 with a capacity of 𝑁𝑃

individuals to be filled.
7: 𝑖 ← 0.
8: while 𝑖 < 𝑁𝑃 do
9: Get randomly 𝑇𝑠 individuals from 𝚽𝐺, and select the best as

the 1st parent 𝝓𝑝1 .
10: Repeat the previous step to create the 2nd parent 𝝓𝑝2 , until 𝝓𝑝1 ≠

𝝓𝑝2 .
11: Perform crossover with 𝝓𝑝1 and 𝝓𝑝2 , using (15) and (16), to

create offspring individuals 𝝍 𝑖+1 and 𝝍 𝑖+2.
12: Perform mutation of 𝝍 𝑖+1 and 𝝍 𝑖+2 using (17).
13: Obtain the 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 of 𝝍 𝑖+1 and 𝝍 𝑖+2 by solving (10).
14: 𝑖 ← 𝑖 + 2.
15: end while
16: Select the best 𝑁𝑃 individuals among 𝚽𝐺 and 𝚿 to pass to 𝚽𝐺+1,

based on their 𝑓𝑖𝑡𝑛𝑒𝑠𝑠.
17: 𝐺 ← 𝐺 + 1.
18: end while
19: Get the best individual 𝝓𝐺

𝑏𝑒𝑠𝑡 from 𝚽𝐺.
20: 𝝓∗ ← 𝝓𝐺

𝑏𝑒𝑠𝑡.
21: return 𝝓∗.

are two parallel threads. The first one (sampling) is only dedicated
to sampling the system’s signals at each 𝛿𝑡𝑙 interval. Meanwhile, the
second thread (SIACTM) implements the proposal stages. In a generic
form, the implementation only requires selecting the polynomial degree
of the RSM regressor and the preferred optimization algorithm. Also,
initial control parameters 𝒌0 must be proposed to execute the system
during enough time to gather sufficient information (𝑛𝑙 instances).
These initial control parameters can be selected by any method or
based on previous experience with the system. Remember that the
proposal is focused on solving problems where parametric uncertainties
and disturbances may occur during the execution of the system and
fixed control parameters become unreliable. Therefore, the proposal
will take these initial control parameters 𝒌0 and improve them in the
next updated interval 𝛥𝑇𝑈 .

2.5. Time complexity description

As previously mentioned, the proposed surrogated indirect adap-
tive controller tuning approach based on the response surface method
(SIACTA-RSM) consists of two stages. Considering the processes of
these stages, the computational complexity can be estimated similarly
to that reported in Rodríguez-Molina et al. (2023). The polynomial
RSM-based identification stage consists of evaluating 𝑛𝑙 previous in-
stances. On the other hand, the surrogate-assisted prediction stage
implements bioinspired algorithms, which perform 𝐺𝑚𝑎𝑥 cycles over a
population of 𝑁𝑃 individuals, and each individual employs 𝑛𝑣 design
variables to evaluate 𝑚𝑙 future intervals. Finally, these two stages are
iteratively repeated each 𝛥𝑇𝑈 update interval from initial an time 𝑡0 to
a final one 𝑡𝑓 . Therefore, the computational complexity of the proposed
tuning approach can be expressed in the Big O notation as in (18).

𝑂
(

(

𝑛𝑙 + 𝐺𝑚𝑎𝑥 ⋅𝑁𝑃 ⋅ 𝑛𝑣 ⋅ 𝑚𝑙
)

⋅
𝑡𝑓 − 𝑡0

)

(18)
9

𝛥𝑇𝑈
Algorithm 4 SIACTM based on RSM operation.
Inputs: ⊳ Initial controller parameters (𝒌0), ⊳ Selected the RSM’s polynomial

degree regressor (1𝑠𝑡 or 2𝑛𝑑 degree), ⊳ Selected the optimizer (ODE,
OGA or OPSO)

1: 𝒌← 𝒌0.
2: 𝑚 ← 1.
3: 𝑛 ← 1.
4: System operation begins.
5: while operation continues do in parallel thread (sampling)
6: if 𝑡𝑝 = 𝑛𝛿𝑡𝑙 then
7: Get samples from system states 𝒙, control signals 𝒖, and system

outputs 𝒚.
8: 𝑛 ← 𝑛 + 1.
9: end if

10: end parallel thread
11: while operation continues do in parallel thread (SIACTM)
12: if 𝑡𝑝 = 𝑚𝛥𝑇𝑈 then
13: Gather previous 𝑛𝑙 samples.
14: Update reference model using the regressor. Hence, obtain 𝜷

∗
,

using (8).
5: Considering 𝜷

∗
solve (10) to obtain 𝒌∗ using the optimizer.

16: Set control parameters 𝒌∗ into the adaptive controller.
17: 𝑚 ← 𝑚 + 1.
18: end if
19: end parallel thread

As a matter of completeness, the computational complexity of the
traditional indirect adaptive controller tuning approach based on the
general dynamic model (IACTA-GDM) can be expressed in the Big
O notation as in (19). In this traditional approach, both identifica-
tion and prediction stages are computed through bioinspired algo-
rithms (Villarreal-Cervantes et al., 2017), which perform 𝐺𝑚𝑎𝑥 cycles
ver a population of 𝑁𝑃 individuals. Each individual employs 𝑛𝐼𝑣 design
ariables during the identification stage to evaluate 𝑛𝑙 previous in-
tances. Meanwhile, each individual uses 𝑛𝑣 design variables to evaluate
𝑙 future intervals during the prediction stage.
(

(

𝐺𝑚𝑎𝑥 ⋅𝑁𝑃
(

𝑛𝐼𝑣 ⋅ 𝑛𝑙 + 𝑛𝑣 ⋅ 𝑚𝑙
))

⋅
𝑡𝑓 − 𝑡0
𝛥𝑇𝑈

)

(19)

2.6. Requirements, characteristics, and assumptions

Finally, the following requirements, characteristics, and assump-
tions about the proposed surrogated indirect adaptive controller tuning
approach based on the response surface method are provided.

• The dynamic system’s structure to use in the surrogate-assisted
prediction stage is given by 𝒚. It will only estimate/simulate
information based on the sampling considered during the identifi-
cation stage. Therefore, only system states, control signal inputs,
and system outputs used/sensed to create the surrogate model can
be estimated.

• As the response surface method is essentially a system of equa-
tions, the number of instances 𝑛𝑙 must be equal or greater than
the number of terms of the polynomial 𝜈 in the polynomial
RSM-based identification stage, i.e., 𝑛𝑙 ≥ 𝜈.

• As the polynomial RSM-based identification stage establishes a
surrogate model that describes the changes between input and
outputs at an established 𝛿𝑡𝑙 time interval (related to the sampling
time), the prediction stage cannot use a different time interval.
Hence, the relationship between inputs and outputs during the
prediction stage is necessarily at 𝛿𝑡𝑙 time interval.

• Any optimization algorithm employed, besides those presented in
this work, must solve the optimization problem of the surrogate-
assisted prediction stage within the update time interval 𝛥𝑇𝑈 .
Considering this, it is also assumed that the selected comput-
ing system has the required capacity to deal with the com-

putational load, remembering that the proposal diminishes the
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Fig. 7. Polynomial degree’s relationship.
computational burden, giving a chance to systems with reduced
capabilities.

• The proposal only considers first and second-degree polynomial
regression for the response surface method, assuming that any
polynomial degree has a fundamental relationship with other
degrees depending on whether the degree is even or odd (Borwein
& Erdélyi, 1995; Stewart, Clegg, & Watson, 2020), as can be seen
in Fig. 7. The odd degrees can be considered an extension of
a first-degree polynomial (see Fig. 7(a)). In contrast, the even
degrees are an extension of a second-degree polynomial (see
Fig. 7(b)). Therefore, the most common applications employ first
or second-degree polynomial regression, evolving into greater
degrees only when necessary. Furthermore, the increase in the
polynomial degree does not directly imply that the regression is
more accurate. An analysis with a higher degree of polynomial
regression is done in the result section to confirm the previous
statement.

. Application of the SIACTM to a study case

To present an example of the proposal, the online controller tuning
f a Proportional Integral (PI) controller for the speed regulation of a
rushless Direct Current (BLDC) motor will be conducted.

.1. System and controller description

The model of the BLDC motor is obtained from Rojas-López et al.
2020), where a Proportional Integral controller is implemented. The
q. (20) displays the mathematical model, where 𝒙 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]𝑇

[𝑖𝐴, 𝑖𝐵 , 𝑖𝐶 , 𝛺, 𝜃]𝑇 ∈ R5 is the state vector, 𝒂 = [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7]𝑇

=
[

𝑅
𝐿 ,

𝑘𝑒
2𝐿 ,

𝑘𝑡
2𝐽 ,

𝐵
𝐽 ,

1
2𝐿 ,

1
𝐽 ,

𝑃
2

]𝑇
∈ R7 is the parameter vector of the BLDC

motor, and 𝐂 = 𝐈5 ∈ R5×5 is the identity matrix. Furthermore, the
control signal 𝑢(𝑡) (the voltage input signal) is displayed in (23), where
𝑘𝑝 and 𝑘𝑖 are respectively the proportional and integral constants,
which conform the controller parameter vector 𝒌 = [𝑘𝑝, 𝑘𝑖]𝑇 ∈ R2. Also,
𝑒(𝑡) = 𝛺𝑑 − 𝑥4 is the error in the speed regulation between the desired
angular speed 𝛺𝑑 and the real angular speed 𝑥4. Moreover, Table 2
describes the variables employed, and Table 3 gives a more detailed
description of the Back-electromagnetic force (Back-emf) and Phase
voltage functions. Finally, Table 4 offers the nominal values (given by
the manufacturer) of a Maxon Motor model EC 90 flat (motor 607327)
used in this work.
𝒙̇(𝑡) =𝐀𝒙(𝑡) + 𝐁[𝑢(𝑡), 𝜏𝑙]𝑇 (20)
10

𝒚(𝑡) =𝐂𝒙(𝑡)
Table 2
Model variables.

Variable Description

𝑖𝛾∀ 𝛾 ∈ {𝐴,𝐵, 𝐶} Line current
𝛺, 𝜃 Angular speed and position
𝑅, 𝐿 Line resistance and inductance
𝑘𝑒, 𝑘𝑡 Back-emf and torque constants
𝐽 , 𝐵 Inertia and magnetic friction coefficients
𝑃 Pair poles
𝑢 Voltage input
𝜏𝑙 Torque load
𝑓𝛾 (𝜃)∀ 𝛾 ∈ {𝐴,𝐵, 𝐶} Back-emf function
𝑓𝑉𝛾

(𝜃)∀ 𝛾 ∈ {𝐴,𝐵, 𝐶} Phase voltage function

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝑎1 0 0 𝑎2𝑓𝐴(𝜃) 0
0 −𝑎1 0 𝑎2𝑓𝐵(𝜃) 0
0 0 −𝑎1 𝑎2𝑓𝐶 (𝜃) 0

𝑎3𝑓𝐴(𝜃) 𝑎3𝑓𝐵(𝜃) 𝑎3𝑓𝐶 (𝜃) −𝑎4 0
0 0 0 𝑎7 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(21)

𝐁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎5𝑓𝑉 𝐴(𝜃) 0
𝑎5𝑓𝑉 𝐵(𝜃) 0
𝑎5𝑓𝑉 𝐶 (𝜃) 0

0 −𝑎6
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(22)

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝑡 (23)

3.2. Polynomial RSM-based identification stage characterization

The present work tackles the SIACTM by applying the proposal (9)
in (20). The values of the constants required by the proposal are the
following: 𝑛𝑥 = 5 represents the states of the dynamic system (20), 𝑛𝑢 =
1 denotes the control signal (23), and 𝑛𝑦 = 5 represents the outputs of
the dynamic system (20). Also, for this particular work, the polynomial
RSM-based identification stage will consider 𝑛𝑙 = 500 instances sampled
at 𝛿𝑡𝑙 = 10 (μs), which results in an identification period 𝑇𝐼 = 5 (ms).
For this work, the identification period 𝑇𝐼 is selected to cover all the
information gathered during an update interval 𝛥𝑇𝑈 = 5 (ms), which is
reported in the literature (Rodríguez-Molina et al., 2022). This ensures
the indirect adaptive controller tuning operation in a BLDC motor,
meaning that there is enough information at this interval to perform
the update of the controller parameters. The 𝑛𝑙 ≥ 𝜈 instances and the
𝛿𝑡𝑙 sampling time interval are selected by trial and error. The procedure
to select these values was done by using a second-degree polynomial
regression for the particular case of the BLDC motor, considering the
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Table 3
Position dependent functions.

Angular position Back-emf Phase voltage

𝑓𝐴(𝜃) 𝑓𝐵 (𝜃) 𝑓𝐶 (𝜃) 𝑓𝑉𝐴
(𝜃) 𝑓𝑉𝐵

(𝜃) 𝑓𝑉𝐶
(𝜃)

0 ≤ 𝜃 < 𝜋
3

1 −1 1 − 6 ⋅ 𝜃
𝜋

1 −1 0

𝜋
3

≤ 𝜃 < 2𝜋
3

1 −3 + 6 ⋅ 𝜃
𝜋

−1 1 0 −1

2𝜋
3

≤ 𝜃 < 𝜋 5 − 6 ⋅ 𝜃
𝜋

1 −1 0 1 −1

𝜋 ≤ 𝜃 < 4𝜋
3

−1 1 −7 + 6 ⋅ 𝜃
𝜋

−1 1 0

4𝜋
3

≤ 𝜃 < 5𝜋
3

−1 9 − 6 ⋅ 𝜃
𝜋

1 −1 0 1

5𝜋
3

≤ 𝜃 < 2𝜋 −11 + 6 ⋅ 𝜃
𝜋

−1 1 0 −1 1
Table 4
BLDC motor values.

Parameter Value

𝑅 0.422 (Ω)
𝐿 0.000535 (H)
𝑘𝑒 0.207 (V s/rad)
𝑘𝑡 0.231 (N m/A)
𝐵 0.000181437 (N m s)
𝐽 0.000506 (kg m2)
𝑃 11

total terms of the polynomial as 𝜈 = 28 elements. Taking this into
account, a 𝛿𝑡𝑙 of 1 (μs) was proposed initially. The mean value of the
irst twenty-eight samples was compared with the mean value of the
ext twenty-eight samples. Then, the 𝛿𝑡𝑙 value was increased until the
ean values differed. This procedure is done to avoid an oversampling

f similar and useless information.

.3. Surrogate-assisted prediction stage characterization

In this work, 𝑚𝑙 = 5 future intervals of 𝛿𝑡𝑙 = 10 (μs) are simulated,
hich results in a prediction period 𝑇𝑃 = 50 (μs). The prediction
eriod 𝑇𝑃 is selected from Rodríguez-Molina et al. (2022), and the
𝑙 future intervals are chosen considering one of the characteristics

eported in Section 2.6, which states that the prediction stage can
nly predict values at the same 𝛿𝑡𝑙 time used for the polynomial RSM-
ased identification stage; hence, the future intervals are 𝑚𝑙 = 𝑇𝑃

𝛿𝑡𝑙
.

wo criteria are considered for the optimization problem. The first
ne is the Integral Absolute Error (IAE) (24) (Mousakazemi, 2021)
elated to the speed regulation, where 𝑒 = 𝛺𝑑 − 𝑦4 is the error
etween the desired angular speed 𝛺𝑑 and the angular speed simulated

by the surrogate state 𝑦4. The second criterion is the power average
(𝑃𝑎𝑣𝑔) (25) (Krishnan, 2017) consumed in the prediction simulation
by the surrogate model, where 𝑢̂ is the control signal generated to
the surrogate model and [𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡)]𝑇 is the surrogate model that
represents the estimation of the phase currents 𝑖𝑎, 𝑖𝑏 and 𝑖𝑐 , respectively.

