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ABSTRACT In recent years, power companies have shown increasing interest in making strategic decisions
to maintain profitable energy systems. Economic Load Dispatch (ELD) is a complex decision-making
process where the output power of the entire power generating units must be set in a way that results in the
overall economic operation of the power system. Moreover, it is a constrained multi-objective optimization
problem. Now a days, there is a tendency to use metaheuristic methods to deal with the complexity of
the ELD problem. Particle swarm optimization (PSO) is a subclass of metaheuristic methods inspired by
fish schooling and bird flocking behaviors. However, the optimization performance of the PSO is highly
dependent on fitness landscapes and can lead to local optima stagnation and premature convergence.
Therefore, in the proposed study, two new variants of the PSO called global particle swarm optimizer with
inertial weights (GPSO-w) and quasi-oppositional population based global particle swarm optimizer with
inertial weights (QPGPSO-w) are proposed to address the complexity of the ELD problem. The ELD problem
is formulated as an optimization problem and validation of the proposed methods is performed on IEEE
standards (3, 6, 13, 15, 40 & 140) unit Korean grid ELD test systems under numerous constraints and the
obtained results are compared with the several recent techniques presented in the literature. The results
obtained with convex systems showed excellent cost-effectiveness, while for non-convex systems sequential
quadratic programming (SQP) optimizer was added to discover global minima even more efficiently. The
proposed techniques were successful in solving the ELD problem and yielded better results compared to the
reported results in the selected cases. It is further inferred that the proposed techniques with less algorithmic
parameters reflected improved exploration and convergence characteristics.

INDEX TERMS Economic load dispatch, quasi-population, PSO, swarm intelligence, optimization.

I. INTRODUCTION

The world is currently going through uncertain times. The
corona pandemic has halted economic progress worldwide.
The energy sector, which was a backbone of economic
progress, also had serious consequences [1]. The year
2020 saw a huge energy drop of 5%, which a few years
ago could be considered unrealistic or even desecrated [2].
Although the consumption of household electricity is increas-
ing due to the recession in industry and the situation in
economic sector has proved that the overall demand has

The associate editor coordinating the review of this manuscript and
approving it for publication was Jagdish Chand Bansal.

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

decreased [3]. The impact of this decline was felt so severely
by some entities in the power sector that only in America,
19 companies went bankrupt [4]. The current situation seems
bleak, but all is not lost, as the post-corona scenario could
give an impetus to the global energy sector and revive it to
its former glory. The disruption in development will signifi-
cantly motivate investment firms to strengthen their strategy
and use people’s panic-buying psychology due to Covid-19
to make profits, thus stimulating the demand for energy in
the process. Such positive trends for energy demand can be
seen in the automotive sector which has increased in demand
after corona due to people’s preferences to avoid public trans-
port [5], [6]. To meet the growing demand for energy in future
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and create a sustainable energy infrastructure for our future
generations, renewable energy sources must be vigorously
integrated into the energy infrastructure. The penetration of
renewable energy sources has seen a rising trend, even during
the Covid-19 situation, and it is expected to retain its trajec-
tory. The current positive trends of renewable integration are
largely attributed to the incentives and policies of govern-
ments around the world. In 2022, the future for renewable
energy seems a bit uncertain, as most of these incentives
and policies are likely to end. The post-Covid-19 energy
situation and uncertainty over global energy policy, coupled
with a very volatile energy demand, are forcing the need
for a backup plan. Global energy generation is still largely
attributed to fossil fuels that have been in service for decades
and have a proven track record of resilience, reliability, and
efficient grid integration. To ensure energy supply, these ther-
mal generation sources cannot be overlooked and must be uti-
lized in an efficient and cost-effective manner. Economic load
dispatch (ELD) is a well-documented optimization problem
related to the economy of the power system, which involves
the control of thermal resources so that maximum power can
be extracted at the lowest possible fuel cost [7]-[9].

Economic load dispatch of thermal resources deals with
non-linear, non-convex fuel cost curves under constraints
such as energy balance, valve point effect, generators limits
and prohibited operating zones. All these limitations make
the ELD problem extremely challenging for optimization
engineers, making it ideal for research. Simply put, ELD
is the transmission of power in an economical way for a
given load demand, so that no restriction is violated. ELD
has been the subject of research for decades. The ongoing
literature in ELD proves its necessity and importance in the
overall energy mix. The ELD problem was initially addressed
by traditional solution techniques such as lambda iteration
method, quadratic programming, linear programming, gra-
dient method, Newton’s method and similar mathematical
methods to find gradient or iterative search techniques. These
approaches can solve the ELD problem, but with increas-
ing dimensions and system size, these methods face severe
performance degradation. It has also been noted in several
studies that conventional approaches are lacking in adequate
global exploration and are more prone to local exploita-
tion. This tendency of trapping in local optima severely
hampered their overall effectiveness. When conventional
approaches did not yield the desired results, evolutionary
and swarm-based approaches took the lead to solve the com-
plex real world optimization problems [10]-[15]. Among
these categories, swarm intelligence-based approaches have
been found to be very effective in achieving the optimal
solution of the ELD problem. These swarm-based tech-
niques are a subclass of metaheuristic methods and can
be further divided into two groups, such as global swarm
optimizers (GSOs) and local swarm optimizers (LSOs).
Among them the GSOs are more popular; the GSO tech-
niques mimic the behavior of fish, insects, animals, or
birds [16]-[19].
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These techniques start with some random initial population
and achieve the best position in the transition by learning
from the personal experience of each solution as well as the
experience of best solution in a coordinated manner. GSO
techniques are widely recognized as the black-box problem
solvers; many of them have few control parameters and are
easy to implement in a computer code. Although most of
these methods show promising results on unimodal optimiza-
tion problems, many of them are challenged by multimodal
and other complex fitness landscapes of the real-world opti-
mization problems. To overcome the aforesaid shortcomings
several new variants of swarm-based techniques were pro-
posed like modified particle swarm (MPSO) [20], stochas-
tic modified particle swarm (SM-PSO) [21], [22], hybrid
mutated particle swarm (HMPSO) [23], improved particle
swarm (IPSO) [24] and particle swarm with random drift
(PSORD) [25], an expanded particle swarm (XPSO) [26],
triple archives particle swarm (TAPSO) [27] and U-based
particle swarm (U-PSO) [28].

