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ABSTRACT In recent years, power companies have shown increasing interest in making strategic decisions
to maintain profitable energy systems. Economic Load Dispatch (ELD) is a complex decision-making
process where the output power of the entire power generating units must be set in a way that results in the
overall economic operation of the power system. Moreover, it is a constrained multi-objective optimization
problem. Now a days, there is a tendency to use metaheuristic methods to deal with the complexity of
the ELD problem. Particle swarm optimization (PSO) is a subclass of metaheuristic methods inspired by
fish schooling and bird flocking behaviors. However, the optimization performance of the PSO is highly
dependent on fitness landscapes and can lead to local optima stagnation and premature convergence.
Therefore, in the proposed study, two new variants of the PSO called global particle swarm optimizer with
inertial weights (GPSO-w) and quasi-oppositional population based global particle swarm optimizer with
inertial weights (QPGPSO-w) are proposed to address the complexity of the ELDproblem. The ELDproblem
is formulated as an optimization problem and validation of the proposed methods is performed on IEEE
standards (3, 6, 13, 15, 40 & 140) unit Korean grid ELD test systems under numerous constraints and the
obtained results are compared with the several recent techniques presented in the literature. The results
obtained with convex systems showed excellent cost-effectiveness, while for non-convex systems sequential
quadratic programming (SQP) optimizer was added to discover global minima even more efficiently. The
proposed techniques were successful in solving the ELD problem and yielded better results compared to the
reported results in the selected cases. It is further inferred that the proposed techniques with less algorithmic
parameters reflected improved exploration and convergence characteristics.

INDEX TERMS Economic load dispatch, quasi-population, PSO, swarm intelligence, optimization.

I. INTRODUCTION
The world is currently going through uncertain times. The
corona pandemic has halted economic progress worldwide.
The energy sector, which was a backbone of economic
progress, also had serious consequences [1]. The year
2020 saw a huge energy drop of 5%, which a few years
ago could be considered unrealistic or even desecrated [2].
Although the consumption of household electricity is increas-
ing due to the recession in industry and the situation in
economic sector has proved that the overall demand has
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decreased [3]. The impact of this decline was felt so severely
by some entities in the power sector that only in America,
19 companies went bankrupt [4]. The current situation seems
bleak, but all is not lost, as the post-corona scenario could
give an impetus to the global energy sector and revive it to
its former glory. The disruption in development will signifi-
cantly motivate investment firms to strengthen their strategy
and use people’s panic-buying psychology due to Covid-19
to make profits, thus stimulating the demand for energy in
the process. Such positive trends for energy demand can be
seen in the automotive sector which has increased in demand
after corona due to people’s preferences to avoid public trans-
port [5], [6]. Tomeet the growing demand for energy in future
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and create a sustainable energy infrastructure for our future
generations, renewable energy sources must be vigorously
integrated into the energy infrastructure. The penetration of
renewable energy sources has seen a rising trend, even during
the Covid-19 situation, and it is expected to retain its trajec-
tory. The current positive trends of renewable integration are
largely attributed to the incentives and policies of govern-
ments around the world. In 2022, the future for renewable
energy seems a bit uncertain, as most of these incentives
and policies are likely to end. The post-Covid-19 energy
situation and uncertainty over global energy policy, coupled
with a very volatile energy demand, are forcing the need
for a backup plan. Global energy generation is still largely
attributed to fossil fuels that have been in service for decades
and have a proven track record of resilience, reliability, and
efficient grid integration. To ensure energy supply, these ther-
mal generation sources cannot be overlooked andmust be uti-
lized in an efficient and cost-effective manner. Economic load
dispatch (ELD) is a well-documented optimization problem
related to the economy of the power system, which involves
the control of thermal resources so that maximum power can
be extracted at the lowest possible fuel cost [7]–[9].

