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Remzi İnan a, Bekir Aksoy b,*, Osamah Khaled Musleh Salman b 

a Isparta University of Applied Sciences, Faculty of Technology, Department of Electrical and Electronics Engineering, Turkey 
b Isparta University of Applied Sciences, Faculty of Technology, Department of Mechatronics Engineering, Turkey   

A R T I C L E  I N F O   

Keywords: 
Artificial intelligence 
BLDC motor 
Extended Kalman filter 
Machine learning 

A B S T R A C T   

In this study, machine learning (ML) based methods are used to estimate rotor mechanical speed of brushless 
direct current (BLDC) motors. Training performances of approaches such as Artificial Neural Network, k-Nearest 
Neighbor, and Random Forest in the ML-based speed estimator are tested using the datas obtained from the 
direct torque control (DTC) drive system of BLDC motor in simulation and it is seen that the ANN approach has 
the highest accuracy. In addition, a novel extended Kalman filter (EKF)-based estimator is proposed for the 
estimation of back-EMFs of BLDC motor. A hybrid estimation method is proposed by using the developed ML- 
based speed estimator with the proposed EKF-based estimator and its estimation performance is tested in 
simulation on DTC drive system.   

1. Introduction 

The term "Artificial Intelligence (AI)" was initially coined by John 
McCarthy during the seminal Dartmouth conference in 1956, held in the 
United States. This conference, convened by prominent figures in the 
field of AI and information processing theory, such as Marvin Minsky 
and Claude Shannon, marked a significant milestone in the formal 
establishment of the AI discipline (Shapiro,1992; Nilsson, 1998; Brooks, 
1991; Ghahramani, 2015; Winston, 1984). However, it is noteworthy 
that the concept of AI has been contemplated long before that period. As 
early as 1950, Alan Turing put forth the notion of a "thinking machine," 
proposing the feasibility and introducing the Turing test as a benchmark 
for gauging machine intelligence (Turing, 1950). 

Machine learning (ML) represents a facet of AI wherein the investi-
gation and implementation of algorithms enable the extraction of novel 
insights from pre-existing datasets. This domain of study exhibits 
considerable affinity with computational statistics, as both disciplines 
share the common objective of making predictions through computa-
tional means (Zhou, 2021; Ghahramani, 2015). Moreover, ML closely 
intertwines with mathematical optimization, which plays a fundamental 
role in the development of methodologies, theoretical underpinnings, 
and application frameworks within this field. Notwithstanding, it is 
worth noting that ML is occasionally misconstrued with data mining 

(Mannila, 1996; Mahesh, 2020). 
The field of ML which is an AI-based structure has seen significant 

growth and advancement in recent years. ML is a set of software and 
hardware systems that behave like human beings by imitating human 
intelligence by developing themselves in line with experiences gained 
and transforming them into action (Russell and Norvig, 2016; Jiang 
et al., 2017). ML is used to analyze complex data in different fields and to 
make it more understandable (Lu et al., 2018; Hosny et al., 2018). ML is 
used in many different fields such as education (Wang and Tao, 2018), 
medicine (Topol, 2019), automotive (Luckow et al., 2018), cyber secu-
rity (Süzen, 2020), and financial services (Wall, 2018). One area where 
ML can be particularly useful is in the speed estimation of brushless 
direct current (BLDC) motors (Purushothaman and Santha, 2022). 

The development of AI-based motor systems has effectively made use 
of ML algorithms like k-Nearest Neighbor (k-NN) (Casimir et al., 2006), 
Support Vector Machines (SVM) (Liu et al., 2018; Martínez-Morales 
et al., 2018), Artificial Neural Networks (ANN) (Han et al., 2006; Su and 
Chong, 2007; Sun et al., 2016), Bayesian Classifier (BC) (Baraldi et al., 
2015), Decision Trees (DT) (Li et al., 2018), Random Forest (RF) (Quiroz 
et al., 2018), and Seep Learning (DL) (Janssens et al., 2016). Recently, 
DL and ML have been used for recognition systems by motor researchers 
(Lei et al., 2016; Cheon et al., 2015; Hausmann et al., 2021; Caramiaux 
et al., 2020; Elsrogy et al., 2013). 

* Corresponding author. 
E-mail address: bekiraksoy@isparta.edu.tr (B. Aksoy).  

Contents lists available at ScienceDirect 

Engineering Applications of Artificial Intelligence 

journal homepage: www.elsevier.com/locate/engappai 

https://doi.org/10.1016/j.engappai.2023.107083 
Received 2 July 2023; Received in revised form 27 August 2023; Accepted 29 August 2023   

mailto:bekiraksoy@isparta.edu.tr
www.sciencedirect.com/science/journal/09521976
https://www.elsevier.com/locate/engappai
https://doi.org/10.1016/j.engappai.2023.107083
https://doi.org/10.1016/j.engappai.2023.107083
https://doi.org/10.1016/j.engappai.2023.107083
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.107083&domain=pdf


Engineering Applications of Artificial Intelligence 126 (2023) 107083

2

BLDC motors are commonly used in many industrial and consumer 
applications, including electric vehicles, drones, robotics, and more 
(Xuan Ba et al., 2018). BLDC motors have star or delta connected coils in 
their stator and permanent magnets in their rotor. The commutation of 
BLDC motor is provided electronically by semiconductor switchings. 
Rotor position information is needed to instantly determine the phase 
pair to be commutated during the commutation. Rotor position infor-
mation is determined by position sensors. In a BLDC motor, rotor posi-
tion information can be measured with hall sensors placed on the stator 
windings with a phase difference of 120 or 60 electrical degrees. Thus, 
the switching states of the inverter driving the BLDC motor are deter-
mined by the value of these hall sensors in the binary system (Krishna 
Veni et al., 2022). 

In control methods in which the position sensors are used, they have 
disadvantages such as difficulty in positioning the sensor on the motor 
shaft or stator windings, wiring complexity, high cost and reliability. For 
these reasons, sensorless control methods are proposed in the literature. 
Although sensorless control methods have many advantages, they have 
heavy computation burden and require complex algorithms (Çabuk, 
2021; Adil et al., 2016; Mohanraj et al., 2022). 

