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Abstract: This paper presents the design of a backstepping controller with dynamic surface
control (DSC) based on an asymmetric barrier Lyapunov function (ABLF) for the physical
constrained position control of a brushless DC (BLDC) motor. An integer-order friction
observer is attached to the backstepping control law to estimate and compensate for the
torque disturbance in the motor. A self optimizing control (SOC) layer based on the globalized
constrained Nelder-Mead optimization (GCNM) algorithm is added on top of the backstepping
controller. Thus, the overall controller can be made aware of the closed-loop system performance
and can self-adjust the backstepping controller terms to ensure the system operation under
certain desired specifications. Obtained results show that the proposed control method combined
with an SOC layer ensures the stability and performance of the closed-loop system for long
operation periods.
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1. INTRODUCTION

Brushless DC (BLDC) motors are widely used in indus-
try because of their high efficiency, low cost, and simple
structure compared to brushed DC motors. One of the
main challenges of BLDC motors is their controller com-
plexity due to the inherent non-linear characteristics of
the system. Also, non-linear friction is hard to estimate
accurately, posing an additional challenge to the already
complex non-linear controller.

There have been extensive studies on non-linear friction
compensation like the classical approach of (Friedland and
Park, 1992) where friction is modeled by multiplying a
constant to the sign of velocity, which is used to estimate
and cancel out the friction torque disturbances. Likewise,
other adaptive friction compensation approaches like the
fractional friction compensation (Qiu et al., 2015) may
prove useful as well as (Friedland and Mentzelopoulou,
1992; Liao and Chien, 2000).

On the other hand, one of the challenges of the DC
motor controller design is the inherent physical constraint
of the operation space and capacity of the controller.
Therefore is a growing interest in the control community
to deal with the constraint problem. Methods like set
invariance (Hu et al., 2002), reference governor (Gilbert
and Kolmanovsky, 2002) and model predictive control
(Mayne, 2014) are quiet sufficient for stability problems
but not sufficient for safety challenges.

In the past decade, with the proliferation of control Lya-
punov function (CLF) and control barrier Lyapunov func-
tion (CBLF) for vehicle safety control, the barrier Lya-
punov function (BLF) and its variants such as asymmet-
ric barrier Lyapunov function (ABLF) have been used
to deal with the state, and output constraints for non-
linear systems in the Brunovsky form (Ngo et al., 2005).
Extensive studies in (Tee et al., 2009; Ren et al., 2010),
prove that BLF effectively deals with both symmetric and
asymmetric output constraints for known or unknown non-
linear systems. These studies employed the backstepping
control strategy.

Although the backstepping control is effective, the explo-
sion of complexity arises as the system order n increases
caused by the repeated differentiation inherent in each
backstepping procedure (Krstic et al., 1995). This com-
plexity presents unwanted complications and slows down
the system convergence in real-time. To address this chal-
lenge, Dynamic Surface Control (DSC) (Swaroop et al.,
2000) was developed, where a first-order filter is used to
express the virtual input at each step of the backstep-
ping procedure without considering constraints (Wang and
Huang, 2005).

However, for the brushless DC motor, the long-time stable
operation of the system is affected by the changes in the
motor’s physical constraint. For this reason, a supervisory
control layer is required to monitor the closed-loop perfor-
mance of the backstepping controller to keep the system’s
operating performance and stability under certain desired
conditions.
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of the operation space and capacity of the controller.
Therefore is a growing interest in the control community
to deal with the constraint problem. Methods like set
invariance (Hu et al., 2002), reference governor (Gilbert
and Kolmanovsky, 2002) and model predictive control
(Mayne, 2014) are quiet sufficient for stability problems
but not sufficient for safety challenges.

In the past decade, with the proliferation of control Lya-
punov function (CLF) and control barrier Lyapunov func-
tion (CBLF) for vehicle safety control, the barrier Lya-
punov function (BLF) and its variants such as asymmet-
ric barrier Lyapunov function (ABLF) have been used
to deal with the state, and output constraints for non-
linear systems in the Brunovsky form (Ngo et al., 2005).
Extensive studies in (Tee et al., 2009; Ren et al., 2010),
prove that BLF effectively deals with both symmetric and
asymmetric output constraints for known or unknown non-
linear systems. These studies employed the backstepping
control strategy.

