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Abstract—This work presents a methodology to incorporate
reliability constraints in the optimal power systems expansion
planning problem. Besides Loss Of Load Probability (LOLP)
and Expected Power Not Supplied (EPNS), traditionally used
in power systems, this work proposes the use of the risk
measures VaR (Value-at-Risk) and CVaR (Conditional Value-at-
Risk), widely used in financial markets. The explicit consideration
of reliability constraints in the planning problem can be an
extremely hard task and, to minimize computational effort,
this work applies the Benders decomposition technique splitting
the expansion planning problem into an investment problem
and two subproblems to evaluate the system’s operation cost
and the reliability index. The operation subproblem is solved
by Stochastic Dual Dynamic Programming (SDDP) and the
reliability subproblem by Monte Carlo simulation. The proposed
methodology is applied to the real problem of optimal expansion
planning of the Bolivian power system.

Index Terms—System expansion planning, Benders decompo-
sition, Power systems, Reliability, Stochastic programming, Risk
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I. INTRODUCTION

THE goal of power system expansion planning (SEP) is to
determine necessary changes in the system due to load

growth, new technologies and policy-related constraints. In
this sense, new generators should be constructed to satisfy
the new system’s needs and the planning process decisions
are associated with the selection of the best set of equipment
(such as generators, transmission lines, transformers, etc.) to
accomplish this task. This decision process originates from
a complex optimization problem, where the objective is to
plan the future power system minimizing the investment and
operation costs subject to a pre-established set of constraints.
Cases of SEP are generation expansion planning (GEP) [1],
[2] and transmission expansion planning (TEP) [3], [4] that
can be combined and integrated [5], [6] generally called SEP
or GTEP.

This planning process constitutes an extremely complex
problem that cannot be solved without simplifications. De-
pending on the goals of the planner different aspects and de-
tails of power systems can be considered in general SEP. Many
possible constraints are described in [7], some specific aspects
include: carbon capture and storage [8]; unit commitment in
the operation [9]; flexible demand and electric vehicles [10];
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aggressive wind power penetration [11]. A common aspect
in most SEP models is the representation of uncertainties,
although each model typically focuses on sources of ran-
domness, like renewable energy and load [12], outages or
contingencies [13], [14]. Frequently used frameworks to deal
with uncertainties in SEP are Stochastic Optimization [15],
[16] and Robust Optimization [12], [17], both of which can
also be combined [18].

Many techniques were proposed to solve the large-scale
problems that arise from SEP modelling. Heuristics like Par-
ticle Swarm Optimization and GRASP were proposed in [8]
and [19]. Many decomposition methods were presented due
to natural scenario-wise and/or stage-wise structure: [20] [21]
and [22] apply progressive hedging, Dantzig Wolfe decompo-
sition was applied in [23] and Benders decomposition, perhaps
the most used one, was applied in [12], [13], [15], [24]–[28].

Reliability is an important aspect of power systems that can
be considered in SEP. The simplest way to taking reliability
into account is adopting a hierarchical approach, in which
the expansion plan is at first elaborated under the economic
focus (first step), in other words, aiming the minimization of
the investment costs plus the cost of load supply (operation
cost). Hereafter, the necessary additional investments to meet a
minimum criterion of security (reliability reinforcements) are
evaluated (second step).

Among the first approaches for the solution of the SEP
with reliability constraints is the work [29] where linear
approximations of a reliability function were obtained from
a non-linear formulation. Afterward, [30] presented a similar
model, but able to generate Benders cuts from a probabilistic
simulation model. However, this last model was non-convex
which led to convergence problems. Robust optimization was
used to induce expansion plans with better reliability indexes
in [6]. In [15], reliability requirements were modeled by
including a cost of load loss in the objective function.

In general, SEP can be formulated as a minimum total cost
function (investment and operation) subject to the operation
and reliability constraints that depend directly upon the invest-
ment decisions. This formulation contains a very opportune
structure for the application of decomposition techniques and
this characteristic was first explored by [31]. Thereafter, [32]
presented a model for load-peak capacity expansion consid-
ering Expected Power Not Supplied (EPNS) constraints, but
its application was restricted to the second step problem,
in other words, the evaluation of additional investments to
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attend the reliability requisites. Reliability constraints were
also applied in [33], [34], but the problem was solved by a
genetic algorithm without optimality proofs. More recently,
[13], [28] considered explicit constraints on reliability indexes
via Monte Carlo simulation and Benders decomposition with
feasibility cuts. [35] considered Loss Of Load Probability
(LOLP) constraint, originally modeled as a Mixed Integer
Nonlinear Program (MINLP) and approximated by a Mixed
Integer Linear Program (MIP).

This work proposes an integrated methodology for the so-
lution of the SEP, where the economic and reliability analyses
are carried out on an integrated problem. Therefore, it is
possible to assess the benefit of each project both in terms
of reduction of the operative cost as well as the increase in
the overall system reliability. Additionally, we compare the
obtained results from the proposed integrated approach with
the simplification made by using the hierarchical approach for
the solution of the SEP.

