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The dynamics of brushless DC motor (BLDCM), a type of permanent magnet synchronous motor (PMSM) 

is investigated. The dynamical model of the BLDCM is compared to a mostly used model of PMSM. The 

BLDCM transition to chaos is briefly investigated both on the local level through local bifurcations and 

global level through manifold and invariant sets. All the transition parameter values are given. Apart from 

transition, multistability of the BLDCM is observed and assessed with stability basin. For some parameter 

values all dynamic modes (stable fixed point, limit cycle, chaotic attractor) coexist. For other parameter 

values multistability concerns different stable equilibria. Also, hidden chaos which is of non-Shilnikov 

type is examined and reported in BLDCM with the method of homotopy. Hidden chaos is defined from 

the basin of attraction. Transient features of the hidden chaotic set are studied. Finally, transient time of 

hidden chaos improves with two methods: critical velocity (acceleration) surfaces and Broyden-Fletcher- 

Goldfarb-Shanno (BFGS) algorithm. 
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. Introduction 

Since the seminal work of Lorenz [1] in the study of weather

redictions, research in chaos theory has taken various directions.

he discovery and analysis of other chaotic systems [2–5] and

yperchaotic systems [6–7] have followed. 

Different types of studies were conducted on these systems.

ost of these chaotic systems were numerical, and therefore the

nterpretation of different dynamical behaviors was more concep-

ual than physical. 

Chaos was also investigated in real physical systems [8] . In me-

hanical systems like double pendulum [9] or triple pendulum [10] ,

haos was observed theoretically and practically. In electromechan-

cal systems such as the beam coupled with an oscillator [11] , elec-

romechanical transducer [12] or brushless DC motor (BLDCM) [13] ,

haos has been investigated. 

BLDCM has been investigated for its advantages such as small

ize, high efficiency, high speed range and have been utilized in

he automotive industry (electrical vehicles), the aerospace indus-

ry, and medical instrumentation [14–15] . 

In all these classical chaotic systems, whether numerical

r physical systems, self-excited chaos was mostly investigated.
∗ Corresponding author. 
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elf-excited chaotic attractors are excited from unstable equilib-

ia. Less than a decade ago, however, a new class of attractors

ere observed in Chua’s circuit [16–18] and later in Rabinovich

ystem, phase-locked loop, coupled Chua circuits [19] , Lorenz-like

ystems [20] . These attractors are excited either without equilib-

ium or from stable equilibria. 

The traditional Lorenz system was revisited and sufficient at-

ention for hidden chaos was recently drawn. Munmuangsaen and

risuchinwong [21] have shown with extensive computer search

hat classical Lorenz system possesses hidden chaotic attractor.

uan et al. [22] , also, studied the existence of hidden chaos in the

raditional Lorenz system. 

The interest in hidden chaos has increased as hidden chaos has

ecome a new and promising research direction. For example, hid-

en hyperchaos has also been reported [23] . Although based on the

ynamo, the system is still mathematical as two artificial states are

dded. And with hidden chaos, multistability becomes a specific

eature of concern. Bridges have collapsed [24] and drilling rigs

ith induction motors [25] have failed due to uncontrolled mul-

istability. Maybe the worst disaster came with 1992 YF-22 Boeing

rash caused by the sudden shift to an undesirable attractor [26] .

oexistence of attractors have been found in hidden chaotic sys-

ems such as variable-boostable systems which possess no equilib-

ium and have been implemented electronically [27–29] . 

In this paper, hidden chaos, this new trend in chaos theory

s investigated on BLDCM while physical meaning of parameters

https://doi.org/10.1016/j.chaos.2020.109606
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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Table 1 

Equilibria and eigenvalues of PMSM described by Eq. (3) . 