One such global PSO variant namely global inertial
PSO (GPSO-w) has been proposed in [29]. GPSO-w is an
enhanced and advanced PSO algorithm with better explo-
ration, exploitation, and convergence capabilities that can
handle many fitness landscapes. In this study, to explore
broader regions of the search space and to find the best
solutions for the selected ELD cases, GPSO-w augmented
with a quasi-oppositional population called the QPGPSO-w
is used on IEEE standards (3, 6, 13, 15, 40 & 140) unit ELD
test systems and the results obtained are compared with the
results of several other meta heuristic techniques reported in
recent literature.

The core contributions of the study are as follows:

1) The study seeks to identify two new meta heuristic
methods to solve the ELD problem under various con-
straints.

2) A new quasi-oppositional global particle swarm opti-
mizer with inertial weights (QPGPSO-w) is being
developed by incorporating the quasi-oppositional pop-
ulation in the global particle swarm optimizer with
inertial weights (GPSO-w).

3) The validation of the proposed methods for the solution
of IEEE standards (3, 6, 13, 15, 40 & 140 )unit Korean
grid ELD test systems under different constraints have
been carried out.

The paper is structured into the following sections.
Section II describes problem formulation and explains the
solution techniques. Section III explains the overview of the
Quasi-Oppositional GPSO-w. Section IV provides details of
simulation and discussion of results. And section V draws
some useful conclusions.

Il. PROBLEM FORMULATION

ELD is a well-known optimization problem in power sys-
tem with the aim of assigning optimal load to thermal
units to reduce the total fuel cost, subject to the operational
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FIGURE 1. (a) Convergence curve GPSO-w. (b) Convergence curve QPGPSO-w.

limitations of power system. Mathematically, ELD contains
non-convexity and non-linearity, also ELD is a challenging
mathematical problem due to hard binding constraints such as
power balance and soft constraints such as generator limits,
prohibited operating zones (POZs) and valve point effect.
The computation of transmission losses at each dispatch level
assigned to thermal units can also be part of the ELD problem.
Numerically, the principal goal is to minimize the operating
cost of generation units that can be modeled as formulated in

Eq. 1 and Eq. 2.
minimize
Nx Nx
> Fp=) aP} +bP;+c (1)
i=1 i=1

Nx Ne o o .
ZileP,- :Zi:1api +bP;+c+(exabs@in(f * (P — P;)))
)

The quadratic approach of cost curves for thermal unit fuel
without valve point effect is described by Eq. 1. Detailed
costs including the impact of valve point are described by
Eq. 2. In the above equations, a, b, c, e and f represent cost
coefficients; Nx indicates the total number of generating units
available for scheduling, P; represents the ith power output
of the generating unit and P; shows the minimum power
generating limit of the ith generating unit [9].

These objective functions are subjected to following equal-
ity and inequality constraints. Equality constraints include the
power generation balance as described by Eq. 3.

Pgeneraled = Prequired + Ploss (3)

In Eq. 3 Pgeneratea Tepresents the total scheduled power,
Prequirea indicates the total power demand of the system in
megawatts (MW) and Pj,s shows loss of the transmission
network of the system in MW.

Inequality constraints include generation limits and pro-
hibited operating zones (POZs) described by Eq. 4 and Eq. 5.

Py < P; < Pjy, 4
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Py < Pi < Py
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P,'n < P,’ < P,'h

where P;; and Pj, are the minimum and maximum power
generation limits of the ith generator, P; represents power
scheduled on the ith generation unit and P;; to Pj, represent
the workable operating zones of the ith generation unit.

The transmission losses can be calculated from loss coef-
ficient matrix B using following Eq. 6.

Nx Nx Nx
Pioss = Y _ Y (PiByPr)+ Y _ (BoP)+Bo  (6)
i=1 k=1 i=1
where Bj;, B;o and Bg are transmission loss coefficients.
The overall fitness function including equality constraints
and objective can be defined as:

N.
fitness = penalty * abs < E ,x Pi — Prequired — PLoss)
i=1
+ objective  (7)

Penalty in the above mentioned equation is a constant value
that is usually excess than 100.

A. OVERVIEW OF GPSO-W

The authors in [29] introduced GPSO-w by augmenting the
working of PSO. In GPSO-w, N distinct solutions are ini-
tialized having N distinct velocity vectors. The initial values
are randomly selected within the range of search space. The
solutions then progressively iterate to optimal solution by
updating their location and velocity vectors based on follow-
ing equations.

Vi) =w@)ViG—D+cr()[GrG—1 —Xi(—1)]
+ern (MG -1 —Xi(— DI (3)

Xi() =XiG—D+Vi() ©

where ¢ & c; are constants, 71 (j) & 2 (j) are random num-

bers in the range [0,1], G,; represents the optimal position
vectors of each solution and Gp is the best optimal position
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FIGURE 2. (a) Solution scattering iteration 2. (b) Solution scattering iteration 4.

achieved with solutions at iteration j. Also, V; (j)and X; (j)
represent the velocity and position of ith solution at the jth
iteration. From the above comparison, it is very clear that
position vectors are updated in the direction of most optimal
solution, based on their own position as well as the position
of the most optimal solution. The contribution of each in the
overall reproduction of solutions can be controlled by means
of c1& cy. The solution strategy of GPSO-w algorithm is
described by the pseudocode as follows:

Algorithm 1 GPSO-w
1: Initialize N, d dimensional velocity vectors Vj (j) and
solutions X; (j) within search space range.
. Initialize iteration j=0
: for 1st iteration do
Initialize N, G;(0) = X; (0)
end for
for i=1:N do
Evaluate initial fitness as per Eq. 7
Find fit(G (0)) = min(fit(G,; (0)))
Find Gp (0) corresponding to index fit(Gg (0))
: end for
: for j=1:maxiter do
12:  Determine w (j) = 0.9 — 0.5/maxiter
13:  Update V; (j) and X; (j) using Eq. 8 and Eq. 9.