Recently, ML can be used to develop more cost-effective and efficient 
methods of speed estimation for BLDC motors. The process involves 
training a model on a large dataset of motor speed, current and voltage 
measurements. The model learns to identify patterns in the data and can 
then use this knowledge to estimate the motor speed in real-time 
(Unlersen et al., 2022). 

Also the knowledge exact value of the back EMF of the BLDC motor is 
an other important state in order to ensure the dynamic control of the 
BLDC motor like direct torque control (DTC), field oriented control, 
sliding mode control, model predictive control etc. The precise knowl-
edge of the non-sinusoidal back-EMF of the BLDC motor is important for 
the observation of the motor flux. Recently, various studies are proposed 
to determine the back-EMF (Purushothaman and Santha, 2022; Selva 
Pradeep and Marsaline Beno, 2022). 

The studies proposed in the literature for the determination and 
estimation of the back-EMF of the BLDC motor are examined in detail in 
Mazaheri and Radan (2017), Çabuk (2021), Gamazo-Real et al. (2010), 
and Gamazo-Real et al. (2022). The popular method about the deter-
minatiın of the back-EMF of BLDC motor are classified as direct mea-
surement and indirect method. While the back-EMF zero-crossing 
floating detector and third harmonic voltage measurement which have 
limited accuracy at low speeds and need open-loop starting strategy and 
auxiliary filters are included in the direct measurement methods, on the 
other hand the model-based estimator like sliding mode observer, AI, 
and the extendend Kalman filter (EKF) are defined as indirect method 
and these are preferred in the literature due to the aforementioned 
disadvantages of direct measruement methods. Among the existing 
methods in the literature, EKFs are widely preferred due to their high 
estimation performance depending on the stochastic structure (Maza-
heri and Radan, 2017). The fact that it has a simpler and more stable 
structure compared to other methods which have heavy computational 
burden and based on deterministic model also causes the EKF to get 
ahead of other methods. 

Rotor position and rotor speed information required for the sensor-
less control of the BLDC motor can be obtained from the estimated back- 
EMF values of the BLDC motor with EKF. However, the difficulty in 
estimating the back-EMF at low speeds and zero speeds may affect the 
accuracy of the knowledge of rotor position and speed information 
(Hooshmand et al., 2023). For this reason, hybrid estimation methods 
can be recommended both to increase the estimation performance by 
reducing the degree of the EKF structure and to obtain rotor speed and 
position information in a more stable manner. 

At this point, the use of ML for speed estimation has several advan-
tages over traditional methods. For example, it can be implemented 
using low-cost sensors, such as current sensors and voltage sensors, 
which are already present in many motor control systems. It also 

provides more accurate speed estimation, even in situations where the 
motor speed changes rapidly in a wide speed range from zero to rated 
speed under variable load conditions. Overall, the use of ML for speed 
estimation of BLDC motors has great potential for improving the effi-
ciency and performance of various industrial and consumer applica-
tions. In the literature, ML-based speed estimator structures created with 
different training methods are proposed. In Yao et al. (2023), a rotor 
speed and rotor position estimator is proposed in which the training 
architecture is based on multi-layer perceptron topology neural net-
works and in the related work, stator voltages, currents and rotor speed 
are used for training and the estimation performance is tested while the 
BLDC motor is operating under no-load conditions. In Celikel (2019), in 
order to reduce the position measurement error, an Fied Programmable 
Gate Array (FPGA)-based ANN structure is developed and speed and 
position of BLDC motor obtained as two outputs from the proposed ANN. 
The proposed ANN has 3 inputs, 10 neurons in hidden layer and 2 
outputs, and its training is implemented on an FPGA and its estimation 
performance is tested on FPGA in hardware in the loop simulation. Also 
in Gamazo-Real et al. (2022), rotor speed and position are estimated by 
using two-three layer ANNs with perceptron-based cascade topology 
and it is understood from the results and discussion of the authors that 
the speed estimation error increases while the BLDC motor is running at 
rated speed under full-load condition. In order to improve the achieve-
ment of ANN on the motor control and parameter or state estimations, it 
is applied with various topologies (Batzel and Lee, 2003; Guo et al., 
2008; Monmasson et al., 2011; Zine et al., 2018). The authors in Batzel 
and Lee (2003) offer a diagonally recurrent ANNs in order to improve 
the convergence. Double ANN models are used and correlated each 
other in Guo et al. (2008) in order to estimate the phase current and 
back-EMF of BLDC motor. In addition to the studies that are carried out 
to improve the training methods of ANN, FPGA-based studies are also 
carried out with the aim of reducing the algorithm computational 
burden of ANN algorithms and thus increasing the training speed and 
convergence achievement as proposed in Celikel (2019) and Monmasson 
et al. (2011). But all of these proposed FPGA-based methods need 
expertise and FPGAs have limited area to implement the ANN algo-
rithms. In addition, due to the serial processing capacity of DSP-based 
evolution platforms, the computational burden and complexity of 
ANNs poses a major problem, especially in real-time applications. As 
mentioned in Putra et al. (2022), ANN-based ML which is a subsequent 
of AI gains importance on motor control and parameter or state esti-
mations due to its advantages on the capability to recognize and learn 
the nonlinear systems. In Zine et al. (2018), it is aimed to ensure the 
real-time deployment, a feed-forward ANNs are trained with 
Levenberg-Marquardt method which has a simplified network topology. 
For the estimation of the rotor position of a permananet magnet syn-
chronous motor, a ML-based observer which is trained by using a 
modified Elman neural network is proposed in Putra et al. (2022), and 
the proposed ML-based estimator is trained offline by using the datas 
obtained from field oriented control (FOC) implemented in simulation. 
As a result, when the studies in the literature are examined, there is no 
study comparing the performance of different algorithms proposed for 
training ML and AI-based methods which are designed in order to esti-
mation of rotor speed or any other state/parameter of BLDC motor. 