Equilibrium Eigenvalue ⎡ 

⎣ 

0 . 0 02960450 076482 

±0 . 207166024983329 

±0 . 014290229689302 

⎤ 

⎦ 

−0 . 999793435104483 

−23 . 027584015877803 

16 . 567377450982296 ⎡ 

⎣ 

0 

0 

0 

⎤ 

⎦ 

−3 . 23 + j16 . 673457744048275 

−3 . 23 − j16 . 673457744048275 

−1 . 00 ⎡ 

⎣ 

13 . 460075522153391 

±3 . 741318233785868 

±3 . 597682603566530 

⎤ 

⎦ 

1 . 901238469646910 + j5 . 87394634 80536 86 

1 . 901238469646910 − j5 . 87394634 80536 86 

−11 . 262476939293814 
is maintained. Although hidden chaos has been reported in per-

manent magnet synchronous motors (PMSM) recently [30] , we

make some comments on that paper while objecting to some

results therein. The existence of extra equilibria influences the

dynamics of a system to a large extent. In this way, multistability

and coexistence of attractors of the BLDCM are investigated. Local

bifurcation and global bifurcation (especially homoclinic manifold

and transition from global stability to chaos) are analyzed. Most

importantly, hidden chaos is reported in BLDCM. We extend previ-

ous work [31] . Although recent methods to localize hidden chaos

include perpetual points (PP) [32–33] , regular points [34] , critical

surfaces [35] , the suitable method for BLDCM is homotopy [36] .

And while in most recent studies on hidden chaos [21,22,30] tran-

sient behavior is just observed, our contribution also includes the

description of transient properties and improvement of transient

time of the BLDCM. To this end, critical surfaces and optimization

method like Broyden-Fletcher-Goldfarb-Shanno (BFGS) [37] which

have not been used in the study of transient properties are

proposed. 

The rest of paper is organized as follows. In Section 2 the model

of BLDCM is compared to another model of PMSM and the choice

of the model is justified. The transition of the BLDCM to chaos is

described both locally and globally in Section 3 . In Section 4 , first

multistability of BLDCM is analyzed. Then, hidden chaos is high-

lighted and the transient properties of BLDCM are studied. Finally,

Section 5 concludes this paper. 

2. BLDCM and PMSM models and real scenario 

The non-salient-pole BLDCM model in the d-q rotating frame

obtained after a Park transformation comprises differential equa-

tions for three state variables [13] : 

d i q 

dt 
= ( −R i q − nLω i d − n k t ω + v q ) /L, 

d i d 
dt 

= ( −R i d + nLω i q + v d ) /L, 

dω 

dt 
= (n k t i q − bω + T L ) /J, 

(1)

where i q the quadrature-axis current, i d the direct-axis current,

ω rotor velocity; t is the elapsed time; for the parameters, R is

the winding resistance matrix with L = 

3 
2 L a , L a the self-inductance

of the winding, n the number of permanent-magnet pole pairs,

k t = 

√ 

3 / 2 k e , k e the coefficient of motor torque, J the moment of

inertia, b the damping coefficient; for the input variables, v q and v d 
are the voltages across the quadrature axis and direct axis, respec-

tively, and T L the external torque. This model describes a smooth

air-gap machine where the variation of reluctance in the air gap L g 
is zero. 

Singh et al. [30] have described the possibility of existence of

hidden attractor in PMSM. The model follows [38] : 

d i q 

dt 
= ( −R i q − nLω i d − ψ r ω + v q ) /L, 

d i d 
dt 

= ( −R i d + Lω i q + v d ) /L, 

dω 

dt 
= (n ψ r i q − bω − T L ) /J. 

(2)

The following transformation is made: γ = − ψ r 

k L q 
, σ = 

bτ
J , ˜ v d =

1 
Rk 

v d , ˜ v q = 

1 
Rk 

v q , ˜ T L = 

τ2 

J T L , τ = 

L q 
R , k = 

b 
nτψ r 

, L d = L q = L , i q = ky ,

i d = kx , ω = 

z . 
τ
When 

˜ v d = 0 , ˜ v q = 0 and 

˜ T L = 2 sin ( πcy ) , Eq. (2) is transformed

nto the new model [30] : 

dx 

dt 
= −x + yz, 

dy 

dt 
= −y − xz + γ z, 

dz 

d t 
= σ (y − z) − 2 sin (πcy ) . 

(3)

Some problems regarding the work in [30] are listed below. 

.1. Non-dimensionalization problem 

The PMSMS model [Eq. (2)] is different from Hemati [13] ’s

LDCM model [Eq. (1)] . Both models become similar under only

ne condition, when the number of pole pairs is one, i.e., n = 1 .

hen the physical meaning of parameters of PMSM is kept, it is

hysically impossible to have chaos from the chosen parameters

30,38] . In order to have a positive γ as in the illustration of chaos,

ome parameters like ψ r , L q , n, L, R should be negative. This vio-

ates the real condition. 