Although the backstepping control is effective, the explo-
sion of complexity arises as the system order n increases
caused by the repeated differentiation inherent in each
backstepping procedure (Krstic et al., 1995). This com-
plexity presents unwanted complications and slows down
the system convergence in real-time. To address this chal-
lenge, Dynamic Surface Control (DSC) (Swaroop et al.,
2000) was developed, where a first-order filter is used to
express the virtual input at each step of the backstep-
ping procedure without considering constraints (Wang and
Huang, 2005).

However, for the brushless DC motor, the long-time stable
operation of the system is affected by the changes in the
motor’s physical constraint. For this reason, a supervisory
control layer is required to monitor the closed-loop perfor-
mance of the backstepping controller to keep the system’s
operating performance and stability under certain desired
conditions.

In this paper, a backstepping controller with dynamic
surface control (DSC) based on an asymmetric barrier
Lyapunov function (ABLF) is designed for the position
control of a physically constrained brushless DC (BLDC)
motor. An integer-order friction observer is attached to the
backstepping control law to estimate and compensate for
the torque disturbance in the motor. A self-optimizing con-
trol (SOC) layer uses the globalized constrained Nelder-
Mead optimization (GCNM) algorithm proposed by (Viola
and Chen, 2020) to improve the system performance in
a long time batch sequential execution. It is performed
by evaluating an economical cost function that quantifies
the closed-loop performance of the brushless DC motor
and the backstepping controller with ABLF in terms of its
steady-state error.

The main contribution of this paper is the combination
- for the first time - of backstepping DSC control based
on ABLF functions with a torque friction observer for
BLDC motors as in (Qiu et al., 2015) and a self-optimizing
control layer that uses the GCNM optimization algorithm
to improve the closed-loop performance of the non-linear
brushless system.

2. DC MOTOR DYNAMIC MODEL AND THE
FRICTION MODEL

The dynamic model of the brushless DC motor is given
by (1), where θ and wn are the motor angular position
and velocity, im is the armature current, U is the applied
input voltage, E = Keωm is the back-EMF voltage, Te

is the motor electromagnetic torque, J is the moment of
inertia, R and L are the motor resistance and inductance,
Ke the voltage constant, Kt the motor torque constraint,
and TL the friction torque, which is unknown in most
position tracking control systems, affecting the tracking
performance. Thus, a friction torque observer is needed
for accurate estimation and compensation for the BLDC
tracking control. From (Friedland and Park, 1992), (2) is
used to express the friction torque, where a is a parameter
to be estimated by the observer.

θ̇ = ωm

Jω̇m = Te − TL = Ktim − TL

U = Lim +Rim + E

(1)

TL(ωm, a) = aLsgn(ωm). (2)

3. BARRIER LYAPUNOV FUNCTION

The following Definition, Assumptions and Lemmas from
(Qiu et al., 2015) are used to define and establish the
constraints satisfaction and performance bounds for the
barrier Lyapunov function.

Definition 3. Barrier Lyapunov function is a continu-
ously differentiable and positive definite scalar function
V (x), defined with respect to the system ẋ = f(x) on an
open region D containing the origin. It has continuous
first-order partial derivatives at every point of D. It has
the property V (x) → ∞ as x approaches the boundary of
D, and satisfies V (x(t)) ≤ b, ∀t ≥ 0 along the solution of
ẋ = f(x) for x(0) ∈ D and some positive constants b.

Assumption 1. There exist constants Kci and Kci, i =
0, 1, 2 satisfying kc1(t) ≥ Kc0 and kc1(t) ≤ Kc0 and their

time derivatives satisfy |k(i)ci (t)| ≥ Kci, |k(i)ci (t)| ≤ Kci,
i = 1, 2, ∀t ≥ 0.

Assumption 2. There exist functions Y 0, Y 0, and posi-
tive constants Y1, Y2 satisfying Y 0(t) > kc1 and Y 0(t) <
kc1(t) such that the desired trajectory yd(t) and its deriva-
tive satisfy Y0(t) ≤ yd(t) ≤ Y 0(t) and |ẏd(t)| ≤ Y1,
|ÿd(t)| ≤ Y2, ∀t ≥ 0, implying that they are continuous
and available in a compact set Ωyd := {yd ∈ R : y2d + ẏ2d +
ÿ2d ≤ δyd} ⊂ R.

Assumption 3. The function gi is positive and there
exists a class of positive constants gimin and gimax such
that 0 < gimin ≤ gi(xi) ≤ gimax for y = x1 satisfying
kc1(t) < y(t) < kc1(t), ∀t ≥ 0.

