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a b s t r a c t

In this paper, a novel controller for brushless DC (BLDC) motor has been presented. The proposed
controller is based on Adaptive Neuro-Fuzzy Inference System (ANFIS) and the rigorous analysis through
simulation is performed using simulink tool box in MATLAB environment. The performance of the motor
with proposed ANFIS controller is analyzed and compared with classical Proportional Integral (PI)
controller, Fuzzy Tuned PID controller and Fuzzy Variable Structure controller. The dynamic character-
istics of the brushless DC motor is observed and analyzed using the developed MATLAB/simulink model.
Control system response parameters such as overshoot, undershoot, rise time, recovery time and steady
state error are measured and compared for the above controllers. In order to validate the performance of
the proposed controller under realistic working environment, simulation result has been obtained and
analyzed for varying load and varying set speed conditions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Brushless DC (BLDC) motors are coming of age due to contin-
uous improvement in high energy permanent magnet materials,
power semiconductor and digital integrated circuits. In any appli-
cation requiring an electric motor where the space and weight are
at a premium, the BLDC motors becomes the ideal choice. A BLDC
motor has high power to mass ratio, good dissipation character-
istics and high speed capabilities. Limitations of brushed DC
motors overcome by BLDC motors include lower efficiency, sus-
ceptibility of the commutator assembly to mechanical wear,
consequent need for servicing, less ruggedness and requirement
for more expensive control electronics. Due to their favorable
electrical and mechanical properties, BLDC motors are widely used
in servo applications such as automotive, aerospace, medical field,
instrumentation areas, electromechanical actuation systems and
industrial automation requirements [1–3]. Many control schemes
have been developed for improving the performance of BLDC
motor drives.

Many varieties of control schemes such as Proportional Integral
Derivative (PID), Non-Adaptive Fuzzy Logic Controller (FLC) and
Adaptive Fuzzy Logic Controller have been developed for the

speed control of brushless DC motors. Most of the manufacturing
processes still use the conventional PID controllers due to their
simplicity and robust design. Conventional PID controllers are
usually not efficient if the processes involved are of higher order
and time delay systems, non-linear systems, complex and unclear
systems without accurate mathematical models and systems with
uncertainties [4,5].

Non-adaptive fuzzy logic, which is based on fuzzy set theory,
was first developed by Zadeh in 1965. Control applications such as
temperature control, traffic control, DC motor speed control, etc.
are the most prevalent of non-adaptive fuzzy logic applications.
For the most complex systems, where few numerical data exist
and where only ambiguous or imprecise information is available,
fuzzy reasoning provides a way to understand the system behavior
by allowing interpretation between the observed input and the
output relations of the system [6–9]. While non-adaptive fuzzy
control has proven its value in some applications, it is sometimes
difficult to state the rule base for some plants, or the need could
arise to tune the rule-base parameters if the plant changes. In
order to overcome these shortcomings, adaptive fuzzy logic speed
controller has been developed [10–20].

In this paper, an attempt has been made to improve the perfor-
mance of speed controller by proposing a novel ANFIS speed controller
for BLDC motor drive. The paper is organized as follows: Literature
review is given in Section 2 and mathematical model of the BLDC
motor drive is presented in Section 3. Adaptive Neuro-Fuzzy Inference
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System based controller is presented in Section 4 and Section 5
discusses simulation results. Concluding remarks is outlined in
Sction 6.

2. Literature review

Fuzzy Proportional Integral based speed controller designed for
brushless DC motor exhibits more oscillatory speed response
under load varying condition [6]. In [7], simulation results of fuzzy
logic based current and speed controller for BLDC motor drive was
presented and it has produced more oscillatory speed response.
Fuzzy logic controller for BLDC permanent magnet motor drive has
been discussed in [8]. From the simulation and experiment results,
it has been observed that, during load disturbance, overshoot and
undershoot were produced in the speed response. In [9], com-
parative evaluation between classical PID controller and hybrid
fuzzy logic PID controller has been presented. The results proved
that fuzzy logic controller outperforms PID controller but speed
response obtained during load variations exhibited overshoot and
undershoot.