.2. Problem of condition of stable equilibrium 

According to Singh et al. [30] , there is only one equilibrium,

amely S 0 = [ 0 , 0 , 0 ] T . When σ = 5 . 46 , γ = 14 . 5 and c > 0.9, this

quilibrium is sink node. In fact, we obtain that all eigenvalues of

he origin equilibrium are negative when c > 

σ (γ −1) 
2 πγ . 

.3. Problem of number of equilibrium points 

Given σ = 5 . 46 , γ = 14 . 5 and c = 0 . 809466400974780 , the

urprising fact is that the PMSM possesses other equilibria. Since

e cannot not find these equilibria analytically we refer to the

umerical methods. By applying unconstraint multi-objective opti-

ization techniques, other equilibria are found. We briefly expose

hose equilibria and their stability condition for c = 3 . 975 , the case

escribed in the paper. The equilibria and their eigenvalues are

ighlighted in Table 1 . 

Among these five equilibria, only one equilibrium is focus-node

ink. All the remaining four equilibria are of saddle type: two sad-

le focus and two saddle nodes. The effects of the equilibria on the

eneration of the chaos should be specified. 

In the current paper the physical meaning of the BLDCM

odel’s states and parameters is kept. The behavior has been ana-

yzed and important features have been found by bifurcation [39] . 

When v q = 0 , T L = 0 , the BLDCM of Eq. (2) possesses three equi-

ibria as 

 0 = 

[ 
0 , 

v d 
R 

, 0 

] T 
and S 1 , 2 = 

[
± 1 

n 2 k t L 

√ 

�, − n 2 k t 
2 + Rb 

n 2 k t L 
, ± 1 

nbL 

√ 

�

]T 
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here � = −( b n 2 L k t v d + Rb n 2 k t 
2 + R 2 b 2 ) . Ther efor e we hav e one

quilibrium on the symmetric axis ( S 0 ) and two symmetric equi-

ibria ( S 1, 2 ). 

The scenario of multistability in the BLDCM is discussed in

ection 4 for a certain range of parameters. The following values

f parameters given by Hemati [13] are used: k t = 0 . 031 Nm / A , n =
 , L = 14 . 25 × 10 −3 H , R = 0 . 9 	, b = 0 . 0162 Nm / rad / s , J = 4 . 7 ×
0 −5 Kg m 

2 , v q = 0V , T L = 0N . 

. Transition to chaos 

In the study of dynamical systems, the transition to chaos has

een studied. The transition can consider local features (local bi-

urcation) or global features (global bifurcation). 

On the local level, different bifurcations have been studied. For

xample, pitchfork bifurcation exists when the number of equilib-

ia change from three to one [39] . When there is one equilibrium,

t is not only stable but also globally stable. 

heorem 1. If v d > v dc with v dc = − b R 2 + k 2 t n 
2 R 

k t L n 2 
, the BLDCM system’s

quilibrium is globally asymptotically stable . 

Proof: Set Lyapunov function 

 = 

1 

2 

(
p 1 i 

2 
q + p 2 

(
i d −

v d 
R 

)2 

+ p 3 ω 

2 

)
, (4) 

here p 1 , p 2 , p 3 > 0. When ‖ i q , i d , ω‖ → ∞ , the Lyapunov function

olds E → ∞ . And 

˙ 
 = −R p 1 i 

2 
q 

L 
− R p 2 

L 

(
i d −

v d 
R 

)2 

− bp 3 ω 

2 

J 
− n p 1 i q i d ω + n p 2 i q i d ω 

+ 

n k t p 3 i q ω 

J 
− n k t p 1 i q ω 

L 
− n v d p 2 i q ω 

L 
. (5) 

Setting p 1 = p 2 , then we have 

˙ 
 = −R p 1 i 

2 
q 

L 
− R p 1 

L 

(
i d −

v d 
R 

)2 

− b p 3 ω 

2 

J 
+ 

n k t p 3 i q ω 

J 

− n k t p 1 i q ω 

L 
− n v d p 1 i q ω 

L 
. (6) 

Setting F = 

L 
R p 1 

( 
n k t p 3 

J − n k t p 1 
L − n v d p 1 

L ) with p 1 � = 0. 

