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� A novel EMS is introduced to cope with demerits of prevailing EMSs.
� A new networked MGs structure is proposed to facilitate the MGs optimal scheduling.
� Time-based DRPs are exploited to mitigate the costs of consumers and MGs owners.
� PSO algorithm is used to optimize the cost of MGs under uncertain parameters.
� The efficiency of PSO can be revealed after comparing with a stochastic optimization.
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Networked microgrids (NMGs) are beneficial and economical for both microgrids’ owners and consumers
as this structure could potentially play a significant role in energy efficiency, power system reliability and
sustainability. Renewable energy sources (RESs) and sharp fluctuations in load consumption impose new
challenges in solving operational problems in smart distribution grids. As a result, deterministic methods
are not able to provide a precise analysis of microgrids operation and planning. Therefore, stochastic algo-
rithms are used as powerful tools in ensuring reliable solutions especially in operation problems. In this
paper, daily optimal scheduling problem of NMGs considering intermittent behavior in generation and
load is investigated in a proposed energy management system (EMS). Two demand response programs
(DRPs) based on time of use (TOU) and real time pricing (RTP) are integrated into the optimal scheduling
model and the developed model is solved using a metaheuristic algorithm under uncertainties of RESs
and loads. The numerical simulations show the effectiveness of the proposed model through comparison
with solution from stochastic optimization.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

A microgrid (MG) is a group of interconnected loads and renew-
able energy sources (RESs) within clearly defined electrical bound-
aries that acts as a single controllable entity with respect to the
grid. An MG can connect/disconnect to/from the grid in order to
operate in both grid-connected or islanded mode [1,2]. In a micro-
grid, economic load dispatch plays a crucial role in minimizing
total operation cost under physical constraints [3,4]. One of the
important challenges in MG management is creating the balance
between loads and generations of MG and import/export power
in order to meet demand-supply balance in any given time [5]. In
[6], authors have studied the energy consumption scheduling of
connected multi-MGs considering demand uncertainty. The opera-
tion of distribution network operator (DNO) and networked micro-
grids (NMGs) in grid-connected mode are coordinated without
considering uncertainties in the side of DGs and loads [7].

MG optimal scheduling problem has been analyzed considering
multi-MGs in recent researches, in which the available MGs not
only are connected to each other but also have an interaction with
DNO. In [8], a day-ahead optimization problem is solved using a
robust min-max-min cost considering economic aspects of smart
distribution grids. To achieve optimal solutions, a decomposition
algorithm based on dual cutting planes in a mixed-integer linear
programming (MILP) format along with demand response pro-
grams are exerted. In [9], a hybrid differential evolution with har-
mony search approach is developed to address the complication of
mixed integer nonlinear programming in minimizing the total
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Nomenclature

Indices/sets
fi; j; tg 2 T indices for time
fm;ng 2 MG indices for microgrids
l index for loads
u index for generation units
OM index for operation and maintenance cost
g index for generated power
BAT index for battery packs
CH index for the amount of battery charge
DCH index for the amount of battery discharge
sell index for sold power
pur index for purchased power
k index for pollutants
w; z indices for particles in PSO

Parameters and constants
Eði; iÞ self elasticity
Eði; jÞ cross elasticity between ith and jth hour
k cost coefficient
Cnl natural gas price
L natural gas low-hot value kW h/m3

UR ramp up rate
DR ramp down rate
�rec heat recovery factor
gt
e electrical efficiency of MT at hour t
gb boiler efficiency
PBAT;CAP capacity of battery kW
Ploss
BAT power loss of battery kW

! price coefficient of different pollutants
r1; r2 random functions in the range [0,1]
W inertia weight factor
c1; c2 acceleration coefficients of PSO
N number of variables

Variables
Cl0 initial electricity price before DRP [$/kW h]
Pl0 initial demand value before DRP [kW h]
Pl;new consumption power after DRP [kW h]
Cl;new electricity energy price after DRP [$/kW h]
DPl difference between demands before and after DRPs
S customer’s benefit

B costumer’s income
C energy cost in different modes
P RES output power [kW]
g efficiency of generation units
u commitment status of generators
SOC state of charge of batteries
Cpur;mn cost of purchased power by MG-m from MG-n [$/h]
Csell;mn cost of sold power by MG-m to MG-n [$/h]
Ppur;mn purchased power by MG-m from MG-n [kW]
Psell;mn sold power by MG-m to MG-n [kW]
Ptran;m the amount of transactive power of MG-m [kW]
OF objective function
Costop operation cost [$/h]
Costem emission cost [$/h]
q emission factor of pollutants
x vector of uncertain input variables
Y vector of uncertain output variables
v position vector of particles in PSO
/ velocity vector of particles in PSO
Pbest best previous position of particles in PSO
gbest best particle among all Pbest in PSO