We use the Benders decomposition technique to split the
original problem in investment, operation and reliability mod-
ules. This partition allows each subproblem to be solved by
a specialized algorithm, for instance, the investment master
problem (a mixed integer programming problem) is solved
by Branch-and-Bound (B&B), the operation subproblem by
Stochastic Dual Dynamic Programming (SDDP) [36] and the
reliability subproblem by Monte Carlo simulation (MC) [37].
Instead of focusing on classical measures like LOLP and
EPNS [28] we propose the use of the two risk measures VaRα
and CVaRα, commonly used in the financial area, but also
applied in different contexts in SEP [27], [38], [39].

The main contributions of this paper are as follows. First,
a general description of SEP that can be solved by Benders
decomposition. This includes a simple master problem that
can be broken into three parts: investment, operation and
reliability problems, such description allows the development
of specialized methods for each piece, as described in this
paper. Secondly, we present various reliability metrics that
could be considered in the reliability subproblem and show
the explicit formulation of the reliability constraint as mathe-
matical programming deterministic problems equivalent to the
MC version of the constraint evaluation, which is fundamental
for deriving the reliability cuts. In third, we present the CVaR
as an alternative reliability metric, which, to our knowledge,
was not done before in a decomposition scheme. Although
CVaR is not a classic reliability metric, it is gaining more
attention recently [40], therefore deserves attention as well as
the development of methods that incorporate it in the planning
tools. Finally, the fourth contribution is the presentation of
a realistic case study in which we combine the specialized
methods SDDP for power system operation, MC for reliability
assessment and MIP for investment, although the combination
of two of these was previously done, we have no information
of the combination of the three methods for solving any
problem.

The remainder of this work is organized as follows. In
the next section, II, a generic formulation of a reliability
constrained system expansion problem is presented. Section
III describes reliability metrics and their corresponding formu-

lations as optimization problems. In section IV, we describe
the decomposition procedure that combines the plan choice,
cost and reliability evaluation, after that, we present two case
studies in section V. Finally, conclusions are drawn in section
VI.

II. POWER SYSTEMS EXPANSION PLANNING

The reliability constrained SEP can be formulated as the
following mixed integer programming problem:

Min I(x) +O(x) (1a)
s.t.: R(x) ≤ R̄ (1b)

x ∈ X (1c)

where x is the vector of investment decisions, I(x) the
investment cost, O(x) the operation cost and R(x) the risk
measure function, R̄ the reliability criterion and X the set of
decisions that meet planning constraints.

A. Economic Planning (EP)

The first step of an hierarchical planning process is a sim-
plification of problem (1), in which the explicit representation
of the reliability aspects and the risk constraints (1b) are
disregarded, as shown in problem (2).

Min I(x) +O(x) (2a)
s.t.: x ∈ X (2b)

In this sense, the explicit representation of the uncertainty
associated to the state of each generating unit is, in general,
simplified by applying a reduction factor in every power
plants’ capacity corresponding to their average availability
rate. This approximation avoids the representation of all power
system states and the SEP of generation systems. A simplified
formulation of EP is given by:

Min
∑
j∈G

cjxj +
∑
j∈G

djgj + hr − δD (3a)

s.t.:
∑
j∈G

gj + r = D (3b)

gj ≤ g̃jxj j ∈ G (3c)
x ∈ X (3d)

where G is the set generators, cj and dj represent, respectively,
the investment cost and variable operation cost of generating
unit j. The load shedding is represented by the variable r and
associated unit cost h, g̃j is the available capacity of generator
calculated in terms of average availability as g̃j = (1−pj)×ḡj ,
pj is the average failure rate, ḡj is the installed capacity and
xj is the investment decision for generator j. Finally, demand
is represented by decision variable D and its associated will-
ingness to pay δ1, which can represent Demand Side Response
(DSR).

The objective function (3a) is the minimization of the total
cost (investment and operation), subject to demand supply in

1It is possible to have multiple segments in order to better represent demand
sensitivity to energy price.
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Fig. 1. Random behavior of total system capacity

each time step (3b), limits on generation (3c), and investment
constraints (3d).

The operation problem is usually much more complex
that the illustrative model presented above. As mentioned in
the introductory section, many details might be taken into
consideration such as renewable generation, demand response,
storage equipment and time coupling, uncertainty, competition,
unit commitment, energy network representation and many
others.

Although this model has been frequently used, the use of
a generation capacity based on average availability may not
be enough to capture the true exposure/risk of load shedding
events, as illustrated in Figure 1. Even if the system can meet
the load on average, it might exist one or more states of failure
in which the remaining capacity is not sufficient to supply
the demand (hatched regions). Hereof it might be necessary
to model the system in probabilistic terms to better represent
the reliability aspects and this requires modeling the operating
state of all generators and, consequently, the total capacity of
the system as a random variable (r.v.).