R A A T

—_ =
—_ o

14:  Update Gpi () =
{Xi O) if fir(X; (D) < fit(Gpi G — 1))
Gpi G— 1) else

15:  Update fit (G (j)) = min(fit(G,; (j)))

16:  Update Gg (j) corresponding to fit(Gp (j))

17: end for

18: Print best solution Gpg (maxiter) and best fitness
fit(Gp (maxiter))

Ill. OVERVIEW OF QUASI OPPOSIONTINAL GPSO-W
(QPGPSO-W)

Quasi oppositional population strategy was presented by M.
Basu et al in [30]. In this strategy both the current popula-
tion and its quasi opposite population are taken into account
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Algorithm 2 Quasi Population Based GPSO-w

(QPGPSO-W)
1: Initialize N, d dimensional velocity vectors V; (j) and
solutions X; (j) within search space range.

2: Initialize iteration j=0

3: for 1st iteration do

4:  initialize N, G,;(0) = X; (0)

5: end for

6: for i=1:N do

7:  Evaluate initial fitness as per Eq. 7

8 fit(Gg (0)) = min(fit(G,; (0)))

9:  Gp (0) corresponding to index fit(Gg (0))

10: end for

11: for j=1:maxiter do

12:  Determine w (j) = 0.9 — 0.5/maxiter

13:  Update V; (j) and X; (j) using Eq. 8 and Eq. 9.
14 Find opposite number X and corresponding quasi

opposite population X 4,; using Egs. 10 and 11.
5 Update X, Gy — (o, Xaoi I FitXga) < firCXi )

Xi () else
16:  Update Gpi (/) =
{ Xi () if fit(X; () < fit(Gpi G— 1))
GpiG— 1) else

17 Update fit(Gg (j)) = min(fit(G; (j)))

18:  Update G (j) corresponding to fit(Gp (7))

19: end for

20: Print best solution Gg (maxiter) and best fitness
fit(Gp (maxiter))

simultaneously for obtaining an optimum candidate solution.
This optimization technique depends on quasi opposition ini-
tialization and quasi opposition generation jumping, by which
optimum initial candidate solutions may be achieved by
making use of opposite points, even without the availabil-
ity of previous information about the solutions. A similar
methodology is reported in [31]. The quasi population has
been extensively integrated to improve the exploitation capa-
bilities of many algorithms. The quasi opposite population
progresses as follows:
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FIGURE 3. Convergence characteristics of small scale convex test system.

For each solution in the population an opposite number is
defined as

Xo = min + max — X; (10)
(min + max)’ X0)]

2
where X; is the ith d-dimensional solution at a particular
iteration. Xy is the opposite number of this ith solution and
Xyoi 1s the respective opposite population. Quasi population

Xgoi = rand|
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is integrated with GPSO-w, as illustrated by the pseudo code
provided in Algorithm 2.

The effect of proposed QPGPSO-w can also be seen graph-
ically in the distribution of the solution obtained by applying
it to solve the following equation:

f@y) =9+ -2+ +3)? (1D

Eq. 11 is solved for 100 iterations by both GPSO-w and
QPGPSO-w. From Figure. 1 it can be seen that QPGPSO-w
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TABLE 1. Comparison table for small scale convex test systems.

Technique Best Cost ($/hr) Average Cost | Worst Cost ($/hr) Average Time (Sec)
($/hr)

3 Unit Test System
LI [32] 8194.36 - - -
TLBO [36] 8194.3561 - - -
DSOS [37] 8194.3561 - - -
GPSO-w 8194.347 8194.347 8194.347 0.933
QPGPSO-w 8194.2998 8195.299 8200.941 1.2168

6 Unit Test System
TS [38] 15454.89 15488.98 15498.05 -
CBA [39] 15450.238 15454.76 15518.6588 -
PSO [33] 15450 -
MABC [40] 15449.899 15449.899 15449.899 -
DSOS [37] 15,449.694 - - -
Jaya [41] 1544874 B . .
MPSO [20] 15447 - . n
VSA [42] 15447 B . .
SOH-PSO [43] 15446.02 - - -
CPSO [44] 15,446 15,449 15,490 -
PBO [7] 15444.43 15456.09 15483.06 6.2178
PSORD [25] 15442.7813 15453.7265 15484.86 -
PSO-WPF [45] 15442.6601 15442.6613 15442.6658 -
SSO [46] 15442.4 15442.6 . .
SSA [47] 15442.4 15442.6 15443.2764 .
QPBO [9] 1544214 B . .
D-MPSO [48] 15440.674 15441.478 15456.821 -
GPSO-w 15442.63 15477.334 15534.198 0.934
QPGPSO-w 15440.58 15488.449 15634.021 2.463
15 Unit Test System
GA [33] 33113 - - -
PSO [33] 32858 - - -
CPSO [44] 32,834 33,021 33,318 -
MPSO [20] 32708 - - -
DSOS [37] 32,706.76 - - -
EMA [35] 32704.45 32704.45 32704.451 -
IFEP [49] 32,701.92 32,703.35 32,705.23 -
PSO-WPF [45] 32700.668 32700.669 32700.79 -
FCEP [49] 32,691.89 32,691.94 32,692.14 -
PSORD [25] 32652.34 32744.59 23959.7951 -
D-MPSO [48] 32560.280 32562.696 32580.765 -
GPSO-w 32548.62 32699.19289 32828.69 1.029
QPGPSO-w 32548.19 32589.541 32644.31 1.094

performs better than GPSO-w by achieving optimal results 2) IEEE standard 6 thermal unit test convex system having

in 32 iterations compared to 60 iterations taken by the lat-
ter technique. Figure. 2 shows the solution transition in
QPSPSO-w during iteration 2 and iteration 4 respectively.
We can see that the solution space is thoroughly utilized by a
quasi population leading to the improvement of convergence
and local optima stagnation.