Lemma 1.(Ren et al., 2010).For any functions ka1(t),
kb1(t), let S1 := {S1 ∈ R : −ka1(t) < S1 < kb1(t)} ⊂ R
and N := Rl × S1 ⊂ Rl+1 be open sets. Consider the
system

η̇ = h(t, η)

where η := [ω, S1]
T ∈ N , and h : R+ × N → Rl+1

is piecewise continuous with respect to η, uniformly with
respect to t, on R+×N . Suppose that there exist functions
U : Rl → R+ and V1 : S1 → R+ continuously differentiable
and positive definite in their respective domains, such that

V1(z) → ∞ as z → −ka1(t) or z → kb1(t)

γ1(||ω||) ≤ U(ω) ≤ γ2(||ω||)

where γ1 and γ2 are class K∞ functions. Let V (η) :=
V1(S1) + U(ω) and S1(0) ∈ S1. If the following inequality
holds:

V̇ =
∂V

∂η
h ≤ −cV + v

in the set η ∈ N , and c, v are positive constants, then S1(t)
remains in the open set S1, ∀t ∈ [0,∞).

Lemma 2.(Ren et al., 2010).For all S1 < kb1, the inequal-

ity log
k2
b1(t)

k2
b1

(t)−S2
1
≤ S2

1

k2
b1

(t)−S2
1
holds.

4. BRUSHLESS MOTOR FRICTION TORQUE
OBSERVER

According to (1), the dynamics of the brushless DC motor
is represented by (3)

Jω̇m = Te − TL = Ktim − TL. (3)

Using the nonlinear reduced-order observer proposed by
Friedland and Park (1992), the estimator for a is given by
(5), where k > 0 and µ > 0 are design parameters and z
is defined by,
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In this paper, a backstepping controller with dynamic
surface control (DSC) based on an asymmetric barrier
Lyapunov function (ABLF) is designed for the position
control of a physically constrained brushless DC (BLDC)
motor. An integer-order friction observer is attached to the
backstepping control law to estimate and compensate for
the torque disturbance in the motor. A self-optimizing con-
trol (SOC) layer uses the globalized constrained Nelder-
Mead optimization (GCNM) algorithm proposed by (Viola
and Chen, 2020) to improve the system performance in
a long time batch sequential execution. It is performed
by evaluating an economical cost function that quantifies
the closed-loop performance of the brushless DC motor
and the backstepping controller with ABLF in terms of its
steady-state error.

The main contribution of this paper is the combination
- for the first time - of backstepping DSC control based
on ABLF functions with a torque friction observer for
BLDC motors as in (Qiu et al., 2015) and a self-optimizing
control layer that uses the GCNM optimization algorithm
to improve the closed-loop performance of the non-linear
brushless system.

2. DC MOTOR DYNAMIC MODEL AND THE
FRICTION MODEL

The dynamic model of the brushless DC motor is given
by (1), where θ and wn are the motor angular position
and velocity, im is the armature current, U is the applied
input voltage, E = Keωm is the back-EMF voltage, Te

is the motor electromagnetic torque, J is the moment of
inertia, R and L are the motor resistance and inductance,
Ke the voltage constant, Kt the motor torque constraint,
and TL the friction torque, which is unknown in most
position tracking control systems, affecting the tracking
performance. Thus, a friction torque observer is needed
for accurate estimation and compensation for the BLDC
tracking control. From (Friedland and Park, 1992), (2) is
used to express the friction torque, where a is a parameter
to be estimated by the observer.

θ̇ = ωm

Jω̇m = Te − TL = Ktim − TL

U = Lim +Rim + E

(1)

TL(ωm, a) = aLsgn(ωm). (2)

3. BARRIER LYAPUNOV FUNCTION

The following Definition, Assumptions and Lemmas from
(Qiu et al., 2015) are used to define and establish the
constraints satisfaction and performance bounds for the
barrier Lyapunov function.

Definition 3. Barrier Lyapunov function is a continu-
ously differentiable and positive definite scalar function
V (x), defined with respect to the system ẋ = f(x) on an
open region D containing the origin. It has continuous
first-order partial derivatives at every point of D. It has
the property V (x) → ∞ as x approaches the boundary of
D, and satisfies V (x(t)) ≤ b, ∀t ≥ 0 along the solution of
ẋ = f(x) for x(0) ∈ D and some positive constants b.

Assumption 1. There exist constants Kci and Kci, i =
0, 1, 2 satisfying kc1(t) ≥ Kc0 and kc1(t) ≤ Kc0 and their

time derivatives satisfy |k(i)ci (t)| ≥ Kci, |k(i)ci (t)| ≤ Kci,
i = 1, 2, ∀t ≥ 0.