˙ E = − R p 1 i 
2 
q 

L − R p 1 
L ( i d − v d 

R ) 
2 − b p 3 ω 

2 

J + 

F R p 1 i q ω 
L , so that 

˙ 
 = −R p 1 

L 

(
i q − F ω 

2 

)2 

− R p 1 
L 

(
i d −

v d 
R 

)2 

− b p 3 
J 

(
1 − JR p 1 F 

2 

4 Lb p 3 

)
ω 

2 .

(7) 

˙ 
 < 0 when ( 1 − JR p 1 F 

2 

4 Lb p 3 
) ≥ 0 . This condition implies that p 3 is pos-

tive real coefficient only when p 3 ∈ [ p 31 , p 32 ] and v d ≥ − b R 2 + k 2 t n 
2 R 

k t L n 2 

ith b, R, n, k t > 0. 

As the Lyapunov function has been obtained such that E >

 , E( S 0 ) = 0 , ˙ E < 0 , BLDCM’s equilibrium is globally asymptotically

table in the range v > v ; the proof is complete. 
d dc 

Table 2 

Critical parameter values for evolution of dynamics. 

v d < v dH v dH v dcrit 2 v dcrit 1 

1S, 2 SF2 1 S, 2UF 1 S, 2SF 1 S, 2 SF

< −29 . 67V −29 . 67V −28 . 62V −28 . 53V

Fig. 1. Critical values of the bifurcation pa
There is also Hopf bifurcation which is an important transition

t v dH . The Shilnikov inequality | ηγ | < 1 holds with γ < 0; η > 0;

� = 0 when v d < v dH as the symmetric equilibria have one real

igenvalue γ and two imaginary eigenvalues η ± j ϖ. Therefore

hilnikov chaos [40–41] is present in BLDCM. 

When v d = v dH , there is a coexistence of a periodic attractor

nd a chaotic attractor. The period attractor (limit cycle) can be

ocalized locally around the symmetric equilibria. 

Once, we obtained that v dH = 

−2 J 2 k 2 t R 
2 n 2 + J k 2 t LRb n 2 +4 J L R 2 b 2 + L 2 R b 3 

2 J 2 k t LR n 2 −bJ k t L 2 n 2 
is

he Hopf bifurcation voltage [39] . Table 2 gives all the parameter

ritical values when k t = 0 . 031 Nm / A , n = 4 , L = 14 . 25 × 10 −3 H , R =
 . 9 	, b = 0 . 0162 Nm / rad / s , J = 4 . 7 × 10 −5 Kg m 

2 , v q = 0V , T L = 0N . 

In Table 2 , S denotes saddle, UF unstable focus, SF stable focus,

F2 saddle focus with index 2 and SN stable node. In order to bet-

er illustrate the values, the following axis is given. 

For a certain range v dH ≤ v d < v dcrit 2 a type of chaotic attractor

xists. This chaos is not of a Shilnikov type. 

As observed [41] , the symmetric equilibria are responsible for

enerating chaos. This observation is crucial for this study. 

Regarding global manifold, we consider the case of the sta-

le global manifold on the BLDCM first. When, i q = 0 , ω = 0 from

q. (1) then 

d i d 
dt 

= ( −R i d + v d ) /L so that i d = 

v d 
R 

− v d 
R 

e −
Rt 
L + i d (0) e −

Rt 
L . 

hen t → ∞ , i d = 

v d 
R . 

Trajectories starting from the initial conditions in this invariant

et will remain in this set and this confirms the idea of manifold.

he manifold is stable as the equilibrium will be reached in for-

ard time. Thus the i d -axis is always a part of the stable manifold

or the equilibrium on the symmetric axis, the BLDCM model being

ymmetric [31] . 

On the global level, the homoclinic orbit and different global

anifolds offer interesting features. The homoclinic bifurcation il-

ustrates the qualitative change of properties on the global scale.

hen v d = v dHom 

with v dHom 

= −15 . 453701864361906V [ Table 2 ,

ig. 1 ], 

BLDCM undergoes the homoclinic bifurcation as illustrated in

ig. 2 . 

