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Abstract
Recently, demand response programs (DRPs) have been introduced as a potential 
solution to effectively enhance both energy systems and consumers participating in 
DRP due to the reduction in investment and energy cost of systems as well as the 
energy cost of consumers. This paper proposes an optimal framework for microgrid 
planning that integrates renewable energy sources, storage systems, uncertainty, and 
DRPs. Not only the lifetime and uptime of renewable resources and storage systems 
are considered by optimizing the life cycle costs, but also the rated power of devices 
with discrete values are integrated into the model by binary variables. The uncertain 
parameters are modeled by probability density functions then they are divided into 
states by the clustering technique. Scenarios are generated by the scenario matrix 
and then the number of scenarios is reduced to 10 to decrease the computational 
burden. A case study with a test system demonstrates the effectiveness of the pro-
posed method and the potential of DRPs to avoid device investment and reduce 
energy costs.

Keywords Demand response programs · Life cycle cost · Micro-grid planning · 
Renewable sources · Uncertainty
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MIP  Mixed-integer programming
LCC  Life cycle cost
PDF  Probability distribution function
PV  Photovoltaic
RS  Renewable energy sources
RTP  Real-time price
WT  Wind turbine
Cinv
t

 , Cope

t  , Cemi
t

  Investment, operation, emission cost
C
drp

t   Cost of the incentive-based DRPs
CD  Cost of disposal of the equipment

Sets and indices
N
k
  Number of parameters X

Nx
s
  Number of states of parameter X

N
w
  Number of scenarios

w  Scenario (w ∈ N
w
)

H  Number of hours on day
h  Hour (h ∈ H)
T  Overall planning period
t  Planning year (t ∈ T)
K  Number of RS’s technology
k  Technology of RS (k ∈ K)

Parameters
Iir  Solar irradiance
μ, σ  Mean and standard deviation of the stochastic variable
v  Wind speed
c  Scale index of Rayleigh pdf
Xs,  �

s
Specific value and probability of stochastic parameters

kshif   Maximum shiftable load factor
Pd
t,h

  Demand of consumers
kd
w
  Factor of load

CRS
k

  Capital cost of RS
CBE
P
,CBE

C
  Capital costs under the power and capacity of BESS

CRS
OM.t

  Operation and maintenance coefficient of RS
�e
h,w

  Electrical prices
�max  Maximum electrical price
ke, kRS  Coefficients of electrical prices and output powers of RS
�RS, �UG  Emission coefficients of RS and traditional sources
�emi  Emission taxes
�DR  Incentive cost of DRPs
Tc, tI  Life cycle and investment year of equipment
PUG
max

  Maximum power of connected tranformer
PRS
r.k,i

  Rated power of RS, type k
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PBE
r.i
, EBE

r.i
  Rated power and capacity of BESS

kmin
soc

, kmax
soc

  Lower and upper bounds of state of charge
EBE
t,h
,EBE

t,0
  Stored energy level at final and initial time

Variables
PDR−
t,h

,PDR+
t,h

  Decreased and increased power variables of DRP
IDR+
t,h

, IDR−
t,h

  Binary variables
PRS
k,t

  Invested power variables of the RS
PRS
k,t,h,w

  Generated power of RS
PBE+
t,h

,PBE−
t,h

  Charge/discharge powers of BESS
PBE
t
,  EBE

t
Invested power and capacity of BESS

�
k.j
, �i, �i  Binary variables

PUG
t,h,w

  Received power from the utility grid

1 Introduction

Micro-grid is a scaled-down version of the power system comprising the low-volt-
age grid with distributed generators, and storage systems to supply electricity for 
consumers [1]. Micro-grids can operate independently known as islanded mode or 
can be connected to a utility grid known as grid-connected or networked mode. In 
the networked mode, the loads are simultaneously supplied from both the utility 
grid and distributed generators that often use renewable energy types. This struc-
ture offers several advantages and benefits including increased reliability, improved 
energy efficiency, cost and loss reduction, and emission reduction [2]. However, sev-
eral challenges have arisen regarding the operation, control, and protection of micro-
grid. Indeed, the uncertainty of distributed generators using renewable energies is a 
major challenge to effective planning and operating of the micro-grids. Therefore, 
modern optimization methods can be applied to micro-grids planning and operation 
to improve the efficiency, economics, and resiliency of the system.