Assumption 2. There exist functions Y 0, Y 0, and posi-
tive constants Y1, Y2 satisfying Y 0(t) > kc1 and Y 0(t) <
kc1(t) such that the desired trajectory yd(t) and its deriva-
tive satisfy Y0(t) ≤ yd(t) ≤ Y 0(t) and |ẏd(t)| ≤ Y1,
|ÿd(t)| ≤ Y2, ∀t ≥ 0, implying that they are continuous
and available in a compact set Ωyd := {yd ∈ R : y2d + ẏ2d +
ÿ2d ≤ δyd} ⊂ R.

Assumption 3. The function gi is positive and there
exists a class of positive constants gimin and gimax such
that 0 < gimin ≤ gi(xi) ≤ gimax for y = x1 satisfying
kc1(t) < y(t) < kc1(t), ∀t ≥ 0.

Lemma 1.(Ren et al., 2010).For any functions ka1(t),
kb1(t), let S1 := {S1 ∈ R : −ka1(t) < S1 < kb1(t)} ⊂ R
and N := Rl × S1 ⊂ Rl+1 be open sets. Consider the
system

η̇ = h(t, η)

where η := [ω, S1]
T ∈ N , and h : R+ × N → Rl+1

is piecewise continuous with respect to η, uniformly with
respect to t, on R+×N . Suppose that there exist functions
U : Rl → R+ and V1 : S1 → R+ continuously differentiable
and positive definite in their respective domains, such that

V1(z) → ∞ as z → −ka1(t) or z → kb1(t)

γ1(||ω||) ≤ U(ω) ≤ γ2(||ω||)

where γ1 and γ2 are class K∞ functions. Let V (η) :=
V1(S1) + U(ω) and S1(0) ∈ S1. If the following inequality
holds:

V̇ =
∂V

∂η
h ≤ −cV + v

in the set η ∈ N , and c, v are positive constants, then S1(t)
remains in the open set S1, ∀t ∈ [0,∞).

Lemma 2.(Ren et al., 2010).For all S1 < kb1, the inequal-

ity log
k2
b1(t)

k2
b1

(t)−S2
1
≤ S2

1

k2
b1

(t)−S2
1
holds.

4. BRUSHLESS MOTOR FRICTION TORQUE
OBSERVER

According to (1), the dynamics of the brushless DC motor
is represented by (3)

Jω̇m = Te − TL = Ktim − TL. (3)

Using the nonlinear reduced-order observer proposed by
Friedland and Park (1992), the estimator for a is given by
(5), where k > 0 and µ > 0 are design parameters and z
is defined by,
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ż = kJ |ωm|µ−1[Kti− T̂L(ωm, a)]sgn(ωm). (4)

â = z − kJ |ωm|µ. (5)

Considering that (6) is the estimation error,

e = a− â, (6)

and assuming that the true parameter vector a is constant:

ė = − ˙̂a

= −ż + kJµ|ωm|mu−1Jω̇msgn(ωm)

= −kµ|ωm|µ−1[TL(ωm, a)− T̂L(ωm, a)]sgn(ωm)

= −kµ|ωm|µ−1[(a− â)]sgn(ωm)

= −kµ|ωm|µ−1e.

(7)

Thus, from (7) it is proven that the observer error con-
verges asymptotically to 0 if ωm is bounded away from 0.
So, the adaptive estimator of the load torque is given by,

T̂L = z − kJ |ωm|µsgn(ωm). (8)

5. BACKSTEPPING DSC ABLF CONTROLLER
DESIGN

In this section, the backstepping design procedure is ap-
plied step by step applying dynamic surface control using
asymmetric barrier Lyapunov function for the brushless
DC motor position tracking control. The control objective
is to determine a continuous feedback control law such that
the position output y tracks a desired position trajectory
yd(t) while ensuring that all the closed-loop signals are
bounded, and the corresponding constraints are not vio-
lated. Meanwhile, the friction effect is compensated in the
second step of the backstepping design.

First the brushless DC motor model (1) is transformed
into a general form with affine input;

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x2) + g2(x2)x3

ẋ3 = f3(x3) + g3(x3)u

y = x1,

(9)

where

x1 = θ; x2 = ωm; x3 = im; u = U

f1 = 0; g1 = 1

f2 = −
TL

J
; g2 =

Kt

J

f3 = −
R

L
im −

Ke

L
ωm; g3 =

1

L
.