Economic load dispatch of thermal resources deals with
non-linear, non-convex fuel cost curves under constraints
such as energy balance, valve point effect, generators limits
and prohibited operating zones. All these limitations make
the ELD problem extremely challenging for optimization
engineers, making it ideal for research. Simply put, ELD
is the transmission of power in an economical way for a
given load demand, so that no restriction is violated. ELD
has been the subject of research for decades. The ongoing
literature in ELD proves its necessity and importance in the
overall energy mix. The ELD problemwas initially addressed
by traditional solution techniques such as lambda iteration
method, quadratic programming, linear programming, gra-
dient method, Newton’s method and similar mathematical
methods to find gradient or iterative search techniques. These
approaches can solve the ELD problem, but with increas-
ing dimensions and system size, these methods face severe
performance degradation. It has also been noted in several
studies that conventional approaches are lacking in adequate
global exploration and are more prone to local exploita-
tion. This tendency of trapping in local optima severely
hampered their overall effectiveness. When conventional
approaches did not yield the desired results, evolutionary
and swarm-based approaches took the lead to solve the com-
plex real world optimization problems [10]–[15]. Among
these categories, swarm intelligence-based approaches have
been found to be very effective in achieving the optimal
solution of the ELD problem. These swarm-based tech-
niques are a subclass of metaheuristic methods and can
be further divided into two groups, such as global swarm
optimizers (GSOs) and local swarm optimizers (LSOs).
Among them the GSOs are more popular; the GSO tech-
niques mimic the behavior of fish, insects, animals, or
birds [16]–[19].

These techniques start with some random initial population
and achieve the best position in the transition by learning
from the personal experience of each solution as well as the
experience of best solution in a coordinated manner. GSO
techniques are widely recognized as the black-box problem
solvers; many of them have few control parameters and are
easy to implement in a computer code. Although most of
these methods show promising results on unimodal optimiza-
tion problems, many of them are challenged by multimodal
and other complex fitness landscapes of the real-world opti-
mization problems. To overcome the aforesaid shortcomings
several new variants of swarm-based techniques were pro-
posed like modified particle swarm (MPSO) [20], stochas-
tic modified particle swarm (SM-PSO) [21], [22], hybrid
mutated particle swarm (HMPSO) [23], improved particle
swarm (IPSO) [24] and particle swarm with random drift
(PSORD) [25], an expanded particle swarm (XPSO) [26],
triple archives particle swarm (TAPSO) [27] and U-based
particle swarm (U-PSO) [28].

One such global PSO variant namely global inertial
PSO (GPSO-w) has been proposed in [29]. GPSO-w is an
enhanced and advanced PSO algorithm with better explo-
ration, exploitation, and convergence capabilities that can
handle many fitness landscapes. In this study, to explore
broader regions of the search space and to find the best
solutions for the selected ELD cases, GPSO-w augmented
with a quasi-oppositional population called the QPGPSO-w
is used on IEEE standards (3, 6, 13, 15, 40 & 140) unit ELD
test systems and the results obtained are compared with the
results of several other meta heuristic techniques reported in
recent literature.

The core contributions of the study are as follows:

1) The study seeks to identify two new meta heuristic
methods to solve the ELD problem under various con-
straints.

2) A new quasi-oppositional global particle swarm opti-
mizer with inertial weights (QPGPSO-w) is being
developed by incorporating the quasi-oppositional pop-
ulation in the global particle swarm optimizer with
inertial weights (GPSO-w).

3) The validation of the proposed methods for the solution
of IEEE standards (3, 6, 13, 15, 40 & 140 )unit Korean
grid ELD test systems under different constraints have
been carried out.

The paper is structured into the following sections.
Section II describes problem formulation and explains the
solution techniques. Section III explains the overview of the
Quasi-Oppositional GPSO-w. Section IV provides details of
simulation and discussion of results. And section V draws
some useful conclusions.

II. PROBLEM FORMULATION
ELD is a well-known optimization problem in power sys-
tem with the aim of assigning optimal load to thermal
units to reduce the total fuel cost, subject to the operational
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FIGURE 1. (a) Convergence curve GPSO-w. (b) Convergence curve QPGPSO-w.

limitations of power system. Mathematically, ELD contains
non-convexity and non-linearity, also ELD is a challenging
mathematical problem due to hard binding constraints such as
power balance and soft constraints such as generator limits,
prohibited operating zones (POZs) and valve point effect.
The computation of transmission losses at each dispatch level
assigned to thermal units can also be part of the ELD problem.
Numerically, the principal goal is to minimize the operating
cost of generation units that can be modeled as formulated in
Eq. 1 and Eq. 2.
minimize