IV. SIMULATION RESULTS

Both GPSO-w and proposed QPGPSO-w were used to imple-
ment standard ELD-IEEE test systems. The included test
systems consist of:

1) 3 thermal unit convex system at a load demand
of 150 MW proposed by A.J. Wood in [32].

134086

3)

4)

5)

6)

POZs constraint at a load demand of 1263 MW includ-
ing transmission losses. The data is taken from [7].
IEEE standard 15 thermal unit convex system having
POZs constraint at a load demand of 2630 MW includ-
ing transmission losses. The data is taken from [33].
IEEE standard 13 thermal unit non-convex system
having valve point constraint at a load demand
of 1800 MW. The data is taken from [34].

IEEE standard 40 thermal unit non-convex system
having valve point constraint at a load demand
of 10500 MW. The data is taken from [35].

Korean 140 Unit convex test system at a load demand
of 49342 MW taken from [24].
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TABLE 2. Comparison table for non-convex test systems.

Technique Best Cost ($/hr) Average Cost | Worst Cost ($/hr) Average Time
($/hr) (Sec)
13 Unit Test System
TLBO [36] 18115 * * *
PSO [50] 18,030.72 18,205.78 * 77.37
IFEP [49] 17994.07 18127.06 18267.42 *
EP-SQP [50] 17,991.03 18,106.93 * 121.93
PSO-SQP [50] 17,969.93 18,029.99 * 33.97
QMPSO [51] 17969.85 18081.05 18154.15 *
GPSO-w 17978.62 18437.12 18723.5 0.56
QPGPSO-w 17971.81 18033.85 18082.74 0.618
QPGPSO-w-SQP 17969.56061 18165.52462 18439.48317 2.6
40 Unit Test System
PSORD [25] 128864.4525 129482.097 131129.0861 *
PSO [52] 121751.339 122020.754 122607.9145 19
NPSO [53] 121704.7391 122221.3697 122995.0976 *
NPSO-LRS [53] 121664.43 122209.31 122981.59 *
ACO [54] 121532.41 121606.45 121679.64 *
SOH-PSO [43] 121501.14 * * *
GA-PS-SQP [55] 121458 122039 * 46.98
GPSO-w 127404.2737 130283.5476 140212.1534 1.765
QPGPSO-w 123780.6993 128601.7061 140212.1534 2.02
QPGPSO-w-SQP 121444.0924 124679.6987 128196.6197 3.131768925
%104 13 Unit Test System «10% 40 Unit Test System
28 T T : T : T T 1.65
27 8
1.6 8
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25 E 1.65 i
L o4 | £
5 < 15 1
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FIGURE 4. Convergence characteristics of non convex test system. a) and b) Convergence curve best solution for QPGPSO-w before SQP.

¢) and d) Convergence curve for SQP.
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TABLE 3. Best solution for 3 thermal unit convex test system.

Units P i,min P i,mazx GPSO-w QPGPSO-W
Generation Fuel Cost | Generation (MW) Fuel Cost ($/hr)
(MW) ($/hr)
1 100 600 393.1694 3916.359 391.7621 3903.488118
2 50 200 334.6034 3153.838 335.2335 3159.602647
3 100 400 122.2263 1124.151 122.9975 1131.209065
Total Generation 849.999 MW / 8194.347 $/hr 849.993 MW / 8194.2998 $/hr
(MW)/ Total Fuel
Cost ($/hr)
TABLE 4. Best solution for 6 thermal unit convex test system.
Units P i min P i max GPSO-w QPGPSO-w
Generation Fuel Cost | Generation Fuel Cost
(MW) ($/hr) (MW) ($/hr)
1 100 500 445.4241 4746.787 459.4323 4933.573
2 50 200 170.9543 2187.184 190.7573 2453.263
3 80 300 261.2511 3054.904 273.752 3221.353
4 50 150 150 2052.5 142.0687 1944.407
5 50 200 161.5584 2125.172 150 1975
6 50 120 85.89575 1276.085 58.13596 912.9799
Total Transmission 12.08364 MW 11.14633 MW
Line Losses (MW)
Total Generation 1275.084 MW / 15442.63 $/hr 1274.146 MW / 15440.58 $/hr
(MW)/ Total Fuel
Cost ($/hr)

TABLE 5. Best solution for 15 thermal unit convex test system.

Units P i min P i max GPSO-w QPGPSO-w
Generation Fuel Cost | Generation Fuel Cost
(MW) ($/hr) (MW) ($/hr)
1 150 455 455 5328.4 455 5328.4
2 150 455 455 5252.886 455 5252.886
3 20 130 130 1537.029 130 1537.029
4 20 130 130 1537.029 130 1537.029
5 150 470 236.9708 2937.008 235.9043 2925.813
6 135 460 460 5339.692 460 5339.692
7 135 465 465 5183.706 465 5183.706
8 60 300 60 900.2168 60 900.2168
9 25 162 25 453.5044 25 453.5044
10 25 160 25 4432519 25 4432519
11 20 80 80 1024.95 80 1024.95
12 20 80 80 1057.283 80 1057.283
13 25 85 25 552.7319 25 552.7319
14 15 55 15 490.934 15 490.934
15 15 55 15 510.0006 15 510.0006
Total Transmission 26.97077 MW 26.9708 MW
Line Losses (MW)
Total Generation 2656.971 MW /32548.62 $/hr 2656.971 MW /32548.19 $/hr
(MW)/ Total Fuel
Cost ($/hr)

MATLAB 2016 software was used to perform simulations.
The framework used had 8§ GB RAM and Intel core i5 pro-
cessor. The results achieved were compared with other similar
results in the literature and are presented below.