(10)

Step 1:

Assign S1 = yd−x1 as the tracking error and S2 = x2−z2
as the virtual error. Then introduce a filtering virtual
function z2, and let α1 pass through a first-order filter
with a time constant τ2 as follows,

τ2ż2 + z2 = α1, z2(0) = α1(0), (11)

where α1 is a stabilizing function to be designed. From
(11), express the output error of the first-order filter as
χ2 = z2−α1 and ż2 = −χ2

τ2
. Choose an asymmetric barrier

Lyapunov function candidate combined with quadratic
Lyapunov function as follows,

V1 =
1− q(S1)

2
log

k2a1
k2a1 − S2

1

+
q(S1)

2
log

k2b1
k2
b1

− S2
1

+
1

2
χ2
2 (12)

in which,

q(S1) =

{
1, 0 < S1

0, S1 ≤ 0

ka1 = kc1 − Yl0, kb1 = kc1 − Yh0,

where log(·) denotes natural logarithm, and ka1, kb1 are
the constraints on S1. This is based on the perturbation of
the upper and lower bounds of the desired trajectory yd.
It is clear that an asymmetric barrier Lyapunov function
candidate could relax the requirement of initial conditions
on starting values of the output and afford greater flexi-
bility on output constraints. q(S1) is abbreviated as q to
be a simpler notation throughout this paper.

By inspection, V1 is positive definite because V1 = 0 if
and only if S1 = 0 and z2(0) = α1(0) simultaneously
for −ka1 < S1 < kb1. Also, V1 is piecewise smooth and
continuously differentiable within each of the two intervals
S1 ∈ (−ka1, 0] and S1 ∈ (0, kb1) in terms with the fact
that limS1→ 0+

dV1

dS1
= limS1→ 0−

dV1

dS1
= 0. Therefore, V1

is C1 and it is a valid Lyapunov candidate. Furthermore
it is true that the output would not be violated out of
the interval S1 ∈ (−ka1, 0) and S1 ∈ (0, kb1). Design
stabilizing function α1 as follows,

α1 =
1

g1
{−[(1− q)(k2a1 − S2

1) + q(k2b1 − S2
1)]k1S1 − f1 + ẏd}. (13)

Taking the time derivative of χ2,

χ̇2 = ż2 − α̇1

= −
χ2

τ2
+ ζ2(x1, yd, ẏd, ÿd)

(14)

where

ζ2(x1, yd, ẏd, ÿd) =
∂α1

∂x1
ẋ1 +

∂α1

∂yd
ẏd +

∂α1

∂ẏd
ÿd (15)

is a continuous function and has a maximum M2 in a
compact set Ωyd × Ωy under the Assumptions 1 and 2.
According to Young’s inequality, it follows,

|χ2ζ2| ≤
1

2σ2
χ2
2ζ2 +

σ2

2
≤

1

2σ2
χ2
2M2 +

σ2

2
, σ2 > 0

g1S1χ2 ≤ g1max

(
S2
1 +

χ2
2

4

)
.

(16)

The time derivative of V1 can be calculated as:

V̇1 =

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)
S1Ṡ1 + χ2χ̇2

= −k1S
2
1 +

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)
(g1S1S2 + g1S1χ2)

−
χ2
2

τ2
+ χ2ζ2.

(17)

By substituting (16), the following inequality is attained:

V̇1 ≤ −
[
k1 − g1max

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)]
S2
1

−
[

1

τ2
−

g1max

4

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)
−

M2
2

2σ2

]
χ2
2

+
σ2

2
+ g1S1S2

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)
(18)

Therefore, the selection range of constant gain k1 and time

constant τ2 should be limited to k1 > g1max

(
1−q

k2
a1−S2

1
+

q
k2
b1

−S2
1

)
and 1

τ2
≥

[
g1max

4

(
1−q

k2
a1−S2

1
+ q

k2
b1

−S2
1

)
+

M2
2

2σ2

]
in

order to guarantee closed-loop stability. The last term

g1S1S2

(
1−q

k2
a1−S2

1
+ q

k2
b1

−S2
1

)
would be canceled in the sub-

sequent steps.

The same procedure is repeated for step 2 (Qiu et al.,
2015) which leads to the final step 3.

Step 3: From step 2, S3 = x3 − z3. Choose a Lyapunov
function candidate as:

V3 = V2 +
1

3
S2
3 . (19)

The final control law becomes;

u =
1

g3

(
− k3S3 − f3 − g2S2 −

χ3

τ3

)
(20)

The complete proof can be confirmed in (Qiu et al., 2015).