Acronyms
NMG Networked Microgrid
RES Renewable Energy Source
EMS Energy Management System
DR Demand Response
DRP Demand Response Program
TOU Time of Use
RTP Real Time Pricing
PSO Particle Swarm Optimization
DNO Distribution Network Operator
MG Microgrid
MGCC Microgrid Central Controller
WT Wind Turbine
PV Photovoltaic panel
MT Micro Turbine
FC Fuel Cell
CHP Combined Heat and Power
PDF Probability Distribution Function
DG Distributed Generation
MCS Monte Carlo Simulation
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value of operation cost of the smart microgrid system assigning the
power flow constraints. Nowadays, plug-in hybrid electric vehicles
(PHEVs) and storage devices are key elements within the micro-
grids which make them very reliable and resilient small scale
energy zones. In this regard, Kamankesh et al. [10] introduce a
robust symbiotic organisms search algorithm to analyze the opti-
mal operation of the MG considering different charging behaviors
of PHEVs and various charging patterns in the MG under uncertain
nature of the studied network. One of the remarkable benefits of
microgrids has to do with the resilience improvement of the net-
work through mitigating the possible interruptions during natural
disasters. In [11], the optimal scheduling of a resiliency-oriented
microgrid is investigated in a centralized management system. A
procedure based on distributed dynamic programming algorithm
is assumed in solving optimal daily scheduling of microgrids as a
knapsack problem [12]. Cardoso et al. [13] investigate the optimal
planning of batteries using stochastic linear programming under
uncertainty in fuel cell outages. From another point of view, net-
worked MGs play a crucial role in providing powerful and reliable
operation for future smart distribution grids [14] where both MG
owners and customers benefit from reliable and economical power
delivery. In [15], a decentralized Markov decision process is intro-
duced in NMGs environment to minimize the operation costs of
MGs under an optimal control framework. In [16] various entities
can take part in power market considering multi-agent systems
for the energy management of DGs in multiple MGs. A transforma-
tive architecture for the optimal operation and self-healing of
autonomous networked MGs is studied in [17] and during genera-
tion deficiency in one MG, the framework is entered into the self-
healing mode. In [18], the authors focus on a three-stage algorithm
based on coalitional game strategy in multiple MGs network with
multi-agent system to solve the economic power transaction
problem. Studies in [19,20] have introduced the Multi-MGs
concept and solved optimal power dispatch problem in that envi-
ronment considering market operation under load and generation
uncertainties.

Among the important aspects of the microgrids, the economic
analysis of MGs has taken specific consideration among the
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researchers [21]. Microgrids offer a viable solution in enhancing
the reliability of distribution networks during sudden power
outages. On the other hand, renewable energy generations adopted
in microgrids such as wind power and photovoltaic panel with
intermittent output characteristic greatly increase the complexity
of the reliability evaluation [22]. In order to illustrate the strength
of multi-MGs in improving the reliability of the smart distribution
network, imperialist competitive algorithm is introduced to opti-
mally manage the microgrids in both islanded and interconnected
modes under uncertainties of renewable resources and load
demand [23]. In [24], the operational planning of residential
energy supply chain networks is surveyed based on micro com-
bined heat and power systems to minimize the total costs of the
studied microgrid. In [25], in order to tackle the uncertain param-
eters in a microgrid, rolling horizon method as well as a discrete-
time MILP is used to manage different aspects of the MG in an opti-
mal way.

In recent years, Demand Response Programs (DRPs) have been
converted to one of the important interests in power and energy
sector. Participating the various types of loads such as residential,
commercial, and industrial in the DRPs can help introducing them
as smart and flexible loads. DNOs provide diverse DRPs for clients
in order to attract the maximum possible number of consumers
into the programs [26]. DRPs are considered in power distribution
systems to reshape the load curve, as well as preventing the exces-
sive use of electricity in peak load hours [27]. According to the Fed-
eral Energy Regulatory Commission (FERC) report, DRPs were
separated into two major categories, that is, time-based and
incentive-based programs [28]. In [29], DRPs are applied in com-
bined heat and power (CHP)-based MG including energy storage
systems. In the proposed structure, operation cost is minimized
using a multi-objective algorithm. Parvania et al. in [30] have pro-
posed a short-term stochastic security constrained unit commit-
ment model that simultaneously schedules generating units’
energy and spinning reserve, as well as reserve prepared by DR
resources. In suggested framework in [31], in order to provide a
feasible market tools and economic benefits for the consumers
who participate in DR programs, an optimal DR aggregation is uti-
lized in the power market environment. Furthermore, demand bid-
ding program with emergency demand response program (EDRP)
is considered with two quadratic models in order to reduce the
wholesale electricity price and tested on an IEEE test system
[32]. Moreover, [33] has used Time of Use (TOU) pricing strategy
to reduce electrical water heating costs through shifting electrical
load.

