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Abstract: This paper presents an enhanced PID controller design method with an internal feedback PD 
controller. The proposed controller structure is organized as the convex set between PID controller and PI 
controller with an internal PD controller. Control parameters are determined through an optimum tuning 
method to improve the step response characteristics in the controllable set. The new PID structure and 
optimum tuning algorithm are applied to the speed control of brushless direct-current (BLDC) motors. 
Computer simulation results show that the proposed controller is more effective in the performance of 
time domain by comparing with the existence tuning rules of PID controller. 
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1. INTRODUCTION 

The BrushLess Direct Current (BLDC) motors are gaining 
grounds in the industries, especially in the areas of appliances 
production, aeronautics, robotics, computer peripherals, 
consumer and industrial automations and so on. The reason is 
that BLDC motors offer many advantages over the 
conventional brushed DC motors, including higher efficiency, 
reliability, higher starting torque, reduced mechanical and 
electrical noises, and overall reduction of electromagnetic 
interference (EMI).  

Recently, many modern control methodologies such as 
nonlinear control (Hemati et al., 1990), optimal control 
(Pelczewski and Kunz, 1990), variable structure control (Lin 
et al., 1999) and adaptive control (Cerruto et al., 1995) are 
applied to the motor control systems of diverse types 
including BLDC. However, these approaches are either 
theoretically complex or difficult to implement practically 
(Lin and Jan, 2002). 

For these issues, conventional PID controller is most 
commonly used in industry owing to there merits of simple 
structure, high efficiency and easy implementation. But the 
optimally tuning gains of PID controllers have been quite 
difficult. Yu et al. (2004) have presented a LQR method to 
optimally tune the PID gains, Lin et al. (2003) have proposed 
Genetic Algorithm based PID control, and Kuo et al. (2008) 
have proposed a novel adaptive sliding mode control with 
PID tuning method for a class of uncertain systems. A 
partical swarm optimization (PSO) method for determining 
the PID controller parameters for speed control of BLDC 
motor has proposed by Nasri et al. (2007), LMI method for 
obtaining PID controller has introduced by Dobra (2003) and 
Cai et al. (2007). And also, BLDC control system 
implemented with the speed control and current control has 
been developed for the high performance of BLDC driver 

based on a digital incremental PID control algorithm using 
AVR microcontroller (Xu et al., 2008).  

This paper proposes an enhanced PID controller design 
method with an internal feedback PD controller based on 
Kim et al. (2005, 2007) for BLDC motor. The proposed 
controller structure is organized as the convex set between 
PID controller and PI controller with an internal PD 
controller. Control parameters are determined through an 
optimum tuning method to improve the step response 
characteristics in the controllable set. The new PID structure 
and optimum tuning algorithm are applied to the speed 
control of BLDC motors. 

This paper is organized as follows:  the proposed enhanced 
PID control scheme is presented in Section 2. The design 
method for tuning PID controller parameters is discussed in 
Section 3. BLDC motor model is reviewed in Section 4. 
Finally, simulation results are presented in Section 5. 

2. MULTI-LOOP PID CONTROL SCHEME 

Figure 1 shows the structure of an enhanced PID control 
system which has the inner feedback compensation. 

Fig. 1. Structure of Enhanced PID Control System 



     

In Fig. 1, )(sG is the uncertain plant model, )(1 sC and )(2 sC
are the controllers, r  is the reference input, u  is the control 
command, y is the plant output, d is the disturbance signal 
applied to the system and e is the error defined as yre .

The input-output relation is written in the form as 
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If )(2 sC and the inner feedback loop don�’t exist, the above 
structure is equal to the conventional PID control system. In 
accordance with the forms of )(1 sC and )(2 sC , the system 
can be represent as PID-P, PI-PD or PI-D control system, and 
so on. It is considered PID and PI-PD controllers in this paper. 