6. SELF OPTIMIZING CONTROL LAYER FOR THE
BACKSTEPPING ABLF CONTROLLER

In this section, an online self optimizing control (SOC)
layer is added to the backstepping ABLF controller to
improve the steady state performance of the brushless
DC motor system for a longer operation period as shown
in Fig. 1. As can be observed, the SOC control layer is
added on top of the system, which monitors the closed-
loop performance under a repetitive task defined as a
square reference signal r looking for the optimization of
the controller parameters k1, k2, and k3 that minimize the
economic cost function (21) defined as the position steady
state error ess of the motor.

J = ess (21)

Fig. 1. Self-Optimizing Control Architecture for Brushless
DC motor system

In this paper, the Globalized Constrained Nelder-Mead
(GCNM) optimization algorithm proposed by Viola and
Chen (2020) is employed as optimization algorithm on the
SOC control layer. It is an adaptation of the classic Nelder-
Mead algorithm (Nelder and Mead, 1965) designed to
operate online with the closed-loop system. The flowchart
for the GCNM algorithm is illustrated in (Viola and Chen,
2020). As can be observed, the GCNMmethod employs the
same operations performed by the original NM algorithm:
evaluation, reflection, contraction, expansion, and shirk-
ing, to create the simplex shape consisting of n+1 vertices
where n is the number of parameters of the optimization.
The operations of reflection, contraction, expansion in the
GCNM algorithm are associated with a constant α, β,
γ, δ respectively which are selected as α = 1, β = 1 +
2nr, γ = 0.75 − 0.5nr, δ = 1 − nr with nr = 1/n as
the reciprocal of the number of dimensions following the
adaptive rule for NM algorithm proposed by (Gao and
Han, 2012).

On the other hand, considering that the classic NM
algorithm is prone to fall into local minimum, the GCNM
algorithm introduces a probabilistic restart mechanism
that reset the search from a different random initial
condition to prevent it from falling into a local minima.
Initially, the probabilistic restart evaluates if the cost
function has reached a steady value. For this, the algorithm
evaluates if the standard deviation of the last m values
of the simplex centroid is below a tolerance threshold
ϵ. If this is true, then the optimization is in the steady
state, and the constraints are evaluated. If at least one of
the constraints is not satisfied, the GCNM restarts the
search on a new random point assigning a new set of
initial conditions among the parameter space defined for
the problem following a gaussian sampling distribution.

One of the main advantages of the GCNM algorithm is
that it can be used for any system without prior knowledge
of its dynamical model as a derivative-free algorithm. Like-
wise, considering the sequential structure of the GCNM
algorithm and the low computational complexity of the
algorithm, it can be adapted for real-time execution, con-
ditioning the computation of each of the operations to a
period of the reference signal r. The GCNM have been
implemented on a First Order Plus Dead Time (FOPDT)
system where it successfully optimized the system perfor-
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The time derivative of V1 can be calculated as:

V̇1 =

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)
S1Ṡ1 + χ2χ̇2

= −k1S
2
1 +

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)
(g1S1S2 + g1S1χ2)

−
χ2
2

τ2
+ χ2ζ2.

(17)

By substituting (16), the following inequality is attained:

V̇1 ≤ −
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k1 − g1max

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)]
S2
1

−
[

1

τ2
−

g1max

4

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)
−

M2
2

2σ2

]
χ2
2

+
σ2

2
+ g1S1S2

(
1− q

k2a1 − S2
1

+
q

k2
b1

− S2
1

)
(18)
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1
+

q
k2
b1

−S2
1
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τ2
≥

[
g1max

4

(
1−q

k2
a1−S2

1
+ q

k2
b1

−S2
1

)
+

M2
2

2σ2

]
in

order to guarantee closed-loop stability. The last term

g1S1S2

(
1−q
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1
+ q
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1
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would be canceled in the sub-

sequent steps.

The same procedure is repeated for step 2 (Qiu et al.,
2015) which leads to the final step 3.

Step 3: From step 2, S3 = x3 − z3. Choose a Lyapunov
function candidate as:

V3 = V2 +
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The final control law becomes;

u =
1

g3

(
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χ3

τ3

)
(20)

The complete proof can be confirmed in (Qiu et al., 2015).