In [10], modified model reference adaptive fuzzy logic speed
controller was designed for BLDC motor drive. This controller needs
reference plant model for training the fuzzy logic controller and also
the response was more oscillatory. Adaptive fuzzy logic speed
controller for brushless dc motor drive has been discussed in [11]
and this controller has two structures namely fuzzy proportional
derivative and fuzzy Proportional Integral controller. Adaptation is
made based upon error signal received and this controller cannot be
used for other plant models. Adaptive sliding mode controller,
non-adaptive fuzzy controller and adaptive fuzzy based controllers
have been presented for the BLDC motor drive in [12,13]. But, the
simulation and experimental results have clearly indicated that the
parameters like steady state error, settling time, overshoot and
response time are not in favor of controller performance during
load disturbance.

The combination of neural network and fuzzy system has recently
become popular in engineering fields and one such structure namely
Adaptive Neuro-Fuzzy Inference System was discussed in [14–20].

In [14], intelligent agent based Adaptive Neuro-Fuzzy Inference
System (ANFIS) was developed to perform Non-linear Auto-Regres-
sive Moving Average with exogenous input (NARMAX) system
identification of BLDC motor. Back electromagnetic force prediction
performed by ANFIS for sensorless control of brushless dc motor was
presented in [15]. Gain adjustment of dead beat Proportional Integral
based speed controller for BLDC motor has been designed by particle
swarm with ANFIS [16]. The limitation of this controller is that, it
worked only for particular operating conditions. The controller
response has changed abruptly for change in operating conditions.
Also, the system exhibited larger overshoot, high rise time, high
settling time and increased possibility of system moving to unstable
state. In [17], hybrid approach was followed for designing the speed
controller. The controller incorporates Neuro fuzzy based propor-
tional derivative controller and conventional integral controller.
Neuro fuzzy controller produced more noise in the control system
and tuning of the integral gain has considerable effect on the control
performance such as overshoot and settling time. ANFIS based
controller has been designed for brushless dc motor in [18,19], but
the speed response exhibited high rise time, high settling time and
larger steady state error. In [20], ANFIS controller based on emotional
learning algorithm was presented. The emotional learning algorithm
utilized the proportional derivative controller function and it mod-
ified the output layer gain of Neuro fuzzy controller. But, tuning
of the proportional and derivative gains has resulted in large over-
shoot, large settling time and high steady state error in the system
performance.

Fig. 1 shows the controllers considered for investigation. Fig. 1
(a) shows Proportional Integral controller [3]. It is simple and
widely used in most of the industries till now but tuning of gain
in the proportional and integral part has significant effect on control
system performance. Also, performance uncertainty was experi-
enced during load variations. In order to overcome this problem,
Non-Adaptive Fuzzy Logic Controller, i.e., Fuzzy Tuned PID con-
troller has been developed and it is shown in Fig. 1(b). The
controller design has been carried out on trial and error basis. Also,
it required more number of rules, i.e., 147 rules and performance
uncertainty was observed during some operating conditions [9].
Non-adaptive controller problems have been overcome by adaptive

Fig. 1. (a) Proportional Integral controller, (b) Fuzzy Tuned PID controller, (c) Fuzzy Variable Structure controller, and (d) proposed ANFIS controller.
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controller, i.e., Fuzzy Variable Structure controller and it is shown in
Fig. 1(c). The controller has two structures namely, fuzzy propor-
tional derivative and fuzzy Proportional Integral controller. In this
controller also, design is based on trial and error method and it
required more number of rules, i.e., totally 98 rules. Performance
uncertainty was noticed during set speed variations [11]. In order to
overcome all the above notified problems, ANFIS based speed
controller has been proposed for brushless DC motor and it is
shown in Fig. 1(d). The proposed controller easily overcomes the
uncertainty problem arising due to load variations and speed
variations with minimum number of rules.