Figure 2 shows that the structure of multi-loop control system 
is equivalent to 2 degree-of-freedom (DOF) control system, 
when the controller )(sC and the prefilter )(sF are 
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Fig. 2. Two DOF Control Systems 

The transfer functions of )(1 sC and )(2 sC  are PI controller 
and PD controller, respectively, as following: 
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From (2) ~ (5), controller )(sC of 2 DOF systems is denoted 
as the PID controller 
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and prefilter )(sF is
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And also, the transfer functions of )(1 sC and )(2 sC  is PID 
controller and PD controller, respectively, as following: 
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and the traditional PID controller means that 
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We will disregard the derivation of the controller )(sC and
the prefilter )(sF for the respective PID-PD and PID 
controller because it can be derived from (2) ~ (3) easily. 

3. CS-BASED PID-PD PARAMETER DESIGN 

3.1 Convex Set of Linear Control System 

In geometry of design specifications, H denotes the set of all 
closed-loop transfer matrices which is satisfying design 
specifications D and H denotes one element of transfer 
matrices set H . We think of H as the set of all conceivable 
candidate transfer matrices for the given plant. With each 
design specification iD we associate the set iH of all transfer 
matrices that satisfy it: 

}.DsatisfiesH|H{H ii H             (15) 

Table 1. Properties of design specifications and the 
corresponding sets of transfer matrices. 

Design specifications Sets of transfer matrices
H satisfies D
D is stronger than D
D is weaker than D

DD
D  is infeasible 
D  is feasible 

HH
HH
HH
HH
0H
0H

According the definition 1 of affine, a set of transfer matrices 
is affine if, whenever an affine combination of two distinct 
transfer matrices is in the set including these transfer matrices. 

Definition 1: HH1 is affine if for any H~, HH , and 

any H~)1(, HHR , where if is restricted 

within ]1,0[ , the affine combination HH ~)1(  is in the 
convex set. 



     

Definition 2: A functional on H is affine if for any 

H~, HH and any R , 
)~()1()()~)1(( HHHH .

Definition 3: A functional on H is convex if for any 

H~, HH and any ]1,0[ , 
)~()1()()~)1(( HHHH .

Boyd and Barratt (1991) applied the concept of affine and 
convex set to linear controller design. But it has two 
difficulties to apply these properties to system control. 

One is that the formation or order of the controllers cannot be 
determined independently but relies on the plants. The 
unfixable controllers may cause not only the technical trouble 
in realization of the system controller, but also would became 
a high order controller unexpectively. Even though both 
controllers which consist of the convex set of the closed-loop 
transfer matrices are 3rd order, the system controller may 
turn out to be 9th order.  

The second difficulty is that the system controller, which 
yields a closed-loop transfer matrix that is the affine 
combination of H and H~ , would not have been found by 
varying the parameters in the controllers of H  and H~ . It 
means that the formulation itself of the controller should be 
changed every time to control a new plant.  

Thus, we propose the new formulation of the multi-loop PID 
controller to implement the properties of the affine set and 
functional to controller design, being independent of the 
system plants. 

In the design scheme, forming affine combination, two 
transfer functions H and H~ are respectively PI-PD and the 
conventional PID controllers  
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We use the relative constant for the proportional factors of 
PI-PD controller in order to unify denominators of transfer 
functions H and H~ . Then, the correlative equation between 
PID and PI-PD controllers is  
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 and correlative coefficients are obtained directly 
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where *
pK , *

iT  and *
dT are the parameters of the PID 

controller )(sC pid . To form the affine combination of two 

transfer functions H and H~ including PID and PI-PD 
controllers, PID-PD controller are found by varying the 
parameters of PI-PD and PID controllers  
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3.2 Optimal Tuning of CS Based PID-PD Controller 

Before tuning the parameters of the PID-PD controller, 
design specifications should be considered. Proposed in this 
paper, the controller forms the convex set which consists of 
the feasible controllers to meet the design specifications such 
as overshoot, rising time, and settling time. By the definition 
2, the step response of the affine 
combination, HHH ~)1( , is the convex functional 

sr  of which corresponding points via lie on a convex line 
passing through the points ))(,1()),~(,0( HH srsr . By this 
property, the functional convexities of design specifications 
are derived. Specially, the overshoot and rise-time 
functionals )(HOS , )(Hrise are convex.  

We use two functionals of H for the specifications: the 
overshoot, 
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And the rise-time, 
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where )(th denotes the unit step response of the transfer 
function H .

These functionals on H  are convex, so the functional 
inequality specifications 
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are convex. 