6. SELF OPTIMIZING CONTROL LAYER FOR THE
BACKSTEPPING ABLF CONTROLLER

In this section, an online self optimizing control (SOC)
layer is added to the backstepping ABLF controller to
improve the steady state performance of the brushless
DC motor system for a longer operation period as shown
in Fig. 1. As can be observed, the SOC control layer is
added on top of the system, which monitors the closed-
loop performance under a repetitive task defined as a
square reference signal r looking for the optimization of
the controller parameters k1, k2, and k3 that minimize the
economic cost function (21) defined as the position steady
state error ess of the motor.

J = ess (21)

Fig. 1. Self-Optimizing Control Architecture for Brushless
DC motor system

In this paper, the Globalized Constrained Nelder-Mead
(GCNM) optimization algorithm proposed by Viola and
Chen (2020) is employed as optimization algorithm on the
SOC control layer. It is an adaptation of the classic Nelder-
Mead algorithm (Nelder and Mead, 1965) designed to
operate online with the closed-loop system. The flowchart
for the GCNM algorithm is illustrated in (Viola and Chen,
2020). As can be observed, the GCNMmethod employs the
same operations performed by the original NM algorithm:
evaluation, reflection, contraction, expansion, and shirk-
ing, to create the simplex shape consisting of n+1 vertices
where n is the number of parameters of the optimization.
The operations of reflection, contraction, expansion in the
GCNM algorithm are associated with a constant α, β,
γ, δ respectively which are selected as α = 1, β = 1 +
2nr, γ = 0.75 − 0.5nr, δ = 1 − nr with nr = 1/n as
the reciprocal of the number of dimensions following the
adaptive rule for NM algorithm proposed by (Gao and
Han, 2012).

On the other hand, considering that the classic NM
algorithm is prone to fall into local minimum, the GCNM
algorithm introduces a probabilistic restart mechanism
that reset the search from a different random initial
condition to prevent it from falling into a local minima.
Initially, the probabilistic restart evaluates if the cost
function has reached a steady value. For this, the algorithm
evaluates if the standard deviation of the last m values
of the simplex centroid is below a tolerance threshold
ϵ. If this is true, then the optimization is in the steady
state, and the constraints are evaluated. If at least one of
the constraints is not satisfied, the GCNM restarts the
search on a new random point assigning a new set of
initial conditions among the parameter space defined for
the problem following a gaussian sampling distribution.

One of the main advantages of the GCNM algorithm is
that it can be used for any system without prior knowledge
of its dynamical model as a derivative-free algorithm. Like-
wise, considering the sequential structure of the GCNM
algorithm and the low computational complexity of the
algorithm, it can be adapted for real-time execution, con-
ditioning the computation of each of the operations to a
period of the reference signal r. The GCNM have been
implemented on a First Order Plus Dead Time (FOPDT)
system where it successfully optimized the system perfor-
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mance. In this paper, for the first time, the GCNM is
implemented on a non-linear system - the Brushless DC
Motor.

7. OBTAINED RESULTS

A simulation benchmark was built in Simulink/Matlab for
the backstepping ABLF controller with SOC control layer
following the procedure presented on sections 5 and 6. The
system was tested for a reference square wave signal of
amplitude π/2 and frequency of 2Hz. The parameters of
the brushless DC motor used for this simulation are J =
1.8× 10−2 kg.m2, R = 0.21 Ω, L = 0.003 H, Ke = 9.55×
10−3 V/rad.s−1, Kt = 9.55 × 10−3 Nm/A. The files for
the backstepping ABLF controller can be downloaded at
https://github.com/jnwok/ABLF_SOC_benchmark.git.

The simulation results for the backstepping ABLF con-
troller without the SOC control layer are shown in Fig 2
using as controller gains k1 = 10, k2 = 1, k3 = 10, τ1 =
0.05 × 10−2, τ2 = 10−2. As can be observed for a time
less than t = 10s, the controller starts tracking the ref-
erence signal and keeps it stable until t = 40s. Then at
t = 40s, the system dynamics induces a tracking loss
that is compensated by the backstepping ABLF controller
after 10 seconds. It indicates that a supervisory layer that
monitors the closed-loop performance of the system is
required to avoid the tracking loss. For this reason the
SOC control layer is introduced, using the controller gains
for the backstepping ABLF controller as initial condition
for the GCNM algorithm.