III. RELIABILITY ANALYSIS OF POWER SYSTEMS

Power system reliability analysis is a vast area. Multiple
methods with different levels of detail were presented through-
out the years. More detailed methods include sequential Monte
Carlo (MC) techniques such as [41], while simpler methods
include standard MC, in which state transitions are not taken
into account, instead, the system is analyzed in a steady-
state fashion as in [42] and [43]. There are also intermediary
methods such as pseudo-sequential MC [44], which tries to
lighten the burden of the more complex sequential method.

The selection of the most appropriate method of course
depends on the purpose of the model. In planning models, it
is reasonable to apply standard MC [42] [43] and successful
applications in real systems can be found [40]. In this work, we
will not consider state transitions and their duration. Instead,
we use the steady-state analysis based on sampling states
of the system to compute the traditional reliability metrics,
such as LOLP and EPNS. This method is especially good for
capturing peaking issues, although longer, consequently more
expensive, events are not explicitly captured, this problem is
usually approximated because many events will be seen in the
snapshot analysis.

A power system is composed of elements such as genera-
tors, transmission lines, transformers and load, each element
may be in a state among a set of possible states. For example,
the operating state of a generating unit can be either (a) 0 if
the equipment is not working or (b) 1 if it is working. Other
elements, such as demand and combined thermal cycle plants,
may require a multi-state representation.

A state of a power system with J generators is represented
by the random vector ξ = (ξ1, ξ2, . . . , ξJ) where ξj is a r.v.
representing the state of the j-th generator. Let S represent the
set of states of the power system, given by the combination
of all possible states of each element, each state of the power
system is denoted by ξs, s ∈ S. For each state of generator
j there is an associated probability of occurrence pj = P (ξj)
and, once the state of each generator for the system state s ∈ S
is given, it is possible to calculate the probability of this system
state as ps = P (ξs).

In turn, the demand D can be represented in several ways.
For the reliability analysis we consider only the inelastic load
and therefore shedding it results in a loss of load event.
Additionally, demand variation over the hours and throughout
the year is captured by using a stratified sampling strategy
considering representative snapshots for each season/month
and period of the day.

The total system capacity is denoted by the r.v. Ḡ =∑J
j=1 ξj ḡj and the load shedding is given by the r.v. R =

max(D− Ḡ, 0), which is the insufficient generation capacity.
Since ξ has finite support distribution, each realization of
system state ξs is associated to a total capacity of Ḡs and
a respective load shedding Rs.

The performance of a given investment plan x can be
measured with risk indexes based, in general, on the prob-
ability distribution of the load shedding. Since the objective
of the SEP is to determine which and when generators should
be constructed, the probability distribution of the load shed,
P (R), must also be a function of the investment decision
vector x. Therefore, the objective of the reliability-constrained
SEP becomes to find the plan that minimizes the investment
and operation costs and present a “controlled” load shedding
distribution function in the sense that its associated reliability
index meets some given pre-established planning criterion.

The next section presents the reliability indexes LOLP and
EPNS, traditionally used in power systems, and then intro-
duces in the context of power system reliability the indexes
VaRα and CVaRα, frequently used in the financial sector.
Moreover, the calculation of these indexes will be formulated
as optimization problems aiming for their incorporation into
the SEP.

A. Typical Reliability Indexes

1) LOLP: The most straightforward approach to measure
the risk of failure of supplying the power system load is to
assess the number of insufficient states among all of them. The
LOLP (Loss Of Load Probability) is the probability of load
shedding, as illustrated in Figure 2(a), and is given by

LOLP = P (R > 0) =
∑
s∈Ω

ps (4)
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(a) LOLP (b) EPNS

Fig. 2. Typical Reliability Indexes

where Ω = {s ∈ S|rs > 0} is the set of power system states
where there is load shedding.

The calculation of LOLP can be formulated as a (possibly
large) mixed integer linear programming problem, using a
binary variable φs, for each state s to indicate whether it
leads to a load shedding. Then, the LOLP is calculated as
the average of these indicator variables weighted by the state
probability. By explicitly incorporating this formulation into
the problem, the LOLP-constrained SEP model can be defined
as:

Min
∑
j∈G

cjxj +O(x) (5a)

s.t.:
∑
s∈S

psφs ≤ LOLP (5b)

rs ≥ D −
∑
j∈G

ξsj ḡjxj ∀s ∈ S (5c)

φs ≥ 1

D
rs ∀s ∈ S (5d)

rs ≥ 0 ∀s ∈ S (5e)
φs ∈ {0, 1} ∀s ∈ S (5f)
x ∈ X (5g)

where LOLP ∈ [0, 1] is the accepted level of reliability adopted
as the planning criterion. Constraint (5c) relates the load
shedding to the system’s capability of load supply in each
state and constraint (5d) ensures that the indicator variable
φs will be equal to 1 for the states with load shedding, and
it will be 0 otherwise. Note that constraint (5b) limits the
value of LOLP and, consequently, restricts the set of possible
investment plans.

One characteristic of LOLP, which is also the most common
source of criticism, is that the depth of the load shedding
is disregarded since “bad” states are equally labeled with
φs = 1, independent of the amount of load being shed. This
can mislead the SEP to find investment plans with a small
probability of failure but exposed to states with a high level
of severity.