The main contribution of this study is to propose a hybrid estimator 
structure in order to estimate the three-phase back-EMFs and rotor 
mechanical speed of BLDC motor. For this purpose a novel EKF-based 
and ML-based estimators for back-EMFs and rotor speed of BLDC 
motor, respectively. During the development of the hybrid estimator, 
different algorithms existed in the literature are used to train the ML- 
based estimator. Non-sinusoidal three-phase back-EMFs should be 
known especially in the determination of the amplitude and position 
information of the motor flux, and also the rotor mechanical speed 
which calculation from the back-EMF information of BLDC motor is 
difficult at low speed should be estimated in order to ensure the dynamic 
control of BLDC motor which robust dynamic control is gained 
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importance in various industrial applications. The other reason for 
suggesting a hybrid estimator method in this study is that the increase in 
the number of estimated states and parameters in the EKF, where the 
measurement matrix and estimation stability are directly related, in-
creases the order of the nonlinear dynamic model applied as a function 
of the inputs to the EKF and negatively affects the estimation stability 
and implementation of the EKF algorithm in discrete time. For this 
purpose, a new EKF-based estimator, in which 3-phase stator currents 
and 3-phase back-EMFs are estimated, and a ML-based speed estimator 
structure are proposed and thus a novel hybrid estimator method is 
implemented with these two different estimator methods. In this hybrid 
estimator method, the 3-phase stator currents and 3-phase stator back- 
EMFs are estimated by EKF and applied to the ML-based speed esti-
mator and the rotor mechanical speed is estimated. Thus, both the 
number of predicted parameters and states are increased and a stable 
estimation structure is revealed. 

In this study, a speed-sensorless DTC drive system is implemented in 
simulation to test the estimation performance of the proposed hybrid 
estimator. Before the simulation tests, in order to train the ML-based 
speed estimator resulting in a numerical prediction model for speed 
estimation of the BLDC motor, 3-phase stator currents and 3-phase back- 
EMFs obtained in the simulation environment are used as training datas 
and speed information is used as target datas. By using different training 
algorithms, the accuracy performance of these algorithms with respect 
to each other is compared. At the end of the training, it is proved that the 
ML-based rotor speed prediction model achieves an impressive accuracy 
of 99.85% in speed estimation. 

The estimation performance of the proposed hybrid estimation 
method, which is generated as a result of the development of the novel 
EKF-based estimator and the training of the ML-based speed estimator, is 
tested in a simulation on a speed-sensorless DTC drive system. As a result 
of the tests carried out in a wide speed range under different load tor-
ques, it is seen that the proposed hybrid estimator has high estimation 
accuracy and thus high performance dynamic control of the BLDC motor 
can be achieved. 

2. Materials and methods 

The materials and methods section of the study initially describes the 
discretized model of the BLDC motor, followed by details about the 
dataset utilized for training ML algorithms. Additionally, basic infor-
mation regarding the ANN, RF, and k-NN algorithms employed in 
training the dataset is provided. 

In the methodology section, the numerical estimation of the three- 
phase stator currents and three-phase back-EMFs for the BLDC motor 
is performed using the EKF. Subsequently, the ML algorithms (ANN, RF, 
and k-NN) are applied to the numerically obtained three-phase stator 
current and three-phase back-EMF dataset from the EKF in the second 
part of the method section. 

2.1. Materials 

2.1.1. Discretized model of BLDC motor 
Outer rotor BLDC motors are widely preferred in unmanned aerial 

and land vehicles as well as hybrid and pure electric vehicles due to their 
high efficiency. The 3-phase stator currents and motion equations of 
outer rotor BLDC motor model are given as the following discretized 
form: 
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(
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T + 1

)

isa(k) +
(

vsa(k) − ea(k)
Lls

)

T (1a)  

isb(k+ 1)=
(

−
Rs

Lls
T + 1

)

isb(k) +
(

vsb(k) − eb(k)
Lls

)

T (1b)  

isc(k+ 1)=
(

−
Rs

Lls
T + 1

)

isc(k) +
(

vsc(k) − ec(k)
Lls

)

T (1c)  

ωm(k+ 1)=
(

φra(k)isa(k) + φrb(k)isb(k) + φrc(k)isc(k)
Jl

)

−
BLωm(k)T

Jl
−

τlT
Jl

+ ωm(k)
(2)  

τind =φra(k)isa(k) + φrb(k)isb(k) + φrc(k)isc(k) (3)  

where, isa, isb, and isc are the 3-phase stator currents of BLDC motor. vsa, 
vsb, and vsc are 3-phase stator voltages of BLDC motor. ea, eb, and ec are 
back-EMF values of BLDC motor. Rs and Lls are stator resistance and 
stator leakage inductance of BLDC motor, respectively. ωm is the rotor 
mechanical angular speed of BLDC motor. τl and τind are load torque and 
induced torque of BLDC motor, respectively. φra, φrb, and φrc are rotor 3- 
phase leakage flux values of BLDC motor. Jl and Bl are total moment 
inertia (includes the inertia of motor shaft and mechanical load) and 
total viscous friction (represents the coefficient of the shaft viscous and 
ventilation loss) of BLDC motor. T is the sampling time of the discrete- 
time system. 

The mathematical expressions of 3-phase components of back-EMF 
and rotor flux of BLDC motor model which have trapezoidal wave 
forms are given as the following form in discrete-time with the electrical 
rotor position of BLDC motor (ϴe): 
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ea(k)= ppωm(k)φra(k) (6a)  

eb(k)= ppωm(k)φrb(k) (6b)  

ec(k)= ppωm(k)φrc(k) (6c)  

here, pp is the pole pair of BLDC motor. 
⃒
⃒
⃒φ→r

⃒
⃒
⃒ is the magnitude of the rotor 

flux vector of BLDC motor. 
Moreover the trapezoidal wave form of 3-phase components of the 

back EMF and rotor flux of the BLDC motor model are provided by 
limiting and cutting the sinusoidal wave form with trapezoidal wave 
treshold limtrap. 

In this study, which is proposed for the speed-sensorless novel 

Table 1 
BLDC motor parameters.  