Nx∑
i=1

FPi =
Nx∑
i=1

aP2i + bPi + c (1)

∑Nx

i=1
FPi =

∑Nx

i=1
aP2i +bPi+c+(e∗abs(sin(f ∗(Pil−Pi))))

(2)

The quadratic approach of cost curves for thermal unit fuel
without valve point effect is described by Eq. 1. Detailed
costs including the impact of valve point are described by
Eq. 2. In the above equations, a, b, c, e and f represent cost
coefficients; Nx indicates the total number of generating units
available for scheduling, Pi represents the ith power output
of the generating unit and Pil shows the minimum power
generating limit of the ith generating unit [9].

These objective functions are subjected to following equal-
ity and inequality constraints. Equality constraints include the
power generation balance as described by Eq. 3.

Pgenerated = Prequired + Ploss (3)

In Eq. 3 Pgenerated represents the total scheduled power,
Prequired indicates the total power demand of the system in
megawatts (MW) and Ploss shows loss of the transmission
network of the system in MW.

Inequality constraints include generation limits and pro-
hibited operating zones (POZs) described by Eq. 4 and Eq. 5.

Pil < Pi < Pih (4)


Pil < Pi < Pi1
Pi2 < Pi < Pi(n−1)
Pin < Pi < Pih

(5)

where Pil and Pih are the minimum and maximum power
generation limits of the ith generator, Pi represents power
scheduled on the ith generation unit and Pi1 to Pin represent
the workable operating zones of the ith generation unit.

The transmission losses can be calculated from loss coef-
ficient matrix B using following Eq. 6.

Ploss =
Nx∑
i=1

Nx∑
k=1

(PiBikPk )+
Nx∑
i=1

(Bi0Pi)+ B00 (6)

where Bik , Bi0 and B00 are transmission loss coefficients.
The overall fitness function including equality constraints

and objective can be defined as:

fitness = penalty ∗ abs
(∑Nx

i=1
Pi− Prequired − PLoss

)
+ objective (7)

Penalty in the abovementioned equation is a constant value
that is usually excess than 100.

A. OVERVIEW OF GPSO-W
The authors in [29] introduced GPSO-w by augmenting the
working of PSO. In GPSO-w, N distinct solutions are ini-
tialized having N distinct velocity vectors. The initial values
are randomly selected within the range of search space. The
solutions then progressively iterate to optimal solution by
updating their location and velocity vectors based on follow-
ing equations.

Vi (j) = w (j)Vi (j− 1)+ c1r1 (j)
[
Gpi (j− 1)− Xi (j− 1)

]
+ c2r2 (j) [GB (j− 1)− Xi (j− 1)] (8)

Xi (j) = Xi (j− 1)+ Vi (j) (9)

where c1& c2 are constants, r1 (j) & r2 (j) are random num-
bers in the range [0,1], Gpi represents the optimal position
vectors of each solution and GB is the best optimal position
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FIGURE 2. (a) Solution scattering iteration 2. (b) Solution scattering iteration 4.

achieved with solutions at iteration j. Also, Vi (j)and Xi (j)
represent the velocity and position of ith solution at the jth
iteration. From the above comparison, it is very clear that
position vectors are updated in the direction of most optimal
solution, based on their own position as well as the position
of the most optimal solution. The contribution of each in the
overall reproduction of solutions can be controlled by means
of c1& c2. The solution strategy of GPSO-w algorithm is
described by the pseudocode as follows:

Algorithm 1 GPSO-w
1: Initialize N, d dimensional velocity vectors Vi (j) and

solutions Xi (j) within search space range.
2: Initialize iteration j=0
3: for 1st iteration do
4: Initialize N, Gpi(0) = Xi (0)
5: end for
6: for i=1:N do
7: Evaluate initial fitness as per Eq. 7
8: Find fit(GB (0)) = min(fit(Gpi (0)))
9: Find GB (0) corresponding to index fit(GB (0))
10: end for
11: for j=1:maxiter do
12: Determine w (j) = 0.9− 0.5/maxiter
13: Update Vi (j) and X i (j) using Eq. 8 and Eq. 9.
14: Update Gpi (j) =