1.1  Literature review

RS are considered as green energy sources including solar, wind, geothermal, and 
bioenergy. Indeed, RS with various technologies such as PV, WT, and mini-hydro-
power are popularly applied in the fact micro-grids [3]. When RS is integrated into 
the micro-grid, the optimal use of these resources enhances the efficiency of the 
system in both planning and operation problems because of providing necessary 
complementary power sources, increasing the overall system reliability and flex-
ible, reducing capital and operation costs as well as the reducing pollutant emis-
sions and climate changes [4]. However, the natural intermittent of the RS power, 
load, and energy prices…, bring a lot of challenges to both the operation and plan-
ning of micro-grids. Recently, probabilistic approaches and multi-scenario-based 
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approaches are the most common methods to cope with these multiple aspects of 
uncertainties [5]. Besides, energy storage can help to control new challenges emerg-
ing from integrating intermittent renewable energy such as WT and PV, enhance 
the flexibility of micro-grid, promote the use of RS, and relieve grid congestion [6]. 
BESS with mature technologies such as the lead-acid battery, nickel-based battery, 
sodium-sulfur battery, lithium-based battery, and flow battery is successfully applied 
in the micro-grid and different electric power systems [7–9]. In electric power sys-
tems, BESS can enhance the effectiveness of the system in short-term to ensure the 
stability, robust operation, and reliability of the electrical grid or manage the cus-
tomer energy to enhance the power quality of systems such as supply interruptions 
and voltage dips. Besides, the efficiency of the system or RS in the long term also 
can be enhanced due to a reduction of energy and investment costs [10]. Hence, RS 
integration in micro-grids should be paired with BESS and it is an effective solution 
always considered at both the operational and planning stages to improve their per-
formance and flexibility.

Additionally, DRP has been used as a tool to balance the demand and supply of 
energy systems in recent years. It is a useful check to shift the demand of consumers. 
It can effectively increase the energy use of consumers, the flexibility of the energy 
systems and the competitiveness [11]. DRP can be defined as changes in electric-
ity usage by end-use customers from their usual consumption pattern in response to 
changes in prices called price-based DRP. Within price-based DRPs, fluctuations in 
electricity prices are the main tool used to modify consumer energy use with three 
main programs consisting of time of use, CPP, and RTP [11, 12]. In time of use 
programs, electricity prices often increase during periods of high demand or reduce 
during periods of low demand to shift consumer behavior. This leads to a reduc-
tion in typical peak demand and the energy usage is shifted to other periods thus 
the investment in generation and distribution systems can be deferred. Besides, DRP 
also can be established to incentivize end-use customers to change their normal con-
sumption in return for monetary value based on the financial incentives for consum-
ers to reduce peak use and provide load flexibility [13]. In emergency response pro-
grams, incentives are made available for customers who participate voluntarily in 
load shedding during reliability-triggered events. Similarly, the direct load control 
program is remotely controlled by the operator to large energy consumption appli-
ances of voluntary consumers to respond to the demand. Other incentive-based pro-
grams have been created to meet the needs of various kinds of consumers under 
different conditions, such as curtailable service, demand bidding, and buyback [14, 
15]. DRPs positively impact both the DRP participator and distribution companies 
and it is a developable trend in the future of energy systems.

Several studies have been conducted and proposed models for planning, designing, 
and operating the micro-grids integrated renewable energy resources and storage sys-
tems. To investigate the effectiveness of DRPs in micro-grid operation, [16] proposes a 
stochastic scheduling model for demand response-enabled microgrids with renewable 
generations and develops a hybrid analytic-heuristic solution approach. Similarly, a 
novel bi-level optimal dispatching model for the community integrated energy system 
with an electric vehicle charging station in multi-stakeholder scenarios is established 
in [17] with the aim of minimizing the operating costs and providing a new way to 
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improve the energy efficiency and reduce the environmental pollution. The simulation 
results verify the effectiveness of the proposed methods. DRP not only guides users to 
actively take part in micro-grid scheduling but also significantly mitigates the effects 
of renewable generation uncertainties, which provides a way of promoting the ongoing 
low-carbon transition towards sustainable production.

Recently, several pioneering works have attempted to combine the DRPs with the 
parameter uncertainty in energy system planning. A stochastic optimization framework 
for power generation system planning integrating uncertainty is introduced in [18]. The 
optimization framework is also proposed for investment planning of distributed gen-
eration resources in coordination with demand response [19] and considering RS [20]. 
The results show the benefits of the proposed planning framework including the reduc-
tion of investment power of distributed generators, storage systems, and total cost of 
micro-grids. Similarly, energy hub optimization with the participation of RS and DRPs 
is introduced with a scheduling framework [21] and a planning model [22]. Besides, 
the effect of DRPs in cost optimization of micro-grid considering uncertain parameters 
is shown with the reduction of the total cost, electricity purchased from the market, and 
emission cost. The uncertainty of parameters can be modeled by Monte Carlo simula-
tion, linearization-based technique, and technique based on the approximation of pdf. 
They are divided into different discrete states by the clustering technique and then are 
integrated into different scenarios [18, 23]. Besides, a federated deep generative learn-
ing framework, that integrates federated learning and least square generative adversar-
ial networks, is proposed in [24] for renewable scenario generation. The experiment 
results verify the robustness of the above method.