J1 = ∫𝑡∈𝑇𝑃
|

|

𝑒(𝑡)|
|

𝑑𝑡 (24)

J2 =
1
𝑇𝑃 ∫𝑡∈𝑇𝑃

𝑢̂(𝑡) ‖‖
‖

[𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡)]𝑇
‖

‖

‖

𝑑𝑡 (25)

The multi-objective optimization problem in this work is trans-
formed into a mono-objective one through the Weighted Product
Method (WPM) (Marler & Arora, 2004) resulting in the functional of
(26), where 𝑤𝑗 is the weight assigned to the 𝑗th functional. This method
is advantageous because it is not susceptible to different ranges in the
optimization criteria (Abdullah, Siraj, & Hodgett, 2021; Aruldoss, Lak-
shmi, & Venkatesan, 2013; Wang, Jing, Zhang, & Zhao, 2009), whereas
other methods require a normalization considering possible maximum
values; in the online controller tuning approach, such information is
11
lacking. For the proposal, the weights 𝒘 = [0.225, 0.775]𝑇 were taken
from Rojas López (2020) and guarantee that the selected BLDC motor
operates within its security ranges. Also, it is important to mention that
these weights give less ponderation to the IAE criterion, considering
that during the operation, once the steady state is reached, the error is
lower than the error during the beginning of the operation.

 =
2
∏

𝑗=1
J𝑗

𝑤𝑗 (26)

Finally, the optimization problem of the prediction stage is formally
presented in (27), whose upper and lower boundaries (𝒌𝑚𝑎𝑥 = [2, 200]𝑇

and 𝒌𝑚𝑖𝑛 = [0.5, 100]𝑇 , respectively) were set by previous knowledge
of the system from Rojas-López et al. (2020). Another necessary clar-
ification is that the mono-objective problem is selected instead of the
multi-objective one because the latter requires a decision-making pro-
cess like the used in Al-Tashi, Abdulkadir, Rais, Mirjalili, and Alhussian
(2020), Chen, Ding, Yang, and Chai (2020), Lin, Liu, Tan, and Gu
(2021), which means additional computational burden and tuning of
the decision-making process. Therefore, the more straightforward first
research step is to use a mono-objective problem.

min
𝒌∈R2



s.t
{

𝒚 = 𝑓 (𝒙̂, 𝜷
∗
,𝒌)

𝒌𝑚𝑖𝑛 < 𝒌 < 𝒌𝑚𝑎𝑥

(27)

3.4. Online optimizers portrayal

Even if the aforementioned bioinspired algorithms have been used
in similar problems, their parameters should be updated because the
controller, tuning criteria, and conditions are different (Huang, Li, &
Yao, 2020; Yang, 2020). Also, it is important to consider that the
no-free-lunch theorem mentions that there is no single algorithm and
its tuning that solves all problems satisfactorily (Joyce & Herrmann,
2018); hence, a particular tuning of the bioinspired algorithms must be
performed when a new problem is faced. Considering that, during the
online controller tuning, it is supposed that the user has little informa-
tion about what is happening with the execution, selecting parameters
for the algorithm becomes difficult. The best-proposed procedure is to
use general parameters reported in similar works and the algorithm
variants that use functions based on known/proposed information as
the design variables’ boundaries. Next is a particular description of the
optimizers and their parameter selection for this case study.

• ODE: The mutation factor’s range ([𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥] = [0.29, 0.89]) is
taken from Rodríguez-Molina, Villarreal-Cervantes, and Aldape-
Pérez (2019) (where the online controller tuning of a DC motor
was obtained), while the crossover rate (𝐶𝑟 = 0.6) is selected by
trial an error, as criteria and system to tune are different from the
reference work. The population size (𝑁𝑃 = 20) and the maximum
generations (𝐺𝑚𝑎𝑥 = 20) are taken from Rojas López (2020),
whose values ensure the solution within the update interval.
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Table 5
Optimization algorithm parameters.

Tag Algorithm Parameters

ODE Online DE best/1/bin 𝑁𝑃 = 20, 𝐺𝑚𝑎𝑥 = 20, 𝐶𝑟 = 0.6, [𝐹𝑚𝑖𝑛 , 𝐹𝑚𝑎𝑥] = [0.29, 0.89]
OPSO Online PSO with inertial weight 𝑁𝑃 = 20, 𝐺𝑚𝑎𝑥 = 20, 𝐶1 = 2, 𝐶2 = 2
OGA Online real coded GA/SBX/NDM 𝑁𝑃 = 20, 𝐺𝑚𝑎𝑥 = 20, 𝑇𝑠 = 4, 𝜂𝑐 = 2, 𝜇 = 0.7
(
d
b
e
i
u
t
H
w
d
k

• OPSO: The velocity boundaries are proposed as
[

𝑣𝑚𝑖𝑛,𝑗 , 𝑣𝑚𝑎𝑥,𝑗
]

=
[

0, 𝜙𝑚𝑎𝑥,𝑗−𝜙𝑚𝑖𝑛,𝑗10

]

∀ 𝑗 ∈ {1,… , 𝑛𝑣}. Such ranges are selected to
compact the search within smaller regions. Finally, the individ-
ual experience coefficient (𝐶1 = 2) and the global experience
coefficient (𝐶2 = 2) are stated following the general suggestion
presented in the literature (Fan & Chiu, 2007; Guangyou, 2007;
Jiao, Lian, & Gu, 2008). Finally, looking for a fair comparison,
the swarm size (𝑁𝑃 = 20) and maximum generations (𝐺𝑚𝑎𝑥 = 20)
are the same as ODE.

• OGA: The distribution index (𝜂𝑐 = 2) is taken from Deb et al.
(1995), which suggests taking values in the range [2, 5] to have a
more uniform distribution improving the exploration. The muta-
tion factor 𝜇 = 0.7 and the variance of the distribution 𝜎𝜇,𝑗2 =
𝜙𝑚𝑎𝑥,𝑗−𝜙𝑚𝑖𝑛,𝑗

10 ∀ 𝑗 ∈ {1,… , 𝑛𝑣} assure that the variation will be
within the vicinity of the original individual, which might affect
the exploration, but improves the exploitation (Kramer & Kramer,
2017; Mirjalili, 2019; Song et al., 2019).

Finally, Table 5 summarizes the parameters of the optimization
lgorithms used in this work.

. Experimentation

In this work, the Surrogate Indirect Adaptive Controller Tuning
pproach based on the RSM regressor (SIACTA-RSM) is applied to

une a PI controller for the speed regulation of a BLDC motor. The
roposal is compared with other controller tuning approaches reported
n the literature and tested under four different experiments whose
omplexity (parametric uncertainties and disturbances) increases grad-
ally by experiment to analyze the trade-off between the controller
erformance and the computational time required through experi-
ents. The comparative study provides enough information about

he advantages and limitations of the proposed SIACTA-RSM with
espect to well-established controller tuning approaches (IACTA-GDM
nd optimization-based controller tuning method).

This section is divided into four paths. The first one set the con-
roller tuning variants to be analyzed and the conditions of the experi-
ents. The second one is a statistical comparison of the performance of

he BLDC motor controller obtained in the experiments by each applied
ontroller tuning version. This second path also includes a comparison
f the solver time, where the solver time, in this case, is defined as
he average time required by the online controller tuning approaches
SIACTA-RSM and IACTA-GDM) to finish the identification and predic-
ion stages through the complete execution. The trade-off between the
ontroller performance and the solver time is also analyzed to highlight
he advantage of the proposal. The third path is a graphical comparison
o observe/understand how much the statistical differences between
IACTA-RSM and IACTA-GDM approaches impact the behavior of the
LDC motor. The fourth path analyses the impact of including a higher
egree polynomial for the regression in the proposal.

.1. Experiment conditions

The experiment conditions for the different analyses are detailed
n this section. In the proposed SIACTA-RSM, the first and second-
egree regressions are considered (being named as SIACTA-RSM/1 and
IACTA-RSM/2/). Therefore, the following six versions of the proposal
re implemented: SIACTA-RSM/1/ODE, SIACTA-RSM/1/OGA, SIACTA-
SM/1/OPSO, SIACTA-RSM/2/ODE, SIACTA-RSM/2/OGA, and
12

c

SIACTA-RSM/2/OPSO. The first element in the used nomenclature is
the controller tuning proposal, the second refers to the regressor’s
polynomial degree, and the third stands for the employed optimizer.
The other two compared controller tunning approaches are based on
the offline controller tuning and the IACTA-GDM, respectively. The first
controller tuning method for the comparison is the optimum offline
controller tuning (optimization-based controller tuning method) of a
BLDC motor presented in Rojas-López et al. (2020), which used the
same tuning criteria (IAE and 𝑃𝑎𝑣𝑔) presented in this work. The best-
reported controller gains 𝒌 = [𝑘𝑝, 𝑘𝑖]𝑇 = [1.14459, 112.61539]𝑇 are
used, and hereinafter this controller tuning approach is called Offline,
where these gains are fixed values and do not change over time.
This offline controller tuning method (optimization-based controller
tuning method) is included to observe if the SIACTA-RSM proposals
keep the advantage of the indirect adaptive controller tuning approach
over the optimization-based controller tuning method under paramet-
ric uncertainties and/or disturbances. The second controller tuning
approach for the comparison is another indirect adaptive controller
tuning approach based on the work developed in Rodríguez-Molina,
Villarreal-Cervantes, and Aldape-Pérez (2017). Unlike the proposed
SIACTA approach, in Rodríguez-Molina et al. (2017), a surrogate model
is not implemented. Instead, well-established methodologies such as
an energy-based approach (Euler–Lagrange formalism) or balancing
of forces/torques (Newton–Euler formalism) are used to set the sys-
tem’s dynamic model. In this work, the approach in Rodríguez-Molina
et al. (2017) is referred to as Indirect Adaptive Controller Tuning
Approaches based on the general dynamic model (IACTA-GDM). So,
the chosen IACTA-GDM versions for comparison are IACTA-GDM/ODE,
IACTA-GDM/OGA, and IACTA-GDM/OPSO, where the last term in the
nomenclature refers to the optimizer that is used to solve optimization
problems in the tuning approach. It is important to point out that
the same optimization algorithms used in the proposed SIACTA-RSM
are implemented in the IACTA-GDM to make a fair comparison. The
only difference is that the identification period on the IACTA-GDM
approach is smaller considering only 𝑛𝑙 = 100 instances sampled at
intervals 𝛿𝑡𝑙 = 10 (μs), resulting in an identification period 𝑇𝐼 = 1
(ms). The IACTA-GDM versions are included for a deeper comparison
against the proposal, where the trade-off between the motor controller
performance and the computational time required by the indirect adap-
tive approaches are evaluated. This can prove that the SIACTA-RSM
proposal is a trustworthy approach when the computational burden is
a limitation for the well-established indirect adaptive controller tuning
approach based on the model of the system (IACTA-GDM).

To clearly understand all controller tuning versions implemented,
Fig. 8 is provided, where it is observed that nine versions of the
controller tuning methods are online controller tuning methods.

On the other hand, the desired angular speed is set as 𝛺𝑑 = 40
rad/s), and the regulation task is performed during 0.5 (s) in four
ifferent experiments where the parametric uncertainties and distur-
ances gradually appear through experiments. The increment in the
xperiment’s complexity is established due to not all systems operate
n hazardous, noisy, or chaotic environments. Even though parametric
ncertainties and disturbances are always present in real-world applica-
ions, their effects have different magnitudes regarding the application.
ence, different experiment complexities are tested to observe under
hich conditions the proposed SIACTA-RSM is as reliable as the tra-
itional IACTA-GDM approach and to see if the SIACTA-RSM proposal
eeps the advantage of the online controller tuning approaches. The

onditions of the experiments are described next:
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• Experiment 1: Considers an ideal environment without distur-
bances or uncertainties during the whole execution.

• Experiment 2: Considers a load 𝜏𝑙 applied to the motor that
changes in intervals as in (28). This experiment considers distur-
bances in the input signal.

• Experiment 3: Considers the same load changes of (28) and also
the motor’s parameter vector 𝒂 change continuously as in (29)
∀ 𝑖 ∈ {1,… , 7}. This third experiment includes uncertainties in
the system parameters and disturbances in the input signal.

• Experiment 4: Considers the same conditions of Experiment 3 and
includes random noise (around ±1%) in the sensed states of the
system. The last experiment considers uncertainties in the system
parameters and disturbances in the input signal and the sensing
system.

𝑙 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 (N m), if 0 (s) ≤ 𝑡 ≤ 0.1 (s)
−0.6 (N m), if 0.1 (s) < 𝑡 ≤ 0.2 (s)
0.5 (N m), if 0.2 (s) < 𝑡 ≤ 0.3 (s)
−0.86 (N m), if 0.3 (s) < 𝑡 ≤ 0.4 (s)
0.4 (N m), if 0.4 (s) < 𝑡 ≤ 0.5 (s)

(28)

𝑖 =

{

a𝑖(1 + 0.25 sin (20𝜋𝑡)), if 𝑖 is even
a𝑖(1 + 0.25 cos (20𝜋𝑡)), otherwise

(29)

It is worth pointing out that thirty executions are carried out for
ach alternative presented in Fig. 8. The simulations are executed in
ATLAB version 2022b on a computer with a CPU Intel® CoreTM

7-7700HQ at 2.80 (GHz) with 16 (GB) of RAM. The simulations
ncorporate the Euler’s integration method, with an integration time
f 𝑑𝑡 = 10 (μs).

.2. Statistical result analysis

The statistical comparisons (descriptive and inferential) are pro-
ided in this section. Such comparisons evaluate the performance of the
ptimization tuning functional ( ), the computational time required
13



y the online controller tuning approaches, the trade-off between 
nd the computational time, as well as the fulfillment of the tuning
riteria (IAE and power 𝑃𝑎𝑣𝑔).

Tables 6, 9, 12 and 15 present the descriptive statistics results for
ach experiment, where the first column corresponds to the version
mplemented, the next three grouped columns are the best, worst, and
ean results regarding the IAE criteria of the thirty executions. After

hese, the next three grouped columns are the best, worst, and mean
esults regarding the power 𝑃𝑎𝑣𝑔 criteria of the thirty executions. Fi-

nally, the last five grouped columns are the best, worst, mean, standard
deviation, and confidence intervals (95%) about the tuning functional
 of the thirty executions. The best results are depicted in boldface.

On the other hand, Tables 7, 10, 13 and 16 present inferential
statistics using the Friedman multi-comparative test (Derrac, García,
Molina, & Herrera, 2011) regarding the tuning functional  of the
online versions implemented. The implemented online controller tun-
ing version is presented in the first column, whose obtained rank is
depicted in superscript inside parentheses. The second column presents
the mean Friedman rank assigned to each version. Finally, the third and
fourth columns show the test statistic result and the obtained 𝑝-value,
with a statistical significance 𝛼 = 0.05. In this way, if the 𝑝-value is
smaller than 𝛼, the null hypothesis (which states that all the controller
tuning versions are similar) is rejected.

Furthermore, a summary of the post-hoc pairwise comparisons of
the Friedman tests (Derrac et al., 2011) is presented in Tables 8, 11, 14,
and 17 (the comparisons include Bonferroni, Holm, and Shaffer 𝑝-value
corrections (Garcia & Herrera, 2008) aiming to have a more robust
analysis). In such tables, the symbols ‘‘W’’, ‘‘T’’, and ‘‘L’’ stand for win,
tie, and lose, respectively. These symbols within the table summarize
the result of comparing the row label version against the column header
version. The final column sums all comparisons’ wins, ties, and losses.
It is worth pointing out that the summary of the post-hoc pairwise
comparisons is in Appendix C.