{
Xi (j) if fit(X i (j)) < fit(Gpi (j− 1))

Gpi (j− 1) else
15: Update fit(GB (j)) = min(fit(Gpi (j)))
16: Update GB (j) corresponding to fit(GB (j))
17: end for
18: Print best solution GB (maxiter) and best fitness

fit(GB (maxiter))

III. OVERVIEW OF QUASI OPPOSIONTINAL GPSO-W
(QPGPSO-W)
Quasi oppositional population strategy was presented by M.
Basu et al in [30]. In this strategy both the current popula-
tion and its quasi opposite population are taken into account

Algorithm 2 Quasi Population Based GPSO-w
(QPGPSO-W)
1: Initialize N, d dimensional velocity vectors Vi (j) and

solutions Xi (j) within search space range.
2: Initialize iteration j=0
3: for 1st iteration do
4: initialize N, Gpi(0) = Xi (0)
5: end for
6: for i=1:N do
7: Evaluate initial fitness as per Eq. 7
8: fit(GB (0)) = min(fit(Gpi (0)))
9: GB (0) corresponding to index fit(GB (0))

10: end for
11: for j=1:maxiter do
12: Determine w (j) = 0.9− 0.5/maxiter
13: Update Vi (j) and Xi (j) using Eq. 8 and Eq. 9.
14: Find opposite number X0 and corresponding quasi

opposite population Xqoi using Eqs. 10 and 11.

15: Update Xi (j) = {
Xqoi if fit(Xqoi) < fit(Xi (j))

Xi (j) else
16: Update Gpi (j) =

{
Xi (j) if fit(X i (j)) < fit(Gpi (j− 1))

Gpi (j− 1) else
17: Update fit(GB (j)) = min(fit(Gpi (j)))
18: Update GB (j) corresponding to fit(GB (j))
19: end for
20: Print best solution GB (maxiter) and best fitness

fit(GB (maxiter))

simultaneously for obtaining an optimum candidate solution.
This optimization technique depends on quasi opposition ini-
tialization and quasi opposition generation jumping, bywhich
optimum initial candidate solutions may be achieved by
making use of opposite points, even without the availabil-
ity of previous information about the solutions. A similar
methodology is reported in [31]. The quasi population has
been extensively integrated to improve the exploitation capa-
bilities of many algorithms. The quasi opposite population
progresses as follows:
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FIGURE 3. Convergence characteristics of small scale convex test system.

For each solution in the population an opposite number is
defined as

X0 = min+ max − Xi (10)

Xqoi = rand[
(min+max)

2
, (X0)]

where Xi is the ith d-dimensional solution at a particular
iteration. X0 is the opposite number of this ith solution and
Xqoi is the respective opposite population. Quasi population

is integrated with GPSO-w, as illustrated by the pseudo code
provided in Algorithm 2.

The effect of proposed QPGPSO-w can also be seen graph-
ically in the distribution of the solution obtained by applying
it to solve the following equation:

f (x, y) = 9+ (x − 2)2 + (y+ 3)2 (11)

Eq. 11 is solved for 100 iterations by both GPSO-w and
QPGPSO-w. From Figure. 1 it can be seen that QPGPSO-w
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TABLE 1. Comparison table for small scale convex test systems.

performs better than GPSO-w by achieving optimal results
in 32 iterations compared to 60 iterations taken by the lat-
ter technique. Figure. 2 shows the solution transition in
QPSPSO-w during iteration 2 and iteration 4 respectively.
We can see that the solution space is thoroughly utilized by a
quasi population leading to the improvement of convergence
and local optima stagnation.

IV. SIMULATION RESULTS
Both GPSO-w and proposed QPGPSO-wwere used to imple-
ment standard ELD-IEEE test systems. The included test
systems consist of:

1) 3 thermal unit convex system at a load demand
of 150 MW proposed by A.J. Wood in [32].

2) IEEE standard 6 thermal unit test convex system having
POZs constraint at a load demand of 1263 MW includ-
ing transmission losses. The data is taken from [7].

3) IEEE standard 15 thermal unit convex system having
POZs constraint at a load demand of 2630 MW includ-
ing transmission losses. The data is taken from [33].