From the literature review, in the area of speed control of BLDC
motor, more significance has been given to the design of artificial
intelligence based controllers and little attention has been paid to
control system performance of the system. Apparently no litera-
ture has so far discussed the BLDC controller performance subject
to simultaneous step load change and step speed change in all
possible conditions. In view of this, the main objectives of the
proposed work presented in this paper are the following:

(a) To present an efficient and broad approach for designing ANFIS
based controller.

(b) To consider step load change and step speed change simulta-
neously in all possible conditions, and then obtaining system
dynamic responses with ANFIS controller at different load and
speed conditions.

(c) To compare the ANFIS controller results with already pub-
lished results of Proportional Integral controller, Fuzzy Tuned
PID controller and Fuzzy Variable Structure controller. Also, to
analyze the dynamic performance of the proposed controller
with the above control strategy.

In this paper, for the proposed ANFIS based BLDC speed controller,
the initial input–output membership functions and 49 rules are
constructed by the Fuzzy Inference System (FIS). The modified
reference signals, i.e., error, rate of change of error and control signal
from Fuzzy Tuned PID controller is used in off-line for updating the
parameters of ANFIS as per the proposed methodology. ANFIS tool
box in MATLAB environment has been used to design the proposed
Adaptive Neuro-Fuzzy System (ANFIS) controller and integrated with
simulink tool box for performing simulation analysis. The perfor-
mance of the proposed ANFIS controller is analyzed and compared
with classical Proportional Integral controller [3], Fuzzy Tuned PID
controller [9] and Fuzzy Variable Structure controller [11]. Simulation
results have been presented to validate the effectiveness of the
proposed controller under varying load and set speed conditions.

3. Mathematical model of the BLDC motor drive

The BLDC motor mathematical model can be represented by
the following equation in matrix form:

La Mab Mac

Mba Lb Mbc

Mca Mcb Lc

2
64

3
75 d
dt

ia
ib
ic

2
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3
75¼
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3
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ð1Þ

where Va, Vb and Vc denote phase voltages of the motor. Ra, Rb and
Rc represent stator winding resistances. Phase currents of the
motor are represented by ia, ib and ic. Self inductances of the motor
winding are represented by La, Lb and Lc and the mutual induc-
tances between stator windings are denoted by Mab, Mac, Mba, Mbc,
Mca and Mcb.

The electromechanical torque is expressed as

Tem ¼ J
dωr

dt
þBωrþTL ð2Þ

where J, B and ωr denote the moment of inertia, frictional
coefficient and angular velocity of the motor, respectively. TL is
the load torque.

Since the electromagnetic torque of 3-phase BLDC motor is
dependent on the current, speed and back-EMF waveforms [21,22],
the equation for instantaneous electromagnetic torque can be
modified and represented as

Tem ¼ 1
ωm

ðeaiaþebibþecicÞ ð3Þ

4. Adaptive Neuro-Fuzzy Inference System (ANFIS) based
controller

The general ANFIS control structure contains the same compo-
nents as the FIS except for the neural network block. The structure
of the network is composed of set of units (and connections)
arranged in five connected network layers, i.e., layer 1 to layer 5.
The proposed ANFIS controller structure consists of four important
blocks that are fuzzification, knowledge base, neural network and
the Defuzzification. Layer 1 consists of input variables (member-
ship functions) and triangular or bell shaped membership func-
tions. Layer 2 is membership layer and it checks for the weights of
each membership functions. It receives the input values from the
first layer and act as membership functions to represent the fuzzy
sets of the respective input variables. Layer 3 is called as rule layer
and it receives input from the previous layer. Each node (each
neuron) in this layer performs the pre-condition matching of the
fuzzy rules. This layer computes the activation level of each rule
and the number of layers equals to the number of fuzzy rules. Each
node of this layer calculates the weights which will be normalized.
Layer 4 is the defuzzification layer which provides the output
values resulting from the inference of rules.