DC power supply V 72 

Rated speed rpm 750 
Rated torque N.m 21 
Rated power kW 1.5 

Moment of inertia kg.m2 0.0073 
Phase back-EMF coefficient Vpeak/krpm 96 
Phase resistance Ω 0.033 
Leakage inductance mH 0.1594 
Mutual inductance mH 0.0254727 
Pole pairs  23  
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extended Kalman filter and ML-based DTC of the BLDC motor, the pa-
rameters given in Table I are used in the BLDC motor model. 

2.1.2. Dataset 
In this study ML-based speed estimator proposed for the estimations 

of isa, isb, isc, ea, eb, and ec states/parameters of BLDC motor. Table 2 
presents the statistical informations of the dataset obtained from a 
simulation environment, which were collected for the purpose of 
developing a ML-based speed estimation system. 

Table 2 shows the statistical information of the dataset utilized for 
estimating the speed of the BLDC motor. The study employed 2.8 million 
samples. For each feature in the dataset, the mean, standard deviation, 
minimum, and maximum values were analyzed. Fig. 1 presents the 
correlation matrix of the dataset collected within the simulation envi-
ronment. Upon inspecting the correlation matrix, it can be observed that 
the correlation values between the parameters isa, isa, isb, isc, ea, eb, ec, 
and ωm are relatively small, ranging from − 0.0014 to 0.09. These low 
correlation values indicate that the dataset does not exhibit a strong 
linear relationship between these parameters and ωm. 

2.1.3. Artificial Neural Networks 
ANNs are formed by imitating the biological neural structure of the 

human brain on computers. ANN uses previously memorized or classi-
fied information with the help of neural sensors. Thus, they are com-
puter programs used in the formation of new information and decision- 
making (Efe et al., 1999; Narendra and Parthasarathy, 1990). 

ANN is used in different real-life areas such as the automotive in-
dustry (track tracking, guidance), banking (signature recognition), 
aerospace industry (flight simulations), electricity (chip deterioration 
analysis), finance (exchange rate forecasts), healthcare (early diagnosis 
and treatment of cancer), military (determination of flight directions in 
military airplanes), industry (design of products) (Abiodun et al., 2018). 

In general, ANN consists of three type of layers. These layers are the 
input, hidden, and output layers. In the first layer, the input layer, the 
dataset coming from outside is accepted by the ANN. The layer between 
these two layers, which may be one or more, is called the hidden layer 
(Karakaya, 2007). The hidden layer in ANN plays a crucial role in 
learning and capturing complex patterns and features within the input 
datas. It transforms raw data into a higher-level representation, using 
weighted sums and activation functions, enabling the network to model 
non-linear relationships. The hidden layer’s purpose is to extract rele-
vant and abstract features, which are then used for making predictions 
or decisions in the output layer. Through backpropagation, the network 
adapts its internal weights during training to minimize prediction errors 
and improve its performance on various ML tasks. 

As seen in Fig. 2, the dendrites (input signals) of the artificial neuron 
are expressed as xn, and the weight coefficient (significance degree) of 
each dendrite as wn. The kernel, which is expressed as a sum function, 
shows the weighted sums (F(Σ)) of all input signals. This sum signal is 
directed to the synapse (weights) as an input to the activation function. 
The resulting signal from this function is denoted as y and is directed to 
be fed to the other cell (Köktürk, 2009). 

ANNs demonstrate remarkable versatility, finding application across 
an extensive array of tasks, such as object recognition, image classifi-
cation, segmentation, facial recognition, natural language processing 
(NLP), speech recognition, recommendation systems, financial analysis, 
medical image analysis, disease diagnosis, patient risk stratification, and 

personalized treatment plans. Their flexibility and adaptability have led 
to their widespread adoption in diverse fields, showcasing their pro-
found impact on advancing the frontiers of AI. 

The selection of ANNs is driven by a multitude of reasons. Firstly, 
ANNs possess the remarkable capability to model complex and 
nonlinear relationships within data, enabling them to tackle intricate 
real-world problems effectively. Secondly, their ability to learn from 
large-scale datasets and extract high-level abstractions makes them well- 
suited for tasks involving vast amounts of information (Basheer and 
Hajmeer, 2000; Abiodun et al., 2018; Olden and Jackson, 2002). 

2.1.4. Random forest 
RF is a popular ML algorithm that belongs to the ensemble family of 

methods. It is used for both classification and regression tasks and is 
considered one of the most powerful algorithms in ML due to its ability 
to produce accurate and reliable predictions (Kavzoglu and Teke, 2022). 

The RF algorithm builds a large number of decision trees and then 
aggregates their results to make a final prediction. Each decision tree is 
built using a random subset of the training data and a random subset of 
the features (Xu et al., 2022). By combining the predictions of many such 
trees, random forest is able to reduce overfitting and produce more 
robust and accurate predictions (Park et al., 2022). 

RF has a wide range of applications in areas such as finance (Zhu, 

Table 2 
BLDC motor dataset statistical informations.  

Feauture isa isb isb ea ea ec speed 

Mean − 0.058 − 3.982 4.039 0.0009 0.0003 − 0.0011 490.17 
Std 71.938 74.564 74.587 24.217 24.217 24.217 291.864 
Min − 154.255 − 149.934 − 152.447 − 36.551 − 36.575 − 36.568 − 18.455 
Max 152.038 153.747 155.475 36.569 36.568 36.575 761.934  

Fig. 1. Correlation matrix of BLDC motor dataset.  

Fig. 2. ANN structure.  
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2022; Zhang et al., 2022), medicine (Doubleday et al., 2022; Dinesh and 
Kalyanasundaram, 2022) and engineering (Sun et al., 2023; Salem et al., 
2022). It is particularly useful when dealing with high-dimensional 
feature spaces and large datasets. RF is also an interpretable model, 
allowing users to understand how it arrived at a particular prediction. 

The selection of the RF algorithm is underpinned by several 
compelling considerations. Firstly, its robustness against overfitting and 
commendable performance on complex datasets render it an attractive 
choice. Additionally, the algorithm’s ability to furnish measures of 
feature importance contributes to effective feature selection strategies. 
Furthermore, RF exhibits reduced sensitivity to outliers in comparison to 
individual decision trees, bolstering its suitability for diverse and chal-
lenging data scenarios (Breiman, 2001; Díaz-Uriart & Alvarez de Andrés, 
2006). 