2) EPNS: The Expected Power Not Supplied is the average
value of the load shedding of all system states, as illustrated
in Figure 2(b). It can be defined as

EPNS = E[R] =
∑
s∈S

psrs (6)

where E is the expected value operator.

The EPNS can also be formulated as an optimization
problem and explicitly incorporated into the SEP, resulting
in the EPNS-constrained SEP model (7).

Min
∑
j∈G

cjxj +O(x) (7a)

s.t.:
∑
s∈S

psrs ≤ EPNS (7b)

rs ≥ D −
∑
j∈G

ξsj ḡjxj ∀s ∈ S (7c)

rs ≥ 0 ∀s ∈ S (7d)
x ∈ X (7e)

where EPNS is the pre-established planning criterion to EPNS.
Although the EPNS captures the severity of the load shed-

ding in average terms, this index also considers all the “good”
states (i.e. without load shedding) and, thus, results on a
“diluted” index, not reflecting the real exposure of the system
to states with failure.

B. Risk Measures Used in Financial Area

It would be interesting if the reliability index could capture
both the characteristics of LOLP and EPNS, i.e., both the
number of states with load shedding and the severity of these
states. To accomplish this task, we propose the risk measures
used in portfolio optimization problems in the financial sector.
In the next sections, the risk measures VaRα and CVaRα
will be presented and introduced in the context of reliability
analysis for power systems expansion planning.

1) VaRα: The Value-at-Risk [45] is a risk index that aims to
measure the lowest load shedding associated with a probability
of occurrence α or, similarly, the maximum load shedding
within a specified level of confidence 1 − α, as illustrated in
Figure 3(a). For example, VaR5% answers the question “what
is the maximum possible load shedding considering the 95%
best states”?

As in the case of LOLP and EPNS, it is possible to define
the SEP using R(x) = VaRα(x) as the reliability index. Its
formulation can be explicitly incorporated into the problem
(1), resulting in problem (8).

Min
∑
j∈G

cjxj +O(x) (8a)

s.t.: rs −Dφs ≤ VaR ∀s ∈ S (8b)∑
s∈S

psφs ≤ α (8c)

rs ≥ D −
∑
j∈G

ξsj ḡjxj ∀s ∈ S (8d)

rs ≥ 0 ∀s ∈ S (8e)
φs ∈ {0, 1} ∀s ∈ S (8f)
x ∈ X (8g)

where VaRα is the limit determined by the system planner.
Note that, as in the case of LOLP, an integer variable for
each state is also required, what makes its representation more
difficult.
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(a) VaRα (b) CVaRα

Fig. 3. Financial Risk Measures

Rearranging the constraint (8b), leads to the the inequality:
φs ≥ D−1

(
rs − VaR

)
which indicates that when the load

shedding rs exceeds the limit VaR the variable φs should
assume value 1, characterizing the states in the tail of the
probability distribution function. Even though it incorporates
the parameter α that allows this index to focus on the set of
states in the tail of the distribution, the VaRα is the smallest
value in this set and, therefore, cannot detect the severity of
the states with load shedding greater than VaRα, which is a
drawback similar to the one associated to LOLP.

2) CVaRα: The Conditional Value-at-Risk measures the
expected value of the α worst states, i.e., the average of the
states that comprise the tail of the probability distribution
function of the load shedding and is defined as

CVaRα(R) = E[R : R ≥ VaRα(R)] (9)

The CVaRα index has several interesting properties [46] and
[47] demonstrated that it is possible to formulate the CVaRα
calculation as a linear programming problem independent of
VaRα, which needs integer variables in its formulation.

As defined for the measures presented above, the SEP with
CVaRα constraint is shown in (10).

Min
∑
j∈G

cjxj +O(x) (10a)

s.t.: b+ α−1
∑
s∈S

psys ≤ CVaR ∀s ∈ S (10b)

rs ≥ D −
∑
j∈G

ξsj ḡjxj ∀s ∈ S (10c)

rs ≥ 0 ∀s ∈ S (10d)
ys ≥ rs − b ∀s ∈ S (10e)
ys ≥ 0 ∀s ∈ S (10f)
x ∈ X (10g)

where CVaR is a limit pre-established by the planner, b is the
variable that represents the implicitly calculated VaRα while
ys is the amount of load shedding that exceeds b, calculated
by equation (10e). Therefore, the CVaRα can be calculated
as the sum of b plus the expected value of ys conditioned to
the states that exceed the VaRα, as shown in left-hand side of
equation (10b).

IV. CONSIDERING RISK CONSTRAINTS IN
DECOMPOSITION SCHEMES

As noted in previous sections, the reliability-constrained
SEP problem is a large scale mixed-integer optimization

problem. The incorporation of reliability constraints into the
SEP requires the representation of a (possibly large) set of
additional variables and constraints for every state of the
system and the number of states grows combinatorially with
the number of generating units of the system.