4) IEEE standard 13 thermal unit non-convex system
having valve point constraint at a load demand
of 1800 MW. The data is taken from [34].

5) IEEE standard 40 thermal unit non-convex system
having valve point constraint at a load demand
of 10500 MW. The data is taken from [35].

6) Korean 140 Unit convex test system at a load demand
of 49342 MW taken from [24].
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TABLE 2. Comparison table for non-convex test systems.

FIGURE 4. Convergence characteristics of non convex test system. a) and b) Convergence curve best solution for QPGPSO-w before SQP.
c) and d) Convergence curve for SQP.
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TABLE 3. Best solution for 3 thermal unit convex test system.

TABLE 4. Best solution for 6 thermal unit convex test system.

TABLE 5. Best solution for 15 thermal unit convex test system.

MATLAB 2016 software was used to perform simulations.
The framework used had 8 GB RAM and Intel core i5 pro-
cessor. The results achievedwere comparedwith other similar
results in the literature and are presented below.

A. SMALL SCALE CONVEX TEST SYSTEMS
The convex systems of (3, 6 & 15) thermal units were sim-
ulated for 20 runs and the iterations were kept at 500 per
run for each system. The most optimal results obtained by
GPSO-w and QPGPSO-w are shown in Tables. 3, 4 and 5.
Table. 1 shows a comparison of the results obtainedwith other
techniques available in the literature. It is clear from Table. 1
that for 3 unit test system QPGPSO-w has achieved better
results in terms of cost ranging from 0.0602 to 0.0472 0.0472

$/hr compared to the lambda iteration method (LI), teaching
learning based optimization (TLBO), disruption based sym-
biotic organism search (DSOS), and the GPSO-w methods.
For 6 unit test system, QPGPSO-w showed an improve-
ment in the range of 9.42 to 0.094$/hr compared to PSO,
MPSO, SOH-PSO, CPSO, PSORD, PSO-WPF, D-MPSO
and GPSO-w methods. Whereas the cost improvement was
between 14.31 to 1.56 $/hr, as opposed to other modern
techniques such as TS, CBA, MABC, DSOS, Jaya, VSA,
PBO, QPBO, SSO and SSA. Finally, QPGPSO-w for 15 unit
convex test systems showed an improvement in the range
of 309.81 to 0.43 $/hr and 564.81 to 143.7 $/hr compared
to PSO, MPSO, CPSO, PSORD, PSO- WPF, D-MPSO and
other modern techniques such as GA, DSOS, EMA, IFEP and

134088 VOLUME 9, 2021



U. A. Salaria et al.: QPGPSO-W for Solving ELD Problem

TABLE 6. Best solution for 13 thermal unit non-convex test system.

TABLE 7. Best solution for 40 thermal unit non-convex test system.
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TABLE 8. Best solution by QPGPSO-w-SQP for non- convex test system.

FCEP respectively. Convergence characteristics of GPSO-w
and QPGPSO-w are shown in Figure. 3.
FromFigure. 3 it can be noted that QPGPSO-w initially has

a faster convergence rate and can later achieve more optimal
solutions in the iterations. This search trend confirms the
benefit of using a quasi population strategy.

B. NON CONVEX TEST SYSTEMS
Similarly, (13 & 40) unit non-convex thermal systems were
also simulated for 20 runs and the iterations were kept
at 500 per run for each system. The most optimal results
obtained by GPSO-w and QPGPSO-w are shown in Tables. 6
and 7. From Tables. 6 and 7, it can be seen that both
GPSO-w and QPGPSO-w were able to achieve an opti-
mal solution of given test systems at a reasonable solution
cost. The results obtained with QPGPSO-w demonstrate its
efficacy compared to GPSO-w. Although QPGPSO-w was

able to outperform GPSO-w, the results obtained are only a
marginal improvement. To ensure that QPGPSO-w reaches
the global optimum, the results were further optimized using
the MATLAB SQP optimizer. The best results obtained after
QPGPSO-w-SQP are shown in Table. 8. Table. 2 shows
comparison of results with other techniques available in the
literature. It is clear from Table. 2 that QPGPSO-w-SQP
achieved better results in terms of cost from 145.44 to
0.2894 $/hr for a non-convex system of 13 units compared to
TLBO, PSO, IFEP, EP-SQP, PSO-SQP, QMPSO, GPSO-w
and QPGPSO-w. While QPGPSO-w-SQP for 40 unit non-
convex test system showed better results in terms of cost
from 7420.36 to 13.91 $/hr compared to PSORD, PSO, ACO,
NPSO, NPSO-LRS, SOH-PSO, GA-PS-SQP, GPSO-w and
QPGPSO-w.