The contributions of this paper can be summarized as follow:

� A grid of microgrids or networked microgrids structure is taken
into account for studying MG optimal daily scheduling to
resolve the prevalent drawbacks of conventional structures of
microgrids. In the proposed structure, MGs can operate in both
islanded and interconnected mode according to their power
requirements achieving economic situations for MG owners
and consumers. In the islanded mode, although MGs cannot
benefit from distribution network, sharing power through coor-
dinating with other MGs enables them to address the supply-
demand balance considering the economic and reliability
objectives.

� A new energy management system is introduced to cope with
some prevailing drawbacks of conventional EMSs. As an exam-
ple, In the proposed EMS based on a centralized architecture
[12], which is well-suited for islanded mode of MGs, a disability
in being flexible against possible anticipated errors can create
security dangers for loads. In [11] due to some natural disasters,
the proposed management system is unable to prevent the load
shedding. In addition, the decentralized EMS, which is a proper
framework for interconnected mode, has drawbacks in MG opti-
mal scheduling and managing the local resources [17]; how-
ever, the proposed EMS can optimally operate in different MG
operation. The microgrids not only can fulfill the optimal oper-
ation for local resources through sharing their information with
central controller but also provide reliable and economic condi-
tions for MGs to address their own economic and environmen-
tal conditions efficiently.

� The proposed time-based demand response programs consider-
ing uncertainties of RESs and loads pave the way for consumers
to participate in optimal day-ahead scheduling of micro
resources within the microgrids. Due to the potential strength
of the suggested EMS in creating coordination between the
MGs, the cost reduction in MG owners side on average is 45-
percent during peak hours, and this amount for consumers in
the same hours is almost 30-percent.

� Monte carlo simulation is exerted in producing various scenar-
ios to cope with uncertainties of RESs and loads considering
probability distribution functions in modeling them; however,
due to the non-linear and non-convex intrinsic of the MG opti-
mal scheduling, conventional methods such as MILP [8] and
stochastic linear programming [13] encounter with great prob-
lems in finding correct solutions, while the PSO algorithm as a
heuristic method due to its strength in finding global optimum
from different initial points, efficiently addresses the significant
demerits of conventional methods. In order to show the accu-
racy of the results gained by PSO, a stochastic optimization
method [34] is utilized in comparison section.
2. Networked microgrids description

In the proposed networked microgrids structure, in which
numerous microgrids can participate in optimizing the operation
expenditures of the studied smart distribution grids, small scale
energy zones or MGs can operate in both islanded and grid-
connected modes. In the case of sharing power between micro-
grids, there exist direct distribution lines between them [19]. These
direct lines aim to prevent the congestion of power in the distribu-
tion grid. In addition to power interaction between MGs, each
microgrid can connect to the main grid through distribution lines
to exchange energy with the grid [14]. There exist individual con-
trollers in each MG which are responsible for managing the
resources of their associated MG. The aim of these controllers is
providing optimal operation and management in different modes
of operation. Local micro-sources controller and local load con-
troller are used in generation and load side, respectively. MG cen-
tral controller (MGCC) controls all local resources. Moreover, DRPs
are applied to the load level in any MG and consumers receive the
related information about the electricity price at least 24 h before
execution of TOU or RTP programs. Within the MGCC, an energy
management system is proposed for several reasons, among which
minimization of operation costs under fluctuations of loads and
renewable generations, and creating a balance between supply
and load in different conditions such as fault, interruption, or unex-
pected loads. In Fig. 1, we propose the NMGs structure of smart
distribution grid. There are switches between the MGs that deter-
mine the operation mode of them in any given time based on eco-
nomical issues as well as MGCC command. In generation side,
photovoltaic (PV) panel, wind turbine (WT), micro gas turbine
(MT), fuel cell (FC) and CHP are considered as available distributed
generations (DGs). In addition, in order to save surplus energy, a
battery package is considered for all MGs. Fig. 2 presents the
stochastic optimization and creating the probability distribution
function (PDF) for uncertain parameters.
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Fig. 1. Networked MG-based structure of smart distribution grid.

Fig. 2. stochastic optimization method processing.
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3. Problem formulation

The mathematical models for active components of microgrids
are described in the following.

3.1. Economic model of DRP

Economic models try to derive the level of demand from some
explicative factors based on microeconomic theory. Economic
models are developed from data of real experiences, and used to
evaluate other programs. Price-elasticity estimates are generally
obtained from the model in [35]. So, elasticity is defined as the
demand sensitivity respect to the price [36] as:

E ¼ Cl0

Pl0
� @Pl;new

@Cl;new
ð1Þ

Self elasticity and cross elasticity can be written as follow according
to (1):

Eði; jÞ ¼ Cl0ðjÞ
Pl0ðiÞ �

@Pl;newðiÞ
@Cl;newðjÞ 8i; j 2 T ð2Þ
It is important to be noted that the self elasticity and cross elasticity
have negative and positive values, respectively. So, these character-
istics can be described as follow:

Eði; jÞ 6 0; 8i ¼ j; 8i; j 2 T

Eði; jÞ P 0; 8i– j; 8i; j 2 T

(
ð3Þ

There are two different models for load demand according to their
reaction to electricity price changing.