The main objective of the design of mathematical decom-
position techniques is to solve very complex or large problems
through the repeated solution of a series of easier or smaller
problems. From model (1) it is possible to notice that it
has a block structure and the problems are coupled by the
investment decision vector x. This structure is opportune for
the application of such techniques.

In this work, we use the Benders decomposition technique
[48] to split the original problem into three subproblems,
intuitively reproducing the expansion planning process, which
may consist of the following steps:

• First, the investment subproblem (master) is solved, aim-
ing for a new trial investment plan xµ, based on in-
formation obtained until iteration µ: an approximation
of the total cost function (investment plus approximate
operation cost) and the approximation of the reliability
“feasible region” (constraints representing the set of plans
that meet the reliability criterion);

• Given the proposed plan, xµ, the operation subproblem
(slave) is solved and we check if the approximation of the
cost function represented in the investment subproblem is
appropriate. If this function has not the adequate accu-
racy, a sensitivity analysis is conducted to build a new
Benders optimality cut and improve the approximation
of the cost function in the master problem;

• For the same proposed plan xµ, the reliability subproblem
(another slave) is solved to verify if the proposed solution
is feasible concerning the selected reliability index. If
the solution is not feasible, a sensitivity analysis in this
problem is carried out and a new Benders feasibility cut
is obtained, improving the representation of the feasible
region in the master problem.

In brief, at each iteration a trial solution is obtained from
the master problem and sent to both slave subproblems. Each
subproblem evaluates the decision xµ in terms of its cost
and reliability and also return Benders cuts for improving the
representation of approximated operation cost and reliability
index in the master problem. This procedure is repeated
iteratively until a feasible solution with minimal total cost is
found.
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A. Investment Subproblem

The investment subproblem can be formulated as the fol-
lowing mixed integer linear programming problem:

Min
∑
j∈G

cjxj + γ (11a)

s.t.: γ ≥ O(xi) +
∑
j∈G

∂O(xi)

∂xij
(xj − xij) i ∈ A (11b)

R(xi) +
∑
j∈G

∂R(xi)

∂xij
(xj − xij) ≤ R̄ i ∈ R (11c)

x ∈ X (11d)

where A and R are the sets of iterations where a cut has been
added and xi is the trial solution vector found at iteration i.
Here, γ is an additional variable used to model the epigraph
of O(x). Constraints (11b) are called optimality cuts and are
a first order approximation of the operation cost function
O(x) constructed from the value of O(x) and its partial
derivatives evaluated at xi. Similarly, constraints (11c) are
called feasibility cuts and are also a linear approximation of
the feasibility region associated to the reliability index repre-
sented by the function R(x). Feasibility cuts are, therefore,
responsible for removing expansion plans that do not satisfy
the reliability criterion, consequently, in order to keep the
investment problem always feasible it is necessary to have
enough candidate projects available, which is usually the case
for real-world problems. Problem infeasibility indicates that
the pre-established reliability criterion is to tight or the set
of candidate projects is insufficient (or both). In this case,
the input data should be revised (by lowering the criterion or
adding more projects).

B. Operation subproblem

Given a trial investment decision xµ, the operation subprob-
lem can be formulated as

O(xµ) = Min
∑
j∈G

djgj + hr (12a)

s.t.:
∑
j∈G

gj + r = D (12b)

gj ≤ ḡjxjµ : πḡj j ∈ G (12c)

where πḡj corresponds to the dual variable of the maximum
generation constraint of generator j.

From linear programming theory, it is known that πḡj is the
derivative of the objective function with respect to the right-
hand side of constraints (12c). Applying the chain rule, we
have

∂O(xµ)

∂xjµ
=

∂O(xµ)

∂(ḡjxjµ)
× ∂(ḡjxj

µ)

∂xjµ
= πḡj × ḡj (13)

which is the derivative of the operation cost with respect to
the investment decision xµ, used to construct the optimality
Benders cuts (11b).

In this section we considered the simplest single-stage de-
terministic representation of the system’s operation. However,
the construction of the Benders cut is easily generalized to the

multistage stochastic setting with all operative details [25],
[26]. Note also that the feasibility of operation problems is
ensured because of the variables, r, that represent energy load
shedding.

C. Reliability subproblem

Given a trial investment decision xµ, it is possible to
calculate the value of the risk measure associated to this plan,
as well as the derivative of the reliability function R(xµ) with
respect to the investment decision, needed for the construction
of the Benders cuts (11c) that approximate the feasible region
for the adopted reliability criterion in the master problem.

The feasibility Benders cuts consist of cutting planes that
are tangent to the original feasibility region. Because of this
reason, one of the requirements for the Benders decomposition
method to be successfully applied is that the generated cuts
cannot eliminate feasible solutions and this fact cannot be
guaranteed if the subproblem is non-convex. This same decom-
position scheme cannot be implemented for SEP with LOLP
and VaRα constraints because they require the use of integer
variables, characterizing a non-convex problem. It is still
possible to use alternative and less efficient decompositions
that remove infeasible integer solutions one by one. Therefore,
this work considered only the SEP with EPNS or CVaRα
constraints as reliability criterion2.