Layer 5 is called as the output layer which sums up all the
inputs coming from layer 4 and transforms the fuzzy classification
results into a crisp value [14]. ANFIS modeled by Takagi–Sugeno
(T–S) type systems are considered and it must have the following
properties: It must be first or zero order T–S type system. It should
have a single output, obtained using weighted average defuzzifica-
tion. All output membership functions must be of the same type
and it must be either linear or constant. It must have no rule
sharing, i.e., different rules cannot share the same output member-
ship function. The number of output membership functions must
be equal to the number of rules. It must have unity weight for each
rule. The ANFIS structure is tuned automatically by least-square
estimation and the back propagation algorithm. Because of
its flexibility, the ANFIS strategy can be used for a wide range of
control applications.

The algorithm presented above is used in the proceeding
section to develop the ANFIS controller for controlling the speed
of BLDC motor.

4.1. ANFIS control scheme for speed control of BLDC motor

The development of the control strategy for speed control of
the BLDC motor with proposed ANFIS controller is presented in
Fig. 2.

It consists of two loops namely inner loop and outer loop. Inner
loop is used for synchronizing the inverting gate signal with back
electro motive force or rotor position of the motor. The outer loop
is used for controlling the speed of the BLDC motor by controlling
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the dc bus voltage through PWM inverter. Based upon error and
rate of change of error, ANFIS controller provides the control signal
to the switching logic circuit. The switching logic circuit provides
the PWM signal for the inverter gate with respect to rotor position
of the motor and the control signal output obtained from ANFIS
controller.

ANFIS incorporates artificial neural network with fuzzy infer-
ence system and first-order Takagi–Sugeno fuzzy model is used in
this work. The analysis has two inputs, error (e), rate of change of
error (Δe) and the output is control signal. The if–then rules are
given in the following equation:

Rule 1 : IF e is A1; Δe is B1; then f 1 ¼ Pn

1eþ Rn

1 Δeþs1
Rule 2 : IF e is A1; Δe is B2; then f 2 ¼ Pn

2eþRn

2 Δeþs2
⋮
Rule i�1 : IF e is Aj; Δe is Bj�1; then f i�1 ¼ Pn

i�1eþ Rn

i�1 Δeþsi�1

Rule i : IF e is Aj; Δe is Bj; then f i ¼ Pn

i eþRn

i Δeþsi

ð4Þ

where

e¼ ωref �ωr ð5Þ

Δe¼ dðωref �ωrÞ
dt

ð6Þ

f i ¼ PieþRi Δeþsi ð7Þ

where ωref is the reference speed, ωr is the actual rotor speed, j¼1,
2, …, q, i¼1, 2, …, q2, A and B are the fuzzy membership sets
defined for input variables e and Δe. q is the number of member-
ship functions for the fuzzy systems of inputs e and Δe. fi is the
linear consequent functions defined in terms of inputs e and Δe. Pi,
Ri and si are consequent parameters of an ANFIS fuzzy model.
Same-layer nodes of an ANFIS model have similar functions.
Output signals from the nodes of a preceding layer are the input
signals to the next layer. The structure of five layer ANFIS is shown
in Fig. 3.

The error and rate of change of error, i.e., e and Δe as mentioned
in Eqs. (5) and (6) are given as input to layer 1. In layer 1, every node
is an adaptive node with a particular fuzzy membership function
specifying the degrees of the inputs which satisfies the quantifier.
The following equation represents the node outputs for the two
inputs:

L1;j ¼ μAjðeÞ for j¼ 1;2; …; q

L1;j ¼ μBjðΔeÞ for j¼ 1;2; …; q ð8Þ

The membership functions considered for A and B in Eq. (8) are
triangular-shaped functions and their representations are given in

the following equations:

μAjðe; aj; bj; cjÞ ¼

0; er0
e�aj
bj �aj

; ajrerbj
cj � e
cj �bj

; bjrercj

0; cjre

8>>>>><
>>>>>:

ð9Þ

μBjðΔe; xj; yj; zjÞ ¼

0; Δer0
Δe�xj
yj �xj

; xjrΔeryj
zj �Δe
zj �yj

; yjrΔerzj

0; zjrΔe

8>>>>><
>>>>>:

ð10Þ

The parameters for fuzzy membership functions are aj, bj, cj, xj,
yj and zj. The triangular-shaped function changes its pattern with
corresponding changes in the parameters. This change will pro-
vide various contours of the triangular-shaped function in accor-
dance with the data set for the problem considered. Parameters in
this layer are known as premise parameters. In layer 2, every node
is a fixed node labeled π. L2,i output is the product of all incoming
signals and it is given in the following equation:

L2;i ¼Wi ¼
W1 ⋯ Wq

⋮ ⋱ ⋮
Wq2 �ðq�1Þ ⋯ Wq2

2
64

3
75¼

μA1 � μB1 ⋯ μA1 � μBq

⋮ ⋱ ⋮
μAq � μB1 ⋯ μAq � μBq

2
64

3
75

ð11Þ
Each of the second layer's node output represents the firing

strength of the associated rule. The T-norm operator algebraic
product (TAB (A, B)¼A�B) is used to obtain the firing strength
(Wi). In layer 3, every node is a fixed node labeled N. The output of
the ith node is the ratio of the firing strength of the ith rule (Wi) to
the sum of the firing strength of all the rules and is given in the
following equation:

L3;i ¼Wi ¼
Wi

∑q2
1 ¼ 1Wi

ð12Þ

This output gives a normalized firing strength. In layer 4, every
node is an adaptive node with a node function given by the
following equation:

L4;i ¼Wif i ¼Wi ðPieþRi ΔeþsiÞ ð13Þ

where Wi is the normalized firing strength from layer 4 and Pi, Ri,
and si are the control signal parameter sets of this node. Para-
meters in this layer are known as consequent parameters. In layer
5, the single node is a fixed node labeled Σ. It computes the overall
output as the summation of all incoming signals and it is given in

Fig. 2. Proposed ANFIS controller for BLDC motor.

Fig. 3. Structure of a five-layer ANFIS.
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the following equation:

L5;1 ¼∑iWi f i ¼
∑iWif i
∑iWi

ð14Þ

Next, the process of applying hybrid learning algorithm to
identify ANFIS parameters has been discussed. For the learning
process, the initial input membership function and number of
rules for fuzzy inference system for the input–output training data
sets should be specified. Basically, the number of membership
function assigned to each input variable is chosen experimentally,
i.e., by plotting the data sets and examining them visually or
simply by trial and error approach. For data sets with more than
one input, visualization techniques are not very effective and one
has to rely on trial and error approach. But trial and error method
is time consuming process, and to overcome this difficulty,
clustering methods such as grid partition clustering and subtrac-
tive clustering are employed.

In this paper, grid partition clustering methods are used for
generating the initial membership function and number of fuzzy
rules for input–output training data sets. In grid partition, the
number of memberships on each input variable uniquely deter-
mines the number of rules. There are two inputs and seven
memberships on each input which has resulted in 72¼49 fuzzy
if–then rules. Hybrid learning algorithm combines the gradient
descent and the least squares estimation for the fast identification
of premise and consequent parameters of ANFIS.

Each iteration comprises of a forward pass and a backward pass
sequence. In forward pass, after an input data is presented, the
node outputs are updated layer by layer until layer 4 is reached.
This process is repeated for all training input–output data sets, and
then the consequent parameters are identified by least squares
estimation. In backward pass, the derivative of the error signals
with respect to each node propagates from the output end toward
the input end. Then the gradient vector is accumulated for each

training input–output data set. At the end of the backward pass for
all training data sets, the premise parameters are updated by
gradient descent method [14]. Once updating of premise and
consequent parameters are completed, proper set of membership
function and rule base are selected for fuzzy inference system.
After proper rules are selected and fired, the control signal
required to obtain the optimal output is generated.

To train the ANFIS controller, the network is trained in off-line
using MATLAB Simulink tool box. To start with, the result of Fuzzy
Tuned PID controller is collected as the training data set. The input
and output data obtained are modified into desired data based
upon the desired output. The desired output will be trained using
the function ‘ANFIS’ in the MATLAB tool box. From the training, a
fuzzy inference system with adjusted membership functions has
been obtained.