When v d > v dc , there is only one invariant set with one stable

quilibrium as illustrated in Fig. 3 (a). 

When v dHom 

< v d < v dc , there are three invariants sets: two

nvariant sets with one stable equilibrium each [ Fig 3 (b)] and one

table manifold (not plotted). 

When v dcrit 1 < v d < v dHom 

, there are three invariant sets: two

nvariant sets with the two stable equilibria [ Fig. 3 (c)] and one sta-

le manifold (not plotted). 

When v dcrit 2 < v d < v dcrit 1 there are four invariant sets: hid-

en chaotic set and two invariant stable sets (one for each stable

quilibrium) [ Fig. 3 (d)]. The fourth set involves stable manifold of

he origin (not plotted). Therefore, the basin of attraction is divided

nto four regions. 
v dHom v dc v d > v dc 

 1 S, 2 SF 1 SN 1 SN 

 −15 . 4537V −3 . 184V > −3 . 184V 

rameter for evolution of dynamics. 
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Fig. 2. Projections of the homoclinic orbit. 
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When v dH < v d < v dcrit 2 , the first three invariant sets fusion into

a non-Shilnikov chaotic set [ Fig. 3 (e)]. The second set consists of

stable manifold of the origin (not plotted). 

With v d < v dH , the non-Shilnikov chaos turns into the self-

excited Shilnikov chaos [ Fig. 3 (f)]. The second invariant set is the

stable manifold of the saddle equilibrium. In Fig. 3 (b–f), the trajec-

tories in blue and red stem from initial conditions on the unsta-

ble manifold of the saddle equilibrium S 0 while the trajectories in

green start from [2, 2, 2] T , which also used in Fig. 3 (a). 

Remark 1. Hidden chaos is mainly non-Shilnikov. Not every non-

Shilnikov chaos is hidden. 

In the next section, multistability, hidden chaos and transient

behavior of this chaos are described. 

4. Multistability, hidden chaos and transient properties 

4.1. Multistability 

The BLDCM demonstrates the feature of multistability. While lo-

cal stability has been used to highlight the concept of multista-

bility, limitations should be highlighted. Small disturbance conver-

gence rate and linear stability are unreliable proxies of how sta-

ble a state is against non-small disturbances [42] . Basin stability

is therefore preferred as it reveals features of global stability. Be-

cause of global features, basin stability addresses stability on all

stable equilibria. The estimation of the basin stability is achieved

as follows; N initial conditions are drawn randomly in a certain re-

gion and the system equations are integrated. The number of cases

when stable equilibria are reached is counted as M and the ratio

M / N is the stability basin estimate of those stable equilibria. For

BLDCM, we define two regions: 

I s 1 = { (i q , i d , ω) | − 2 . 301 < i q < 17 . 698 , −2 . 301 < i d 

< 17 . 698 , 48 . 927 < ω < 68 . 927 } , and 

I s 2 = { (i q , i d , ω) | − 2 < i q < 2 , −2 < i d < 2 , −2 < ω < 2 } . 
In Fig. 4 (a) the basin stability of BLDCM is defined around the

symmetric equilibria in the I s 1 region while in Fig. 4 (b) the basin

stability in I s 2 is given. 

When the basin stability is close to zero, BLDCM has a lower

probability of converging to the stable nodes. When the stability is

close to one, BLDCM has a higher probability to converge to stable

nodes. In Fig. 4 (a), where chaos and limit cycles coexist in the re-

gion I s 1 , basin stability is closer to zero around v dH than in Fig. 4 (b)

where the stable manifold and chaotic region coexist. However,

around v dcrit 1 and v dcrit 2 , the basin stability of I s is closer to zero

2 
 Fig. 4 (b)] than that of I s 1 [ Fig. 4 (a)]. For the rest of the range, basin

tability is the same for both regions I s 1 and I s 2 . 

The uncertainty of the final state is the major concern for the

LDCM, especially as the applications of the BLDCM vary accord-

ng to the utility. Useful chaos for mixing, compacting and grinding

ill mainly focus on irregular oscillations that fulfil all the condi-

ions of chaos. When chaos is detrimental, control and synchro-

ization are needed. Yet multistability combines chaotic dynamics

nd non-chaotic dynamics. 