1) EPNS Criterion: This subproblem considers R(x) =
EPNS(x) and the solution can be obtained without the explicit
representation of the load shedding variable rs because, given
xµ, it is possible to calculate the EPNS as

EPNS(xµ) =
∑
s∈Ω

ps ×

D −∑
j∈G

ξsj ḡjxj
µ

 (14)

Deriving the equation (14) with respect to the investment
variable xjµ, we have

∂EPNS(xµ)

∂xjµ
= −

∑
s∈Ω

psξ
s
j ḡj ∀j ∈ G (15)

which consists in the coefficients of the feasibility Benders
cuts (11c). For each investment plan, the EPNS(xµ) and
the derivative with respect to each xj

µ can be obtained by
solving the states obtained from the Monte Carlo simulation
independently. Then, a single cut is calculated by properly
aggregating the results.

2) CVaRα Criterion: The value for CVaRα(xµ) if given by
the solution of following linear programming subproblem:

Min b+ α−1
∑
s∈S

psys (16a)

s.t.: rs ≥ D −
∑
j∈G

ξsj ḡjxj
µ : vs ∀s ∈ S (16b)

rs ≥ 0 ∀s ∈ S (16c)
ys ≥ rs − b : ws ∀s ∈ S (16d)
ys ≥ 0 ∀s ∈ S (16e)

2Actually, it can be shown that is possible to approximate LOLP, EPNS
and VaRα criteria by just changing the parameters of CVaRα planning model
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TABLE I
SAMPLE CASE: GENERATOR DATA

Gen. Inv. Cost Oper. Cost Capacity [MW] Out. Prob.
M$ M$/MW Scen. 1 / 2 %

G1 25 0 7 / 11 5
G2 20 1 10 20
G3 - 4 20 10

where the decision variables b, rs and ys are non-negative
and vs and ws are the dual variables of constraints (16d) and
(16b), respectively. The same solution process used for EPNS
is applied for CVaRα to obtain the feasibility cut.

V. CASE STUDY

A. Small test system

In this section we will illustrate the proposed methodology
considering a small system composed of 3 generators and 1
demand. The first generator is a variable renewable energy
(VRE) plant (for example, wind), the second is a thermal
plant with low production cost and the third is also a thermal
plant with higher production cost. For ease of presentation, we
will consider that generators 1 and 2 are candidate projects
and, thus, will have associated investment decisions, and that
generator 3 is an existing one. Additionally, we will also
consider in this setting only 2 equally likely scenarios to
represent the variability of VRE resources. The investment
costs and data required for operation and reliability analysis
are presented in table I. As shown in the table, the capacity
of generator G1 depends on the scenario.

On the other side, Demand Side Response (DSR) is rep-
resented by considering price sensitivity with 3 segments,
described as follows: the first 8 MW is inelastic3, the second
additional 2 MW if energy price is lower than 2 M$/MW and
an additional 2 MW for prices lower than 1 M$/MW.

To illustrate one iteration between investment, operation
and reliability subproblems, lets consider the trial investment
decision vector x = [1, 0] that represents generator 1 being
constructed and generator 2 not.

In the operation subproblem we will have to solve problems
for the 2 scenarios, as shown in table II. In this setting, the
solution can be found by dispatching the plants by merit order
until the demand is met. In the first scenario, we dispatch
the cheapest generator available G1 at its maximum available
capacity (7 MW) and then G3 at 1 MW to meet the 8 MW of
inelastic demand, since G3’s cost is higher than the maximum
willingness to pay of the elastic demand. The operating cost
is given by the sum of generating costs: 0.5× 7 + 4.5× 1 =
8M$. In the second scenario, G1 is dispatched at its maximum
available capacity 11 MW since its cost is lower than the
demand willingness to pay price of the third segment. The
total operation cost for this scenario is given by the generating
costs minus the revenue from the elastic segments: 0.5×11−
2 × 2 − 1 × 1 = 0.5M$. The average operation cost for this
investment plan is 4.25 M$.

3Inelastic segment can represent an amount that is contracted so its variable
cost is not represented in the problem.

TABLE II
SAMPLE CASE: OPTIMAL OPERATION SOLUTION FOR TRIAL INVESTMENT

DECISION x = [1, 0]

Scen. G1 G2 G3 D Oper. Cost
MW MW MW MW M$

1 7 - 1 08 8.0
2 11 - 0 11 0.5

Aver. 9 - 0.5 9.5 4.25

TABLE III
SAMPLE CASE: RELIABILITY ANALYSIS FOR TRIAL INVESTMENT

DECISION x = [1, 0].