When the design specifications are given by convex 
functional inequalities, we can design the controller by the 
convex optimization method. 

The functional inequality specifications become the 
constraints of the classical optimization problem, indexed by 
the parameters Laa ,,1 , given by 
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which can be expressed as the shaded region of the 
achievable specifications or the set of feasible controllers in 
figure 3. 

And the objective functional can be formed as a weighted-
sum objective. 
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where ib are nonnegative numbers, called weights, which 
assign relative values among the functional i .
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Fig. 3. Lines of constant objective functional and the region 
of the achievable performances. 

In order to design the controller, first we bound the region of 
the feasible controllers on H to satisfy the constraints of the 
system specifications, then solve the optimization problem 
which is to find the optimum value  of the weighted-sum 
objective functional.  
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When the convex set of H and H~ is fixed to satisfy the 
functional inequality specifications, through (21) and (22) the 
parameters of PID-PD controller are determined. 

4. BRUSHLESS DC MOTOR 

Mechanical rotors and brushes are commonly used to achieve 
the commutation for brushed DC motors. The stationary 
brushes come into contact with different sections of the 
rotating commutator. The commutator and brush system 
forms a set of electrical switches, such that electrical-power 
always flows through the armature coil closest to the 
stationary stator (permanent magnet). In BLDC motors, the 
electromagnets however do not move, but the permanent 
magnets rotate and the armature remains static. Instead of a 
mechanical commutation system based on brushes, Hall 
effect sensors are used as non-contact position sensors for 
BLDC motors. It detects the position of the rotors as the 
commutating signals. 

The dynamic characteristics of BLDC motors are similar to 
permanent magnet DC motors. The characteristic equations 
of BLDC motors can be represented as Ong (1998). The 
electric and mechanical part of the motor are respectively 
described as  
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where  )(tuapp  is the applied voltage, )(ti  is the current of 

the circuit, )(tuemf  is the counter electromotive force, L is
the inductance of the stator, and R is the resistance of the 
stator. Equation (31) means that the inertial load J times the 
angular acceleration is equal to the sum of all torques i . A 
change in the magnetic environment of a coil causes a 
voltage (electromagnetic force )to be induced in the coil. This 
is the same principle for the eddy current sensor so that the 
back emf , )(tuemf , is proportional to the angular velocity 

)(t and the produced torque )(t is proportional to the 
current )(ti as the following (32) and (33) 
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where bK is the back electromotive force constant and mK  is 
the armature constant, which are both related to physical 
properties of the motor, such as magnetic field strength and 
number of turns of the coil. From (31) and (33), the following 
expression is derived  
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where fK is the friction coefficient and the viscous friction 

)(tK f  is the result of friction in the motor. 

These two differential equations (30) and (34) describing the 
system lead the characteristic equations in state-space 
representation,
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The equations of the state-space model of BLDC motor   can 
be rewritten as a linear combination of the state and input 
variables, so (35) and (36) become 
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where the current  )(ti and the angular velocity )(t are two 
states, input variable is the applied voltage )(tuapp  , and 

output )(ty is the angular velocity . 

The transfer function of BLDC motor can be derived from 
the state-space representation from )(tuapp to )(t ,
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5.  COMPUTER SIMULATIONS 

To show the effectiveness of the proposed CS (Convex Set) 
control method, a comparison is made with the CS-based PID 
controller and the existing PID controllers for BLDC motor.  

The specifications of the BLCD motor are shown in table 2. 
The transfer function of the BLDC motor is obtained  

5.435677.417
36.275577)( 2 ss

sG (39)

Table 2. Specifications of the BLDC motor 

Parameters Values and units 
R 2.21

bK s/radV0.1433

fK s/radm-kg101 -4

L H0.052

mK m/A-kg0.1433

J /radsm-kg101 2-5

To control the speed of the BLDC motor at 1000 rpm, the 
comparable PID controllers are designed by using the various 
optimal PID tuning methods. For the optimal PID control 
using LQR approach, the weighting matrices Q  and R are 
selected as 

000
050000
00100

Q                     (40) 

1R                                   (41) 
Through the algebraic Riccati equation, the optimal 
values pk , ik , and dk are obtained as 70.566, 10 and 0.0212 
respectively.  Additionally, PSO-PID, pole placement-based 
LQ-PID (Suh and Yang, 2005), and GA-PID methods are 
considered for the comparison, the performances of which are 
listed in table 3. 