A. SMALL SCALE CONVEX TEST SYSTEMS

The convex systems of (3, 6 & 15) thermal units were sim-
ulated for 20 runs and the iterations were kept at 500 per
run for each system. The most optimal results obtained by
GPSO-w and QPGPSO-w are shown in Tables. 3, 4 and 5.
Table. 1 shows a comparison of the results obtained with other
techniques available in the literature. It is clear from Table. 1
that for 3 unit test system QPGPSO-w has achieved better
results in terms of cost ranging from 0.0602 to 0.0472 0.0472
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$/hr compared to the lambda iteration method (LI), teaching
learning based optimization (TLBO), disruption based sym-
biotic organism search (DSOS), and the GPSO-w methods.
For 6 unit test system, QPGPSO-w showed an improve-
ment in the range of 9.42 to 0.094$/hr compared to PSO,
MPSO, SOH-PSO, CPSO, PSORD, PSO-WPF, D-MPSO
and GPSO-w methods. Whereas the cost improvement was
between 14.31 to 1.56 $/hr, as opposed to other modern
techniques such as TS, CBA, MABC, DSOS, Jaya, VSA,
PBO, QPBO, SSO and SSA. Finally, QPGPSO-w for 15 unit
convex test systems showed an improvement in the range
of 309.81 to 0.43 $/hr and 564.81 to 143.7 $/hr compared
to PSO, MPSO, CPSO, PSORD, PSO- WPF, D-MPSO and
other modern techniques such as GA, DSOS, EMA, IFEP and
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TABLE 6. Best solution for 13 thermal unit non-convex test system.

Units P i,min P i,max GPSO-w QPGPSO-W
Generation Fuel Cost | Generation Fuel Cost
(MW) ($/hr) (MW) ($/hr)
1 0 680 628.3185 5749.92 628.3185 5749.92
2 0 360 224.3707 2154.836 223.3356 2154.884
3 0 360 148.7126 1529.544 298.6696 2779.514
4 60 180 60 716.064 109.8547 1129.488
5 60 180 109.8665 1129.476 60 716.064
6 60 180 109.6557 1129.687 60 716.064
7 60 180 60 716.064 60 716.064
8 60 180 159.7306 1559.003 109.8666 1129.476
9 60 180 109.5848 1129.757 60 716.064
10 40 120 40 474.544 40 474.544
11 40 120 40 474.544 40 474.544
12 55 120 55 607.591 55 607.591
13 55 120 55 607.591 55 607.591
Total Generation 1800.24 MW / 17978.62 $/hr 1800.045 MW / 17971.81 $/hr
(MW)/ Total Fuel
Cost ($/hr)
TABLE 7. Best solution for 40 thermal unit non-convex test system.
Units P i min P i max GPSO-w QPGPSO-w
Generation Fuel Cost | Generation Fuel Cost
(MW) ($/hr) (MW) ($/hr)
1 36 114 38.19017491 380.082317 114 978.156289
2 36 114 114 978.1562885 114 978.156289
3 60 120 60 806.748 120 1544.65338
4 80 190 190 2353.689135 190 2353.68914
5 47 97 97 853.1776164 97 853.177616
6 68 140 140 1596.46432 68 822.53608
7 110 300 110 1214.207 300 3216.42404
8 135 300 135 1425.297 300 3052.30951
9 135 300 135 1451.18925 300 3071.98951
10 130 300 130 2502.065 130 2502.065
11 94 375 375 6335.335317 160.4312594 2906.17241
12 94 375 168.7998251 2977.455099 94 1908.16684
13 125 500 125 2541.68125 125 2541.68125
14 125 500 500 8219.407332 500 8219.40733
15 125 500 125 2982.675 125 2982.675
16 125 500 500 8232.307332 125 2982.675
17 220 500 500 5525.293739 489.2793703 5296.71075
18 220 550 550 6224.075875 550 6224.07588
19 242 550 550 6271.211113 511.2793703 5540.92922
20 242 550 550 6271.191113 550 6271.19111
21 254 550 550 5575.329273 550 5575.32927
22 254 550 550 5575.329273 550 5575.32927
23 254 550 550 5558.049273 550 5558.04927
24 254 550 550 5558.049273 550 5558.04927
25 254 550 550 5785.664273 550 5785.66427
26 254 550 550 5785.664273 550 5785.66427
27 10 150 10 1140.524 10 1140.524
28 10 150 10 1140.524 10 1140.524
29 10 150 10 1140.524 10 1140.524
30 47 97 97 853.1776164 97 853.177616
31 60 190 190 1643.991252 190 1643.99125
32 60 190 190 1643.991252 190 1643.99125
33 60 190 190 1643.991252 190 1643.99125
34 90 220 220 2228.37304 220 2228.37304
35 90 220 90 893.19 220 2164.48304
36 90 220 220 2164.48304 220 2164.48304
37 25 110 110 1220.166122 110 1220.16612
38 25 110 110 1220.166122 110 1220.16612
39 25 110 110 1220.166122 110 1220.16612
40 242 550 550 6271.211113 550 6271.21111
Total Generation 10499.99MW / 127404.3$/hr 10499.99 MW /
(MW)/ Total Fuel 123780.699253442 $/hr
Cost ($/hr)
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TABLE 8. Best solution by QPGPSO-w-SQP for non- convex test system.
Units P i min P i mazx QPGPSO-w-SQP QPGPSO-w-SQP
Generation Fuel Cost | Generation Fuel Cost
(MW) ($/hr) (MW) ($/hr)
1 36 114 628.3183974 5749.919941 110.8030054 925.149352
2 36 114 299.1679552 2782.644557 110.7994898 925.096419
3 60 120 222.7840634 2149.514536 97.40070414 1190.5639
4 80 190 109.863185 1129.479391 80 1083.718
5 47 97 109.866399 1129.476183 87.79944357 706.500945
6 68 140 60 716.064 140 1596.46432
7 110 300 60 716.064 287.5616471 3076.53137
8 135 300 60 716.064 284.6011536 2779.86395
9 135 300 60 716.064 284.5990143 2798.22935
10 130 300 40 474.544 130 2502.065
11 94 375 40 474.544 94 1893.3054
12 94 375 55 607.591 94 1908.16684
13 125 500 55 607.591 125 2541.68125
14 125 500 * * 394.2796052 6414.86636
15 125 500 * * 394.2792982 6436.58598
16 125 500 * * 394.2792932 6436.58596
17 220 500 * * 489.2796938 5296.71771
18 220 550 * * 550 6224.07588
19 242 550 * * 511.2793717 5540.92925
20 242 550 * * 511.2793081 5540.90918
21 254 550 * #* 523.2799349 5071.30113
22 254 550 * #* 523.2802114 5071.30673
23 254 550 * * 523.2796202 5057.22813
24 254 550 * * 523.2797869 5057.23148
25 254 550 * * 523.2797348 5275.096
26 254 550 * * 523.2794273 5275.0897
27 10 150 * * 10 1140.524
28 10 150 * * 10 1140.524
29 10 150 * * 10 1140.524
30 47 97 * * 87.8000905 706.503159
31 60 190 * * 190 1643.99125
32 60 190 * * 190 1643.99125
33 60 190 * * 190 1643.99125
34 90 220 * * 220 2228.37304
35 90 220 * * 220 2164.48304
36 90 220 * * 220 2164.48304
37 25 110 * * 110 1220.16612
38 25 110 * * 110 1220.16612
39 25 110 * * 110 1220.16612
40 242 550 * * 511.280166 5540.94647
Total Generation 1800 MW / 17969.56 $/hr 10500 MW / 121444.1 $/hr
(MW)/ Total Fuel
Cost ($/hr)