In the first situation, namely single period model, some loads
such as illuminating loads are not able to shift to other periods,
as these loads are sensitive just in single period which is called self
elasticity. As the electricity price is changed, the consumption
simultaneously reacts to this alteration. In this regard, we can
define the load variations as follow:

DPlðiÞ , Pl;newðiÞ � Pl0ðiÞ; 8i 2 T ð4Þ
So, the consumers’ benefits for any hour can be described as follow:

SðPl;newðiÞÞ , BðPl;newðiÞÞ � Pl;newðiÞ � Cl;newðiÞ; 8i 2 T ð5Þ
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In order to maximize the customer’s benefit:

@S
@Pl;newðiÞ ¼ 0 ð6Þ

By using (5) and (6), the following result is achievable:

@BðPl;newðiÞÞ
@Pl;newðiÞ � Cl;newðiÞ ¼ 0 ð7Þ

Hence,

@BðPl;newðiÞÞ
@Pl;newðiÞ ¼ Cl;newðiÞ ð8Þ

The benefit function can be estimated with a quadratic function
based on the second-order Taylor Series expansion of BðPl;newðiÞÞ
[32]:

BðPl;newðiÞÞ ¼ BðPl0ðiÞÞ þ Cl0ðiÞ � ½Pl;newðiÞ � Pl0ðiÞ�

� 1þ Pl;newðiÞ � Pl0ðiÞ
2Eði; iÞPl0ðiÞ

� �
; i 2 T ð9Þ

With combination (8) and (9):

Cl;newðiÞ ¼ Cl0ðiÞ � 1þ Pl;newðiÞ � Pl0ðiÞ
Eði; iÞPl0ðiÞ

� �
; i 2 T ð10Þ

Finally, the single period model for load demands can be achieved
by (11):

Pl;newðiÞ ¼ Pl0ðiÞ � 1þ Eði; iÞCl;newðiÞ � Cl0ðiÞ
Cl0ðiÞ

� �
; i 2 T ð11Þ

In the second situation, loads have abilities to shift themselves
from one period to another, i.e., transfer from peak period to off-
peak or low period. Such model is called multi-sensitivity. It is eval-
uated by cross elasticity, which is defined as follow between hours
i and j:

Eði; jÞ ¼ Cl0ðjÞ
Pl0ðiÞ �

@Pl;newðiÞ
@Cl;newðjÞ 8i– j; 8i; j 2 T ð12Þ

Since in (12) the load variations to price variations is constant in
any given time, so the DR to price variation could be defined as lin-
ear function [37]:

Pl;newðiÞ ¼ Pl0ðiÞ þ
X

j
j–i

Eði; jÞ Pl0ðiÞ
Cl0ðjÞ Cl;newðjÞ � Cl0ðjÞ

� �
; 8i 2 T ð13Þ

At last, the final model for time-based demand response pro-
gram is achieved by combination of the single period and multi
period models:

Pl;newðiÞ ¼ Pl0ðiÞ � 1þ Eði; iÞCl;newðiÞ � Cl0ðiÞ
Cl0ðiÞ

� �

þ Pl0ðiÞ � 1þ
X
j

j–i

Eði; jÞCl;newðjÞ � Cl0ðjÞ
Cl0ðjÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; 8i 2 T ð14Þ
3.2. DG resources

For wind turbine and photovoltaic panel, wind speed and solar
radiations are prime energy sources and should be converted into
electrical power. At first stage of modeling the wind and solar gen-
erations, wind speed and solar radiation are modeled with weibul
distribution and normal distribution functions, respectively. Then,
by using power-wind speed curve for wind turbines and
power-radiation curve for PVs, the power output of these RESs
are determined, which in [20] the comprehensive analysis has
been discussed.

Generation cost of non-dispatchable renewable sources such as
WT and PV is zero because their primary energy is available in any
given time without paying any cost, so the only cost for WT and PV
units is the operation and maintenance(O&M) cost.