4.2. Development of simulink model and training of ANFIS controller
using MATLAB

Simulink model for the control of BLDC motor drive has been
developed in MATLAB environment using the appropriate tool
boxes. Fig. 4 shows the simulink model of the proposed controller.

The simulink model consists of DC supply, PWM inverter,
motor measurement system, ANFIS controller, switching logic
circuit and BLDC motor. The DC supply input is given to PWM
inverter and output of the inverter is fed to the BLDC motor. Rotor
position and speed are sensed by hall sensor and tachogenerator
model. The output of the tachogenerator is compared with
reference speed to produce speed error and the rate of change of
speed error is obtained by differentiating the speed error. The
speed error and the rate of change of speed error are given as
input to the ANFIS speed controller. Based upon the inputs, ANFIS
controller generates control signal for the switching logic circuit.

Fig. 4. Simulink model of proposed ANFIS controller for BLDC motor.
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Fig. 5. Block diagram for identifier.

Fig. 6. Modified training data for ANFIS controller.

Fig. 7. Initial rule base for T–S fuzzy inference system.

Table 1
Initial input membership function.

Distribution of
membership function

Aj or e Bj or Δe

aj bj cj xj yj zj

1 �830 �497.1 164.3 �1.642�1017 �1.407�1017 �1.173�1017

2 �497.1 �164.3 168.5 �1.407�1017 �1.173�1017 �9.382�1016

3 �164.3 168.6 501.4 �1.173�1017 �9.382�1016 �7.037�1016

4 168.6 501.4 834.3 �9.382�1016 �7.037�1016 �4.691�1016

5 501.4 834.3 1167 �7.037�1016 �4.691�1016 �2.346�1016

6 834.3 1167 1500 �4.691�1016 �2.346�1016 5.066�104

7 1167 1500 1833 �2.346�1016 5.066�104 2.346�1016

Fig. 8. Training error plot.

Fig. 9. Testing of trained data with test data.

Fig. 10. Final rule base for T–S fuzzy inference system.
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The switching logic circuit generates gating signals based upon the
rotor position and control signal received from the ANFIS con-
troller. This gating signal is used for triggering the IGBT of the
PWM inverter. By this process, DC bus voltage is controlled which
in turn controls the speed of the BLDC motor.

In order to start the simulations, first step is the identification
process, i.e., the dynamic process of finding the input–output
relations for a system. Fig. 5 shows the block diagram for the
identifier. In the identifier, the process of clustering involves the

determination of clusters in data space and the translation of these
clusters into fuzzy rules such that the model obtained is very close
to the identified system. Identification process of the ANFIS
controller is modeled through modified input and output data of
Fuzzy Tuned PID controller. To prevent the system from possible
saturation condition, the input–output data set is processed
through closed loop using Fuzzy Tuned PID controller. Two inputs
to the ANFIS based identifier are the input error signal e and rate of
change of error Δe of the BLDC motor. The problem is to find the
proper parameter values for the ANFIS structure and control signal
for the switching logic circuit to minimize identifier output error
for all input values of e and Δe.

The period of identifier reference signal is 9�104 samples and
the mathematical expression for the identifier reference signal is
given in Eq. (15). Using Eqs. (16) and (17), the identifier reference
signal is modified to obtain desired output signal. Fig. 6 shows the
modified training data for the ANFIS controller:

UðxÞ ¼

ð1:2�104Þ�ð1550� xÞ
1540 ; if 0oxr1540

10; if 1540 oxr23;400
50; if 23;400 oxr47;500
ð6�104Þ�ðx�47;795Þ

47;795 ; if 47;500 oxr48;000
25; 48;000 oxr90;000

8>>>>>>><
>>>>>>>:

ð15Þ

mðxÞ ¼
�x� 10

47;500; if 0oxr47;500

x� 10
47;500 ; if 47;500 oxr90;000

8<
: ð16Þ

UmðxÞ ¼

ð1:2�104Þ�ð1550� xþmðxÞÞ
1540 ; if 0oxr1540

10þmðxÞ; if 1540 oxr23;400
50þmðxÞ if 23;400 oxr47;500
ð4�104Þ�ðx�47;795þmðxÞÞ

47;795 ; if 47;500oxr48;000

25þmðxÞ if 48;000 oxr90;000

8>>>>>>><
>>>>>>>:

ð17Þ

where U(x) is the actual reference signal data collected from Fuzzy
Tuned PID controller and m(x) is the modification data which will
be added to the actual reference signal to produce desired data.
Um(x) is the modified reference signal data of the fuzzy PID
controller to train the ANFIS controller.