2.1.5. K-nearest neighbors 
k-NN is a ML algorithm used for classification and regression tasks. It 

is a non-parametric algorithm, which means it makes no assumptions 
about the underlying data distribution (Sharifi, 2021; Vapnik et al., 
1997). The k-NN algorithm works by calculating the distance between a 
new input data point and all the existing data points in the training set. 
The distance is typically calculated using a distance metric, such as 
Euclidean distance or Manhattan distance. 

The ‘k’ closest data points to the new input point are then selected 
based on the distance metric and are used to determine the class or 
regression value of the new input point (Dissanayake et al., 2022). The 
choice of ‘k’ is a critical hyperparameter in the k-NN algorithm. A small 

‘k’ value can result in overfitting, while a large ‘k’ value can lead to 
underfitting. The distance metric used is also important, as it can affect 
the performance of the algorithm (Benarafa et al., 2023). 

The rationale behind opting for the algorithm encompasses several 
salient factors. Firstly, its selection is motivated by its simplicity and 
ease of implementation, making it accessible for practical applications. 
Moreover, the non-parametric nature of k-NN facilitates its adaptability 
across diverse data types, accommodating a wide array of problem do-
mains. Notably, k-NN’s efficacy is particularly pronounced in scenarios 
characterized by intricate decision boundaries, where data points are 
intricately intertwined and not readily separable (Wu et al., 2008; 
Bhuvaneswari and Therese, 2015). 

2.2. Methods 

The method part of the study consists of two stages: EKF for back- 
EMF estimation and ML modeling for speed estimation. 

2.2.1. Extended Kalman filter for Back-EMF estimation of BLDC motor 
In this study a novel EKF-based estimator is proposed for ea, eb, and ec 

estimations of the BLDC motor with isa, isb, and isc. During the estimation 

process of the proposed EKF-based estimator 3-phase stator currents and 
3-phase stator voltages are measured and applied to the EKF algorithm 
as measurement vector and control input vector, respectively. Also, nm is 
estimated with a new ML-based estimator and the estimated value of nm 
is used in order to observe the 3-phase components of rotor and stator 
fluxes from the estimated 3-phase back-EMF and 3-phase stator current 
values. The observed 3-phase stator flux components are used to 
determine the sector and magnitude on the vector space of the motor 
flux for DTC of the BLDC motor. Also the induced torque is obtained by 
taking into account the observed 3-phase rotor flux components and ωm 
which is fed back from the artificial intellegence-based estimator. 

The extended model of the BLDC motor which is used for the esti-
mation of isa, isb, isc, ea, eb, and ec states/parameters with a novel EKF- 
based estimator is given the following discretized general form: 

x(k+ 1)= f(x(k), u(k)) + w = A(x(k))x(k) + Bu(k) + w (7)  

Z(k)=Hx(k) + v (Measurement Equation) (8)  

where x is the extended state vector; f is the nonlinear function of the 
states and parameters; A is the system matrix; B is the input matrix; U is 
the control input vector; Z is the measurement matrix; Z is the output 
vector; w and v are system and measurement noise matrix, respectively 
and they are diagonal white Gaussian noise matrices. 

The matrices and vectors of the extended model of BLDC motor 
which is used in the EKF algorithm are represented in (9) and (10). In the 
proposed EKF-based estimator, isa, isb, and isc are defined as states while 
ea, eb, and ec are defined as parameters to be estimated.   

⎡

⎣
isa

isb

isc

⎤

⎦

⏟̅̅⏞⏞̅̅⏟
Z(k)

=

⎡
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1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤

⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
H

⎡
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⎥
⎥
⎥
⎥
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⎦

⏟̅̅⏞⏞̅̅⏟
x(k)

+ v (10)  

In this study convensional EKF-based estimator which nonlinear func-
tion consists of a novel BLDC model is used the estimation of isa, isb, isc, ea, 
eb, and ec states/parameters in order to improve the DTC of BLDC motor 
with the proposed ML-based speed estimator. The general equation of 
the convensional EKF algorithm can be given as the follows (Zerdali, 
2020):  

1. Initialization: 

x̂(0)=E[x(0)] (11) 
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P(0)=E
[
(x(0) − E[x(0)])(x(0) − E[x(0)])T] (12)    

2. Linearization: 

F(k+ 1, k) =
∂f(x(k), u(k))

∂x(k)

⃒
⃒
⃒
⃒

x̂(k)
(13)    

3. Time update: 

x(k)− = f(x̂(k − 1), u(k)) (14)  

P(k)− =F(k, k − 1)P(k − 1)FT(k, k − 1) + Q (15)    

4. Measurement update 

K(k)=P(k)− HT[HP(k)− HT +R
]

(16)  

x̂(k)= x̂(k)− + K(k)(Z(k) − H)x̂(k)− (17)  

P(k)= (I − K(k)H)P(k)− (18)  

where, I is the identity matrix; P(k)- and P(k) are priori and posteriori 
estimation error matrices, respectively; F(k) is the extended function of 
states and parameters obtained by linearized the nonlinear function of 
states and parameters with Taylor series; K(k) is the Kalman gain; Q is 
the covariance matrix of system noise or modelling erros; R is the 
covarince matrix of measurement noise or output errors. Furthermore w 
in the generalized model corresponds to Q in the EKF algorithm, and v 
corresponds to R. 

2.2.2. Modeling speed of BLDC motor by machine learning 
In the study, the work flow diagram given in Fig. 3 is used for the 

training of the data set created for the BLDC engine with ML algorithms. 
Firstly, a dataset of 2.8 million samples is collected by collecting the isa, 
isb, isc, ea, eb, ec and nm states/parameters of the BLDC motor. This dataset 
is divided into two as test and train. In the next stage, the dataset is 
trained with ANN, RF and k-NN algorithms. The trained models are 
evaluated with Coffiecent of Determination (R2), Mean Absolute Error 
(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) 
and response time (predicatin time) evaluation criteria and the most 
suitable model is used in the simulation environment. 