As mentioned previously, for example, when v d = v dH , there

s a coexistence of two periodic attractors (stable limit cycles)

s illustrated in Fig. 5 (a)-(b) when initial conditions [ ±7 . 6985 ,

4 . 2383 , ±58 . 9271] T are around symmetric equilibria and a

haotic attractor in Fig. 5 (d) with [0.1, 0.1, 0.1] T as initial conditions.

Actually, there exists also a stable focus node when initial con-

itions are drawn from the stable manifold of the saddle equi-

ibrium as in Fig. 5 (c) with initial conditions at [0 , −10 , 0] T . This

eans that the final state can be of the three possibilities. 

This case is even more interesting as it outlines the coexis-

ence of three important dynamic behaviors: stable fixed points,

imit cycle and chaos. These dynamic behaviors coexist for the

ame parameters subjecting only to the initial conditions change.

herefore, multistability concerns different dynamic behaviors. The

hysical meaning of initial conditions is important. For example,

hen the motor starts running with a negative angular velocity,

he motor is rotating in clockwise direction, opposite with respect

o the positive direction. 

The main issue here involves the choice of desired equilibrium

rom specific initial conditions. In particular, the question becomes

he following; which initial conditions lead to which equilibrium? 

.2. Hidden chaos 

A crucial question needs an answer, which equilibrium pro-

uces chaos? According to Singh et al. [30] , with the stable trivial

quilibrium, hidden chaos is produced. But the generation of chaos

y nontrivial equilibria is obvious with our system. The nontrivial

symmetric) equilibria are stable foci in the range of the study. 

We recall that when v dcrit 2 < v d < v dcrit 1 , there are four invari-

nt sets: hidden chaotic set and two invariant stable sets (one for

ach stable equilibrium). This hidden chaos is defined as its basin

f attraction does not intersect with the small vicinities of the sad-

le equilibrium. Hidden chaos in BLDCM follows more the patterns

f a transient chaotic set than that of an attracting chaotic set (at-

ractor) [43] . 

In this regard, the BLDCM demonstrates hidden transient

haotic set. The basin of the saddle equilibrium S is viewed in
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Fig. 3. From stability to self-excited chaos: attractors at different parameter values. (For interpretation of the references to color in the text, the reader is referred to the 

web version of this article.) 
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ig. 6 . The considered section is i d = 

v d 
R , on which the equilibrium

 0 is located. Particularly, we choose v d = −28 . 6V . 

From Fig. 6 , the chaos region of the basin is in green. The re-

ions in blue and red belong respectively to the space of stability

o the symmetric equilibria S 1 and S 2 . Trajectories with initial con-

itions in the blue (red) stable region converge to the equilibrium

 1 ( S 2 ). Clearly, the basin of attraction of chaotic set in green color

oes not intersect with the saddle equilibrium S 0 and this confirms

he existence of hidden chaotic set. 

In fact, Fig 6 describes the basin of the attraction in the i q − ω
lane only when i d = 

v d 
R . The sections i d = 

v d 
R + 0 . 001 and i d =

v d 
R − 0 . 001 were also verified for the same duration. Then we re-

eat the exercise for the planes i q − i d and i d − ω, respectively
 s
hen ω = 0 and i q = 0 . For these nine sections, there is no inter-

ection between chaos region and the saddle equilibrium, as stated

n the paper. 

Now we can observe the dynamics around the symmetric equi-

ibria. We consider another section of the space in order to view

he two symmetric equilibria. The plane of these two equilibria is

 d = − n 2 k t 
2 + Rb 

n 2 k t L 
. 

The two equilibria belong to their respective region of basin of

ttraction as illustrated in Fig. 7 . The region in green represents

he initial conditions for which the hidden chaotic set is visualized.

or the stable region in blue (red) color, the trajectories converge

o S 1 ( S 2 ). At v d = −28 . 6V , these two symmetric equilibria are
table. 
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Fig. 4. Basin stability of BLDCM. 

Fig. 5. Coexistence of different dynamic modes. 
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Fig. 6. Different regions of basin of attraction around the saddle equilibrium S 0 . 

(For interpretation of the references to color in the text, the reader is referred to 

the web version of this article.). 