Ct
OM;WT ¼ kOM;WT � Pt

g;WT ; 8t 2 T ð15Þ

Ct
OM;PV ¼ kOM;PV � Pt

g;PV ; 8t 2 T ð16Þ
The fuel costs of fuel cell (FC) and micro turbine (MT) in time inter-
val can be expressed as:

Ct
g;MT ¼ kg;MT �

Pt
g;MT

gt
MT

; 8t 2 T ð17Þ

Ct
g;FC ¼ kg;FC �

Pt
g;FC

gt
FC

; 8t 2 T ð18Þ

kg;MT ¼ kg;FC ¼ Cnl

L
ð19Þ

It should be mentioned that unlike the MT, the efficiency of FC
decreases in high generations. The maintenance cost of FC and MT
in time interval are described as follows:

Ct
OM;MT ¼ kOM;MT � Pt

g;MT ; 8t 2 T ð20Þ

Ct
OM;FC ¼ kOM;FC � Pt

g;FC ; 8t 2 T ð21Þ
The operational limits of FCs and MTs can be considered as follows:

ut
g;MT :P

t
min;MT 6 Pt

g;MT 6 ut
g;MT :P

t
max;MT ; 8t 2 T ð22Þ

ut
g;FC :P

t
min;FC 6 Pt

g;FC 6 ut
g;FC :P

t
max;FC ; 8t 2 T ð23Þ

In addition to minimum and maximum power generation con-
straints, existing MTs and FCs in each MG are limited by their ramp
rate limits as follow:

Pt
g;MT � Pt�1

g;MT 6 URg;MT ; if Pt
g;MT > Pt�1

g;MT ; 8t 2 T ð24Þ

Pt
g;FC � Pt�1

g;FC 6 URg;FC ; if Pt
g;FC > Pt�1

g;FC ; 8t 2 T ð25Þ

Pt�1
g;MT � Pt

g;MT 6 DRg;MT ; if Pt
g;MT < Pt�1

g;MT ; 8t 2 T ð26Þ

Pt�1
g;FC � Pt

g;FC 6 DRg;FC ; if Pt
g;FC < Pt�1

g;FC ; 8t 2 T ð27Þ
In MT units with CHP performance, the efficiency of MT increases
and the fuel cost of MT decreases. The fuel cost of MT with CHP per-
formance are as follow:

Cg;CHP ¼ Cg;MT � 1� �recðgt
CHP � gt

eÞ
gb

� �
; 8t 2 T ð28Þ
3.3. Load demand

Generally, load forecast is assumed to be normally distributed
with forecasted load as the mean and the standard deviation equal
to a fraction of the mean. Therefore, for each MG, load is modeled
as a normal probability distribution function based on [20].

3.4. Battery

In the suggested EMS, the battery packs are charged or dis-
charged within the microgrids in order to satisfy the economic
benefits of microgrid owners. Therefore, the batteries can be
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charged/discharged for several reasons, from supplying the
demanded powers of consumers to decreasing the electricity costs,
from satisfying the generation-load constraint to mitigating the
expenditure of networked MGs structure. The batteries are utilized
in MGs to store electricity when there is a surplus generation. If the
output power of DGs in MGs is lower than the total demands, the
batteries would begin to discharge. The initial charging batteries
are 50 percent of total battery capacity [38]. The mathematical
model for batteries in each MG can be illustrated in following rela-
tions. These equations describe the chargeable and dischargeable
amounts of power in batteries at time t. Moreover, the state of
charge (SOC) of each battery at time t depends on the SOC at pre-
vious time step, and amount of charged and discharged power at
that.

06Pt
BAT;CH;m6PBAT;CAP;m�ð1�SOCt�1

BAT;mÞ�
1

1�Ploss
BAT;CH;m

; 8t2T;8m2MG

ð29Þ

0 6 Pt
BAT;DCH;m 6 PBAT;CAP;m � SOCt�1

BAT;m � ð1� Ploss
BAT;DCH;mÞ;

8t 2 T;8m 2 MG ð30Þ

SOCt
BAT;m ¼ SOCt�1

BAT;m� 1
PBAT;CAP;m

� 1

1�Ploss
BAT;DCH;m

�Pt
BAT;DCH;m�ð1�Ploss

BAT;CH;mÞ�Pt
BAT;CH;m

 !
;

8t2 T;8m2MG ð31Þ

SOCmin;BAT;m 6 SOCt
BAT;m 6 SOCmax;BAT;m; 8t 2 T;8m 2 MG ð32Þ
3.5. Power transaction

The main criterion in transaction is based on economic issues so
that the objective function reaches the possible optimal value for
microgrids. All of the decisions are made by MGCC for each MG.
The following constraints are applied to purchased and sold powers:

if Pt
g;m � Pt

l > 0 ! Pt
pur;m ¼ 0; Pt

sell;m > 0; 8t 2 T;8m 2 MG ð33Þ

if Pt
g;m � Pt

l < 0 ! Pt
pur;m > 0; Pt

sell;m ¼ 0; 8t 2 T;8m 2 MG ð34Þ
Power congestion is an important issue in distribution lines. The
power transaction boundary can be formulated as:

0 6 Pt
tran;m�n 6 Pt

max;tran;m�n; 8t 2 T;8fm;ng 2 MG; m – n ð35Þ
The costs of purchased power in MGs are described as bellow:

Ct
pur;m ¼

X
n

Ct
pur;mn�Pt

pur;mn 8t2 T;8fm;ng2 fMG;NW ;BATg; m–n

ð36Þ
According to above formula, each MG based on its demand pur-
chases power from four sources. To illustrate, MG1 buys its required
power from MG2, or MG3, or its battery pack, or main grid consid-
ering economic benefits. It should be noted that every microgrid
participates in market considering its whole benefits. In order to
extend the terms of (36), the following equation can be utilized
for MG1 at time t:

Ct
pur;MG1 ¼ Ct

pur;12 � Pt
pur;12 þ Ct

pur;13 � Pt
pur;13 þ Ct

pur;1BAT � Pt
pur;1BAT

þ Ct
pur;1NW � Pt

pur;1NW 8t 2 T ð37Þ
The similar relations for costs of purchased power can be used for
sold power costs as follow:
Ct
sell;m ¼

X
n

Ct
sell;mn�Pt

sell;mn 8t2 T;8fm;ng2 fMG;NW ;BATg; m–n

ð38Þ
The cost difference between purchased and sold energy provides
the cost of power transaction in each microgrid as follow:

Ct
tran;m ¼ Ct

pur;m � Ct
sell;m 8t 2 T;8m 2 MG ð39Þ
4. Proposed energy management system

4.1. Conventional EMSs

In recent years, various types of EMSs have been investigated
and used in different research fields of microgrids. From a preva-
lent point of view, the EMSs can be categorized into three impor-
tant systems, namely centralized, decentralized, and hybrid EMS
[39]. In centralized structure, all microgrids are controlled through
a unique management system, which optimize the total operation
costs of each MG through preventing load shedding of critical
loads. Although this system has a simple implementation with
acceptable reliability in islanded mode, it can adversely impose
heavy costs as the structure requires communication infrastruc-
tures, and has less flexibility in diffusing the forecasting errors
[40]. In decentralized EMS, each MG has its own local control
center, which can operate independently. Each microgrid fulfills
its generation and load balance via sharing energy with distribu-
tion network or other MGs in its vicinity [41]. In compared to the
centralized architecture, this kind of EMS is well-suited to the
interconnected mode of multi-microgrids. This EMS, however,
has a great dependency to the main grid in interconnected mode,
which results in non-economical operation costs. Moreover, the
structure cannot be beneficial and flexible in islanded mode. On
the other hand, due to some mentioned disadvantages of two
EMSs, the third managing system can potentially transcend the
drawbacks of centralized and decentralized structures. Hybrid
EMS which optimizes local resources within each MG, informs
the central EMS of the required or surplus powers of MGs, and
plays a significant role in mitigating the operation cost in compar-
ison with decentralized strategy [42]. Nevertheless, the hybrid EMS
might encounter with a tangible reduction in powerful perfor-
mance specifically when MGs operate in islanded mode.

4.2. Configuration and merits of proposed EMS

Regardless of some advantages of aforementioned EMSs, this
paper utilizes a new EMS in order to obviate the existing draw-
backs of prevalent EMSs, which were extensively explained. As it
was noted, one of the important reasons of creating hybrid EMS
is resolving some demerits of centralized and decentralized
architects and in different researches this structure is known as
one of the strongest EMS [43]. However, due to the fact that the
hybrid system for energy management has parallel operation of
microgrids and existing MGs are unaware of the local data of other
MGs, it may not fulfill the economic profits of whole network [39].
In this regard, the proposed structure for EMS based on networked
microgrids prepares a remarkable opportunity for all MGs to be
aware of the data of other MGs such as power generation level,
required load for customers, and needed amount for buying or sell-
ing deficient or surplus power after optimizing their local
resources considering the security criteria in diffusing data
between each other. In other words, each MG has a great responsi-
bility not only in creating power balance within the microgrid but
also in providing economic operation for the energy transaction
which occurs between the MGs. Therefore, a slight change in
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power generation amount in one MG can bring a big alteration in
power production of other MGs. According to high flexibility of
proposed EMS, a microgrid purchases its demanded power from
those MGs that consist renewable resources with at least environ-
mental impacts such as wind turbines and photovoltaic panels.
With this in mind, MGs with more non-dispatchable resources
offer at least selling cost in power market while other MGs with
more dispatchable sources have a high cost in selling electricity.
As well as, purchasing electricity from utility grid is not affordable
for any MGs. On the other hand, because MGs react to the cost fluc-
tuations of the network, they will strongly continue the power
interactions with those of MGs that are economical. Thus, the
MGs with WTs and PVs will be the first priority of the MG owners
in buying electricity which results in decreasing the operation
costs. Besides, the proposed structure for EMS could be based on
load priority, voltage profiles, or amount of the loads in each MG.
From MGs operational mode standpoint, the introduced EMS can
be strongly beneficial in both islanded and interconnected modes,
while each one the conventional systems has a noticeable perfor-
mance in either islanded or connected mode. In fact, according to
the proposed networked microgrids structure, all MGs have great
capability in both islanded and interconnected operation and they
are well-suited to different conditions of the distribution network.
For instance, in normal operation, local EMS optimizes its
resources considering the local information of other MGs and it
can produce surplus power in order to fulfill other MGs’ require-
ments after achieving a coordination with DNO or external EMS.
Thus, in normal function, MGs have connections with different
MGs and distribution network as well. It is worthwhile to be noted
that the first priority of all MGs in creating power balance and eco-
nomic operation is managing their own local resources, and in sec-
ond stage, if each one of them have no ability to supply their own
demands by the existing renewable resources considering the
environmental and economic issues, they will have a direct junc-
tion with other MGs and main grid. In a nutshell, the key purpose
of the authors is mitigating the contribution of the main grid in the
whole process. On the other hand, in emergency operation, MGs
will be disconnected from the external grid and benefited only
from the neighbor MGs and local power resources, while in cen-
tralized or decentralized EMSs creating a connection line between
MGs is almost impossible. In emergency conditions, the contribu-
tion of the proposed EMS can be observed remarkably and protects
the critical loads from shedding. In other words, the MGs are very
resilient in harsh weather and are sustained from unnecessary crit-
ical load shedding. In order to have a better description of different
structures of EMSs, Fig. 3 can be illustrated.