Table 3. Performances of the comparative PID controllers 

LQR LQ-PID GA PSO 
P 70.556 72.423 93.162 190.018 
I 10 14.515 38.623 50 
D 0.022 0.0311 0.0278 0.0396 

Tr(ms) 0.225 0.177 0.185 0.128 
Mp(%) 17.9 8.9 15.6 16.8 
Ts(ms) 1.1 1.14 0.982 0.69 

To implement the proposed CS-based PID control, the 
convex set of controllers can be constituted to satisfy the 
requirements of a designer. In this paper, we chose the pole 
placement-based LQ-PID and PI-PD to meet the design 

specifications as the subsets 10%)(OS HH

and ms0.2)(settling HH , where the poles of LQ-PID were 

assigned to be (-2 10-3, -8 103, -3 103) and 80 of PI-
PD controller.  

Remark: It is noted that the poles of LQ-PID controller is 
selected for satisfying the overshoot constraint condition 
as 10%)(OS H , and the 80 of PI-PD controller is 
chosen in order to meet the settling time constraint condition 
as ms0.2)(settling H .

Equation (42) shows the inequalities and the objective 
functional to solve the convex optimization problem. 
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where the relative weights are chosen to scale the each 
functionals OS , rt by the nominal value: 

nom
i

ib 1                                        (43)  

where nom
i represents some nominal value of the functional 

i , which can be determined according to the  designer�’s 
requirements. For this example we chose  

%5
2

minmax
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OS , ms1.0
2
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so that 2.01b  and 4
2 10b .

The optimal value of PID-PD control parameter is 0.2 to 
make the objective functional to be minimal. Fig. 4 shows the 
step responses of the CS-based PID-PD control system in 
accordance with , Fig. 5 shows the CS-based PID-PD 
response in comparison with LQR, GA, LQ-pole placement 
and PSO methods for PID control and Table 4 lists the 
performances of the proposed method in time domain and the 
values of the control parameters. 
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Fig. 4. According to changes, step responses of BLDC motor 
in CS-based PID-PD control system 
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Fig. 5. Comparison between CS, LQR, LQ-pole placement, 
PSO and GA based PID control in speed control of BLDC 
motor 

Table 4. Performances of the comparative PID controllers 

CS-based PID-PD 
P 86.72 P 0.2146 
I 0.0307 D 0.0077 
D 0.1742  

Tr(ms) 0.2426 
Mp(%) 0.397 
Ts(ms) 0.3967 

Through the simulation results shown in Fig. 5, it is presented 
that the proposed CS-based PID-PD controller achieves the 
better speed performances of time domain comparably with 
the other methods in this case. 

6. CONCLUSIONS 

This paper presents a novel tuning formula that shapes the 
convex set between PID and PI-PD controller to deal with a 
good time domain performance. While the proposed method 
uses a more complicated PID controller with an inner PD 
control loop, it has the following advantages over existing 
traditional design methods due to useful properties of convex 
set. Firstly, all the tuning parameters of the optimal PID-PD 
controller are determined simply and analytically by only one 
control factor. Secondly, because the time responses of the 
controlled system are clearly expected according to variable 
changes in the convex set, it is easy to retune the controller, 
weights of object functional or the controller set constrained 
by design specifications. Thirdly, if only boundaries of 
convex set are stable, there are no specific requirements for 
closed loop control system to be stable even with 
nonminimum-phase, high degree or long dead time. It means 
that during tuning processes in the convex set, the closed-
loop system stability is guaranteed. It is clear from the 
simulation results that the proposed design methodology is 
superior to the other comparative PID methods in the time 
domain performance, satisfying the design specifications, and 
simultaneously minimizing the value of the cost function 

In this paper, the frequency properties of convex set which 
complementary sensitivity functions compose aren�’t 

considered. Hence, one of our ongoing research is how to 
select the optimum control value for extending the controller 
design from time domain to frequency domain to consider the 
sensibility and robustness of the system. 
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