Convergence properties of the best solution of GPSO-w
and QPGPSO-w are presented in Figure. 5. Figure. 4 shows
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TABLE 9. Best solution for large scale 140 thermal unit convex test system.
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TABLE 9. (Continued.) Best solution for large scale 140 thermal unit convex test system.
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TABLE 9. (Continued.) Best solution for large scale 140 thermal unit convex test system.

FIGURE 5. Convergence characteristics of non-convex test system. a) and b) Convergence characteristics GPSO-w. c) and d) Convergence characteristics
of QPGPSO-w.

convergence properties of QPGPSO-w-SQP. From Table. 2
we can also observe a significant improvement in execution
times, with the proposed techniques showing an improvement
of up to 45 seconds in the total execution time per run.

C. LARGE SCALE CONVEX TEST SYSTEMS
The 140 unit Korean convex ELD test system consists of a
combination of coal, oil fuel, LNG, and nuclear units. Twenty
runs of 500 iterations each were performed for both GPSO-w
and QPGPSO-w. The best results obtained with GPSO-w
and QPGPSO-w are shown in Table. 8. The results obtained
show that the QPGPSO-w compared to GPSO-wwas not only
able to obtain an optimal solution but also achieved a cost
comparable to the global solution available in the literature.

QPGPSO-w achieved the best cost of 1665379 $/hr at an
average cost of 1735099 $/hr in a run time of 40 seconds
per run. The optimum cost achieved by QPGPSO-w is only
0.59% higher than the current global minimum.

V. CONCLUSION AND FUTURE WORK
In this study, the global particle swarm optimizer with
inertial weights algorithm (GPSO-w) and quasi-opposition-
based global particle swarm optimizer with inertial weights
(QPGPSO-w), which are new variants of swarm-inspired
(SI) metaheuristic algorithms, were used to solve the IEEE
standards (3, 6, 13, 15, 40 & 140) unit Korean grid ELD test
systems under various constraints. The optimization potential
of the proposed metaheuristic techniques has been validated
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by comparing their searching performancewith several recent
approaches reported in the literature. From the simulation
results it could be seen that the energy generation costs of
the systems have decreased significantly by augmenting the
GPSO-w with quasi-oppositional population QPGPSO-w in
the selected cases. In addition, the convergence character-
istics and optimization potential of the QPGPSO-w algo-
rithm are significantly better than the GPSO-w algorithm.
Results for small-scale IEEE standards (3, 6 & 15) thermal
unit convex system show that QPGPSO-w achieved better
results in terms of cost up to 0.000735%, 0.093% and 1.735%
for IEEE standards (3, 6 & 15) units respectively. The pro-
posed approaches have also reduced the likelihood of a pre-
mature convergence on the ELD problem due to improved
searching properties. Furthermore, for non-convex systems,
sequential quadratic programming (SQP) optimizer searched
the global minimum even more effectively. For non-convex
system, the operation of QPGPSO-w was enhanced by pass-
ing the results through the SQP optimizer, and the resulting
QPGPSO-w -SQP achieved better results in terms of cost up
to 0.81% and 6.11%, for (13 & 40) thermal unit non-convex
test systems respectively. For 140-units, the Korean ELD
test system, the QPGPSO-w, outperformed the GPSO-w and
found better results in relatively less iterations. In the future,
this improved modification of the GPSO-w may be tested on
other practical ELD issues with more operational constraints,
for example prohibited operating zones, different fuel options
and transmission losses, as well as with renewable energy
sources. In addition, emerging metaheuristic methods can
also be validated in the selected ELD cases.

APPENDIX A
RESULT TABLES
See Tables 3–9.

APPENDIX B
CONVERGENCE CHARACTERISTICS
See Figure 5.
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