FCEP respectively. Convergence characteristics of GPSO-w
and QPGPSO-w are shown in Figure. 3.

From Figure. 3 it can be noted that QPGPSO-w initially has
a faster convergence rate and can later achieve more optimal
solutions in the iterations. This search trend confirms the
benefit of using a quasi population strategy.

B. NON CONVEX TEST SYSTEMS

Similarly, (13 & 40) unit non-convex thermal systems were
also simulated for 20 runs and the iterations were kept
at 500 per run for each system. The most optimal results
obtained by GPSO-w and QPGPSO-w are shown in Tables. 6
and 7. From Tables. 6 and 7, it can be seen that both
GPSO-w and QPGPSO-w were able to achieve an opti-
mal solution of given test systems at a reasonable solution
cost. The results obtained with QPGPSO-w demonstrate its
efficacy compared to GPSO-w. Although QPGPSO-w was
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able to outperform GPSO-w, the results obtained are only a
marginal improvement. To ensure that QPGPSO-w reaches
the global optimum, the results were further optimized using
the MATLAB SQP optimizer. The best results obtained after
QPGPSO-w-SQP are shown in Table. 8. Table. 2 shows
comparison of results with other techniques available in the
literature. It is clear from Table. 2 that QPGPSO-w-SQP
achieved better results in terms of cost from 145.44 to
0.2894 $/hr for a non-convex system of 13 units compared to
TLBO, PSO, IFEP, EP-SQP, PSO-SQP, QMPSO, GPSO-w
and QPGPSO-w. While QPGPSO-w-SQP for 40 unit non-
convex test system showed better results in terms of cost
from 7420.36 to 13.91 $/hr compared to PSORD, PSO, ACO,
NPSO, NPSO-LRS, SOH-PSO, GA-PS-SQP, GPSO-w and
QPGPSO-w.

Convergence properties of the best solution of GPSO-w
and QPGPSO-w are presented in Figure. 5. Figure. 4 shows
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TABLE 9. Best solution for large scale 140 thermal unit convex test system.