Life cycle cost refers to the total cost consumed during the entire life cycle of an 
engineering project from the decision-making design stage to the end-of-life disposal 
including initial investment costs, operation and maintenance costs, and decommission-
ing and disposal costs. The LCC has been applied in several studies and demonstrates 
its feasibility and effectiveness in distributed energy storage planning of distribution 
grids, and micro-grids. In [25], a two-stage heuristic planning strategy has been pro-
posed, which determines the optimal sitting and sizing of the ESSs in the distribution 
grids with the participation of PV and WT. Similarly, the LCC objective is also utilized 
to plan micro-grids integrated with the uncertainty of parameters [26] or RS [27]. LCC 
includes the total monetary cost of installing and operating the micro-grid for the dura-
tion of its entire life.

In general, the previous works in the area have shown the effectiveness of DRP and 
RS in planning micro-grids and energy systems. However, the planning frameworks 
have not fully considered the effects of various types of RS, the parameter uncertainty, 
investment cost, operation and emissions, and the lifetime of the equipment. In this 
context, a probabilistic planning framework for the networked micro-grids is proposed 
to investigate the coordination of DRPs and uncertainties of multiple renewables (i.e., 
PV and WT). The scope of introduced models in literature and the scope and contribu-
tion of this paper is summarized in Table 1.



 V. V. Thang, N. H. Trung 

1 3

1.2  Main contributions of this work

This study presents a probabilistic planning framework for the networked micro-
grids. The contributions of this work are summarized as follows:

• Proposing a probabilistic planning framework to simultaneously optimize the 
invested sizing and timing of both RS and BESS in networked micro-grids under 
the impact of DRPs and uncertain parameters. The objective function is to mini-
mize the expected LCC of the micro-grid which includes the investment cost, 
operation cost, emission cost, cost of the incentive-based DRPs, and cost of dis-
posal of the equipment at the end of the planning time.

• Considering the uncertainty of output power of RS, energy demand of consum-
ers, and electrical price along with DRPs in the optimal model. Additionally, not 
only the lifetime and uptime of RS and BESS are considered by the objective 
function LCC but also their rated power of them with discrete values are inte-
grated into the model by binary variables and thus reduce the error of planning 
results.

• Evaluating the possible feasibility and efficiency of the proposed planning frame-
work with the impact of DRPs and the obtained results have been compared to 
existing approaches.

1.3  Organization of this paper

The other sections of this paper are organized as follows. The problem formula-
tion is given in Sect. 2. After that, Sect. 3 presents the simulation of different cases. 
At last, the conclusive remarks and a few insights for future work are discussed in 
Sect. 4.

Table 1  Literature review and contribution of this paper

References Stochastic PV WT BESS DRP Emission O&M cost Capital cost LCC

[26] √ √ √ √ √
[24] √ √ √ √ √ √ √ √
[18] √ √ √ √ √ √
[20] √ √ √ √ √ √
[28] √ √ √ √
[19] √ √ √ √ √
[22] √ √ √ √ √
Proposed model √ √ √ √ √ √ √ √ √



1 3

Probabilistic optimization of planning and operation of…

2  Problem formulation

2.1  Uncertain parameters modeling

The stochastic parameters are often modeled by pdfs and then they are divided into 
different states by the k-mean clustering technique. Where the generated power of 
PV depends on solar irradiance which always varies due to various climate changes 
and other conditions. The random change of solar irradiance is often modelled by 
a suitable pdf such as normal, gamma, beta, or Gaussian pdf. In this study, the beta 
pdf is selected and presented as Eq. (1) with the solar irradiance  Iir, mean μ, and the 
standard deviation σ of the stochastic variable [18, 21].

Similarly, the Weibull or Rayleigh pdf is generally utilized to describe the prob-
ability distribution of wind speed due to the great flexibility. The Rayleigh pdf for 
modeling the wind speed v is represented as the Eq. (2) with the scale index c [29].

Moreover, the electricity price is also a stochastic value with a high deviation and 
the normal pdf is generally utilized to model this parameter [21, 30]. Similarly, the 
stochastic load of the micro-grid is also modeled by normal pdf and shown in Eq. 
(3). Where, μ is the mean of the distribution, σ is the standard deviation and σ2 is the 
variance of the random variables that are the electricity price and loads.