To sum up, Although centralized structure might be useful for
islanded mode of MGs, it will definitely encounter with various
dissatisfactions in the interconnected mode due to lack of informa-
tion from the whole system and less connection with neighbor
MGs [12]. Besides, in decentralized managing system, MGs due
to unawareness associated with their local resources and optimiza-
tion, encounter with heavy operation cost [16]. In despite of these
disadvantages, in the proposed managing system, local control
centers and DNO have a great supervision regarding the optimiza-
tion of local resources considering all connection benefits and
transactive energy between microgids, in which in compared to
decentralized EMS which there is an intensive trade-off between
microgrids and the utility grid [39], MGs in the proposed EMS have
at least power trade with the main grid. Moreover, according to the
powerful managing of DNO, energy transaction between micro-
grids can fulfill the electricity requirements of MG owners in the
most hours. As a result, a strong coordination between DNO and
MGCC guarantees the supplying of load demand without signifi-
cant concerns in the case of load shedding, which is very prevalent
in centralized and decentralized EMS. With this in mind, DRPs can
be easily carried out due to the awareness of MGs as to either other
MGs requirement through sharing their demands with each other
via DNO or their own RESs and loads via central managing system.

The flowchart of proposed EMS regarding its performance in
achieving MGs optimal managing is shown precisely in Fig. 4,
which is executed by a bi-level optimization algorithm.
5. Mathematical description of objective function

5.1. Procedure of proposed EMSs in solving optimal operation of MGs

In the suggested NMG structure, DNO and MG are considered as
distinguished entities with individual objectives to optimize their
own operation costs. In fact, our proposed algorithm solves the
problem in two levels: In the first level, the optimal solution for
operation cost of each MG is achieved within the MGs, separately.
In this regard, each microgrid separately and optimally schedules
its own generation units by taking the uncertainties of RESs and
loads into account. In other words, According to the suggested
EMS illustrating in Fig. 3, there are two managing system; the first
is central EMS in which the local resources are scheduled within
each MG in any given time. This controller is responsible for per-
formance of RESs and addressing the generation-load balance. In
this stage and at any time, the local information of each MG is
transmitted to the central EMS, in which the first stage of opti-
mization is realized. In other words, this center is responsible only
for local optimization process. In the second level, after gaining the
optimal operation cost of each MG, the MG entities should be coor-
dinated with DNO. In this condition, each MG shares its data in
terms of suggested energy for buying or selling. Then, DNO plays
a significant role in responding to the MGs’ requests. Overall, it
can be described that the proposed problem is solved with a bi-
level algorithm. However, a decision made by one MG could affect
the operational planning of other entities which describes the fact
that none of MGs can optimize their own cost function by changing
occasionally in the decisions [14,15]. On the other hand, in the pro-
posed networked MGs-based structure, DNO and MGs can run as
autonomous entities in some operation hours. Objective function
consists of generated power, purchased, sold powers, and O&M
costs. In this problem, the cost of powers and pollutant emissions
must be minimized. The optimization problem for each microgrid
uses the following objective function:

MinOFm ¼
X
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� 	
; 8t2 T;8m2fMG1;MG2;MG3g

ð40Þ
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X
u

quk � Pt
g;u

 !
; 8t 2 T;8m

2 fMG1;MG2;MG3g;8k 2 fCO2; SO2;NOxg;8u
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As it is observed, the operation cost of MG-m consists of three
main costs including power generation cost, net cost of power
transaction by MG-m, and maintenance expenditure. It should be
noted that the above mentioned math formulations is constant
for each sample or scenario and are utilized for any given sample.