Scen. ξ Prob. G1 G2 G3 D PNS
%

1 [0, 0, 0] 00.04 00 - 00 8 8.0
1 [0, 0, 1] 00.34 00 - 12 8 0.0
1 [0, 1, 0] 00.21 00 - 00 8 8.0
1 [0, 1, 1] 01.91 00 - 12 8 0.0
1 [1, 0, 0] 00.71 07 - 00 8 1.0
1 [1, 0, 1] 06.41 07 - 12 8 0.0
1 [1, 1, 0] 04.04 07 - 00 8 1.0
1 [1, 1, 1] 36.34 07 - 12 8 0.0
2 [0, 0, 0] 00.04 00 - 00 8 8.0
2 [0, 0, 1] 00.34 00 - 12 8 0.0
2 [0, 1, 0] 00.21 00 - 00 8 8.0
2 [0, 1, 1] 01.91 00 - 12 8 0.0
2 [1, 0, 0] 00.71 11 - 00 8 0.0
2 [1, 0, 1] 06.41 11 - 12 8 0.0
2 [1, 1, 0] 04.04 11 - 00 8 0.0
2 [1, 1, 1] 36.34 11 - 12 8 0.0

The reliability subproblem for this plan is illustrated by
solving all possible states as shown in table III. For each state,
we calculate the corresponding probability based on the outage
probability of each generator and of the VRE scenario and
obtain the available capacity of each plant that depends on the
investment plan and the generator’s state, in MW. The demand
considered is the inelastic segment since the objective of this
analysis is to calculate load shedding. The power not supplied
(PNS) is calculated by the difference of the total capacity and
the demand, in MW.

Table IV shows the costs and reliability indexes for all
investment plans. EPNS, VaR2% and CVaR2% and are cal-
culated as a percentage of the inelastic demand. The most
economical plan is [0, 1] with total cost of 31 M$. However, it
is interesting to notice that depending on the selected reliability
index this plan might not be the best one. For instance, both
LOLP and VaR2% indexes are lower than that of the [1, 0] plan
but we must recall that the main drawback of these indexes
is the fact that they are not sensitive to the depth of the
load shedding for the extreme scenarios. This becomes very
clear by looking to the CVaR2% which indicates that the most
economical plan is exposed to a very high load shedding of
75% of the load in the 2% worst cases. On the other hand,
in the second most economical plan the CVaR2% is 34.4%
which is much lower. This reinforces the idea that the adoption
of reliability constraints in the SEP problem can be a very
interesting solution.
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TABLE IV
SAMPLE CASE: SOLUTION FOR ALL INVESTMENT DECISIONS

[0, 0] [1, 0] [0, 1] [1, 1]
Inv.Cost 00 M$ 30.0 M$ 20 M$ 50 M$

Exp. Ope.Cost 36 M$ 04.3 M$ 11 M$ 03 M$
Total Cost 36 M$ 34.3 M$ 31 M$ 53 M$

LOLP 010% 05.25% 01.5% 0.79%
EPNS 010% 01.10% 01.5% 0.20%

VaR2% 100% 12.50% 00.0% 0.00%
CVaR2% 100% 34.40% 75.0% 8.20%

B. Bolivia

This case study consists of the expansion planning of the
Bolivian (BO) generation system for a 7-years horizon. The
system is composed of 28 existing generating hydro plants
and 25 thermal plants with a total installed capacity of about
850MW (in the first year). Besides, 30 thermal projects are
available as investment alternatives for the expansion plan.
Note that the maximum number of plants that may be oper-
ating in the system is 83 and, thus, the maximum number of
states in the reliability subproblem is 283 (approximately 1025

states).
Initially, we perform a comparative analysis for the expan-

sion plans obtained with a hierarchical against an integrated
methodology. Additionally, a comparison between the results
obtained for the EPNS-constrained SEP and the CVaRα-
constrained SEP is carried out.

We adopted a reliability limit for the EPNS equals to 1%
of the demand for each month over the horizon of study. The
reliability subproblem is solved by Monte Carlo simulation
and it was considered that the convergence is reached when the
coefficient of variation for the estimator is lower than 5% [49].
Checking the coefficient of variation is a common stopping
criterion for MC also used in [50] and [37].

The operation problem is solved by the SDDP algorithm to
find the optimal dispatch under uncertainty, typically on inflow,
demand, fuel costs, etc. All real-world details considered by
the Bolivian ISO are represented.

1) Hierarchical Planning with EPNS criterion (HP-EPNS):
The hierarchical planning approach consists of obtaining an
initial investment plan (first step) considering only the eco-
nomic aspects, i.e., we aim to find the investment vector
that minimizes the investment and operating costs (EP), as
presented in section II-A. Table V shows the additional ca-
pacity added in each year of the planning horizon and table
VI its respective total cost. It can be seen in Figure 4 that
the resulting EPNS is not feasible according to the reliability
criterion pre-established.