Then, the clustering technique is utilized to divide the pdf into different states 
under historical data. In each state, there is a specific value with the related prob-
ability which are denoted by Xs and �

s
 [23], respectively. These parameters are 

integrated into a hybrid model as Eq. (4) [31]. Where, the Cw and �w{Cw} are the 
matrices that enumerate the possible values and probability of parameters. �x

s
 is the 

probability of parameter X at state s integrated into scenario w. N
k
 is the number of 

parameters X and Nx
s
 is the number of states of parameter X.

(1)
fb(Iir) =

{
Γ(�+�)

Γ(�)Γ(�)
.I
(�−1)

ir
.(1 − Iir)

(�−1) if0 ≤ Iir ≤ 1

0 else

� = (1 − �).

(
�.(1 + �)

�2
− 1

)
; � =

�.�

1 − �

(2)fr(v) =
(
2v

c2

)
exp

[
−
(
v

c

)2
]

(3)P(X = x��, �2) = f (x) =
1√
2��

exp

�
−
(x − �)2

2�2

�

(4)

M = {Cw, �
w
{Cw}}

�
w
{Cw} =

Nk∏
k=1

�x
s
{X

s
} ; Nw =

Nk∏
k=1

Nx
s
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The number of generated scenarios by the scenario matrix is very large and thus 
scenario reduction methods are applied to reduce the number of scenarios in order to 
reduce the computational burden [29, 32].

2.2  The generated power of RS

In each scenario, the generated power of PV and WT is calculated as expressions (5) 
and (6), respectively [18, 21]. In which, Ppv

r , Ir are rated power and solar irradiance 
of PV, respectively. Iw, �w are operation irradiance and temperature in scenario w 
while �� , �am are the power temperature coefficient and standard ambient tempera-
ture, respectively. Pwt

w
,Pwt

r
 are output and rated power together with cut-in speed  vci, 

rated speed  vcr, and cut-off speed  vco of WT.

2.3  Incentive‑based DRP formulation

The DRPs can be classified into two types price-based DRP and incentive-based 
DRP [33]. Where the incentive-based DRP through the shifting capability of electri-
cal loads provides flexibility to the system. Hence, the incentive-based mechanism 
is applied with the incentive subsidy cost for the consumers participating DRPs. In 
Eq. (7), the constraints are established to limit the shiftable demand. Where, kshif  
is the maximum shiftable load factor of each consumer and Pd

t,h
 is the demand of 

consumers at the calculated time. PDR−
t,h

,PDR+
t,h

 are the decreased and increased power 
quantities of DRPs. The increase or decrease of the power of DRP are decided by 
binary variables IDR+

t,h
, IDR−

t,h
 [21, 22]. The total load curtailment must be shifted to 

other times and hence total increased energy must equilibrate total decreased energy 
in a calculated cycle as Eq. (8).

(5)Ppv
w
(I, �) = Ppv

r
.
Iw

Ir

[
1 + ��

(
�w − �am

)]

(6)P
wt

w
(v) =

⎧
⎪⎨⎪⎩

0 v
w
≤ v

ci
or v

co
≤ v

w

Pwt

r
.
(vw−vci)

(vr−vci)
v
ci
≤ v

w
≤ v

r

Pwt

r
v
r
≤ v

w
≤ v

co

(7)
0 ≤ PDR+

t,h
≤ kshif .P

d
t,h
.IDR+
t,h

0 ≤ PDR−
t,h

≤ kshif .P
d
t,h
.IDR−
t,h

(8)
H∑
h=1

PDR+
t,h

=

H∑
h=1

PDR−
t,h

; IDR+
t,h

+ IDR−
t,h

= 0



1 3

Probabilistic optimization of planning and operation of…

2.4  Planning framework

The networked micro-grids planning framework is designed to minimize the 
expected LCC of the project during the analyzed period. The objective function 
includes the investment cost (Cinv

t
) , expected operation cost (Cope

t ) , expected emis-
sion cost (Cemi

t
) , cost of the incentive-based DRPs (Cdrp

t ) , and cost of disposal of the 
equipment at the end of planning time, CD, as shown in Eq. (9). Total cost of the 
project is converted to the base year by discount rate r.

where Cinv
t

 consist of the investment cost of RS and BESS represented in Eq. (10). 
CRS
k

 is capital cost and PRS
k,t

 is selected power variable of the RS. CBE
P
,CBE

C
 are capital 

costs under the power and capacity of BESS, respectively. Similarly, PBE
t
,EBE

t
 are 

invested power and capacity of BESS, respectively.