Fig. 7. Different regions of basin of attraction around the stable focus equilibria 

S 1 and S 2 . (For interpretation of the references to color in the text, the reader is 

referred to the web version of this article.). 
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Fig. 8. Distribution of eigenvalues of symmetric equilibria. (For interpretation of the 

references to color in the text, the reader is referred to the web version of this 

article.). 
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The distribution of eigenvalues that show the type of stability

f these two equilibria is illustrated in Fig. 8 . The red region rep-

esents the parameter space where the two equilibria are stable

ocus nodes. And the blue region represents the space where the

wo equilibria are saddle focus nodes with index 2. Hidden chaotic

et exists only in the region (red) of stable focus node in Fig. 8 . 

There have been several attempts to localize such hidden

haotic set. Firstly, we applied the method of perpetual points

PP) [32–33] . By using the perpetual points to identify the hidden

haotic attractor we found that six perpetual points, excluding

he fixed points. But with the parameters of hidden chaos, these

erpetual points turned out to be complex in the region of inter-

st. The perpetual points can be obtained by finding the higher

erivative of the dynamical system, actually by extending the

imension of the system. Maybe by extending to higher orders

more than second order), the PP could be found for BLDCM. We

topped at the second order to avoid more complexity. Apart from

he PP, we have utilized the method of homotopy [36] . In this
ethod we look at the different stable and unstable manifolds

f the saddle equilibrium and we note the behavior of transition.

y considering Fig. 3 we show the appearance and disappearance

f hidden chaos. In green the initial conditions are taken as

 i q (0) , i d (0) , ω(0) ] T = [ 2 , 2 , 2 ] T and the blue and red trajectories 

ave initial conditions on the unstable manifold of the saddle

rigin equilibrium with v d = −28 . 626565874764298V , these three

rajectories are chaotic and combine as illustrated in Fig. 3 (e). But

hen v d = −28 . 626565874764296V , the green trajectory is chaot-

cally hidden while the blue and red trajectories converge around

he equilibria as shown in Fig. 3 (d). 

Therefore, there exists some transition around v d =
28 . 626565874764297V . This transition value cannot be detected

y bifurcation diagram. On the other hand, around the value

 d = −28 . 53V hidden chaos ceases to exist. With the method of

omotopy, v dcrit2 = −28 . 626565874764297V and v dcrit1 = −28 . 53V

re identified. In all the experiment setups we consider that the

ystem runs until t = 300s . For longer time frame, the chaotic set

emonstrates its transient features. In the next section we briefly

escribe the transient features of hidden chaotic set of BLDCM. 

.3. Transient properties 

The effect of transient properties of hidden chaotic set of the

LDCM is observed in Fig. 9 (a)-(b). 

After some time t > 418s, the hidden chaotic set originating

rom [ i q (0) , i d (0) , ω(0) ] T = [ 2 , 2 , 2 ] T converges to the equilibria S 2 
s illustrated in Fig. 9 (b). The fixed step-size is 0.0 0 0 0 01 and the

DE method is ODE5 (Dormant-Prince). While this duration seems

horter than with Singh et al. [30] where t < 570s the fixed step-

ize is smaller. 

It is also well known that the transient chaos can be converted

nto permanent chaos with techniques of chaos maintenance or

reservation [44] , especially for chaos requiring applications such

s mixing or compacting and grinding. Rather than focusing only

n asymptotic states of the BLDCM, transient dynamics are relevant

n terms of observation, prediction and even control. It is beyond

he scope of this paper to apply techniques to maintain chaos. 

Nevertheless, we can find the initial conditions with longer

ransient time. We apply the concept of critical surfaces [34–35] to

nd initial conditions of longer transient time. The critical surfaces

re related to the concept of regular points and perpetual points.
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Fig. 9. Transient hidden chaos. 

Fig. 10. Dynamics of BLDCM chaotic attractor around critical surfaces. 
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We find the points in each state where acceleration is zero while

velocity is non-zero in order to reach the final state in maximum

time. It should be reminded that perpetual points are related to

regular points [34] and critical surfaces [35] . The x i critical velocity
Fig. 11. Transient chao
urface is the surface at which the velocity of the i th variable equal

ero, i.e., ˙ x i = 0 (for each i = 1 , 2 ....N, N being the number total of

tates). The x i critical acceleration surface is the surface at which

he acceleration of the i th variable equal zero, i.e., ẍ i = 0 (for each

 = 1 , 2 ....N, N being the number total of states). 