The strategy employed for training ANNs involved a systematic 
exploration of parameter configurations aimed at aligning the neural 
network with the characteristics of the dataset. This is achieved by 
utilizing the grid search optimization algorithm. The training strategy 
centered on refining the neural network’s performance to attain the 

lowest achievable loss. Key hyperparameters subjected to tuning 
encompassed the quantity of hidden layers, the neuron count within 
each hidden layer, and the learning rate. 

Hyperparameter tuning is a critical step in optimizing the perfor-
mance of ML algorithms. Grid search, a popular method for hyper-
parameter tuning, systematically explores a predefined set of 
hyperparameter values to identify the combination that yields the best 
performance. For ANNs, the number of hidden layers, the number of 
neurons in each layer, and the learning rate hyperparameters are tuned. 
In the case of k-NN, the primary hyperparameter ‘k’ representing the 
number of nearest neighbors, was tuned. For RF, hyperparameters such 
as the number of trees in the forest, the maximum depth of the trees, and 
the minimum number of samples required to split an internal node are 
tuned. Grid search involved defining grids of possible values for each 
hyperparameter and evaluating the algorithms performance on a vali-
dation set for each hyperparameter combination. The optimal set of 
hyperparameters, resulting in the best performance, is selected as 
demonstrated in Table 3. The linspace is a function used to create an 
array of evenly spaced spaced between a specified starting point and 
ending point. The format of linspace can be described as linspace(start,
end,num), where “start” represents the initial value, "end” represents the 
final value of the array, and “num” indicates the length of the array. 

ANNs are initialized with random weights before training to prevent 
the network from being trapped in local minima during optimization. 
The primary aim is to ensure the models’ effectiveness and reliability, 
which is achieved by actively pursuing convergence of results. This 
pursuit involves fine-tuning the models to attain an optimal perfor-
mance state where they learn data patterns adeptly, avoiding overfitting 
and training issues. As a result, the models gain robustness and 
dependability in real-world scenarios. Once the ANN models are trained, 
they are subjected to real-time simulation tests, showcasing their 
impressive performance. This success serves as evidence of the models’ 
convergence and proficiency. 

The chosen evaluation criteria R2, MAE, MSE, RMSE, and response 
time (prediction time) are specifically adopted to comprehensively 
measure the model’s predictive accuracy and efficiency. Where R2, 
quantifies the proportion of the variance in the dependent variable that 
is explained by the model’s predictions. MAE computes the average 
absolute difference between the predicted values and the actual values. 
It provides a straightforward measure of the model’s prediction accu-
racy. MSE calculates the average of the squared differences between 
predicted and actual values. Squaring the errors amplifies larger errors, 
making MSE sensitive to outliers and providing a measure of the average 
squared magnitude of errors. RMSE is the square root of the MSE and 
shares its characteristics while also being on the same scale as the 
original target variable. RMSE provides insight into the typical size of 
the prediction errors. The response time reflects the computational ef-
ficiency of the model during inference. It measures the time taken by the 
model to generate predictions once it’s deployed. A lower response time 
is desirable for real-time applications and responsiveness. All evaluation 
criteria are taken into consideration while evaluating the models 
developed in the study. However, since the developed models will be run 

Fig. 3. ML modeling for BLDC motor speed estimation.  

Table 3 
Evaluation of hyperparameters of ML algorithms by using GridsearchCV.  

Algorithm Hyperparameters Values Best 
value 

k-NN K linspace (10,200,20) 80 
RF number of trees linspace(1, 51,11) 26 

maximum depth linspace(0,2,5) 1.5 
minimum number of samples linspace(1,6,11) 2 

ANN number of neurons for each 
layer 

linspace(1,10,10) 8,5 

number of layers linspace(1,3,3) 2 
Learning rate linspace 

(0.01,0.1,10) 
0.05  
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in real-time application, response time and R2 are given more impor-
tance. The pseudo code of training ANN with gridsearch is is summa-
rized as given below.   

3. Research findings 

The research findings of the study are examined in two stages, and in 
the first stage, the datas are trained with ML on the data set obtained 
from the BLDC engine. In the second stage, the estimation results are 
obtained by applying the most successful ANN ML model on the speed- 
sensorless DTC of BLDC motor in simulation. 

3.1. Results from ML models for the BLDC dataset 

In the study, ML-based BLDC speed estimators were developed. The 
performance results of the developed ANN, RF and k-NN based 

Table 4 
ML-based perdictors performance results.  

Model R2 
(%) 

MAPE 
(%) 

MAE MSE RMSE Response Time 
(ms) 

ANN 99.85 0.21 0.911 1.423 1.193 0.014 
RF 99.2 0. 84 0.094 0.478 0.0691 0.61 
k-NN 97.2 2.75 4.068 10.392 108.003 0.012  

Fig. 4. K-NN-based estimators performance on test data.  

Fig. 5. RF-based estimators performance on test data.  

Fig. 6. Proposed ANN -based estimators performance on test data.  
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Fig. 7. Speed-sensorless DTC drive system of BLDC motor.  

Fig. 8. Simulation results on estimation and control performance of the proposed hybrid estimator-based speed-sensorless DTC drive system of BLDC motor at 
high speed. 
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estimators was evaluated by to R2, MAE, MSE, RMSE, and response time 
performance evaluation criteria, and the results are given in Table 4. 

Table 4 displays the results of the experiments conducted using 
different ML methods. The ANN model has achieved the highest scores 
in terms of R2, MSE, RMSE, and MAE, indicating superior performance. 
On the other hand, the k-NN algorithm performed the best in terms of 
time response, obtaining the highest score among all methods for this 
particular dataset. The testing results of the ML-based models developed 
in the study are presented in Figs. 4–6, showcasing their performance on 
the test dataset. Upon analyzing Figs. 4–6, it is evident that all estimators 
have achieved favorable results. Nevertheless, the ANN emerges as the 
top-performing estimator among them. 