In addition, Cope

t  consists of the operation cost of RS and costs for energy pur-
chasing from the utility grid. Where, CRS

OM.t
 is operation and maintenance coefficient 

of RS and PUG
t,h,w

 is the received power from the utility grid. �e
h,w

 is electrical prices 
purchased from the market while PRS

k,t,h,w
 is the generated power of RS determined 

as Eq. (11). ke, kRS are coefficients of electrical prices and output power of RS in 
operation each hour or scenario.

The emission costs of RS and the utility grid are calculated under emission coef-
ficients of RS and traditional sources denoted by �RS, �UG , respectively. �emi is emis-
sion taxes and �w is probability at scenario w. PDR−

t,h
,PDR+

t,h
 are the decreased and 

increased power quantities of DRPs at any available time while �DR is the incentive 
cost of DRPs for the increased or decreased power quantities [18, 34]. The cost of 
disposal at the end of the project is calculated by expression (12) with the life cycle, 
investment year of equipment denoted by Tc and tI, respectively.

(9)OF = min

T∑
t=1

1

(1 + r)t

[
Cinv
t

+ C
ope

t + Cemi
t

+ C
drp

t − CD
]

(10)

Cinv
t

=

K∑
k=1

CRS
k
.PRS

k,t
+
(
CBE
P
.PBE

t
+ CBE

E
.EBE

t

)

C
ope

t = 365

H∑
h=1

Nw∑
w=1

�w

(
�e
h,w

.PUG
t,h,w

+

K∑
k=1

CRS
OM.k

.PRS
k,t,h,w

)

Cemi
t

= 365

H∑
h=1

Nw∑
w=1

�emi.�w

(
PUG
t,h,w

.�UG +

K∑
k=1

PRS
k,t,h,w

.�RS

)

C
drp

t = 365

H∑
h=1

�DR(PDR+
t,h

+ PDR−
t,h

)

(11)�e
h,w

= ke
h
.ke
w
.�max; PRS

k,t,h,w
= kRS

h
.kRS
k,w

.PRS
k,t
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The power balance constraint in each operation state w is shown in Eq. (13) with 
profile and factor of load denoted by Pd

t,h
 and kd

w
 , respectively. PBE+

t,h
,PBE−

t,h
 are the 

charge/discharge powers of BESS. Similarly, the selection of sizes of RS and BESS 
is limited by constraints in Eq. (14). The discrete rated powers of RS are selected by 
binary variables �

k.j
 while discrete rated powers and capacities are selected by binary 

variables �i, �i [31]. The operation powers of RS and BESS are constrained by 
invested sizes while the operation power of the utility grid is constrained by the 
maximum power of connected equipment,PUG

max
 . Where, PRS

r.k,i
 is rated power of RS 

with different types. PBE
r.i
, EBE

r.i
 are rated power and capacity of BESS with different 

types.

The BESS can charge at hours with low electrical price and load, and then it 
generates back to the system at peak hours with the high electrical price. The energy 
balance of BESS in the calculated cycle is constrained as Eq. (15) [19, 25]. The 
charge/discharge of them is decided by two binary variables IBE+

t,h
 and IBE−

t,h
.

To ensure the lifetime of BESS, the stored energy is limited by lower and upper 
bounds of state of charge denoted by kmin

soc
, kmax

soc
 , respectively, as shown in Eq. (16). 

The state of charge displays the stored level of BESS which increases in charge time 
and decreases in discharge time. EBE

t,h
 and EBE

t,0
 are the stored energy level at final and 

initial time, respectively.

The planning framework is a mixed-integer problem.

(12)
CD =

K∑
k=1

(
1 + tRS

I.k
∕TRS

c.k

)
CRS
k
PRS
k,t

+
(
1 + tBE

I
∕TBE

c

)(
CBE
P
.PBE

t
+ CBE

E
.EBE

t

)

(13)

P
UG

t,h,w
+

K∑
k=1

P
RS

k,t,h,w
= k

d

w
.Pd

t,h
− �BE.I

BE−
t,h

.PBE−
t,h

+ I
BE+
t,h

.PBE+
t,h

− P
DR−
t,h

+ P
DR+
t,h

(14)
PRS
k,t

=

n∑
i=1

�
k,i
.PRS

r.k,i
; PBE

t
=

m∑
i=1

�
i
.PBE

r.i
; EBE

t
=

m∑
i=1

�
i
.EBE

r.i

PUG
t,h,w

≤ PUG
max

; PBE−
t,h

≤ PBE
t
; PBE+

t,h
≤ PBE

t

(15)