Next, the statistical comparisons of the results is presented. An im-
portant detail is that if the full name of a specific version is mentioned,
it is because that is the one with the best outcome (regarding the
evaluated criterion) of its respective approach.
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Table 6
Descriptive statistics results — Experiment 1.

Version IAE 𝑃𝑎𝑣𝑔 
best worst mean best worst mean best worst mean std. C.I. 95%

Offlinea 0.1415 0.1415 0.1415 28.1400 28.1400 28.1400 – – – – –
IACTA-GDM/ODE 0.1475 0.1476 0.1475 28.0905 28.0917 28.0913 8.6217 8.6234 8.6229 0.0004 [8.623–8.623]
IACTA-GDM/OGA 0.1465 0.1475 0.1472 28.0879 28.0956 28.0905 8.6080 8.6224 8.6184 0.0029 [8.617–8.619]
IACTA-GDM/OPSO 0.1447 0.1472 0.1462 28.0710 28.1016 28.0890 8.5818 8.6192 8.6050 0.0085 [8.602–8.608]
SIACTA-RSM/1/ODE 0.1948 0.2930 0.2350 28.5153 29.6237 28.9493 9.2861 10.4847 9.7959 0.2595 [9.703–9.889]
SIACTA-RSM/1/OGA 0.1895 0.2899 0.2472 28.4493 29.6461 29.1082 9.2125 10.4586 9.9468 0.3328 [9.828–10.066]
SIACTA-RSM/1/OPSO 0.1745 0.2889 0.2350 28.3118 29.5535 28.9764 9.0095 10.4328 9.8005 0.3109 [9.689–9.912]
SIACTA-RSM/2/ODE 0.1422 0.2135 0.1533 28.2371 29.2369 28.3950 8.5864 9.6656 8.7616 0.2896 [8.658–8.865]
SIACTA-RSM/2/OGA 0.1421 0.2364 0.1671 28.2356 29.5483 28.4902 8.5858 9.9249 8.9464 0.4100 [8.800–9.093]
SIACTA-RSM/2/OPSO 0.1404 0.2188 0.1669 28.2502 29.1561 28.4872 8.5751 9.6975 8.9495 0.3110 [8.838–9.061]

a Results remain unchanged as there are no stochastic factors also  is not considered as the tuning method is different.
4.2.1. Experiment 1
This experiment considers ideal conditions where there are no

parametric uncertainties or disturbances. First, a descriptive statistical
comparison is presented in Table 6 regarding the online optimization
functional  and the tuning criteria. As much information is obtained,
the following highlights are provided:

• Online controller tuning approaches regarding  : The IACTA-
GDM versions have better mean reported results, where IACTA-
GDM/OPSO reduces the mean result of SIACTA-RSM/2/ODE by
only 1.78%. It also shows that IAE is the criterion that affects the
tuning performance the most. In addition, the IACTA-GDM ver-
sions have more stable results, with best means and standard de-
viations than the SIACTA-RSM approaches. This is reflected in the
confidence intervals as IACTA-GDM versions have a lower/better
operation range than SIACTA-RSM versions.

• Online vs. offline versions regarding IAE: The reported mean
outcome of the thirty executions of the online controller tun-
ing versions is worse than Offline’s mean result. In the par-
ticular cases, IACTA-GDM/OPSO increments it by 3.32%, and
SIACTA-RSM/2/ODE by 8.33% the IAE.

• Online vs. offline versions regarding 𝑃𝑎𝑣𝑔 : Only the IACTA-GDM
versions improve the mean outcome of the thirty executions. The
IACTA-GDM/OPSO reduces by 0.18% the Offline’s mean result.

• In this experiment, where disturbances and parametric uncertain-
ties are not considered, the Offline controller tuning can be consid-
ered as good as the results of the online controller. Nonetheless,
real-world applications without those disturbances and uncertain-
ties are unusual.

The above-reported information only gives a general description of
he executions carried out by each version. Table 7 presents the multi-
omparative Friedman test to have more representative information
bout the online versions’ behavior for future implementations. The
-value shows the rejection of the null hypothesis, confirming that
t least one of the versions differs from the rest. Before continuing
ith the post-hoc analysis, it is worth mentioning that the IACTA-GDM
ersions have the first ranks, followed by the SIACTA-RSM/2 versions,
nd finally, the SIACTA-RSM/1’s. As the null hypothesis is rejected,
post-hoc pairwise comparison is conducted to verify the statistical

ifferences between the online versions. For the sake of simplicity,
able 8 is created, whose values summarize the results of the post-hoc
airwise comparisons of the Friedman test. In a straightforward way to
epresent the results, the following highlights are given:

• The three most promising versions are SIACTA-RSM/2/ODE,
IACTA-GDM/OGA, and IACTA-GDM/OPSO because there are no
other tuning approaches that win over them (see the last col-
umn of Table 7) and the rest of the comparisons with those
versions present non-significant statistical differences among the
results (ties such that the outperformance of an algorithm is not
confirmed). These results indicate that the proposed SIACTA-
RSM/2/ODE performs as well as the IACTA-GDM versions when
14
Table 7
Friedman multi-comparative test considering  - Experiment 1.

Version Mean Friedman rank Test statistic p-value

IACTA-GDM/ODE(4) 4.1333

177.1644 4.0542E−34

IACTA-GDM/OGA(2) 3.0667
IACTA-GDM/OPSO(1) 1.8333
SIACTA-RSM/1/ODE(7) 7.6667
SIACTA-RSM/1/OGA(9) 8.2333
SIACTA-RSM/1/OPSO(8) 7.9000
SIACTA-RSM/2/ODE(3) 3.2333
SIACTA-RSM/2/OGA(5) 4.2333
SIACTA-RSM/2/OPSO(6) 4.7000

the closed-loop system does not have uncertainties and distur-
bances.

• In the comparisons of SIACTA-RSM/2 and IACTA-GDM versions,
the 77.77% of the comparisons cannot draw a conclusion about
the winner (tying 7 out of 9 comparisons). Only in two particu-
lar cases (SIACTA-RSM/2/OGA and SIACTA-RSM/2/OPSO), the
IACTA-GDM outperforms the SIACTA-RSM/2 variants (see the
footnote of the table). These results indicate that it is possible
that the proposed SIACTA-RSM/2 can present a similar behavior
to IACTA-GDM variants.

• In this experiment, the versions of SIACTA-RSM/1 were com-
pletely inefficient, losing all the comparisons against the other
approaches (IACTA-GDM and SIACTA-RSM/2).

4.2.2. Experiment 2
This experiment considers an external load modified each 0.1 (s) as

presented in (28). Following a similar structure, Table 9 presents the
descriptive statistical result (the tuning criteria and online objective
functional) of the thirty executions of each version. The following
information is provided to have a quick understanding:

• Online controller tuning approaches regarding  : The IACTA-
GDM versions have better mean results than the SIACTA-RSM
alternatives, where IACTA-GDM/OGA reduces only 2.67% the
SIACTA-RSM/2/ODE’s mean result. The IACTA-GDM versions re-
tain the best standard deviations and confidence intervals as in
the previous experiment.

• Online vs. offline versions regarding IAE: All the online versions
report better mean outcomes than Offline controller tuning mean
result. The IACTA-GDM/OGA, SIACTA-RSM/2/ODE, and SIACTA-
RSM/1/OPSO reduce their mean value by 26.68%, 17.55% and
15.77%, respectively, when compared to the offline versions.

• Online vs. offline versions regarding 𝑃𝑎𝑣𝑔 : None of the online
versions have better results than Offline versions. The IACTA-
GDM/OPSO, SIACTA-RSM/1/OPSO and SIACTA-RSM/2/
OPSO increases the Offline’s mean result by 1.73%, 1.82%, and

2.32%, respectively.
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Table 8
Pairwise result summary considering  - Experiment 1.

vs IACTA-GDM/ SIACTA-RSM/1/ SIACTA-RSM/2/ Total

ODE OGA OPSO ODE OGA OPSO ODE OGA OPSO W/L/T*

IACTA-GDM/ODE – T L W W W T T T 3/1/4
IACTA-GDM/OGA T – T W W W T T T 3/0/5
IACTA-GDM/OPSO W T – W W W T W W 6/0/1

SIACTA-RSM/1/ODE** L L L – T T L L L 0/6/2
SIACTA-RSM/1/OGA** L L L T – T L L L 0/6/2
SIACTA-RSM/1/OPSO** L L L T T – L L L 0/6/2

SIACTA-RSM/2/ODE*** T T T W W W – T T 3/0/5
SIACTA-RSM/2/OGA*** T T L W W W T – T 3/1/4
SIACTA-RSM/2/OPSO*** T T L W W W T T – 3/1/4

* Total of Win/Lose/Tie between comparisons among adaptive controller tuning approaches.
** SIACTA-RSM/1 versions vs. IACTA-GDM versions - W/L/T: 0/9/0.
*** SIACTA-RSM/2 versions vs. IACTA-GDM versions - W/L/T: 0/2/7.
Table 9
Descriptive statistics results — Experiment 2.

Version IAE 𝑃𝑎𝑣𝑔 

best worst mean best worst mean best worst mean std. C.I. 95%

Offlinea 0.3800 0.3800 0.3800 58.3479 58.3479 58.3479 – – – – –
IACTA-GDM/ODE 0.2792 0.2795 0.2793 59.6587 59.6719 59.6670 17.8443 17.8512 17.8470 0.0015 [17.846–17.848]
IACTA-GDM/OGA 0.2772 0.2796 0.2786 59.6166 59.6883 59.6635 17.8117 17.8498 17.8355 0.0086 [17.832–17.839]
IACTA-GDM/OPSO 0.3098 0.3098 0.3098 59.3607 59.3607 59.3607 18.1957 18.1957 18.1957 0.00008 [18.196–18.196]
SIACTA-RSM/1/ODE 0.2940 0.3862 0.3350 59.1667 60.2816 59.5000 17.9364 19.3502 18.5481 0.2730 [18.450–18.646]
SIACTA-RSM/1/OGA 0.2876 0.3782 0.3221 59.1644 59.9808 59.4818 17.8660 19.1845 18.3780 0.3034 [18.269–18.487]
SIACTA-RSM/1/OPSO 0.2803 0.3658 0.3200 59.2124 59.8885 59.4099 17.7560 19.0182 18.3347 0.2677 [18.239–18.430]
SIACTA-RSM/2/ODE 0.2499 0.4673 0.3133 59.2692 62.1421 59.9220 17.3150 20.3715 18.3262 0.8770 [18.012–18.640]
SIACTA-RSM/2/OGA 0.2504 0.5218 0.3353 59.2803 61.5070 60.0151 17.3257 20.8653 18.6251 0.9265 [18.294–18.957]
SIACTA-RSM/2/OPSO 0.2680 0.4093 0.3360 59.2386 60.5689 59.7043 17.6110 19.6173 18.5985 0.4810 [18.426–18.771]

a Results remain equals as there are no stochastic factors also  is not considered as the tuning method is different.
Table 10 shows the Friedman test concerning the online optimiza-
tion functional  for the nine online approaches implemented. As can
be seen, the null hypothesis is rejected, confirming that at least one of
the versions is statistically different from the rest. Before the post-hoc
analysis, it is important to notice that the IACTA-GDM versions have
the first ranks, followed by the SIACTA-RSM/2 variants and, finally,
the SIACTA-RSM/1 alternatives.

The pairwise comparison summary is in Table 11, aiming for a
clearer comparison. Some relevant observations of the results are:

• The IACTA-GDM/ODE and IACTA-GDM/OGA versions are indis-
putably the winners, being the only ones with several triumphed
comparisons , and there are no other tuning approaches that
win over them (see the last column of Table 11). The following
outstanding performance is related to SIACTA-RSM/2/ODE and
IACTA-GDM/OPSO because only one version outperforms them,
and those outstanding versions tie with the other tuning alterna-
tives. It is important to point out that the controller performance
difference between the most outstanding version in IACTA-GDM
and the second one given by the proposed SIACTA-RSM/2/ODE
is at most of 2.67% (according to the mean result given in the
descriptive statistics).

• In this Experiment 2, where the complexity increases by adding
load disturbances, the SIACTA-RSM/2 versions reduce their com-
petitiveness against the IACTA-GDM versions. In this case, the
overall performance among those controller tuning versions in-
dicates that SIACTA-RSM/2 alternatives lose 55.55% of the com-
parisons, and the rest are tied (see the table’s footnote).

• The worse performance is related to SIACTA-RSM/1 versions,
which lose 77.77% of the comparisons with respect to IACTA-
GDM ones (see the table’s footnote).

It is worth pointing out that the SIACTA-RSM and IACTA-GDM
versions have better performances than the offline tuning method with
15

the inclusion of the external load.
Table 10
Friedman multi-comparative test considering  - Experiment 2.

Version Mean Friedman rank Test statistic p-value

IACTA-GDM/ODE(2) 2.8000

95.1466 4.1760E−17

IACTA-GDM/OGA(1) 1.8667
IACTA-GDM/OPSO(3) 4.5000
SIACTA-RSM/1/ODE(9) 7.0667
SIACTA-RSM/1/OGA(7) 5.9667
SIACTA-RSM/1/OPSO(5) 5.5667
SIACTA-RSM/2/ODE(4) 4.8667
SIACTA-RSM/2/OGA(6) 5.6667
SIACTA-RSM/2/OPSO(8) 6.7000

4.2.3. Experiment 3
In this experiment, in addition to the load changes (28) of the previ-

ous experiments, the parameter vector 𝒂 of the BLDC motor changes as
in (29). Table 12 presents the descriptive statistical comparison of the
thirty executions of each version. Now that the complexity of the exper-
iment is more significant since additional parametric uncertainties are
applied to the parameter vector, the advantage of the online controller
tuning versions becomes evident, reducing the tuning criteria of the
offline approach. Also, some trends are observed. The following points
summarize noteworthy information:

• Online controller tuning approaches regarding  : The IACTA-
GDM versions have the best mean results than SIACTA-RSM ver-
sions, where IACTA-GDM/OGA diminishes only 2.97% the mean
result of SIACTA-RSM/2/OPSO. Yet, the IACTA-GDM versions
are more reliable as they reported the best standard deviations
and confidence intervals. The difference regarding the online
objective function  is also relatively small, as in Experiment
2.

• Online vs. offline versions regarding IAE: As in the previous
experiment, the online versions improve the Offline’s mean result.

The IACTA-GDM/OGA (and OPSO version), SIACTA-RSM/2/ODE
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Table 11
Pairwise result summary considering  - Experiment 2.

vs IACTA-GDM/ SIACTA-RSM/1/ SIACTA-RSM/2/ TOTAL

ODE OGA OPSO ODE OGA OPSO ODE OGA OPSO W/L/T*

IACTA-GDM/ODE – T T W W W T W W 5/0/3
IACTA-GDM/OGA T – W W W W W W W 7/0/1
IACTA-GDM/OPSO T L – W T T T T T 1/1/6

SIACTA-RSM/1/ODE** L L L – T T T T T 0/3/5
SIACTA-RSM/1/OGA** L L T T – T T T T 0/2/6
SIACTA-RSM/1/OPSO** L L T T T – T T T 0/2/6

SIACTA-RSM/2/ODE*** T L T T T T – T T 0/1/7
SIACTA-RSM/2/OGA*** L L T T T T T – T 0/2/6
SIACTA-RSM/2/OPSO*** L L T T T T T T – 0/2/6

* Total of Win/Lose/Tie between comparisons among adaptive controller tuning approaches.
** SIACTA-RSM/1 versions vs. IACTA-GDM versions - W/L/T: 0/7/2.
*** SIACTA-RSM/2 versions vs. IACTA-GDM versions - W/L/T: 0/5/4.
Table 12
Descriptive statistics results — Experiment 3.