3.2. Simulation results on the estimation performance of the proposed ML 
and EKF-based estimators 

The proposed ML-based speed estimator and the EKF-based esti-
mator proposed for the estimations of isa, isb, isc, ea, eb, and ec states/ 
parameters of BLDC motor are tested on a speed-sensorless DTC drive 
system in simualtion as shown in Fig. 7. A novel hybrid estimation 
method is proposed by using two different estimators together. Thus, a 
new ML-based speed estimation method can produce a solution to an 
industrial problem and a new EKF-based estimation method is intro-
duced to the literature as a result of the needs of the proposed ML-based 
speed estimator. 

In the speed-sensorless DTC drive system of BLDC motor, φra, φrb, φrc, 
and τind are observed by using the estimated values of isa, isb, isc, ea, eb, 

and ec obtained from the proposed EKF algorithm. The three-phase rotor 
fluxes and stator currents are converted to stator stationary axes (-αβ) by 
Clarke transformation. Flux sector is determined with 3-D look-up table 
by using the –αβ components of rotor flux and stator current. During this 
procedure the stator flux is calculated from the –αβ components of rotor 
flux and stator leakage flux which derived from the stator leakage 
inductance voltage drop. Moreover a PI-type speed controller is used to 
generate the reference value of the τind and two and three level hysteresis 
comparator are used to determine flux and moment response of the drive 
system, respectively. At the end of the DTC the voltage space vector is 
determined with a 3-D look-up table which is used for the switching 
conditions of 3-phase inverter as shown in Fig. 7. 

The proposed hybrid estimator is tested on a speed-sensorless DTC 
drive system of a BLDC motor at two different speed region defined at 
high speed and low speed while Rs is varied to 1.2 times of its rated value 
and kept as constant at its rated value under mechanical load torque (τl) 
variations. In Figs. 8–11, .r and .̇ represent the reference value and 
estimated value, respectively. 

A- Estimation and Control Performance Test of The Proposed Hybrid 
Estimator-Based Speed-Sensorless DTC Drive System of BLDC Motor at 
High Speed. 

In this scenario, the BLDC motor is accelerated from zero speed to 
rated speed (nr=750 rpm) under rated load torque (τl=20 N m). The 
speed of the BLDC motor is kept constant at its rated value during 8 s. 
During this scenario, τl is reduced to 10 N m at 2. s and 5 N m at 4.s, and 
τl is completely removed at 6. s while Rs is kept constant at its rated value 
as shown in Fig. 8. Depending on the load torque change, it is observed 

Fig. 9. Simulation results on estimation and control performance of the proposed hybrid estimator-based speed-sensorless DTC drive system of BLDC motor at high 
speed while Rs is changing. 
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that both the n̂m represented with blue line and the nm represented with 
red line converge much more to the reference value of the speed (nr

m) 
represented with black line due to the decrease in τl, and when the 
overall scenario is considered, both the n̂m and the nm converge to nr

m 
with a very low error. 

By repeating this scenario involving high speed operation, Rs is 
increased to 1.2 times its rated value at 1.5 s<t<2.5 s and 4.5 s<t<5.5 s 
time intervals to test both the estimation performance of the proposed 
hybrid estimator and the speed control performance of the DTC against 
the Rs variations as shown in Fig. 9. It is seen that the Rs change does not 
cause major errors in both speed estimation and speed control, since the 
effect of voltage drop due to Rs on the back-emf induced in the stator is 
weak at high speeds. All these results show that the proposed mixed 
estimation method and DTC method have high estimation and control 
performance during operation in high speed regions. 

In addition, it is clearly seen in Fig. 9 that the ML-based speed esti-
mator can tolerate the errors that are occur in the isa, isb, isc, ea, eb, and ec 
estimations obtained from the proposed EKF-based estimator depending 
on the Rs variations. 

B- Estimation and Control Performance Test of The Proposed Hybrid 
Estimator-Based Speed-Sensorless DTC Drive System of BLDC Motor at 
Low Speed. 

This scenario is set up to test the estimation performance of the 
proposed hybrid estimator method, as well as the speed control per-
formance of the DTC when the BLDC motor is running at low speeds and 
the results of the test scenarios are given in Figs. 10 and 11. For this 

purpose, first of all, the BLDC motor is accelerated to a speed of 100 rpm 
(nr

m =100 rpm) under the rated τl=20 N.m. In the 0.5 s<t<3 s time in-
terval, the motor is kept constant at 100 rpm. While the BLDC motor is 
running at 100 rpm, τl is reduced to 10 N m at 2. s. The BLDC motor 
started to slow down at 3. S while τl=10 N m and is operated at a speed 
of 20 rpm (nr

m =20 rpm) at a time interval of 3.5 s<t<8 s. While the 
BLDC motor is operating at a speed of approximately 20 rpm, τl is 
reduced to 5 N m at 4. s and the motor is start to operate under no-load at 
6. s. 

In addition, the estimation and control performance of both the 
proposed hybrid estimator and the DTC of the BLDC motor are tested 
against the Rs variations while the BLDC motor is running at low speed. 
The results of this scenario are presented in Fig. 11 The scenario pre-
sented in Fig. 11 is the same as the scenario presented in Fig. 10, but 
unlike the scenario presented in Fig. 10, only Rs variations are generated 
at some time intervals. 

As presented in Fig. 11, the Rs is increased to 1.2 times to its rated 
value at 1.5 s<t<2.5 s and 4.5 s<t<5.5 s time intervals. Especially 
operation at very low speed, although the ML-based speed estimator has 
high estimation performance, the speed control performance is become 
unstable due to the weakening of the estimation performance of the 
proposed EKF-based estimator due to the voltage drop effect, which is of 
great importance at low speeds, depending on the Rs change. However, 
as soon as τl is decreased to 5 N m the speed control performance is also 
achieved while Rs is defined as its rated value to the BLDC motor model. 

As a result, it is understood from the simulation results that the 

Fig. 10. Simulation results on estimation and control performance of the proposed hybrid estimator-based speed-sensorless DTC drive system of BLDC motor at 
low speed. 
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proposed hybrid estimation method has remarkable errors when Rs 
variations occur only in the low speed region, but these errors can be 
tolerated by the ML-based speed estimator, and thus the proposed 
hybrid estimator has a very high performance especially on speed 
estimation. 