H∑
h=1

�BE.I
BE−
t,h

.PBE−
t,h

=

H∑
h=1

IBE+
t,h

.PBE+
t,h

IBE+
t,h

+ IBE−
t,h

= 1

(16)

EBE
t,h

= EBE
t,h−1

+ IBE−
t,h

.PBE−
t,h

.�BE − IBE+
t,h

.PBE+
t,h

kmin
soc

.EBE
t

≤ EBE
t,h

≤ kmax
soc

.EBE
t

EBE
t,H

= EBE
t,0
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3  Case study

3.1  Structure and parameters of test micro‑grid

In this paper, a structure of the networked micro-grids is utilized to investigate 
the feasibility and efficiency of the proposed framework shown in Fig.  1. The 
load is simultaneously supplied from both RS and utility grid. The RS consisting 
of PV and WT are selected and applied in this structure because of improving the 
efficiency, and reliability and reducing the investment cost of the micro-grid [19, 
22]. Besides, not only BESS is utilized but also incentive-based DRP is consid-
ered to improve the effectiveness of micro-grid.

The randomness of solar radiation and wind speed is expressed by beta and 
Rayleigh pdf, respectively. Then, they are divided into different states with spe-
cific values and probabilities in each state as assumed in Table 2.

Similarly, the randomness of loads and electrical prices are modeled by normal 
pdf and divided into different states [18, 21]. These parameters are integrated into 
a hybrid model by Eq. (4) then GAMS/SCENRED program using the fastback 

Utility grid 

PV WT BESS DRP 

Fig. 1  The structure of test micro-grid

Table 2  Data of uncertain 
parameters

State PV WT Load Price

k
pv
s �

pv
s kwt

s
kwt
s kd

s
�d
s

ke
s

�e
s

1 0 0.001 0 0.199 0.351 0.033 0.3 0.023
2 0.15 0.018 0.15 0.266 0.406 0.047 0.4 0.069
3 0.30 0.037 0.35 0.273 0.451 0.091 0.45 0.092
4 0.40 0.068 0.45 0.152 0.510 0.163 0.5 0.116
5 0.50 0.123 0.55 0.077 0.585 0.163 0.55 0.138
6 0.60 0.165 0.65 0.051 0.650 0.165 0.65 0.134
7 0.70 0.186 0.75 0.045 0.713 0.166 0.75 0.215
8 0.80 0.163 0.85 0.033 0.774 0.106 0.8 0.115
9 0.90 0.138 0.95 0.025 0.853 0.056 0.9 0.076
10 1 0.101 1 0.078 1 0.010 1 0.022
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forward method is employed to reduce the number of scenarios to 10, decreasing 
the computational burden [21, 22].

The mean out power profiles of RS is analyzed under typical characteristic of 
the day as in Fig. 2. Similarly, mean load and energy price profiles for a typical 
day at base year are assumed as in Fig.  3 with the annual growth factor of the 
load of about 3%.

The input data includes capital cost and lifetime as in Table 3 [29, 33]. The emis-
sion tax of  CO2 is 10$/ton. The planning period is assumed for 10 years and the dis-
count rate is 10%. The emission coefficient of PV, WT, and utility grid is 0.25, 0.27, 
and 0.65 kg/kWh, respectively. η of BESS is about 0.9 [35, 36]. O&M cost PV and 
WT is 2.5$/MWh and 3.5$/MWh, The incentive cost of DRPs for the increased or 
decreased power quantities is 0.01$/kW [18, 34]. The maximum shiftable load fac-
tor of consumers by DRP is about 50%. The mean active and reactive power of the 
load is assumed about 500 kW and 242 kVAr, respectively.

Fig. 2  Mean out power profiles of RS for a typical day

Fig. 3  Profiles of mean electrical price and load for a typical day
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3.2  Simulation cases

In this work, two cases are considered to study the effect of incentive-based DRP on 
the optimal design of micro-grid. The micro-grid is planned without DRP and with 
DRP. Besides, the obtained results are compared to existing approaches to evaluate 
the efficiency of the proposed planning framework and the impact of DRPs. The 
GAMS/CPLEX solver is utilized to find out the optimal solution.

3.3  Analysis of invested size and time of RS and BESS

The type, size, and invested time of the PV, WT, and BESS are selected and shown 
in Table 4. In both cases, the rated power of WT and PV is invested at about 400 kW 
and 480 kW corresponding with types 8 and 9, respectively. WT is always invested 
in the first year while PV is only selected in the 7th year at the case without DRP 
and 8th year at the case with DRP. Similarly, BESS is invested in the 2nd year in 
the case without DRP and in the 7th year in the case with DRP. The rated power of 
BESS invested in the case with DRP reduces about 40 kW corresponding to 20%. 
The deferment of BESS investment on the case with DRP is due to the impact of 
DRP in the power reduction of the load in peak hours.