Units P i min P mas GPSO-w QPGPSO-w

Generation Fuel Cost | Generation Fuel Cost

MW) ($/hr) (MW) ($/hr)
1 71 119 103.4771919 6875.172488 119 7784.169968
2 120 189 123.4998791 6516.633916 189 9377.84288
3 125 190 130.8988088 7002.162518 125 6723.178625
4 125 190 163.7478315 8560.65467 190 9812.1369
5 90 190 93.32543515 7408.508111 190 13815.5438
6 90 190 90.541433 7003.481506 190 13510.1482
7 280 490 438.4310344 8340.888379 490 9285.9529
8 280 490 392.3538992 7514.852085 490 9250.1959
9 260 496 382.0407877 7112.47845 496 9126.311008
10 260 496 260.7443225 5113.461637 496 9126.311008
11 260 496 260 5101.6548 260 5101.6548
12 260 496 327.7198411 6239.307102 496 9171.395832
13 260 506 320.791024 6248.981843 506 9543.166436
14 260 509 358.4338356 6896.839331 509 9598.727981
15 260 506 322.8587608 6284.281994 506 9543.166436
16 260 505 456.4802845 8636.181373 505 9524.661525
17 260 506 290.693167 5774.491757 260 5253.1128
18 260 506 275.2388001 5511.407817 506 9558.614148
19 260 505 442.2989117 8432.158608 505 9569.9231
20 260 505 329.2925276 6454.711552 505 9569.9231
21 260 505 375.1213859 7245.307976 505 9569.9231
22 260 505 313.0651966 6178.482688 505 9569.9231
23 260 505 262.9028162 5333.658726 505 9558.9041
24 260 505 260 5288.7294 505 9569.9231
25 280 537 321.6265673 6373.370878 537 10174.95241
26 280 537 394.1924458 7590.681938 537 10176.15032
27 280 549 316.1236137 6179.498126 549 10385.72719
28 280 549 312.4920739 6114.757884 549 10385.72719
29 260 501 306.864563 5831.454507 260 5049.9478
30 260 501 276.4515124 5310.568999 501 9171.044547
31 260 506 442.5258213 8420.927353 506 9588.387512
32 260 506 420 8013.4788 506 9588.387512
33 260 506 384.3563799 7376.098505 260 5222.8292
34 260 506 370.0202193 7122.276754 506 9588.387512
35 260 500 269.5683993 5277.854468 500 9057.46
36 260 500 437.5401245 7975.210533 500 9031.992
37 120 241 127.5333368 2566.471475 241 4566.79495
38 120 241 204.3698442 3912.73271 241 4566.79495
39 423 774 745.9422431 14161.71093 774 14667.43132
40 423 769 586.2421115 11251.02778 769 14532.92774
41 3 19 15.03766959 2008.842724 3 904.50124
42 3 28 7.678390435 1135.736148 3 524.168655
43 160 250 170.2728508 13777.69062 160 13113.0128
44 160 250 213.8256416 16727.84529 250 19186.772
45 160 250 161.5155357 13402.98901 250 19144.4675
46 160 250 246.0318128 18657.59154 250 18920.3925
47 160 250 196.4613102 15369.46049 160 12982.8064
48 160 250 173.4054988 14033.38407 250 18990.004
49 160 250 160.1193027 13262.88079 160 13255.258
50 160 250 160.566897 13472.38816 250 19151.925
51 165 504 311.6912848 2421477986 165 13710.9729
52 165 504 215.8253838 17350.10882 504 37987.9277
53 165 504 393.2682907 30056.93736 165 13710.9729
54 165 504 199.5743445 16186.4974 504 37987.9277
55 180 471 229.9283594 22178.53986 180 17876.8972
56 180 561 272.629374 26696.13058 180 18568.7094
57 103 341 182.6191903 18559.28934 103 12787.34055
58 198 617 428.9470381 38484.91617 198 19288.43091
59 100 312 140.1635881 14639.37089 312 25603.86862
60 153 471 214.8747914 21802.04812 153 18018.69237
61 163 500 191.1266192 18644.8066 163 16407.9663
62 95 302 200.4630555 18028.74799 95 9510.0751
63 160 511 370.2327945 29081.07346 160 14331.2814
64 160 511 486.5433677 37243.01651 160 14331.2814
65 196 490 253.3552963 20931.1965 196 17587.38203
66 196 490 236.2572999 19450.63608 196 16628.80643
67 196 490 403.8675709 30295.09716 196 17587.38203
68 196 490 196 17587.38203 196 17587.38203
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TABLE 9. (Continued.) Best solution for large scale 140 thermal unit convex test system.
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Units P i min P mas GPSO-w QPGPSO-w

Generation Fuel Cost | Generation Fuel Cost

MW) ($/hr) (MW) ($/hr)
69 130 462 404.7493151 36851.67183 130 13512.834
70 130 432 270.0671681 25955.83579 236.999 23829.97667
71 137 455 311.5661223 26758.08313 137 13688.22065
72 137 455 354.835374 30190.96539 455 37577.69688
73 195 541 233.7978582 17608.79711 195 14852.73888
74 175 536 353.6776056 26262.00808 175 13579.0675
75 175 540 392.8891721 29045.70969 175 13579.0675
76 175 538 296.688519 22276.83373 175 13646.86688
77 175 540 478.6737421 35070.05536 175 13534.048
78 330 574 429.4611749 32670.13301 330 25591.7723
79 160 531 332.8808913 13438.12411 531 21026.89468
80 160 531 415.0802058 16592.43842 531 21025.11258
81 200 542 202.0428371 16111.86728 542 39487.75314
82 56 132 57.31559794 6924.080032 56 6801.9908
83 115 245 131.5800952 14468.6914 115 13016.5838
84 115 245 115.1718941 12861.34752 115 12845.5183
85 115 245 115 12845.5183 245 25742.8807
86 207 307 211.4533349 23687.41843 307 33377.99012
87 207 307 220.2403935 24718.57504 207 23389.95569
88 175 345 186.0767282 16731.02596 175 15925.65763
89 175 345 248.2617782 21320.62213 175 15901.90313
90 175 345 197.4234624 17427.20452 175 15828.3225
91 175 345 198.9533872 17665.36825 175 15902.68275
92 360 580 489.2670116 1632.616308 580 1896.6886
93 415 645 457.7903879 1784.394637 645 2387.9403
94 795 984 828.7085196 2737.777249 795 2632.21155
95 795 978 810.8518544 2633.938214 978 3148.646648
96 578 682 587.9260801 1407.768057 682 1592.792172
97 615 720 631.6417739 1459.173802 720 1630.2022
98 612 718 616.6103777 1530.166763 718 1740.64566
99 612 720 632.2509601 1585.051091 720 1770.1832
100 758 964 816.5322747 2724.921897 964 3177.595128
101 755 958 870.6041811 2894.874096 958 3165.122508
102 750 1007 763.9431892 2339.177774 1007 3122.983876
103 750 1006 750 2422.785 1006 3293.713384
104 713 1013 898.7434511 2869.58226 1013 3202.53761
105 718 1020 872.5486673 2634.271412 1020 3037.279
106 791 954 882.7452169 2754.226866 954 2957.514028
107 786 952 804.1100235 2609.612659 952 3041.260656
108 795 1006 795 2758.011525 1006 3421.408396
109 795 1013 891.6401628 3061.816667 1013 3445.617371
110 795 1021 801.3170467 2661.983807 1021 3303.760787
111 795 1015 806.1730342 2975.210389 1015 3653.36385
112 94 203 148.5791414 14932.89382 94 9839.99278
113 94 203 111.8698193 11498.04864 94 9839.99278
114 94 203 151.814677 15237.49411 94 9839.99278
115 244 379 266.4058513 24196.44011 244 22413.54058
116 244 379 260.3064802 23708.08497 379 33615.93751
117 244 379 247.9578613 22726.26939 379 33615.93751
118 95 190 106.960232 10660.84118 190 17575.0697
119 95 189 101.431908 10604.27396 189 17807.96518
120 116 194 116 11391.08332 194 18254.26042
121 175 321 184.352256 17956.54582 321 29637.34621
122 2 19 7.902060551 1073.549795 19 2228.418923
123 4 59 9.092100642 2262.284014 59 7856.510164
124 15 83 48.06171589 5989.552086 83 9496.265052
125 9 53 33.77007148 4291.176169 53 6159.457432
126 12 37 18.48472916 2652.719505 12 1994.469128
127 10 34 10.53106722 1723.971267 34 4224.868136
128 112 373 206.4319326 20272.58691 373 35467.98142
129 4 20 17.76878581 2419.291695 20 2659.631
130 5 38 30.2087826 3604.35828 38 4529.996792
131 5 18 8.065652087 1133.199146 5 734.353875
132 50 98 86.09581967 8153.863782 50 5029.432
133 5 10 6.413512314 971.5740127 5 796.217125
134 42 74 61.39772249 6729.594952 42 4933.834632
135 42 74 44.097629 5042.536438 74 7852.685804
136 41 105 95 16721.90678 75 13493.04938
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TABLE 9. (Continued.) Best solution for large scale 140 thermal unit convex test system.