Version IAE 𝑃𝑎𝑣𝑔 
best worst mean best worst mean best worst mean std. C.I. 95%

Offlinea 0.5873 0.5873 0.5873 64.3599 64.3599 64.3599 – – – – –
IACTA-GDM/ODE 0.4717 0.4718 0.4718 64.2821 64.2891 64.2852 21.2740 21.2767 21.2752 0.0007 [21.275–21.275]
IACTA-GDM/OGA 0.4707 0.4717 0.4713 64.2656 64.2914 64.2805 21.2644 21.2742 21.2691 0.0025 [21.268–21.270]
IACTA-GDM/OPSO 0.4705 0.4718 0.4713 64.2649 64.2918 64.2821 21.2604 21.2745 21.2699 0.0036 [21.269–21.271]
SIACTA-RSM/1/ODE 0.5324 0.5874 0.5715 65.6753 66.4628 66.2396 22.2278 22.8311 22.7344 0.1218 [22.691–22.778]
SIACTA-RSM/1/OGA 0.5099 0.6012 0.5660 65.4044 66.8470 66.1957 21.9417 23.1531 22.6715 0.2733 [22.574–22.769]
SIACTA-RSM/1/OPSO 0.5136 0.5790 0.5504 65.4793 66.3480 65.9324 22.0061 22.8308 22.4600 0.2550 [22.369–22.551]
SIACTA-RSM/2/ODE 0.4381 0.6528 0.5163 64.3518 67.3029 65.3620 20.9647 23.7168 21.9737 0.7167 [21.717–22.230]
SIACTA-RSM/2/OGA 0.4359 0.6936 0.5522 64.2169 67.5715 65.6505 20.9079 23.9621 22.3781 0.8407 [22.077–22.679]
SIACTA-RSM/2/OPSO 0.4642 0.5939 0.5289 64.2301 65.2951 64.6653 21.3350 22.6213 21.9220 0.3717 [21.789–22.055]

a Results remain equals as there are no stochastic factors also  is not considered as the tuning method is different.
and SIACTA-RSM/1/OPSO reduce the Offline’s mean result by
18.92%, 11.18% and 5.31%, respectively.

• Online vs. offline versions regarding 𝑃𝑎𝑣𝑔 : For this criterion, only
the IACTA-GDM versions can reduce the mean results of the thirty
executions. The IACTA-GDM/OGA reduces Offline’s mean result
by 0.12%. In this experiment, SIACTA-RSM/2/OPSO worsens by
0.47% the Offline’s mean result. It is also observed that the per-
centage difference between versions is relatively small regarding
the power 𝑃𝑎𝑣𝑔 criterion, which is near the minimum energy
required by the motor to operate.

Table 13 shows another prominent trend regarding the online con-
roller tuning functional  when the Friedman test is executed. The
ACTA-GDM versions are first ranked, followed by the SIACTA-RSM/2
nd SIACTA-RSM/1 versions. As can be observed, the null hypothesis
s rejected, meaning that at least one of the online versions is statisti-
ally different from the rest. Therefore, a post-hoc pairwise analysis is
arried out, whose results are summarized in Table 14. The following
ighlights are given:

• As the complexity of the experiment increases with the inclusion
of disturbances and parametric uncertainties, the competitivity
of the SIACTA-RSM/2 versions diminishes when compared to
IACTA-GDM versions. In this case, the SIACTA-RSM/2 versions
lose 77.77% of the comparisons. Even if the inferential compar-
ison considers the IACTA-GDM alternatives as the winners, it
is necessary to remember that the percentage difference among
the executions regarding the tuning functional  related to the
controller performance is only 2.97%.

• The SIACTA-RSM/1 versions provide the worst result. They en-
tirely lose in all comparisons regarding IACTA-GDM variants.
Considering all the outcomes mentioned above, it is evident that
the second-degree regressor is a better alternative for the online
controller tuning problem for a BLDC motor.
16
Table 13
Friedman multi-comparative test considering  - Experiment 3.

Version Mean Friedman rank Test statistic p-value

IACTA-GDM/ODE(3) 3.3333

168.5600 2.5836E−32

IACTA-GDM/OGA(1) 1.6667
IACTA-GDM/OPSO(2) 2.0000
SIACTA-RSM/1/ODE(8) 7.9667
SIACTA-RSM/1/OGA(8) 7.4000
SIACTA-RSM/1/OPSO(7) 6.7333
SIACTA-RSM/2/ODE(4) 4.6000
SIACTA-RSM/2/OGA(6) 6.2333
SIACTA-RSM/2/OPSO(5) 5.0667

4.2.4. Experiment 4
This last experiment considers a disturbance applied to the sens-

ing/sampling of the system with a random noise signal of ±1% in
addition to the previous load changes (28) and parametric uncertainties
(29) for the vector 𝒂 of the BLDC motor described in the previous
experiment. Table 15 presents the descriptive statistical comparison of
the thirty executions carried out by the implemented controller tuning
versions, where the following points give notable highlights:

• Online controller tuning approaches regarding  : As a com-
mon trend, the IACTA-GDM versions have better mean results,
where IACTA-GDM/OPSO reduces by 3.18% the mean result of
SIACTA-RSM/2/OPSO. Furthermore, it is evident that the IACTA-
GDM versions have the best standard deviations and confidence
intervals.

• Online vs. offline versions regarding IAE: As in the previous
experiments, the online versions have better mean results than
Offline’s mean result. In this experiment, IACTA-GDM/OPSO and
SIACTA-RSM/2/ODE reduce the Offline’s mean value by 17.85%
and 9.25%, respectively.

• Online vs. offline versions regarding 𝑃𝑎𝑣𝑔 : In this experiment,
the online versions are no match against the offline one, where

IACTA-GDM/ODE increases by 0.009% Offline’s mean result, and
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Table 14
Pairwise result summary considering  - Experiment 3.

vs IACTA-GDM/ SIACTA-RSM/1/ SIACTA-RSM/2/ TOTAL

ODE OGA OPSO ODE OGA OPSO ODE OGA OPSO W/L/T*

IACTA-GDM/ODE – T T W W W T W T 4/0/4
IACTA-GDM/OGA T – T W W W W W W 6/0/2
IACTA-GDM/OPSO T T – W W W W W W 6/0/2

SIACTA-RSM/1/ODE** L L L – T T L T L 0/5/3
SIACTA-RSM/1/OGA** L L L T – T L T L 0/5/3
SIACTA-RSM/1/OPSO** L L L T T – T T T 0/3/5

SIACTA-RSM/2/ODE*** T L L W W T – T T 2/2/4
SIACTA-RSM/2/OGA*** L L L T T T T – T 0/3/5
SIACTA-RSM/2/OPSO*** T L L W W T T T – 2/2/4

* Total of Win/Lose/Tie between comparisons among adaptive controller tuning approaches.
** SIACTA-RSM/1 versions vs. IACTA-GDM versions - W/L/T: 0/9/0.
*** SIACTA-RSM/2 versions vs. IACTA-GDM versions - W/L/T: 0/7/2.
Table 15
Descriptive statistics results — Experiment 4.

Version IAE 𝑃𝑎𝑣𝑔 

best worst mean best worst mean best worst mean std. C.I. 95%

Offlinea 0.5831 0.6099 0.5988 63.4928 65.4324 64.3554 – – – – –
IACTA-GDM/ODE 0.4857 0.5026 0.4950 63.2947 65.2386 64.3616 21.2222 21.7711 21.5260 0.1450 [21.474–21.578]
IACTA-GDM/OGA 0.4841 0.5122 0.4943 63.1524 65.5125 64.3672 21.1721 21.9105 21.5211 0.1929 [21.452–21.590]
IACTA-GDM/OPSO 0.4838 0.5029 0.4919 63.4416 65.6301 64.4506 21.2204 21.9322 21.5193 0.1770 [21.456–21.583]
SIACTA-RSM/1/ODE 0.5127 0.6326 0.5527 63.6605 66.6362 65.2343 21.7961 23.0436 22.2963 0.2834 [22.195–22.398]
SIACTA-RSM/1/OGA 0.5101 0.6182 0.5567 64.3892 66.5622 65.4209 21.7715 23.0908 22.3812 0.3009 [22.274–22.489]
SIACTA-RSM/1/OPSO 0.5300 0.6111 0.5562 64.3515 66.5935 65.3828 21.8569 22.9703 22.3678 0.2513 [22.278–22.458]
SIACTA-RSM/2/ODE 0.4434 0.7922 0.5434 64.2700 68.7417 65.8520 21.1015 25.1391 22.3478 0.9627 [22.003–22.692]
SIACTA-RSM/2/OGA 0.4522 0.8462 0.5588 64.2892 68.4810 65.7111 21.1058 25.4832 22.4462 0.9546 [22.105–22.788]
SIACTA-RSM/2/OPSO 0.4910 0.6178 0.5536 63.6688 66.8484 64.9630 21.5677 22.9450 22.2279 0.4266 [22.075–22.381]

a  is not considered as the tuning method is different.
SIACTA-RSM/2/OPSO increases it by 0.99%. The relatively small
difference regarding the results of this criterion is attributed to
the fact that the optimization problem reaches the point of the
minimum energy required by the motor to operate.

In this experiment, where the conditions raise its complexity, the
nferential statistical comparison of the Friedman test regarding 
hows another interesting highlight. Even if the order of the ranks
emains (first IACTA-GDM versions, second SIACTA-RSM/2 variants,
nd third SIACTA-RSM/1 alternatives), the difference between IACTA-
DM and SIACTA-RSM ones is more significant. This is confirmed as

he null hypothesis is rejected. The post-hoc pairwise analysis is carried
ut and summarized in Table 17 to understand the meaning of the
ncrement of the ranks. The following noteworthy points are presented:

• The SIACTA-RSM versions lose all the comparisons against the
IACTA-GDM versions. Nevertheless, according to the descriptive
statistics, the difference between the mean performance (regard-
ing the tuning functional  ) of the controller tuning versions
is not as significant (around 3.18%). This confirms that, de-
spite showing IACTA-GDM a superior performance in the infer-
ential statistical comparison, the difference in the mean value is
relatively small.

.2.5. General discussion of the controller performance through the four
xperiments

Considering the results obtained through the previous four exper-
ments, it is observed that the controller performance given by the
IACTA-RSM proposal (specifically SIACTA-RSM/2/ODE) can be as
ompetitive as the well-established IACTA-GDM when there are no
arametric uncertainties and disturbances (based on Experiment 1).
he closed-loop controller performance of the SIACTA-RSM proposal
ecreases as parametric uncertainties and disturbances increase. Specif-
17

cally, the increment of the loss percentages in the comparisons against
Table 16
Friedman multi-comparative test considering  - Experiment 4.

Version Mean Friedman rank Test statistic p-value

IACTA-GDM/ODE(1) 2.3333

126.2577 1.6857E−23

IACTA-GDM/OGA(2) 2.4000
IACTA-GDM/OPSO(3) 2.4667
SIACTA-RSM/1/ODE(7) 6.3667
SIACTA-RSM/1/OGA(9) 6.9000
SIACTA-RSM/1/OPSO(8) 6.8000
SIACTA-RSM/2/ODE(4) 5.7000
SIACTA-RSM/2/OGA(6) 6.0333
SIACTA-RSM/2/OPSO(5) 6.0000

SIACTA-RSM are 55.55%, 77.77%, and 100% from the second to the
fourth experiments with respect to IACTA-GDM. This discrepancy is
because the IACTA-GDM uses a more accurate yet highly complex plant
model to emulate the closed-loop system’s behavior in the predictive
stage. Nevertheless, the controller performance difference between the
proposed SIACTA-RSM and the IACTA-GDM is relatively small, for
instance, 1.78%, 2.67%, 2.97% and 3.18% through the four experi-
ments. The higher difference of the mean results during the experiments
is only 3.18%. However, the proposal has the benefit of requiring
less computational load, which is an essential factor in implementing
autonomous systems. The computational load analysis is described in
the next section to confirm this advantage.

4.2.6. Computational time analysis related to the indirect adaptive control
tuning approaches

Another crucial criterion in the online controller tuning approaches
is the computational burden related to the time consumed by the indi-
rect adaptive tuning approaches for the update intervals. Considering
that the time for each approach is not related to the conditions of
the experiment but to the approach itself, the results of only the first
experiment are presented (the times are similar in all experiments). In

this work, the average time to solve the identification and prediction
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Table 17
Pairwise result summary considering  - Experiment 4.

vs IACTA-GDM/ SIACTA-RSM/1/ SIACTA-RSM/2/ TOTAL

ODE OGA OPSO ODE OGA OPSO ODE OGA OPSO W/L/T*

IACTA-GDM/ODE – T T W W W W W W 6/0/2
IACTA-GDM/OGA T – T W W W W W W 6/0/2
IACTA-GDM/OPSO T T – W W W W W W 6/0/2

SIACTA-RSM/1/ODE L L L – T T T T T 0/3/5
SIACTA-RSM/1/OGA L L L T – T T T T 0/3/5
SIACTA-RSM/1/OPSO L L L T T – T T T 0/3/5

SIACTA-RSM/2/ODE L L L T T T – T T 0/3/5
SIACTA-RSM/2/OGA L L L T T T T – T 0/3/5
SIACTA-RSM/2/OPSO L L L T T T T T – 0/3/5

* Total of Win/Lose/Tie between comparisons among adaptive controller tuning approaches.
** SIACTA-RSM/1 versions vs. IACTA-GDM versions - W/L/T: 0/9/0.
*** SIACTA-RSM/2 versions vs. IACTA-GDM versions - W/L/T: 0/9/0.
Table 18
Descriptive statistics — Solver time.

Version Solver time (s)

best worst mean std. C.I.

IACTA-GDM/ODE 0.1082 0.1487 0.1407 0.0088 [0.138–0.144]
IACTA-GDM/OGA 0.1255 0.1862 0.1666 0.0127 [0.162–0.171]
IACTA-GDM/OPSO 0.0978 0.1328 0.1253 0.0075 [0.123–0.128]
SIACTA-RSM/1/ODE 0.0140 0.0198 0.0177 0.0015 [0.0172–0.0182]
SIACTA-RSM/1/OGA 0.0187 0.0359 0.0238 0.0045 [0.0222–0.0254]
SIACTA-RSM/1/OPSO 0.0094 0.0215 0.0124 0.0033 [0.0112–0.0136]
SIACTA-RSM/2/ODE 0.0220 0.0323 0.0298 0.0022 [0.0290–0.0306]
SIACTA-RSM/2/OGA 0.0267 0.0458 0.0339 0.0048 [0.0322–0.0356]
SIACTA-RSM/2/OPSO 0.0193 0.0289 0.0247 0.0023 [0.0239–0.0255]

stages during a whole execution is used to evaluate the computational
time of the indirect adaptive control tuning approaches. From now on,
the computational time will be called ‘‘Solver time’’. Table 18 displays
the descriptive statistical results of the thirty executions, where the first
column describes the versions tested, and their best and worst results
are in the second and third columns, respectively. Also, the mean,
standard deviation, and confidence intervals (at 95%) are in the fourth,
fifth, and sixth columns, respectively. The best results of each column
are in boldface. The following highlights of Table 18 are provided:

• The SIACTA-RSM versions are the fastest approaches. The SIACTA
-RSM/1/OPSO reduces the mean time of the best-reported version
of IACTA-GDM (IACTA-GDM/OPSO) in 90.10% and the SIACTA-
RSM/2/ODE diminishes it in 80.28%.