3.4  Economic cost analysis

Economic and technical indicators of micro-grid are optimized and shown in 
Table 5. A comparison between cases with DRP and without DRP shows that the 
invested cost of equipment reduces 90 ×  103$ corresponding to 8.91% due to the 
deferment of RS investment in the case with DRPs. The cost of DRPs increases 
about 7.48 ×  106$ during the planning period. The deferment of RS investment leads 

Table 3  Input data

Pr/Er, kW/kWh CP/EP, $/kW/$/kWh Tc, year

PV 100; 150; 180; 210; 255; 360; 390; 450; 480; 495; 510 1500 20
WT 100; 150; 200; 250; 300; 350; 375; 400; 430; 475; 500 1800 20
BESS (40; 60; 80; 100; 135; 160; 185; 200)/(100; 200; 300; 400; 

450; 500; 550; 600)
200/100 10

Table 4  Comparison of invested size and time of RS and BESS

Without DRP With DRP

Types Pr/Er, kW/kWh TI, year Types Pr/Er, kW/kWh TI, year

PV 9 480 7 9 480 8
WT 8 400 1 8 400 1
BESS 8/6 200/500 2 6/6 160/500 7
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to an increase in the electricity amount purchased from the utility grid and thus 
emission tax costs increase 965.2$ corresponding to 1.01% due to the high emission 
coefficient of traditional resources. Although the purchased electricity amount from 
the utility grid increases 600 ×  103kWh, the cost for purchasing electricity reduces 
by 200 ×  103$ corresponding with 14.6% because of the reduction in electricity 
amount purchased in high price hours. Hence, the expected value of LCC reduces by 
about 190 ×  103$ corresponding to 10.5% under the impact of DRP compared with 
without DRP case.

The simulation results show that the incentive-based DRP has been significantly 
effective in planning the networked micro-grids due to reducing the invested cost of 
devices, energy cost, and LCC. Moreover, the load curve is shifted with peak load 
shaving and thus the peak valley difference of the load reduces, and the stability of 
the load curve increase. This leads to the investment cost for devices to connect with 
the utility grid also decreases. This means that the proposed planning framework 
considering the stochastic parameters greatly enhances the accuracy of calculation 
results and the effectiveness of an investment project.

Additionally, to evaluate the efficiency of the proposed planning framework and 
the impact of DRPs, the obtained LCC of micro-grid are compared to existing stud-
ies as presented in Table 6. LCC computed under the introduced method in [18] is 
the largest because of ignoring the participation of BESS and the impact of DRP. 
The peak load is maximum in this context and thus the invested power of RS (i.e., 
PV and WT) increases, leading to an increase in the capital cost and LCC. In con-
trast, LCC calculated according to the method introduced in [20] is the lowest, but 
this result has significant errors and does not properly evaluate the effectiveness 
of the planning problem of micro-grid due to no consideration of uncertainty and 
emission costs. This is not consistent with the inherent volatility and intermittency 

Table 5  Comparison of economic and technical indicators of micro-grid

Economic and technical indicators Without DRP With DRP Comparison

Total expected LCC,  106 $ 1.81 1.62 − 0.19
Invested cost,  106 $ 1.01 0.92 − 0.09
Cost of DRPs,  103 $ 0 7.48 7.48
Purchased electricity from utility grid,  106 kWh 21.01 20.61 0.6
Expected cost for purchasing electricity,  106 $ 1.37 1.17 − 0.2
CO2 emission,  103 tons 15.13 15.27 0.14
Emission taxes cost,  103 $ 94.71 95.67 0.96

Table 6  Expected LCC comparison between the proposed model and other alternative models in the lit-
erature

References [22] [20] [19] [18] Proposed model

LCC, 106 $ 1.635 1.532 1.764 1.815 1.621
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of parameters and the emission cost of actual micro-grids. When BESS is not inte-
grated into the micro-grid planning framework [22], LCC increases 14 × 103$ cor-
responding to 0.86% compared to the proposed model. Similarly, the proposed 
method in [19] only considers PV and ignores the influence of WT and thus LCC is 
1,764 × 106$, which increases 143 × 103$ equivalent to 8.82%. Therefore, it can be 
shown that the proposed planning framework is suitable and efficient for networked 
micro-grids integrated into RS and DRPs.