The second step of HP-EPNS is accomplished by consider-
ing the investment vector obtained in the first stage and solving
the problem again to obtain reinforcements due to reliability
requirements. Observe in table V that it was necessary to invest
in an additional 44.1MW in Year 2 (the year that occurs the
first violation of EPNS) to ensure feasibility for the reliability
criterion. The associated total cost for this investment plan is
also shown in table VI. This highlights that the EPNS and

Fig. 4. Resulting EPNS for plan obtained with EP

TABLE V
HIERARCHIC X INTEGRATED PLANNING: ADDITIONAL CAPACITY [MW]

Methodology Y1 Y2 Y3 Y4 Y5 Y6 Y7
EP 0 00.0 65.8 44.1 285.6 44.1 44.1

HP-EPNS 0 44.1 65.8 44.1 285.6 44.1 44.1
IP-EPNS 0 44.1 44.1 44.1 285.6 44.1 44.1
IP-CVaR 0 44.1 44.1 44.1 285.6 44.1 00.0

TABLE VI
HIERARCHICAL X INTEGRATED PLANNING: COSTS

Investment Operation Total # of months
Methodology Cost Cost Cost violating

M$ M$ M$ criteria
EP 098.42 146.66 245.08 22

HP-EPNS 117.80 145.02 262.82 00
IP-EPNS 100.06 152.17 252.23 00
IP-CVaR 098.05 153.66 251.71 00

CVaR criteria are intrinsically different and capture diverse
characteristics of the system reliability and adequacy.

2) Integrated Planning with EPNS criterion (IP-EPNS):
In the integrated planning methodology both operation and
reliability subproblems are solved for each trial decision of
the investment problem. Since the economic solution is not
fixed when solving the reliability subproblem as in the HP-
EPNS, it is possible to consider in an integrated manner both
the economic benefits and the contribution for the attendance
of the reliability criterion and then seek for the global optimal
solution.

Table V shows that, in comparison with HP-EPNS, it is
possible to invest in 44.1MW in Year 3 instead of 65.8MW and
still get a reliability feasible plan. Note that compared to the
methodology HP-EPNS, the IP-EPNS methodology obtains a
lower cost investment plan but with higher operation cost. This
fact illustrates that there is a benefit to invest in a generator
with lower construction cost and higher operating cost because
the reliability criterion could be met and total cost is lower,
as shown in table VI.

3) Integrated Planning with CVaRα criterion (IP-CVaR):
To compare the risk measures EPNS and CVaRα, the CVaR5%
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Fig. 5. Resulting EPNS for plan obtained with IP-CVaR. Although EPNS
violations are seen here, no CVaR violations were found in this plan.

was calculated for the optimal investment plan obtained from
the IP-EPNS and its maximum value (approximately 10% of
total load) was used as the CVaR5% limit for the expansion
planning.

It is possible to observe the final costs obtained with this
plan in table VI and the additional capacity in table V. Note
that the violations shown in the table VI correspond to the
reliability criterion considered in the optimization, that is
EPNS for the first three plans and CVaR for the last plan. The
difference from the IP-EPNS is that the IP-CVaR methodology
did not consider necessary to invest in 44.1MW in the last year,
obtaining an investment plan at a lower cost. Furthermore,
observing the EPNS for the plan in Figure 5, note that, as the
criterion of IP-CVaR methodology are related to the average
of worst 5% states and not the average of all states (EPNS),
it was possible to find a more economic investment plan at
a cost of EPNS exceeding 1% of the load in the last year
(but, as expected, the plan meets the CVaR5% ≤ 10% of load
criterion).

VI. CONCLUSIONS

This work presented a methodology to incorporate reli-
ability constraints in the optimal power systems expansion
planning. Through a real case example, it is shown that
the simple application of an economic planning criterion is
not enough to guarantee that the reliability criterion will be
satisfied. It is also showed that the application of a hierarchical
two-step procedure to solve the expansion planning problem
with the reliability criterion does not lead to the least-cost
solution.

It was shown that the integrated reliability constrained
expansion planning problem can be modeled as a large-scale
MIP. In particular, we presented the MIP formulation for mul-
tiple reliability indexes. Benders decomposition can be used
to exploit the problem structures and decouple the problem
in an investment problem solved by standard MIP techniques;
an operation problem solved SDDP; and a reliability problem
solved by Monte Carlo simulation.

The advantage of using the integrated approach is to identify
projects that contribute both in economic terms and in terms of

improving overall system reliability, which might not possible
by using the hierarchical procedure.

In addition to the traditional reliability measures commonly
used in electrical systems, LOLP and EPNS, this work also
illustrated how to incorporate the risk measures VaRα and
CVaRα, widely used in the financial area, into the power
system expansion planning. It was showed that the use of
the CVaRα criterion allows the control of the depth of the
probability distribution function of the system load shedding.
This index can be a powerful tool of interest for system
planners once it allows them to shape the expansion plan
considering the prevention of disastrous events to the desired
level of reliability by stimulating the diversification of the
power plants “portfolio”. This difference also points to the
direction of considering multiple reliability metrics at the same
time for a single expansion plan, which can be done within
the framework proposed in this paper, simply by considering
multiple reliability subproblems.

Moreover, this tool can be used to test and create policies
for system expansion and to assess the individual contribution
of each project in both economic and reliability aspects. This
methodology is implemented in the software OptGen [51] by
PSR.
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