Units P i min P i max GPSO-w QPGPSO-w
Generation Fuel Cost | Generation Fuel Cost
MW) ($/hr) MW) ($/hr)
137 17 51 41.50417866 11202.72475 17 7229.718805
138 7 19 15.24037892 1407.333254 7 664.102563
139 7 19 16.89877087 1560.764119 7 664.102563
140 26 40 26 2428.328528 40 3680.9218
Total Generation 42767.023 MW / 1625345.038 49342 MW / 1665379 $/hr
(MW)/ Total Fuel $/hr
Cost ($/hr)
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FIGURE 5. Convergence characteristics of non-convex test system. a) and b) Convergence characteristics GPSO-w. c) and d) Convergence characteristics

of QPGPSO-w.

convergence properties of QPGPSO-w-SQP. From Table. 2
we can also observe a significant improvement in execution
times, with the proposed techniques showing an improvement
of up to 45 seconds in the total execution time per run.

C. LARGE SCALE CONVEX TEST SYSTEMS

The 140 unit Korean convex ELD test system consists of a
combination of coal, oil fuel, LNG, and nuclear units. Twenty
runs of 500 iterations each were performed for both GPSO-w
and QPGPSO-w. The best results obtained with GPSO-w
and QPGPSO-w are shown in Table. 8. The results obtained
show that the QPGPSO-w compared to GPSO-w was not only
able to obtain an optimal solution but also achieved a cost
comparable to the global solution available in the literature.
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QPGPSO-w achieved the best cost of 1665379 $/hr at an
average cost of 1735099 $/hr in a run time of 40 seconds
per run. The optimum cost achieved by QPGPSO-w is only
0.59% higher than the current global minimum.

V. CONCLUSION AND FUTURE WORK

In this study, the global particle swarm optimizer with
inertial weights algorithm (GPSO-w) and quasi-opposition-
based global particle swarm optimizer with inertial weights
(QPGPSO-w), which are new variants of swarm-inspired
(SI) metaheuristic algorithms, were used to solve the IEEE
standards (3, 6, 13, 15, 40 & 140) unit Korean grid ELD test
systems under various constraints. The optimization potential
of the proposed metaheuristic techniques has been validated
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by comparing their searching performance with several recent
approaches reported in the literature. From the simulation
results it could be seen that the energy generation costs of
the systems have decreased significantly by augmenting the
GPSO-w with quasi-oppositional population QPGPSO-w in
the selected cases. In addition, the convergence character-
istics and optimization potential of the QPGPSO-w algo-
rithm are significantly better than the GPSO-w algorithm.
Results for small-scale IEEE standards (3, 6 & 15) thermal
unit convex system show that QPGPSO-w achieved better
results in terms of cost up to 0.000735%, 0.093% and 1.735%
for IEEE standards (3, 6 & 15) units respectively. The pro-
posed approaches have also reduced the likelihood of a pre-
mature convergence on the ELD problem due to improved
searching properties. Furthermore, for non-convex systems,
sequential quadratic programming (SQP) optimizer searched
the global minimum even more effectively. For non-convex
system, the operation of QPGPSO-w was enhanced by pass-
ing the results through the SQP optimizer, and the resulting
QPGPSO-w -SQP achieved better results in terms of cost up
to 0.81% and 6.11%, for (13 & 40) thermal unit non-convex
test systems respectively. For 140-units, the Korean ELD
test system, the QPGPSO-w, outperformed the GPSO-w and
found better results in relatively less iterations. In the future,
this improved modification of the GPSO-w may be tested on
other practical ELD issues with more operational constraints,
for example prohibited operating zones, different fuel options
and transmission losses, as well as with renewable energy
sources. In addition, emerging metaheuristic methods can
also be validated in the selected ELD cases.

APPENDIX A
RESULT TABLES
See Tables 3-9.

APPENDIX B
CONVERGENCE CHARACTERISTICS
See Figure 5.
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