3.5  Impacts of DRP

The optimal scheduling of the incentive-based DRP is also determined on each 
operation day as shown in Fig.  4. The DRP impacts the demand of consumers 
with the decreased power quantity of DRP in peak hours. In hours 6, 11, and 12, 
loads are reduced by about 157.5 kW, 120 kW, and 182.5 kW, respectively. Simi-
larly, the decreased power quantity of DRP from 183 to 250 kW in hours 17–22. 
On the contrary, the impact of DRP in off-peak hours leads to an increase in the 
demand of consumers in hours from 1 to 5, from 7 to 10, from 13 to 16, 23, and 24. 
The increased power quantity due to the impact of DRP is maximum in hour 5 with 
about 127.5 kW and minimum in hour 3 with 67.5 kW. Hence, the peak demand of 
consumers in the case with DRP reduced from 500 kW in the case without DRP to 
413 kW corresponding with a reduction of about 17.4%. Also, loads in low hours of 
the case with DRP increase from 136 to 181 kW corresponding with an increase of 
about 32.8%. This leads to the reduction of invested power of devices and the peak 
valley difference of the load together with more stability of the load curve.

Similarly, the operation power of devices such as BESS, PV, WT, and the 
received power from the utility grid in all scenarios and cases is also determined. 
Figure 5 displays the operation power of BESS at the 10th year in both cases. BESS 
charges from hour 1 to hour 4 in the case with DRP while it only charges from hour 
1 to hour 3 in case without DRP with a maximum power of about 200 kW. The par-
ticipation of DRP in the case with DRP also reduces the discharge duration of BESS 

Fig. 4  Mean load value and power of DRP
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from 5 h in the case without DRP to 4 h. In the case without DRP, the maximum 
discharge power is 186 kW at the 19th hour while the minimum discharge power is 
39.3 kW at the 17th hour.

The received power from the utility grid in scenarios in the 10th year of both 
cases is presented in Figs. 6 and 7. The participation of DRP in the case with DRP 
also reduces the peak valley difference of the power curves from 839 to 521.2 kW in 
scenario 4. The maximum power received power from the utility grid in scenario 4 
reduces from 1130.3 kW in the case without DRP to 883 kW in the case with DRP. 
In contrast, the minimum power value in scenario 1 increases from 91.2 kW in the 
case without DRP to 294.5 kW in the case with DRP.

Fig. 5  Operated power of BESS in cases, 10th year

Fig. 6  Received power from utility grid in scenarios at the 10th year of case without DRP
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3.6  Sensitive analysis of expected LCC

Moreover, the sensitivity of the expected LCC of the project is analyzed with respect 
to the different values of the maximum shiftable load factor and incentive cost of 
DRP shown in Fig. 8. The LCC reduces rapidly when the maximum shiftable load 
factor increases. The value of LCC is about 1.81 M$ when the maximum shiftable 
load factor is 0% and the incentive cost of DRP is 0.01$/kW. It reduces to 1.62 M$ 
and 1.54  M$ corresponding to increases in the maximum shiftable load factor of 
about 50% and 100%, respectively. Similarly, the LCC of the project is impacted 
by the incentive cost of DRP and increases under the incentive cost of DRP. When 

Fig. 7  Received power from utility grid in scenarios at the 10th year of case with DRP

Fig. 8  Sensitive analysis on maximum shiftable load factor and incentive cost of DRP
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the maximum shiftable load factor is 50% and the incentive cost of DRP is 0.01$/
kW, the LCC of the project is about 1619.1 ×  103$. It reduces to 1618.4 ×  103$ and 
1615.3 ×  103$ when the incentive cost of DRP reduces by 50% and 100%, respec-
tively. When the incentive cost of DRP increases by 150% and 200%, LCC also 
increases to 1623.1 ×  103$ and 1626.5 ×  103$, respectively.

4  Conclusion

In response to the growing energy demand for energy systems, DRP can become a 
significant potential solution in the operation and planning of micro-grids due to the 
reduction of investment and energy costs, an increase in the flexibility of systems as 
well as the reduction in the energy cost of consumers. In this paper, a probabilistic 
planning model of networked micro-grids has been proposed under minimization 
expected LCC which allows considering the lifetime, uptime, and the discrete rated 
power of devices as well as the impact of the DRP and uncertainty parameters. The 
simulation results for the test micro-grid show the feasibility of the proposed frame-
work and the solution obtained with DRP is more efficient than the case without 
DRP. The incentive-based DRP can significantly improve the effectiveness of micro-
grids such as the investment deferment of devices from 1 to 5 years, the reduction 
of expected LCC by about 10.5%, and the purchased electricity from the market by 
about 14.6%. In addition, the planning framework can be extended by integrating 
electrical vehicles or different energy forms of multi-energy systems in future works.
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