• It is observed that there are significant differences in the mean
time when the optimizers change in the same controller tun-
ing approach. In the particular case of SIACTA-RSM/1 versions,
the SIACTA-RSM/1/OPSO and SIACTA-RSM/1/ODE diminish the
mean result with reference to SIACTA-RSM/1/OGA by 29.94%
and 47.89%, respectively. Likewise, in SIACTA-RSM/2 alterna-
tives, the SIACTA-RSM/2/OPSO and SIACTA-RSM/2/ODE de-
creases the mean result regarding SIACTA-RSM/2/OGA by
17.11% and 27.13%, respectively. In the case of the IACTA-GDM
approach, the IACTA-GDM/OPSO and IACTA-GDM/ODE reduce
the mean result with respect to IACTA-GDM/OGA by 10.94% and
24.78%, respectively.

A Friedman test regarding the solver time is carried out to make
nferences about the online controller tuning versions implemented.
he results are in Table 19, where it can be seen that the null hypothesis

s rejected, which means that at least one of the versions compared is
tatistically different from the rest. Before continuing with a post-hoc
nalysis, it is noteworthy that the SIACTA-RSM/1 versions have the
irst ranks (except for SIACTA-RSM/1/OGA), followed by the SIACTA-
SM/2 variants, and the IACTA-GDM alternatives. For the sake of
18

implicity, Table 20 presents the summary of the pairwise post-hoc
Table 19
Friedman multi-comparative test considering solver time.

Version Mean Friedman rank Test statistic p-value

IACTA-GDM/ODE(8) 7.8000

232.8355 7.4395E−46

IACTA-GDM/OGA(9) 9.0000
IACTA-GDM/OPSO(7) 7.2000
SIACTA-RSM/1/ODE(1) 1.5000
SIACTA-RSM/1/OGA(5) 4.7000
SIACTA-RSM/1/OPSO(1) 1.5000
SIACTA-RSM/2/ODE(4) 4.0333
SIACTA-RSM/2/OGA(6) 6.0000
SIACTA-RSM/2/OPSO(3) 3.2667

analysis, whose complete results are in Table C.30. The following
outstanding points of Table 20 are given:

• The SIACTA-RSM/1 versions win all the comparisons against
the IACTA-GDM ones, i.e., SIACTA-RSM/1 versions consume less
computational load. The next competitive tuning approach is
related to SIACTA-RSM/2 versions, with seven wins and only
two ties with reference to the IACTA-GDM alternatives (the ties
only happen when SIACTA-RSM/2/OGA is implemented). IACTA-
GDM versions provide the worst result regarding the solver time
analysis.

• Despite the SIACTA-RSM versions of the proposal consider a
wider identification period (𝑇𝐼 = 5 (ms)) than the given in IACTA-
GDM variants (𝑇𝐼 = 1 (ms)), the computational time of the
proposed SIACTA-RSM is sufficiently reduced with respect to the
traditional IACTA-GDM approach.

• The OGA optimizer is considered the slower one, as it is the
only one with losses when it is compared against similar online
controller tuning approaches. This is attributed to the tournament
selection step in Algorithm 3 to choose individuals for offspring
creation. This process requires more time than only selecting
them randomly.

4.2.7. Online control tuning performance vs. solver time analysis
Previously, the closed-loop performance and average time required

to solve the adaptive stages of the online controller tuning approaches
have been evaluated separately. However, their implementation is a
unique element with its benefits and weaknesses. Hence, the following
weighted sum method evaluation is developed. In this case, the mean
Friedman’s ranks of both the optimization problem performance  and
the solver time through experiments are equally weighted to form one
criterion and to compare them fairly. Therefore, the weights assigned to
the performances obtained in the four experiments are proportional and
equally distributed, where 𝜔𝑖 = 0.125 is the weight assigned to the 𝑖th
experiment ∀ 𝑖 ∈ 1,… , 4. This distribution contributes to a total weight
of 0.5 for the closed-loop experiment performances. Additionally, a
weight of 𝜔 = 0.5 is assigned to the solver time.
5
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Table 20
Pairwise result summary considering solver time.

vs IACTA-GDM/ SIACTA-RSM/1/ SIACTA-RSM/2/ TOTAL

ODE OGA OPSO ODE OGA OPSO ODE OGA OPSO W/L/T*

IACTA-GDM/ODE – T T L L L L T L 0/5/3
IACTA-GDM/OGA T – T L L L L L L 0/6/2
IACTA-GDM/OPSO T T – L L L L T L 0/5/3

SIACTA-RSM/1/ODE** W W W – W T W W T 6/0/2
SIACTA-RSM/1/OGA** W W W L – L T T T 3/2/3
SIACTA-RSM/1/OPSO** W W W T W – W W T 6/0/2

SIACTA-RSM/2/ODE*** W W W L T L – T T 3/2/3
SIACTA-RSM/2/OGA*** T W T L T L T – L 1/3/4
SIACTA-RSM/2/OPSO*** W W W T T T T W – 4/0/4

* Total of Win/Lose/Tie between comparisons among adaptive controller tuning approaches.
** SIACTA-RSM/1 versions vs. IACTA-GDM versions - W/L/T: 9/0/0.
*** SIACTA-RSM/2 versions vs. IACTA-GDM versions - W/L/T: 7/0/2.
Table 21
Weighted sum method analysis of Friedman’s ranks about experiment performance and solver times.

Version Mean Friedman’s ranks Version
total

Approach
total

Experiment 1
𝜔1 = 0.125

Experiment 2
𝜔2 = 0.125

Experiment 3
𝜔3 = 0.125

Experiment 4
𝜔4 = 0.125

Solver time
𝜔5 = 0.5

IACTA-GDM/ODE 4.1333 2.8000 3.3333 2.3333 7.8000 5.4750
16.0500IACTA-GDM/OGA 3.0667 1.8667 1.6667 2.4000 9.0000 5.6250

IACTA-GDM/OPSO 1.8333 4.5000 2.0000 2.4667 7.2000 4.9500

SIACTA-RSM/1/ODE 7.6667 7.0667 7.9667 6.3667 1.5000 4.3834
14.4209SIACTA-RSM/1/OGA 8.2333 5.9667 7.4000 6.9000 4.7000 5.9125

SIACTA-RSM/1/OPSO 7.9000 5.5667 6.7333 6.8000 1.5000 4.1250

SIACTA-RSM/2/ODE 3.2333 4.8667 4.6000 5.7000 4.0333 4.3167
14.5292SIACTA-RSM/2/OGA 4.2333 5.6667 6.2333 6.0333 6.0000 5.7708

SIACTA-RSM/2/OPSO 4.7000 6.7000 5.0667 6.0000 3.2667 4.4417
The data of this evaluation is shown in Table 21. This table shows in
ts first column the online controller tuning versions implemented. The
ollowing four columns include the mean Friedman’s ranks obtained by
ach experiment regarding the performance of the optimization prob-
em  . The sixth column shows the mean Friedman’s ranks regarding
he solver time. The seventh column presents the total of the weighted
um. Finally, the eighth column indicates the total results of each
pproach (GDM, SIACTA-RSM/1, and SIACTA-RSM/2). The following
oteworthy points are given:

• If the controller performance and the solver time are simultane-
ously evaluated with the balanced trade-off assigned previously,
the SIACTA-RSM/1/OPSO have the best results, followed by
SIACTA-RSM/2/ODE, SIACTA-RSM/1/ODE, and SIACTA-RSM/2/
OPSO. The worst result is provided by IACTA-GDM versions,
where the best result in it, given by IACT-GDM/OPSO, loses
its effectiveness by 16.66% and 12.76% with reference to the
best results in the other versions (SIACTA-RSM/1/OPSO and
SIACTA-RSM/2/ODE, respectively).

• Considering the total results per approach (given in eighth col-
umn of Table 21), it is observed that IACTA-GDM is outperformed
in 10.15% and 9.97% by SIACTA-RSM/1 and SIACTA-RSM/2,
respectively.

• Both SIACTA-RSM approaches (SIACTA-RSM/1 and SIACTA-
RSM/2) present competitive performance due to the difference
between them is only 0.74% according to the total results per
approach in Table 21. This difference can be considered a negli-
gible one. So, in both approaches, slightly different trade-offs are
presented, and each can benefit a particular application.

• Considering all statistical comparisons, the proposed SIACTA-
RSM is a suitable alternative for online controller tuning when
the computational burden has surpassed the capabilities of the
traditional IACTA-GDM. In addition, the proposal presents a com-
petitive controller performance with respect to the IACTA-GDM.
19
4.3. Graphical comparisons

After the statistical comparison, it might be helpful to comprehend
the meaning of performance differences graphically. To achieve this,
two comparisons are carried out. The first one regards the best-case
execution of the best versions (according to their Friedman’s rank) of
SIACTA-RSM/2 and IACTA-GDM approaches. Meanwhile, the second
comparison examines the worst-case execution of the wort versions (ac-
cording to their Friedman’s rank) of SIACTA-RSM/2 and IACTA-GDM
approaches. The BLDC motor’s angular speed and power consumption
are evaluated in both comparisons.

4.3.1. Best-case graphical analysis
Fig. 9 collects the angular speed comparisons between the best

versions of SIACTA-RSM/2 and IACTA-GDM approaches of each ex-
periment, and Fig. 10 presents their respective power consumption (P)
during their executions. The particular outcomes of these executions
are presented in Tables 6, 9, 12, and 15. A necessary clarification
is that all images from now on depicted are zoomed in to clarify
the differences between the compared versions. The following notes
describe the remarks by experiment.

• Experiment 1: In this experiment, SIACTA-RSM/2/ODE and
IACTA-GDM/OPSO have the best outcomes. Figs. 9(a) and 10(a)
show that SIACTA-RSM/2/ODE has almost the same performance
as IACTA-GDM/OPSO, regarding the angular speed regulation
and the power consumption, respectively. The only difference is
perceived during the starting of the BLDC motor in the first 0.05
(s) as shown in Figs. 9(b) and 10(b), where SIACTA-RSM/2/ODE
has a smoother/slower response to reach the steady state. Finally,
according to Table 6 in this particular case, the total closed-
loop performance ( ) difference between the compared versions
shows that SIACTA-RSM/2/ODE has slight improvements over

IACTA-GDM/OPSO by reducing its outcome by 0.05%.
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Fig. 9. Angular speed comparison of the best versions by approach.
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Fig. 10. Power consumption comparison of the best versions by approach.
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• Experiment 2: SIACTA-RSM/2/ODE and IACTA-GDM/OGA report
the best results in this experiment. Fig. 9(c) presents the angu-
lar speed comparison between SIACTA-RSM/2/ODE and IACTA-
GDM/OGA, where SIACTA-RSM/2/ODE shows slower error com-
pensations than IACTA-GDM/OGA. However, SIACTA-RSM/2/
ODE achieves shorter oscillation, which, with the slower com-
pensations, produces a smoother response, as in instants 0.2 (s)
and 0.4 (s). For example, Fig. 9(d) shows a close-up view of the
instant 0.2 (s), where it is observed that SIACTA-RSM/2/ODE
has slower responses than IACTA-GDM/OGA, requiring more time
to return to a steady state. Nonetheless, SIACTA-RSM/2/ODE
reduces by 40% the error’s magnitude at these intervals. On the
other hand, Fig. 10(c) shows that SIACTA-RSM/2/ODE requires
less power impulse, while IACTA-GDM/OGA employs additional
power impulses to achieve its error compensations. This is more
visible in Fig. 10(f) at the time 0.21 (s), where the oscillations
of SIACTA-RSM/2/ODE barely surpasses the 72 (W) while the
oscillation of IACTA-GDM/OGA comes out of the figure. Finally,
according to the best result about closed-loop performance ( )
of Table 9, it is observed that SIACTA-RSM/2/ODE decreases by
2.78% the best reported result of IACTA-GDM/OGA.

• Experiment 3: The best results between the approaches for this
experiment are reported by SIACTA-RSM/2/ODE and IACTA-
GDM/OGA. Fig. 9(e) displays a common trend where SIACTA-
RSM/2/ODE responds faster, while IACTA-GDM/OGA has a
smoother response. This experiment presents a drawback of the
online controller tuning approaches. In the interval from 0.2 (s)
to 0.25 (s), SIACTA-RSM/2/ODE has an undesired oscillation
observed in Fig. 9(f). This kind of oscillation is presented when
the optimizer of the prediction stage does not find a suitable
solution, producing an overcompensation of the error. Neverthe-
less, Fig. 10(e) depicts that this error does not significantly affect
the BLDC motor’s power consumption. Particularly, Fig. 10(f)
shows that SIACTA-RSM/2/ODE has minor oscillations during the
interval from 0.22 (s) to 0.24 (s), while the rest of the operation
is similar to IACTA-GDM/OGA. Finally, regarding the results of
Table 12, the difference in the evaluation of the closed-loop
performance ( ) shows that SIACTA-RSM/2/ODE diminishes the
outcome of IACTA-GDM/OGA by 1.40%.

• Experiment 4: The best results are obtained by SIACTA-RSM/2/
ODE and IACTA-GDM/ODE for this experiment. Fig. 9(g) portrays
that in this experiment, SIACTA-RSM/2/ODE has more consid-
erable ripples, especially at the time 0.2 (s). This increase in
the oscillations explains the reason for the competitiveness drop
of the SIACTA-RSM approaches as the complexity of the exper-
iments increases. Nonetheless, these oscillations are corrected
by the own control system at future intervals as observed in
Fig. 9(h) where after the instant 0.23 (s), the speed regula-
tion performance of SIACTA-RSM/2/ODE equalizes the one of
IACTA-GDM/ODE. On the other hand, Fig. 10(g) shows that
these oscillations affect the power consumption. This is visible
in the performance difference between SIACTA-RSM/2/ODE and
IACTA-GDM/ODE. Particularly after the instant 0.2 (s) interval in
Fig. 10(h), it is observed that SIACTA-RSM/2/ODE requires more
power consumption to equalize the speed regulation performance
of IACTA-GDM/ODE. Ultimately, a common trend is observed
in the best-case executions. It is that SIACTA-RSM/2 versions
have slightly better results than IACTA-GDM alternatives. In this
experiment, SIACTA-RSM/2/ODE reduces by 0.58% the closed-
loop performance ( ) of IACTA-GDM/ODE (according to the best
result of Table 15).

.3.2. Worst-case graphical analysis
As a matter of completeness and looking for a complete representa-

ion of the results, a graphical comparison of the worst execution of the
orst version (according to Friedman’s ranks) of the IACTA-GDM and
22
IACTA-RSM/2 approaches is carried out. Fig. 11 summarizes the speed
egulation result of the four experiments, and Fig. 12 collects the power
onsumption results. Also, the statistical outcomes of this execution are
ortrayed in Tables 6, 9, 12, and 15. Next, some noteworthy points by
xperiment are offered:

• Experiment 1: SIACTA-RSM/2/OPSO and IACTA-GDM/ODE have
the worst outcomes for this experiment. Fig. 11(a) graphically
shows the performance of the SIACTA-RSM/2/OPSO and IACTA-
GDM/ODE. In this case, SIACTA-RSM/2/OPSO presents undesired
oscillations in the speed regulation at 0.1 (s) and 0.3 (s) intervals.
Nonetheless, it is worth pointing out that the errors are compen-
sated at future update intervals, as observed in Fig. 11(b), where
after 0.31 (s), the speed regulation of SIACTA-RSM/2/OPSO re-
turns to its steady state. Despite the oscillation in the speed regu-
lation, Fig. 12(a) displays that there are no significant differences
regarding the power consumption between SIACTA-RSM/2/OPSO
and IACTA-GDM/ODE besides the minor overshoot of the in-
terval between 0.29 (s) and 0.31 (s) presented in Fig. 12(b).
Finally, the overall closed-loop performance ( ) of SIACTA-
RSM/2/OPSO reduces its effectiveness by 11.07% with respect to
IACTA-GDM/ODE (according to the worst result of Table 6).