For the BLDCM, we consider the angular velocity as the state

f observation. The critical velocity surface ˙ ω = 0 is the plane

hat crosses the chaotic set and the critical acceleration surface is

¨  = 0 . 

From Fig. 10 , the critical acceleration surface is the intersection

etween the red part of the plane ω̈ > 0 and the blue part of the

lane ω̈ < 0 . The attractor enters the plane on the blue region (as

hown with the arrow) and returns on the red region as shown by

he arrow. 

The plane separates two regions of space: ˙ ω > 0 and ˙ ω <

 . We locate around the intersection of the two regions in

ig. 10 with the initial conditions i q (0) = −45 . 0168619 , i d (0) =
11 . 770379 , ω(0) = −74 . 080 0 04 . We find a much longer transient

ime 1025s, with the step-size 0.0 0 0 0 01. In the case the attempt

as been to find the initial conditions such that the time for con-

ergence is the longest possible. 

Equally, we utilize optimization techniques such as the

royden-Fletcher-Goldfarb-Shanno (BFGS) algorithm for finding it-

ratively optimal solutions for unconstrained nonlinear objective
s in time series. 
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unctions [37] . The objective function is optimized by two tests.

ither it is maximized or its inverse is minimized. In this way we

void to fall on the equilibrium as the equilibrium will make the

bjective function become zero. The objective function is defined

s 

 ( i q , i d , ω ) = 

(
d i q 

dt 

)2 

+ 

(
d i d 
dt 

)2 

+ 

(
dω 

dt 

)2 

, (8.1)

r 

 ( i q , i d , ω ) = −
[ (

d i q 

dt 

)2 

+ 

(
d i d 
dt 

)2 

+ 

(
dω 

dt 

)2 
] 

. (8.2) 

From [1 , −2 , 4] T by using the BFGS method, the follow-

ng initial conditions were obtained as points of minimum ve-

ocity i q (0) = 15 . 408297155754024 , i d (0) = −4 . 238256932654184 ,

(0) = 117 . 9400523033024 . 

The duration of transient dynamics has improved with the

ethod of the critical velocity and acceleration surfaces by a factor

f 2.452 as in Fig. 11 (a). Also, transient time has improved with the

ptimization technique like BFGS by a factor of 7.416as illustrated

n Fig. 11 (b). Thus, depending on initial conditions, the transient

ime of the hidden chaotic set can vary. 

. Conclusion 

In this paper the dynamical properties of the BLDCM, a type

f permanent magnet synchronous motor (PMSM), were explored.

he model of the BDLCM was reviewed and linked to another

odel of PMSM. Comments on the number of equilibria and their

tability of the PMSM were made. The homoclinic bifurcation of

he BLDCM as an important transition phase towards chaos was

bserved and analyzed. Broadly, transition of the BLDCM towards

haos was studied. This transition was studied locally with differ-

nt bifurcations such as pitchfork, Hopf bifurcations and globally

ith homoclinic bifurcation, manifolds and invariant sets. From

he number of equilibria, the concept of multistability was exam-

ned in terms of basin stability that is related to basin of attrac-

ion. Some cases of multistability were illustrated. Hidden chaos in

LDCM was highlighted from the definition based on the basin of

ttraction of the saddle equilibrium. The BLDCM demonstrates hid-

en chaotic set and the equilibria that generate hidden chaos are

learly identified as stable focus nodes. The localization of hidden

haos was achieved through the method of homotopy. Finally, the

ransient properties of hidden chaos were explained. Two methods

critical surfaces and BFGS) were used to demonstrate the depen-

ence of transient time on initial conditions. In this paper, com-

ents were made on a recent paper, which reported hidden chaos

n PMSM. Since the number of equilibria is actually different, chaos

s not hidden but self-excited. In the future, hidden chaos should

e investigated with regard to basin of attractions in 3D. In addi-

ion, the interactions of different parameters in the generation of

idden and self-excited chaos should be further investigated. 
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