Figure 3 shows the performance of the backstepping ABLF
controller with SOC control layer for the position track-
ing task. It can be seen that the GCNM optimization
algorithm compensates not only for any unstable behavior
from 40s to 50s, but also for the steady-state error of the
motor position, making the system more robust against
model disturbances and uncertainties. The convergence of
the controller terms k1, k2 and k3 are shown in Fig. 4.
Once the SOC control layer is activated once the simu-
lation starts, it finds the optimal values around t = 10s
corresponding to k1 = 2.931, k2 = 0.474, k3 = 20.693,
which minimizes the steady-state error. Likewise, Fig. 5
shows the evolution of the cost function which reaches its
optimal value around t = 10s.

On the other hand, an offline optimization is performed
to find the optimal values for k1, k2, k3 employing the
Simulink Design Optimization toolbox (SLDO) Math-
works Inc (2020) to compare its performance with the
SOC online optimization, obtaining k1 = 6.272, k2 =
2399, k3 = 31.917. The backstepping ABLF controller
response with the gain values obtained from SLDO op-
timization is shown in Fig 6. It can be observed that
the controller with the gains obtained with the SLDO
compensates for the instability at t = 40s shown in Fig. 2.
However, it is not able to compensate for the steady-
state error as when the SOC control layer is introduced.
Likewise, there is no overshoot for the backstepping ABLF
controller when the SLDO optimization is performed, but
its settling time is bigger compared to the controller with
and without SOC layer. In addition, the SLDO finds a

very high gain for k2 = 2399, which could lead to high
noise amplification in a real implementation.

Likewise, a performance comparison between the back-
stepping ABLF controllers is shown in Table 1. As can
be observed, the backstepping ABLF controller with SOC
control layer significantly reduces the steady-state error
of the system compared to the other controllers evalu-
ated, with a small settling time (15ms) and an overshoot
less than 2%. Regarding the settling time and overshoot,
the backstepping ABLF controller optimized offline with
SLDO has a considerable bigger settling time with almost
no overshoot. In the case of the ABLF controller without
SOC, it has the biggest overshoot around 8% and the
smallest settling time (13ms).

Thus, we can say that the backstepping ABLF controller
with an SOC layer is able to improve the position tracking
response of the non-linear system, compensating for the
steady state error, overshoot, and settling time as well as
reducing the effect of model disturbances and uncertainties
within a reasonable time while monitoring the closed-loop
response of the system.

Fig. 2. Backstepping controller design response before
optimization. Top - from 0 to 100s, bottom - from
30 to 35s

Fig. 3. Backstepping controller design response after opti-
mization. Top - from 0 to 100s, bottom - from 30 to
35s

Fig. 4. Optimal tuning gains

Fig. 5. Cost function convergence

Fig. 6. Backstepping controller design response after opti-
mization with SLDO. Top - from 0 to 100s, bottom -
from 25 to 30s

Table 1. Backstepping ABLF Controllers Per-
formance Assessment

Parameter
Backstepping Controller

ABLF ABLF SOC ABLF SLDO

k1 10 2.931 6.2718
k2 1 0.474 2399
k3 10 20.693 31.9167

Overshoot (%) 8.03 1.9 0.35
Settling time (ms) 13 15.7 100

Error 0.047 0.012 0.065

8. CONCLUSIONS AND FUTURE WORK

In this paper, a backstepping ABLF dynamic surface con-
trol (DSC) with an observer-based friction torque com-
pensator is combined with a self optimizing control (SOC)
layer for the position tracking control of a non-linear
brushless DC (BLDC) motor system. The SOC controller
employed the Globalized constrained optimization algo-
rithm (GCNM) for the online monitoring of the closed-
loop system performance employing the steady-state error
as cost function.

The obtained results show that the performance of the
backstepping ABLF controller is not robust enough for a
prolonged execution of the system, producing disturbances
and uncertainties on the system which affect the tracking
position performance. If an offline optimization procedure
of the controller parameters is performed, it leads to high
gains that makes the system more sensitive to random
noise, also the controller is not able to compensate prop-
erly for the steady-state error.

For this reason, the SOC layer is included to provide a su-
pervisory layer that monitors the closed-loop performance
and adjusts the controller terms to keep the position track-
ing under unexpected disturbances and uncertainties of
the model. Thus, the SOC control architecture presented
in this paper can be applied to other nonlinear systems
with variable time behavior.

As future works, a second SOC layer can be added to
monitor and optimize the friction constant estimation a.

Moreover, a high order online optimization problem can
be solved by introducing more tuning knobs like τ2 and τ3.
However, a rigorous theoretical convergence, stability, and
globalness analysis of the SOC controller with nonlinear
systems are required to ensure the algorithm convergence
in finite time.
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pervisory layer that monitors the closed-loop performance
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