• Experiment 2: For this experiment, SIACTA-RSM/2/OPSO and
IACTA-GDM/OPSO report the worst results at each approach.
Fig. 11(c) depicts once again ripples in the speed regulation
outcome of SIACTA-RSM/2/OPSO. However, it is interesting that
SIACTA-RSM/2/OPSO achieves the same quickness compensa-
tion for speed regulation of IACTA-GDM/OPSO, as observed in
Fig. 11(d). Fig. 12(c) presents a more visible difference in the
power consumption between SIACTA-RSM/2/OPSO and IACTA-
GDM/OPSO, resulting from the undesired oscillation. Particu-
larly, Fig. 12(d) shows that SIACTA-RSM/2/OPSO requires more
energy to compensate for the speed variations. Finally, according
to the worst result of Table 9, SIACTA-RSM/2/OPSO drops its
competitiveness by decreasing its closed-loop performance ( )
in 7.74% when compared to IACTA-GDM/OPSO.

• Experiment 3: The worst results are reported by SIACTA-RSM/2/
OGA and IACTA-GDM/ODE. Fig. 11(e) shows again that SIACTA-
RSM/2/OGA has undesired oscillations in the speed regulation,
which also affect their power consumption in Fig. 12(e). However,
it is important to notice that the system immediately corrects
these errors in future update intervals. It is worth pointing out
that IACTA-GDM/ODE has undesired oscillations, as presented in
Fig. 11(f), where during the interval between 0.44 (s) and 0.46
(s) SIACTA-RSM/2/OGA achieves less oscillations in the speed
regulation than IACTA-GDM/ODE. Nonetheless, this behavior re-
sults in worse power consumption, as shown in Fig. 12(f), where
SIACTA-RSM/2/OGA requires more energy. Ultimately, SIACTA-
RSM/2/OGA loses against IACTA-GDM/ODE by increasing its
closed-loop performance ( ) in 11.20% (according to the worst
results reported in Table 12).

• Experiment 4: In this experiment the worst results are those
of SIACTA-RSM/2/OGA and IACTA-GDM/OPSO. Fig. 11(g) de-
picts the undesired oscillations in the speed regulation. Even
if the oscillation of SIACTA-RSM/2/OGA is bigger at 0.4 (s),
IACTA-GDM/OPSO also has an undesired oscillation at 0.05 (s).
Fig. 11(h) shows that the error of SIACTA-RSM/2/OGA at 0.44 (s)
is compensated and equalizes the behavior of IACTA-GDM/OPSO.
Nonetheless, Fig. 12(g) demonstrates that only SIACTA-RSM/2/
OGA has an oscillation that affects power consumption. Even
if the SIACTA-RSM/2/OGA version presents errors around 0.4
(s) interval and does not equalize the behavior of the IACTA-
GDM/OPSO, the SIACTA-RSM/2/OGA version still has a pretty
similar response (as observed in Fig. 12(h)). Finally, as observed
in the results of Table 15, SIACTA-RSM/2/OGA increases by
13.93% the closed-loop performance ( ) of IACTA-GDM/OPSO.
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Fig. 11. Angular speed comparison of worst versions by approach.
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Fig. 12. Power consumption comparison of worst versions by approach.
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4.3.3. Discussion of the graphical comparison
The above-provided graphical comparisons offer a better under-

standing of the statistical differences between SIACTA-RSM/2 and
IACTA-GDM approaches. Figs. 9 and 10 show that both approaches
have nearly the same outcomes, where the slight differences result from
undesired oscillations. It is worth pointing out that these oscillations
are characteristic of all the online controller tuning approaches based
on bioinspired algorithms (SIACTA-RSM and IACTA-GDM).

Nonetheless, these oscillations affect slightly more the SIACTA-
RSM/2 approach than the IACTA-GDM one in the closed-loop system
performance. This is because SIACTA-RSM/2 uses an approximated sur-
rogate model as the reference model, accumulating an inherent error,
while IACTA-GDM employs the actual dynamic model of the system
closest to the actual physical system. Therefore, the SIACTA-RSM/2
presents more ripples, as shown in Figs. 11 and 12.

However, it is important to remember that the SIACTA-RSM/2
approach can equalize the outcomes of the IACTA-GDM one, reducing
the computational burden by up to 80%. A better understanding of
the proposal and its characteristics is achieved when all the present
information is considered. Thus, the SIACTA-RSM/2 approach is a
trustworthy option when the computational burden is a limitation
of the traditional IACTA-GDM approach, especially for those applica-
tions where small oscillations are accepted, like in heavy management
systems or unmanned vehicles.

4.4. Higher polynomial degree regression analysis

Aiming to better understand the proposal’s behavior as the degree of
the polynomial regression increases, an additional approach based on
3rd degree polynomial is developed. The approach is called SIACTA-
RSM/3/ODE, where the ODE is selected as the optimizer because it
is one of the most outstanding with different uncertainties and distur-
bances. This new version is executed thirty times and compared against
SIACTA-RSM/2/ODE (the most promising SIACTA-RSM variant) with
the conditions of Experiment 4 (with more parametric uncertainties
and disturbances). Tables 22 and 24 present the descriptive statistical
results of the online controller tuning performance criteria and the
computational time required by the online controller tuning versions,
respectively. These tables report the best results by criterion/columns
in boldface. Additionally, the inferential analyses are performed using
Wilcoxon signed-rank tests. Tables 23 and 25 present the respective
results of the Wilcoxon signed-rank tests about the online controller
tuning performance and computational time of the versions compared.
In these tables, the p-values are reported in the last columns, where
if the resulting 𝑝-value is lower than the statistical significance 𝛼 =
.05, the null hypothesis is rejected, meaning that one of the versions
ompared is statistically better. The winner is selected through the
igned ranked sums, where if the positive ranked sum 𝑅− (second
olumn) is lower than the negative ranked sum 𝑅+ (third), the winner is
he left side of the comparison expressed in the first column; otherwise,
he right side is the winner. The winner is reported in boldface in the
irst column of these tables.

Next, a summary of the results is offered:

• Analysis about online controller tuning performance: Table 22
shows that SIACTA-RSM/2/ODE has the best mean result of the
thirty executions regarding the online controller tuning perfor-
mance. For this comparison, SIACTA-RSM/2/ODE reduces the
online controller tuning functional  by 8.16%, the IAE by
25.88%, and the power 𝑃𝑎𝑣𝑔 by 2.29%. In a deeper inferential
statistic analysis, Table 23 shows that the null hypothesis is
rejected, meaning that there is a winner among the versions,
which in this case is SIACTA-RSM/2/ODE. These results show
that increasing the polynomial degree does not necessarily lead
to better performance of the online controller tuning.
25
• Analysis about computational time: Table 24 exhibits that
SIACTA-RSM/2/ODE is able to reduce the computational time
by 71.29% with respect to SIACTA-RSM/3/ODE to solve the
online controller tuning. This outstanding difference is reflected
in the inferential analysis, where Table 25 shows that the null
hypothesis is rejected and that SIACTA-RSM/2/ODE is the abso-
lute winner (as the positive ranked sum value is 0). This shows
that increasing the polynomial degree of the proposal beyond
the second degree significantly affects the computational time
required to solve the online controller tuning.

• Considering the obtained result by a third-degree polynomial re-
gression, it is observed that increasing the degree in the particular
case of the BLDC motor does not improve the online controller
tuning performance or the computational time.

. Conclusions

This work proposes the surrogate indirect adaptive controller tun-
ng approach based on the response surface method (SIACTA-RSM)
nd bioinspired algorithms, using multivariate-multitarget polynomial
egression to obtain the reference model dynamically and, hence, to
pdate the controller gains that improve the controller’s performance
uring the execution of a task while reducing the computational time
equired to solve such update processes.

To evaluate the proposal, the SIACTA-RSM approach is applied
or tuning a Proportional Integral (PI) controller of a brushless direct
urrent (BLDC) motor. This application aims to optimize the speed
egulation and power consumption of a BLDC motor by simultaneously
inimizing its integral absolute error (IAE) and average power (𝑃𝑎𝑣𝑔).
hese criteria are addressed through the weighted product method
WPM), resulting in a single optimization functional  related to the
nline controller tuning performance. The proposal also incorporates
ifferent bioinspired optimization algorithms (ODE, OGA, and OPSO)
or the optimization problem solution.

The proposal is tested through four experiments where disturbances
nd parametric uncertainties increase in each experiment. The pro-
osed SIACTA-RSM versions (based on first and second-degree polyno-
ial regressions) are compared to the well-established Indirect Adap-

ive Controller Tuning Approach based on the General Dynamic Model
IACTA-GDM) and an optimization-based controller tuning method
optimum offline controller tuning).

Analyzing and evaluating equitably the trade-off between the closed-
erformance ( ) of the BLDC motor and the average computational
ime required to solve the tuning (solver time), it is observed that the
ICTA-RSM proposal outperforms the weighted criterion with respect
o the traditional IACTA-GDM approach. The results show that the
est versions of SIACTA-RSM, given by SIACTA-RSM/1/OPSO and
IACTA-RSM/2/ODE, outperform by 16.66% and 12.76% the weighted
riterion of the best version of IACTA-GDM (IACTA-GDM/OPSO). Fur-
hermore, in a general comparison per approach (evaluating its ver-
ions simultaneously), it is observed that SIACTA-RSM/1 has the best
rade-off results, followed by SIACTA-RSM/2. The SIACTA-RSM/1 and
IACTA-RSM/2 reduce by 10.15% and 9.97% the trade-off obtained by
he IACTA-GDM approach.

For more particularities of the analyses, it is observed that, when
nly the online controller tuning performance ( ) is evaluated, the
IACTA-RSM proposal drops its competitiveness as the parametric un-
ertainties and external disturbances increase. The inferential statistical
omparison results show that the loss percentage in the comparison
ncreases from 55.55% to 100% through the increment of the un-
ertainties and disturbances. Without uncertainties and disturbances,
he proposal is as competitive as the IACTA-GDM. Nonetheless, it is
ssential to point out that the disparity between the mean results
f each approach (SIACTA-RSM/2 and IACTA-GDM) variates between
nly 1.78% to 3.18% through the experiments. Final users should
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Table 22
Descriptive statistics results — 3rd degree polynomial regression.

Version IAE 𝑃𝑎𝑣𝑔 

best worst mean best worst mean best worst mean std. C.I. 95%

SIACTA-RSM/2/ODE 0.4434 0.7922 0.5434 64.2700 68.7417 65.8520 21.1015 25.1391 22.3478 0.9627 [22.003–22.692]
SIACTA-RSM/3/ODE 0.4903 0.9108 0.7332 64.6275 69.7558 67.3983 21.6073 26.1961 24.3346 1.1566 [23.921–24.748]
Table 23
Wilcoxon signed rank test regarding  .

Comparison 𝑅− 𝑅+ p-value

SIACTA-RSM/2/ODE SIACTA-RSM/3/ODE 23 442 1.6394E−05

Table 24
Descriptive statistics - Solver time - 3rd degree polynomial regression.

Version Solver time (s)

best worst mean std. C.I.

SIACTA-RSM/2/ODE 0.0220 0.0323 0.0298 0.0022 [0.0290–0.0306]
SIACTA-RSM/3/ODE 0.0723 0.1274 0.1038 0.0163 [0.0980–0.110]

Table 25
Wilcoxon signed rank test regarding solver time.

Comparison 𝑅− 𝑅+ p-value

SIACTA-RSM/2/ODE SIACTA-RSM/3/ODE 0 465 1.7344E−06

consider such differences to determine whether they are significant or
acceptable in other applications.

The other particularities of the analysis is when the computational
time (solver time) is only evaluated, where the SIACTA-RSM pro-
posal is the outstanding winner with respect to IACTA-GDM versions.
According to the results of the inferential statistics, only two ties
in SIACTA-RSM/2/OGA are confirmed through the experiments, and
the rest of the comparisons of the proposal present unquestionable
triumphs. The descriptive statistics indicate that the fastest versions
of the proposed SIACTA-RSM (SIACTA-RSM/ 1/OPSO and SIACTA-
RSM/2/ODE) provide a reduction of the computational time of around
90.10% and 80.28% regarding the best-reported result in IACTAGDM
(IACTA-GDM/OPSO).

As a consequence, the proposed SIACTA-RSM is an outstanding
option when the well-established IACTA-GDM approach has reached
its computational burden limit, maintaining a competitive outcome
about the control system performance while significantly reducing the
computational time required to solve the indirect adaptive tuning.

In future work, the proposal’s implementation on experimental
platforms is considered. Also, the analysis of other surrogate model
methods based on machine learning and deep learning techniques
is another future research direction according to the state-of-the-art
described in Section 1.2. The way of handling a diverse set of control
performance functions based on the multiobjective optimization frame-
work is another future work. The implementation of parallel/granular
computing is also another research direction to enhance the compu-
tational time capability of the SIACTA-RSM proposal, considering that
parallel/granular computing technology has been successfully imple-
mented in applications where large amounts of data and processes
are required like in Huang, Tang, Zhao, Zhang, and Pedrycz (2022),
Kuo, Su, Zulvia, and Lin (2018), Singh and Dhiman (2018), Yen, Chen,
Chen, Hsu, and Wu (2014), Zhang, Pedrycz, Fayek, and Dong (2022).
This technology can be helpful to deal with the computational burden
limitations of deep learning techniques, making the combination of
such techniques with the SIACTA-RSM proposal to make it feasible.
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Appendix A. List of acronyms

BLDC Brushless direct current.
PID Proportional–Integral–Derivative.
AI Artificial intelligence.
GDM General dynamic model.
SM Surrogate modeling.
GP Gaussian process.
SVM Support Vector Machines.
ANN Artificial Neural Network.
RSM Response Surface Method.
kNN k-Nearest Neighbors.
SOCTM Surrogate optimization-base controller tuning

method.
SDACTM Surrogate direct adaptive controller tuning

method.



Expert Systems With Applications 245 (2024) 123070A.G. Rojas-López et al.

A

c
p
f
s
c
t
H
p
p
c
p
i
a
t
t
s
i
(

SIACTM Surrogate indirect adaptive controller tuning
method.

MARS Multivariate Adaptive Regression Spline.
S-M Space Mapping.
RBF Radial Basis Function.
RF Random Forest.
SMGO-𝛥 Set Membership Global Optimization with

black-box constraints.
LTI Linear Time invariant.
PSO Particle Swarm Optimization.
EGO Efficient Global Optimization.
GA Genetic Algorithm.
GLISP GLobal minimum, Inverse distance, Surrogate

RBF, Preferred-based optimization.
𝛥-DOGS Delaunay-based Derivative-free Optimization via

Global Surrogate.
BO Bayesian Optimization.
BA Bat Algorithm.
ES Evolutionary Strategies.
DE Differential Evolution.
GW Gray Wolf.
HH Harris Hawks.
MF Moth Flame.
NSGA-II Non-dominated Sorting Genetic Algorithm-II.
RL Reinforcement Learning.
DACE Design and Analysis of Computer Experiments.
MOBGO Multi-Objective Bayesian Global Optimization.
GS Grid Search.
SA Simulated Annealing.
SMPSO Speed-constrained Multi-objective Particle Swarm

Optimization.
GDE-3 Generalized Differential Evolution.
MOEA Multi-Objective Evolutionary Algorithm.
MOPSO Multi-Objective Particle Swarm Optimization.
MOGOA Multi-Objective Grasshopper Optimization

Algorithm.
NSGA-III Non-dominated Sorting Genetic Algorithm-III.
DRACO Decomposed Robust Alternating

Confidence-bound Optimization.
BA Bat Algorithm.
LSM Least Squares Method.
ODE Online Differential Evolution.
OGA Online Particle Swarm Optimization.
OPSO Online Genetic Algorithm.
SBX Simulated Binary Crossover
NDM Normally Distributed Mutation.
Back-emf Back-electromagnetic force.
WPM Weighted Product Method.
IAE Integral Absolute Error.
𝑃𝑎𝑣𝑔 Power average.
SIACTA-RSM Surrogate Indirect Adaptive Controller Tuning

Approach based on the RSM regressor.
IACTA-GDM Indirect Adaptive Controller Tuning Approach

based on the General Dynamic Model.