Initially input–output membership function and 49 fuzzy rule
set have to be invoked from the grid partition of ANFIS concept.
The initial rule base for T–S fuzzy inference system is shown in
Fig. 7 and initial input membership function is provided in Table 1.

Table 2
Specifications of BLDC motor drive.

Specifications Value

Rated voltage (V) 470
Rated current (A) 50
Rated speed (rpm) 1500
Stator phase resistance R (Ω) 3
Stator phase inductance L (H) 0.001
Flux linkage established by magnets (V s) 0.175
Voltage constant (V/rpm) 0.1466
Torque constant (N m/A) 1.4
Moment of inertia (kg m2/rad) 0.0008
Friction factor (N m/(rad/s)) 0.001
Pole pairs 4

Fig. 12. (a) Phase voltage waveforms based on the rotor position at 1500 rpm and (b) phase current waveforms based on the rotor position at 1500 rpm.

Fig. 11. Proposed ANFIS model structure for BLDC motor.
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Table 3
Comparison of response parameters for constant load condition.

Controller Rise time (s) Peak value (rpm) % peak over shot Peak time (s) Settling time (s) Steady state error (rpm) % steady state error

PI 0.255 – 1 8 0.54
FVS 0.092 1510.5 0.7 0.0923 0.1 3.5 0.24
Fuzzy Tuned PID 0.048 1506 0.4 0.0541 0.064 3 0.2
ANFIS 0.05 1511 0.73 0.0528 0.0611 1.5 0.1

Fig. 14. (a). Comparison of controllers performance for load change from 25 Nm to 15 Nm and (b) comparison of controllers performance for load change from 25 Nm to 35 Nm.

Fig. 13. Speed response of BLDC motor for four controllers.
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After generating the initial input membership function and fuzzy
rules based on the modified training data, fuzzy inference system is
trained by the hybrid learning algorithm of neural network. Ten
epochs have been considered for training and Fig. 8 shows training
error at the end of training.

From the training error plot, it is evident that the fuzzy inference
system has been well trained with help of neural network with
minimum error of 1.824. Fig. 9 shows the testing of trained data
with test data. After the training, final rule base for fuzzy inference
system is generated and it is shown in Fig. 10.

Fig. 11 shows the proposed ANFIS model structure. The struc-
ture consists of five layers. First layer is the input layer and the
inputs are error and rate of change of error. Next layer is the input

membership function layer and inputs are distributed with seven
fuzzy sets. Third layer is the rule layer where the inputs and
outputs are linked with AND operator. Fourth layer is the output
membership function layer where the output has been distributed
with forty nine constant values. Last layer is the output layer
which sums up all the inputs coming from the previous layer and
transforms the fuzzy classification results into a crisp value.

5. Simulation results and discussion

To validate the proposed control strategies described above,
simulation has been carried out for the BLDC motor drive system
using MATLAB/SIMULINK. The specifications used for the BLDC
motor drive system is given in the following Table 2.

Fig. 12(a) shows the phase voltage waveforms based on the
rotor position at 1500 rpm. The phase difference between Va, Vb

and Vc is approximately 1201. Fig. 12(b) shows the simulation
result of the phase current waveforms based on the rotor position
at 1500 rpm. The peak current value is approximately 50 A for all
Ia, Ib and Ic.

5.1. Response of the motor for constant load condition

Simulation results of speed response of BLDC motor using Fuzzy
Variable Structure, Fuzzy Tuned PID, classical PI controller and
proposed ANFIS controllers are shown in Fig. 13. The simulation

Table 4
Comparison of response parameters for varying load conditions.