4. Discussion 

When the academic literature related to the study is examined, BLDC 
motors have started to be used extensively in the electric vehicle, 
aerospace industry and medical and automotive robot industries due to 
their stable speed-torque characteristics, quiet operation, long life and 
efficiency (Becerra and Ehsani, 1988; Kim et al., 2006). However, such 
applications require BLDC motor speed and rotor position information 
(Celikel, 2019). In traditional methods, the measurement of rotor speed 
and position is provided by hall-effect sensors or incremental encoders. 
The use of these sensors requires physical interventions to the motor and 
this case increases the cost of the driver and deteriorates the driver’s 
stability (Matsui and Shigyo, 1992). For this reason, estimation of rotor 
speed and position is preferred. For this purpose, various estimation 
methods have been proposed by using stator voltages or back-emf in-
formation (Iizuka et al., 1985; Tsotoulidis and Safacas, 2012). The 
proposed methods for measuring the back-emf, are limited in speed 
control performance in low speed operation (Damodharan and Vasu-
devan, 2010; Moreira, 1996; Gamazo-Real et al., 2022). For this reason, 
the Kalman filter, which is compatible with the dynamic nature of the 

BLDC motor as mentioned in Gamazo-Real et al. (2022) and triggers the 
estimation performance by taking into account the system and mea-
surement noises. In this study an EKF-based estimator is proposed for the 
estimation of the back-emf of BLDC motor. In the study done by (Li et al., 
2022) they introduces a new hybrid forecasting model called SHM 
CNN–GRU–AM (SHM-C&G&A), designed to improve the accuracy of 
ship motion prediction. The model combines a Convolutional Neural 
Network (CNN) for spatial feature extraction, a Gated Recurrent Unit 
(GRU) to capture temporal patterns, and an Attention Mechanism (AM) 
to control feature contributions. The paragraph also mentions the 
development of a hybrid genetic cloud whale optimization algorithm 
(GCWOA) to optimize the model’s hyperparameters. The proposed 
approach, GCWOA-SHM-C&G&A, is demonstrated to be more robust 
and effective in forecasting ship heave and pitch motion compared to 
other models. The GCWOA algorithm proves superior in optimizing 
hyperparameters for improved forecasting performance Li et al. (2022). 

Upon reviewing the relevant academic studies, it is observed that the 
estimation of various states and parameters of the BLDC motor is 
addressed in relation to the Kalman filter. However, the literature in-
dicates a scarcity of extensive academic research on the application of 
ML in parameter estimation and speed estimation for BLDC motors. ML 
and AI-based speed and position estimators proposed in the literature 
are examined in detail in the first section defined as Introduction, and 
the methods proposed in the mentioned studies are evaluated with 
different aspects. Consequently, the ML-based estimation model is 
developed in this study for estimating the rotor speed of the BLDC motor. 

Fig. 11. Simulation results on estimation and control performance of the proposed hybrid estimator-based speed-sensorless DTC drive system of BLDC motor at low 
speed while Rs is changing. 
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During the development of the proposed ML-based speed estimator, 
different training algorithms are used with ML-based estimator and 
these training algorithms are compared to each other about the training 
achievements, algorithm complexity and speed and estimation accuracy 
as carried out in Xu et al. (2023). Also it is expected to introduce a fresh 
perspective to speed sensorless dynamic control systems, which are 
already documented in the academic literature. 

5. Conclusion 

In various industries such as robotics, automotive, and aerospace, 
achieving stable dynamic control of speed-sensorless BLDC motors is 
crucial for enhancing energy efficiency. Model-based estimation algo-
rithms are commonly employed for speed estimation in BLDC motors. 
However, these estimation algorithms also necessitate the estimation of 
different states and parameters associated with the BLDC motor. 

In this study, a unique dataset is generated from current and back 
emf values obtained through a novel EKF-based estimator in a simula-
tion environment specifically developed for BLDC motors. The dataset is 
then utilized to perform speed estimation of the BLDC motor using ML 
methods such as ANN, RF, and KNN. The following results are obtained 
from the application of these ML methods on the created dataset for 
speed estimation of the BLDC motor.  

• This study evaluated the performance of the ANN, RF, and KNN ML 
algorithms using various performance evaluation metrics such as R2, 
MAPE, MAE, MSE, and RMSE. The ANN ML model achieved the 
highest accuracy rate of 99.85% among the evaluated models.  

• In terms of response time within the ML-based system, the KNN ML 
algorithm is found to be the most successful with a response time of 
0.012 ms when compared to the ANN and RF algorithms.  

• Simulation studies revealed that the hybrid estimation algorithm 
developed in the study exhibited a high convergence speed.  

• The proposed hybrid estimation algorithm demonstrated a high 
estimation performance, which has a positive impact on the dynamic 
control of the speed-sensoeless BLDC motor.  

• Furthermore, the simulation results indicated that the proposed ML- 
based speed estimator model shows minimal sensitivity to parameter 
changes. Even with parameter variations, the model maintained a 
robust structure and exhibited consistent estimation performance. 

Upon evaluating the aforementioned results in the study, it is 
believed that the ML-based speed estimation model developed for the 
BLDC motor has the potential to be applied across various industrial 
domains due to its advantages in terms of speed, time, control stability, 
and cost. Future research endeavors aim to expand the scope by 
employing ML models to estimate different parameter variations in the 
BLDC motor. This would further enhance the applicability and adapt-
ability of the proposed estimation approach in practical settings. 

Furthermore, it is aimed to realize the hybrid estimation method 
proposed in this study for the dynamic control of high efficiency per-
manent magnet synchronous motors, which have started to find wide 
application area in the defense and industrial sectors such as manned or 
unmanned electric vehicles, and whose popularity is increasing nowa-
days. In addition to these, estimation of different motor parameters that 
vary depending on temperature and the effect of saturation in the core 
with different ML-based methods is also aimed by the authors in future 
studies. 
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