Appendix B. List of symbols

R𝑛 𝑛-dimensional Euclidean space.
R𝑛×𝑚 𝑛 × 𝑚 Matrix representation.
𝒑 Vector notation.
𝐏 Matrix notation.
𝑡𝑝 Present time.
𝛥𝑇𝑈 Update interval.
27
𝛿𝑡𝑙 System’s sampling interval.
𝑇𝐼 , 𝑇𝑃 Identification and prediction periods.
𝑛𝑙 Number of samplings by identification period.
𝑚𝑙 Future intervals that form the prediction period.
𝒙, 𝒖, 𝒚 Dynamic system’s state, input and output vectors.
𝑛𝑥, 𝑛𝑢, 𝑛𝑦 Number of states, input, and outputs of a dynamic

system.
𝒚 Surrogate model by multivariate-multitarget

polynomial regressor.
𝜷
∗

Optimum regressor’s coefficients vector.
𝜈 Number of polynomial regressor’s terms.
𝑛𝑣 Number of design variables.
𝑁𝑃 Population size.
𝐺𝑚𝑎𝑥 Maximum generations.
𝐶𝑟 Crossover rate.
[𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥] Mutation scale factor range.
[𝒗𝑚𝑖𝑛, 𝒗𝑚𝑎𝑥] Velocity range.
𝐶1, 𝐶2 Individual and global experience coefficients.
𝝎 Inertia factor.
𝑇𝑠 Tournament size.
𝜂𝑐 Distribution index.
𝜇,𝝈𝜇2 Mutation factor and variance distribution.
𝒂 BLDC motor’s parameter vector.
𝑅,𝐿 BLDC motor’s Line resistance and inductance.
𝑘𝑒, 𝑘𝑡 BLDC motor’s Back-emf and torque.
𝐽 , 𝐵 BLDC motor’s inertia and magnetic friction

coefficients.
𝑃 BLDC motor’s pair poles.
𝜏𝑙 BLDC motor’s torque load.
𝑖𝛾 ∀ 𝛾 ∈ {𝐴,𝐵, 𝐶}BLDC motor’s A,B, and C line current.
𝛺, 𝜃 BLDC motor’s angular speed and position.
𝑘𝑝, 𝑘𝑖 Controller’s proportional and integral gains.
𝒌 Controller’s gains vector.
J1 Optimization functional related to the IAE.
J2 Optimization functional related to the power 𝑃𝑎𝑣𝑔 .
 Controller tuning functional (WPM’s result of J1

and J2).
𝒘 WPM’s weights vector for  .
𝒌𝑚𝑎𝑥,𝒌𝑚𝑖𝑛 Controller’s gains vector limits.
𝛼 Statistical significance value.
𝑑𝑡 Euler’s numerical integration step.

ppendix C. Post-hoc pairwise comparison tables

Tables C.26, C.27, C.28, and C.29 present the post-hoc pairwise
omparison about the tuning functional  , and Table C.30 displays the
ost-hoc pairwise comparison result regarding the solver time required
or the online controller tuning versions. These tables follow the same
tructure, where the two first columns indicate the pairs of versions
ompared, the third column indicates the unadjusted p-values, while
he fourth to sixth columns contain the adjusted values (by Bonferroni,
olm, and Shaffer’s corrections, respectively), and the last column
resents the Friedman’s rank difference between the versions com-
ared. In these Tables, if any of the p-values (unadjusted or adjusted
olumns) is lower than the statistical significance 𝛼 = 0.05, the null hy-
othesis (the compared versions are equal) is rejected, and the 𝑝-value
s reported in boldface. Looking for robust analysis, the comparisons
re considered tie until all the p-values reject the null hypothesis. If
his condition is accomplished, a winner of the comparison is selected
hrough the rank difference. If the rank difference is positive, the right
ide of the comparison is the winner, and if it is negative, the left side
s better. If there are winners in the comparisons, these are in boldface
see Table C.29).
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Table C.26
Post-hoc pairwise comparison regarding  - Experiment 1.

vs Unadjusted Bonferroni Holm Shaffer Rank diff.

IACTA-GDM/ODE IACTA-GDM/OGA 1.3143E−01 1.0000E+00 1.0000E+00 1.0000E+00 1.07
IACTA-GDM/ODE IACTA-GDM/OPSO 1.1432E−03 4.1154E−02 1.8291E−02 1.8291E−02 2.30
IACTA-GDM/ODE SIACTA-RSM/1/ODE 5.8263E−07 2.0975E−05 1.3400E−05 1.2818E−05 −3.53
IACTA-GDM/ODE SIACTA-RSM/1/OGA 6.7000E−09 2.4120E−07 1.8090E−07 1.4740E−07 −4.10
IACTA-GDM/ODE SIACTA-RSM/1/OPSO 9.9919E−08 3.5971E−06 2.4980E−06 2.1982E−06 −3.77
IACTA-GDM/ODE SIACTA-RSM/2/ODE 2.0309E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.90
IACTA-GDM/ODE SIACTA-RSM/2/OGA 8.8754E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.10
IACTA-GDM/ODE SIACTA-RSM/2/OPSO 4.2291E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.57
IACTA-GDM/OGA IACTA-GDM/OPSO 8.1125E−02 1.0000E+00 9.7350E−01 9.7350E−01 1.23
IACTA-GDM/OGA SIACTA-RSM/1/ODE 7.7496E−11 2.7899E−09 2.2474E−09 2.1699E−09 −4.60
IACTA-GDM/OGA SIACTA-RSM/1/OGA 2.7364E−13 9.8510E−12 9.0301E−12 7.6619E−12 −5.17
IACTA-GDM/OGA SIACTA-RSM/1/OPSO 8.1796E−12 2.9447E−10 2.5357E−10 2.2903E−10 −4.83
IACTA-GDM/OGA SIACTA-RSM/2/ODE 8.1366E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.17
IACTA-GDM/OGA SIACTA-RSM/2/OGA 9.8960E−02 1.0000E+00 1.0000E+00 1.0000E+00 −1.17
IACTA-GDM/OGA SIACTA-RSM/2/OPSO 2.0895E−02 7.5221E−01 3.1342E−01 3.1342E−01 −1.63
IACTA-GDM/OPSO SIACTA-RSM/1/ODE 1.5895E−16 5.7223E−15 5.4044E−15 4.4507E−15 −5.83
IACTA-GDM/OPSO SIACTA-RSM/1/OGA 1.4171E−19 5.1015E−18 5.1015E−18 5.1015E−18 −6.40
IACTA-GDM/OPSO SIACTA-RSM/1/OPSO 9.5235E−18 3.4285E−16 3.3332E−16 2.6666E−16 −6.07
IACTA-GDM/OPSO SIACTA-RSM/2/ODE 4.7715E−02 1.0000E+00 6.2029E−01 6.2029E−01 −1.40
IACTA-GDM/OPSO SIACTA-RSM/2/OGA 6.8851E−04 2.4787E−02 1.1705E−02 1.1016E−02 −2.40
IACTA-GDM/OPSO SIACTA-RSM/2/OPSO 5.0332E−05 1.8120E−03 9.0598E−04 9.0598E−04 −2.87
SIACTA-RSM/1/ODE SIACTA-RSM/1/OGA 4.2291E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.57
SIACTA-RSM/1/ODE SIACTA-RSM/1/OPSO 7.4141E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.23
SIACTA-RSM/1/ODE SIACTA-RSM/2/ODE 3.6179E−10 1.3024E−08 1.0130E−08 1.0130E−08 4.43
SIACTA-RSM/1/ODE SIACTA-RSM/2/OGA 1.2010E−06 4.3237E−05 2.5222E−05 2.5222E−05 3.43
SIACTA-RSM/1/ODE SIACTA-RSM/2/OPSO 2.7227E−05 9.8017E−04 5.1731E−04 4.9009E−04 2.97
SIACTA-RSM/1/OGA SIACTA-RSM/1/OPSO 6.3735E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.33
SIACTA-RSM/1/OGA SIACTA-RSM/2/ODE 1.5375E−12 5.5349E−11 4.9199E−11 4.3049E−11 5.00
SIACTA-RSM/1/OGA SIACTA-RSM/2/OGA 1.5417E−08 5.5502E−07 4.0085E−07 3.3918E−07 4.00
SIACTA-RSM/1/OGA SIACTA-RSM/2/OPSO 5.8263E−07 2.0975E−05 1.3400E−05 1.2818E−05 3.53
SIACTA-RSM/1/OPSO SIACTA-RSM/2/ODE 4.1209E−11 1.4835E−09 1.2363E−09 1.1539E−09 4.67
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OGA 2.1549E−07 7.7578E−06 5.1719E−06 4.7409E−06 3.67
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OPSO 6.0258E−06 2.1693E−04 1.2052E−04 1.0846E−04 3.20
SIACTA-RSM/2/ODE SIACTA-RSM/2/OGA 1.5730E−01 1.0000E+00 1.0000E+00 1.0000E+00 −1.00
SIACTA-RSM/2/ODE SIACTA-RSM/2/OPSO 3.8063E−02 1.0000E+00 5.3288E−01 4.9481E−01 −1.47
SIACTA-RSM/2/OGA SIACTA-RSM/2/OPSO 5.0928E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.47
28
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Table C.27
Post-hoc pairwise comparison regarding  - Experiment 2.

vs Unadjusted Bonferroni Holm Shaffer Rank diff.

IACTA-GDM/ODE IACTA-GDM/OGA 1.8686E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.93
IACTA-GDM/ODE IACTA-GDM/OPSO 1.6210E−02 5.8354E−01 3.0798E−01 2.9177E−01 −1.70
IACTA-GDM/ODE SIACTA-RSM/1/ODE 1.5997E−09 5.7590E−08 5.4390E−08 4.4792E−08 −4.27
IACTA-GDM/ODE SIACTA-RSM/1/OGA 7.5225E−06 2.7081E−04 2.1815E−04 2.1063E−04 −3.17
IACTA-GDM/ODE SIACTA-RSM/1/OPSO 9.1286E−05 3.2863E−03 2.3734E−03 2.0083E−03 −2.77
IACTA-GDM/ODE SIACTA-RSM/2/ODE 3.4700E−03 1.2492E−01 7.2870E−02 7.2870E−02 −2.07
IACTA-GDM/ODE SIACTA-RSM/2/OGA 5.0332E−05 1.8120E−03 1.3590E−03 1.1073E−03 −2.87
IACTA-GDM/ODE SIACTA-RSM/2/OPSO 3.4792E−08 1.2525E−06 1.1134E−06 9.7418E−07 −3.90
IACTA-GDM/OGA IACTA-GDM/OPSO 1.9602E−04 7.0566E−03 4.9004E−03 4.3124E−03 −2.63
IACTA-GDM/OGA SIACTA-RSM/1/ODE 1.9249E−13 6.9297E−12 6.9297E−12 6.9297E−12 −5.20
IACTA-GDM/OGA SIACTA-RSM/1/OGA 6.7000E−09 2.4120E−07 2.2110E−07 1.8760E−07 −4.10
IACTA-GDM/OGA SIACTA-RSM/1/OPSO 1.6715E−07 6.0174E−06 5.0145E−06 4.6802E−06 −3.70
IACTA-GDM/OGA SIACTA-RSM/2/ODE 2.2090E−05 7.9526E−04 6.1853E−04 6.1853E−04 −3.00
IACTA-GDM/OGA SIACTA-RSM/2/OGA 7.7004E−08 2.7721E−06 2.3871E−06 2.1561E−06 −3.80
IACTA-GDM/OGA SIACTA-RSM/2/OPSO 8.1796E−12 2.9447E−10 2.8629E−10 2.2903E−10 −4.83
IACTA-GDM/OPSO SIACTA-RSM/1/ODE 2.8362E−04 1.0210E−02 6.8070E−03 6.2397E−03 −2.57
IACTA-GDM/OPSO SIACTA-RSM/1/OGA 3.8063E−02 1.0000E+00 6.4706E−01 6.1011E−01 −1.47
IACTA-GDM/OPSO SIACTA-RSM/1/OPSO 1.3143E−01 1.0000E+00 1.0000E+00 1.0000E+00 −1.07
IACTA-GDM/OPSO SIACTA-RSM/2/ODE 6.0408E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.37
IACTA-GDM/OPSO SIACTA-RSM/2/OGA 9.8960E−02 1.0000E+00 1.0000E+00 1.0000E+00 −1.17
IACTA-GDM/OPSO SIACTA-RSM/2/OPSO 1.8628E−03 6.7062E−02 4.2845E−02 4.0983E−02 −2.20
SIACTA-RSM/1/ODE SIACTA-RSM/1/OGA 1.1979E−01 1.0000E+00 1.0000E+00 1.0000E+00 1.10
SIACTA-RSM/1/ODE SIACTA-RSM/1/OPSO 3.3895E−02 1.0000E+00 6.1011E−01 6.1011E−01 1.50
SIACTA-RSM/1/ODE SIACTA-RSM/2/ODE 1.8628E−03 6.7062E−02 4.2845E−02 4.0983E−02 2.20
SIACTA-RSM/1/ODE SIACTA-RSM/2/OGA 4.7715E−02 1.0000E+00 7.6344E−01 7.6344E−01 1.40
SIACTA-RSM/1/ODE SIACTA-RSM/2/OPSO 6.0408E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.37
SIACTA-RSM/1/OGA SIACTA-RSM/1/OPSO 5.7161E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.40
SIACTA-RSM/1/OGA SIACTA-RSM/2/ODE 1.1979E−01 1.0000E+00 1.0000E+00 1.0000E+00 1.10
SIACTA-RSM/1/OGA SIACTA-RSM/2/OGA 6.7137E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.30
SIACTA-RSM/1/OGA SIACTA-RSM/2/OPSO 2.9969E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.73
SIACTA-RSM/1/OPSO SIACTA-RSM/2/ODE 3.2220E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.70
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OGA 8.8754E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.10
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OPSO 1.0898E−01 1.0000E+00 1.0000E+00 1.0000E+00 −1.13
SIACTA-RSM/2/ODE SIACTA-RSM/2/OGA 2.5790E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.80
SIACTA-RSM/2/ODE SIACTA-RSM/2/OPSO 9.5219E−03 3.4279E−01 1.9044E−01 1.7139E−01 −1.83
SIACTA-RSM/2/OGA SIACTA-RSM/2/OPSO 1.4392E−01 1.0000E+00 1.0000E+00 1.0000E+00 −1.03
29
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Table C.28
Post-hoc pairwise comparison regarding  - Experiment 3.

vs Unadjusted Bonferroni Holm Shaffer Rank diff.