Parameters Load
conditions

PI
controller

FVS
controller

Fuzzy Tuned
PID

ANFIS

% peak overshoot Case A 9.5 0.17 0.24 0.13

% peak
undershoot

Case B 14 0.54 1.13 0.33

Steady state error
(rpm)

Case A 8 3.5 2.5 2
Case B 20 6 18 3

Recovery time (s)
Case A 1.8 0 0.52 0
Case B 2 0 0.65 0

Fig. 15. (a). Comparison of controllers performance – speed change from 1500 rpm to 1000 rpm and (b) comparison of controllers performance – speed change from
1000 rpm to 1500 rpm.
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result has been obtained by keeping the reference speed at
1500 rpm and the load torque constant at 25 N m. From the
response plots shown below, for the PI controller, the drive attains
the set or reference speed in 1 s. If the Fuzzy Variable Structure
controller is used, reference speed is reached in 0.1 s and it is only
0.064 s for Fuzzy Tuned PID controller and 0.0611 s for ANFIS
controller.

Also, the other response parameters such as rise time, peak
overshoot, settling time, steady state error and percentage of steady
state error are compared for different controllers and presented in
Table 3.

From the results shown above, all the vital performance indexes
are in favor of ANFIS controller only. With the newly developed
controller, the BLDC drive system will have superior rise time,
steady state error and settling time characteristics.

5.2. Response of the drive under varying load conditions

Any drive, as most of the application demands, it has to perform
under varying load conditions. Therefore, in order to ascertain the
superior performance of the proposed ANFIS controller, simulation
results has been obtained for varying load conditions also. First, the
load torque is decreased from 25 N m to 15 N m and then it is
increased from 25 Nm to 35 N m. Fig. 14(a) and (b) shows the
response obtained for varying load conditions.

The important parameters such as percentage peak overshoot,
percentage peak undershoot and steady state error has been
compared for the above controllers and the results are presented
in Table 4. Following sudden load change, any system will take
sufficient time to adjust before tracking and settling at set speed.
This is termed as recovery time and it becomes the testing ground
for judging the performance of any controller. A good controller
should be able to restore the system to set value in the shortest
possible time following any disturbance. The recovery time also is
compared for all controllers and presented below. Case A repre-
sents decrease in load torque from 25 N m to 15 N m and Case B
represents increase in load torque from 25 N m to 35 N m.

From the results, it is clear that, the proposed ANFIS controller
for the BLDC motor drive is superior in all aspects when compared
with other controllers. When the load is increased or decreased,
the proposed ANFIS controller does not produce any undershoot or
overshoot. Also, zero recovery time indicates that, the proposed
controller is very well suited for the drives employed for varying
load conditions.

5.3. Response of the drive for step change in reference speed

In a process system, the drive may be required to operate at
varying speed conditions. To validate the suitability of the con-
troller for varying speed conditions, as it is the realistic one, the
response is obtained for step change in speed also. First, the set
speed is changed from 1500 rpm to 1000 rpm (Case A) and then
from 1000 rpm to 1500 rpm (Case B). The response characteristics
obtained through simulation for the different controllers are
shown in Fig. 15(a) and (b).

The important parameters to be measured following step
change in speed, i.e., steady state error and recovery time are
measured and shown in Table 5.

Steady state error and recovery time measured are in favor of
ANFIS controller only. The proposed ANFIS controller for BLDC
motor drive is performing very well under change in reference
speed conditions also when compared with other controllers.

6. Conclusion

An efficient controller has been proposed for the brushless DC
motor drive. The proposed controller, i.e., ANFIS controller has
been compared with other controllers under varying load and set
speed conditions. Various control system parameters such as
overshoot, undershoot, steady state error, rise time, settling time
and recovery time for all controllers considered has been mea-
sured, analyzed and compared. The results reveal that the ANFIS
controller outperforms other controllers in all aspects. Since
simulation has been performed and analyzed for varying speed
and load conditions, this proposed controller for BLDC drive can be
readily implemented for real time applications.
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