IACTA-GDM/ODE IACTA-GDM/OGA 1.8422E−02 6.4477E−01 2.3949E−01 2.3949E−01 1.67
IACTA-GDM/ODE IACTA-GDM/OPSO 5.9346E−02 1.0000E+00 5.9346E−01 5.9346E−01 1.33
IACTA-GDM/ODE SIACTA-RSM/1/ODE 5.6573E−11 1.9801E−09 1.6972E−09 1.5840E−09 −4.63
IACTA-GDM/ODE SIACTA-RSM/1/OGA 8.8646E−09 3.1026E−07 2.3934E−07 1.9502E−07 −4.07
IACTA-GDM/ODE SIACTA-RSM/1/OPSO 1.5220E−06 5.3270E−05 3.9572E−05 3.3484E−05 −3.40
IACTA-GDM/ODE SIACTA-RSM/2/ODE 7.3239E−02 1.0000E+00 6.5915E−01 6.5915E−01 −1.27
IACTA-GDM/ODE SIACTA-RSM/2/OGA 4.1098E−05 1.4384E−03 8.6306E−04 8.6306E−04 −2.90
IACTA-GDM/ODE SIACTA-RSM/2/OPSO 1.4234E−02 4.9819E−01 2.1351E−01 2.1351E−01 −1.73
IACTA-GDM/OGA IACTA-GDM/OPSO 6.3735E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.33
IACTA-GDM/OGA SIACTA-RSM/1/ODE 5.1242E−19 1.7935E−17 1.8447E−17 1.8447E−17 −6.30
IACTA-GDM/OGA SIACTA-RSM/1/OGA 5.1393E−16 1.7988E−14 1.7474E−14 1.4390E−14 −5.73
IACTA-GDM/OGA SIACTA-RSM/1/OPSO 7.7589E−13 2.7156E−11 2.4828E−11 2.1725E−11 −5.07
IACTA-GDM/OGA SIACTA-RSM/2/ODE 3.3487E−05 1.1720E−03 7.3670E−04 7.3670E−04 −2.93
IACTA-GDM/OGA SIACTA-RSM/2/OGA 1.0593E−10 3.7074E−09 3.0719E−09 2.9659E-09 −4.57
IACTA-GDM/OGA SIACTA-RSM/2/OPSO 1.5220E−06 5.3270E−05 3.9572E−05 3.3484E−05 −3.40
IACTA-GDM/OPSO SIACTA-RSM/1/ODE 3.2242E−17 1.1285E−15 1.1285E−15 9.0279E−16 −5.97
IACTA-GDM/OPSO SIACTA-RSM/1/OGA 2.2277E−14 7.7969E−13 7.3513E−13 6.2375E−13 −5.40
IACTA-GDM/OPSO SIACTA-RSM/1/OPSO 2.1723E−11 7.6032E−10 6.7343E−10 6.0826E−10 −4.73
IACTA-GDM/OPSO SIACTA-RSM/2/ODE 2.3603E−04 8.2612E−03 4.2486E−03 4.2486E−03 −2.60
IACTA-GDM/OPSO SIACTA-RSM/2/OGA 2.1396E−09 7.4886E−08 5.9909E−08 5.9909E−08 −4.23
IACTA-GDM/OPSO SIACTA-RSM/2/OPSO 1.4449E−05 5.0572E−04 3.3233E−04 3.1788E−04 −3.07
SIACTA-RSM/1/ODE SIACTA-RSM/1/OGA 4.2291E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.57
SIACTA-RSM/1/ODE SIACTA-RSM/1/OPSO 8.1125E−02 1.0000E+00 6.5915E−01 6.5915E−01 1.23
SIACTA-RSM/1/ODE SIACTA-RSM/2/ODE 1.9246E−06 6.7361E−05 4.6190E−05 4.2341E−05 3.37
SIACTA-RSM/1/ODE SIACTA-RSM/2/OGA 1.4234E−02 4.9819E−01 2.1351E−01 2.1351E−01 1.73
SIACTA-RSM/1/ODE SIACTA-RSM/2/OPSO 4.1098E−05 1.4384E−03 8.6306E−04 8.6306E−04 2.90
SIACTA-RSM/1/OGA SIACTA-RSM/1/OPSO 3.4578E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.67
SIACTA-RSM/1/OGA SIACTA-RSM/2/ODE 7.5013E−05 2.6255E−03 1.4253E−03 1.3502E−03 2.80
SIACTA-RSM/1/OGA SIACTA-RSM/2/OGA 9.8960E−02 1.0000E+00 6.9272E−01 6.9272E−01 1.17
SIACTA-RSM/1/OGA SIACTA-RSM/2/OPSO 9.6743E−04 3.3860E−02 1.6446E−02 1.5479E−02 2.33
SIACTA-RSM/1/OPSO SIACTA-RSM/2/ODE 2.5530E−03 8.9355E−02 4.0848E−02 4.0848E−02 2.13
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OGA 4.7950E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.50
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OPSO 1.8422E−02 6.4477E−01 2.3949E−01 2.3949E−01 1.67
SIACTA-RSM/2/ODE SIACTA-RSM/2/OGA 2.0895E−02 7.3131E−01 2.3949E−01 2.3949E−01 −1.63
SIACTA-RSM/2/ODE SIACTA-RSM/2/OPSO 5.0928E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.47
SIACTA-RSM/2/OGA SIACTA-RSM/2/OPSO 9.8960E−02 1.0000E+00 6.9272E−01 6.9272E−01 1.17
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Table C.29
Post-hoc pairwise comparison regarding  - Experiment 4.

vs Unadjusted Bonferroni Holm Shaffer Rank diff.

IACTA-GDM/ODE IACTA-GDM/OGA 9.2489E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.07
IACTA-GDM/ODE IACTA-GDM/OPSO 8.5044E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.13
IACTA-GDM/ODE SIACTA-RSM/1/ODE 1.1703E−08 4.0961E−07 3.5110E−07 3.2769E−07 −4.03
IACTA-GDM/ODE SIACTA-RSM/1/OGA 1.0593E−10 3.7074E−09 3.8133E−09 3.8133E−09 −4.57
IACTA-GDM/ODE SIACTA-RSM/1/OPSO 2.6700E−10 9.3450E−09 9.0780E−09 7.4760E−09 −4.47
IACTA-GDM/ODE SIACTA-RSM/2/ODE 1.9246E−06 6.7361E−05 4.0416E−05 4.0416E−05 −3.37
IACTA-GDM/ODE SIACTA-RSM/2/OGA 1.6715E−07 5.8503E−06 4.5131E−06 3.6773E−06 −3.70
IACTA-GDM/ODE SIACTA-RSM/2/OPSO 2.1549E−07 7.5423E−06 5.6028E−06 4.7409E−06 −3.67
IACTA-GDM/OGA IACTA-GDM/OPSO 9.2489E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.07
IACTA-GDM/OGA SIACTA-RSM/1/ODE 2.0266E−08 7.0932E−07 5.8772E−07 5.6745E−07 −3.97
IACTA-GDM/OGA SIACTA-RSM/1/OGA 1.9662E−10 6.8816E−09 6.8816E−09 5.5052E−09 −4.50
IACTA-GDM/OGA SIACTA-RSM/1/OPSO 4.8917E−10 1.7121E−08 1.5653E−08 1.3697E−08 −4.40
IACTA-GDM/OGA SIACTA-RSM/2/ODE 3.0577E−06 1.0702E−04 6.1154E−05 5.5039E−05 −3.30
IACTA-GDM/OGA SIACTA-RSM/2/OGA 2.7722E−07 9.7027E−06 6.9305E−06 6.0989E−06 −3.63
IACTA-GDM/OGA SIACTA-RSM/2/OPSO 3.5586E−07 1.2455E−05 8.5407E−06 7.8290E−06 −3.60
IACTA-GDM/OPSO SIACTA-RSM/1/ODE 3.4792E−08 1.2177E−06 9.7418E−07 9.7418E−07 −3.90
IACTA-GDM/OPSO SIACTA-RSM/1/OGA 3.6179E−10 1.2663E−08 1.1939E−08 1.0130E−08 −4.43
IACTA-GDM/OPSO SIACTA-RSM/1/OPSO 8.8846E−10 3.1096E−08 2.7542E−08 2.4877E−08 −4.33
IACTA-GDM/OPSO SIACTA-RSM/2/ODE 4.8165E−06 1.6858E−04 9.1514E−05 8.6698E−05 −3.23
IACTA-GDM/OPSO SIACTA-RSM/2/OGA 4.5583E−07 1.5954E−05 1.0484E−05 1.0028E−05 −3.57
IACTA-GDM/OPSO SIACTA-RSM/2/OPSO 5.8263E−07 2.0392E−05 1.2818E−05 1.2818E−05 −3.53
SIACTA-RSM/1/ODE SIACTA-RSM/1/OGA 4.5070E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.53
SIACTA-RSM/1/ODE SIACTA-RSM/1/OPSO 5.3999E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.43
SIACTA-RSM/1/ODE SIACTA-RSM/2/ODE 3.4578E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.67
SIACTA-RSM/1/ODE SIACTA-RSM/2/OGA 6.3735E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.33
SIACTA-RSM/1/ODE SIACTA-RSM/2/OPSO 6.0408E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.37
SIACTA-RSM/1/OGA SIACTA-RSM/1/OPSO 8.8754E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.10
SIACTA-RSM/1/OGA SIACTA-RSM/2/ODE 8.9686E−02 1.0000E+00 1.0000E+00 1.0000E+00 1.20
SIACTA-RSM/1/OGA SIACTA-RSM/2/OGA 2.2033E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.87
SIACTA-RSM/1/OGA SIACTA-RSM/2/OPSO 2.0309E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.90
SIACTA-RSM/1/OPSO SIACTA-RSM/2/ODE 1.1979E−01 1.0000E+00 1.0000E+00 1.0000E+00 1.10
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OGA 2.7826E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.77
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OPSO 2.5790E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.80
SIACTA-RSM/2/ODE SIACTA-RSM/2/OGA 6.3735E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.33
SIACTA-RSM/2/ODE SIACTA-RSM/2/OPSO 6.7137E−01 1.0000E+00 1.0000E+00 1.0000E+00 −0.30
SIACTA-RSM/2/OGA SIACTA-RSM/2/OPSO 9.6240E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.03
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Table C.30
Post-hoc pairwise comparison — Solvers time.

vs Unadjusted Bonferroni Holm Shaffer Rank diff.

IACTA-GDM/ODE IACTA-GDM/OGA 8.9686E−02 1.0000E+00 1.0000E+00 1.0000E+00 −1.20
IACTA-GDM/ODE IACTA-GDM/OPSO 3.9614E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.60
IACTA-GDM/ODE SIACTA-RSM/1/ODE 5.1242E−19 1.8447E−17 1.7422E−17 1.4348E−17 6.30
IACTA-GDM/ODE SIACTA-RSM/1/OGA 1.1649E−05 4.1935E−04 2.2132E−04 2.0968E−04 3.10
IACTA-GDM/ODE SIACTA-RSM/1/OPSO 5.1242E−19 1.8447E−17 1.6910E−17 1.4348E−17 6.30
IACTA-GDM/ODE SIACTA-RSM/2/ODE 9.9919E−08 3.5971E−06 2.2981E−06 2.1982E−06 3.77
IACTA-GDM/ODE SIACTA-RSM/2/OGA 1.0909E−02 3.9274E−01 1.4182E−01 3.9274E−01 1.80
IACTA-GDM/ODE SIACTA-RSM/2/OPSO 1.4447E−10 5.2010E−09 4.0452E−09 4.0452E−09 4.53
IACTA-GDM/OGA IACTA-GDM/OPSO 1.0909E−02 3.9274E−01 1.4182E−01 3.9274E−01 1.80
IACTA-GDM/OGA SIACTA-RSM/1/ODE 2.7766E−26 9.9959E−25 9.9959E−25 9.9959E−25 7.50
IACTA-GDM/OGA SIACTA-RSM/1/OGA 1.1935E−09 4.2965E−08 2.9837E−08 2.6256E−08 4.30
IACTA-GDM/OGA SIACTA-RSM/1/OPSO 2.7766E−26 9.9959E−25 9.7183E−25 7.7746E−25 7.50
IACTA-GDM/OGA SIACTA-RSM/2/ODE 2.1572E−12 7.7658E−11 6.2558E−11 6.0401E−11 4.97
IACTA-GDM/OGA SIACTA-RSM/2/OGA 2.2090E−05 7.9526E−04 3.9763E−04 3.9763E−04 3.00
IACTA-GDM/OGA SIACTA-RSM/2/OPSO 5.1393E−16 1.8501E−14 1.6446E−14 1.4390E−14 5.73
IACTA-GDM/OPSO SIACTA-RSM/1/ODE 7.5662E−16 2.7238E−14 2.3455E−14 2.1185E−14 5.70
IACTA-GDM/OPSO SIACTA-RSM/1/OGA 4.0695E−04 1.4650E−02 5.6973E−03 5.2904E−03 2.50
IACTA-GDM/OPSO SIACTA-RSM/1/OPSO 7.5662E−16 2.7238E−14 2.2699E−14 2.1185E−14 5.70
IACTA-GDM/OPSO SIACTA-RSM/2/ODE 7.5225E−06 2.7081E−04 1.5045E−04 1.3540E−04 3.17
IACTA-GDM/OPSO SIACTA-RSM/2/OGA 8.9686E−02 1.0000E+00 1.0000E+00 1.0000E+00 1.20
IACTA-GDM/OPSO SIACTA-RSM/2/OPSO 2.6583E−08 9.5697E−07 6.3798E−07 5.8482E−07 3.93
SIACTA-RSM/1/ODE SIACTA-RSM/1/OGA 6.0258E−06 2.1693E−04 1.3257E−04 1.3257E−04 −3.20
SIACTA-RSM/1/ODE SIACTA-RSM/1/OPSO 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 0.00
SIACTA-RSM/1/ODE SIACTA-RSM/2/ODE 3.4009E−04 1.2243E−02 5.4415E−03 5.4415E−03 −2.53
SIACTA-RSM/1/ODE SIACTA-RSM/2/OGA 1.9662E−10 7.0782E−09 5.3086E−09 4.3256E−09 −4.50
SIACTA-RSM/1/ODE SIACTA-RSM/2/OPSO 1.2474E−02 4.4906E−01 1.6216E−01 4.4906E−01 −1.77
SIACTA-RSM/1/OGA SIACTA-RSM/1/OPSO 6.0258E−06 2.1693E−04 1.2654E−04 1.2654E−04 3.20
SIACTA-RSM/1/OGA SIACTA-RSM/2/ODE 3.4578E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.67
SIACTA-RSM/1/OGA SIACTA-RSM/2/OGA 6.5992E−02 1.0000E+00 8.5790E−01 1.0000E+00 −1.30
SIACTA-RSM/1/OGA SIACTA-RSM/2/OPSO 4.2658E−02 1.0000E+00 5.5456E−01 1.0000E+00 1.43
SIACTA-RSM/1/OPSO SIACTA-RSM/2/ODE 3.4009E−04 1.2243E−02 5.1014E−03 5.1014E−03 −2.53
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OGA 1.9662E−10 7.0782E−09 5.1120E−09 4.3256E−09 −4.50
SIACTA-RSM/1/OPSO SIACTA-RSM/2/OPSO 1.2474E−02 4.4906E−01 1.6216E−01 4.4906E−01 −1.77
SIACTA-RSM/2/ODE SIACTA-RSM/2/OGA 5.4144E−03 1.9492E−01 7.0387E−02 7.0387E−02 −1.97
SIACTA-RSM/2/ODE SIACTA-RSM/2/OPSO 2.7826E−01 1.0000E+00 1.0000E+00 1.0000E+00 0.77
SIACTA-RSM/2/OGA SIACTA-RSM/2/OPSO 1.1085E−04 3.9907E−03 1.8845E−03 1.7737E−03 2.73
B
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