Proposed cost function is optimized by PSO algorithm for each
microgrid separately. The total power generation plus transaction
power and charge or discharge state of battery packs must meet
the predicted power demand of each MG at any given time:
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5.2. Uncertainty model

The generated powers by MTs, FCs, and CHPs, battery charge or
discharge, and power exchange with other MGs and with distribu-
tion network are considered as decision variables in each microgrid
in any hour. Totally, there are five vectors of decision variables for
each hour and 120 variables for day-ahead, which should be
specified.
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Monte carlo simulation (MCS) method is utilized for coping with
uncertainties derived from wind turbines, photovoltaic panels,
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and loads. This paper will make use of a scenario-based method
to cover the uncertainty of the problem [44]. After producing some
scenarios for mentioned uncertain inputs, the system is analyzed
under these scenarios as deterministic inputs. Therefore, various
states are studied through using different scenarios. If each system
constraint is not fulfilled, objective function is penalized. At the end
of each scenario, decision variables based on PSO algorithm are gen-
erated for a 24-h period considering their constraints. Finally,
expected value based on mean value and standard deviation for
each variable is computed.

5.3. Review of PSO algorithm

PSO is originally designed by Kennedy and Eberhart [45]. It is
inspired by natural concepts such as bird flocking and fish school-
ing. In PSO system, each candidate solution is called a particle. Each
particle moves in the search space with a velocity that is dynami-
cally adjusted according to the corresponding particle’s experience
and the particle’s companions’ experience. Mathematically, the
particles are manipulated according to the following equations:
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/zþ1
w ¼ W � / z

w þ c1 � r1 � ðPbestw � vwÞ þ c2 � r2 � ðgbest � vwÞ
ð46Þ

The flowchart of solving optimal power dispatch considering DRPs
by PSO is shown in Fig. 5.
6. Numerical results

The experiments are performed using MATLAB R2013a, running
on a laptop with a 1.8 GHz Intel Core i5 CPU and 6 GB RAM mem-
ory, and Microsoft Windows 8.The proposed model is tested on a
typical networked MGs depicted in Fig. 1. As it was mentioned,
in the proposed structure MGs interact with each other, as well
as external grid. Each MG has its own MG controller and receives
the related data from generation units and consumers. The aim
of MG complex is minimizing the operation cost with taking into
account the economic issues using DRPs and environmental satis-
faction. Emission factors of pollution emissions (i.e., PV, CHP, MT,
FC, WT) are listed in [20].

Three time intervals are defined in TOU programming: from
00:00 a.m. to 7:00 a.m. as valley period, 8:00 a.m. and from
11:00 a.m. to 16:00 p.m. off-peak period, and 9:00 a.m. to 10:00
a.m. and 17:00 p.m. to 23:00 p.m. as peak period. Furthermore,
$0.023/kW h, $0.034/kW h and $0.040/kW h are considered as the
price in valley, off-peak and peak periods, respectively. $0.034/
kW h is defined as the flat rate price in electrical energy selling.
Moreover, self and cross elasticities are considered as �0.2 and
0.01, respectively. Also, the participants level of loads in any MG
can be varied.

In another scenario, MG optimal scheduling is solved in pres-
ence of real time pricing program. In this scenario, the amount of
loads and the pertinent prices are given in Table 1. The hourly
energy price of electricity market is based on Tuesday 12 July
2016 [46]. In this table, the load consumption of any MG is
Fig. 6. The results of TOU and RTP p

Table 1
Mean value of MGs’ load and consumption prices based on RTP.

Hour Load (kW) Price

MG1 MG2 MG3 ($/kW h)

1 100.36 77.87 111.08 0.023
2 87.13 64.17 108.31 0.021
3 83.55 53.42 90.09 0.020
4 105.25 74.16 134.20 0.019
5 73.50 55.15 100.48 0.020
6 72.16 57.67 93.78 0.022
7 137.35 94.58 148.98 0.024
8 171.80 133.41 189.42 0.026
9 231.08 172.55 319.10 0.028
10 266.28 218.85 342.73 0.033
11 148.19 128.19 215.65 0.038
12 164.70 125.97 214.86 0.040
described based on mean value, as well as the consumption price
in all MGs are equal with each other.

In this paper, three different scenarios are considered in solving
MG optimal scheduling. In the first scenario, the proposed objec-
tive cost aims to satisfy economic and environmental issues in
MGs without using DRPs. In the second scenario, TOU program is
applied to all load participants in each MG, and finally, RTP pro-
gram has great contribution in each microgrids to achieve the opti-
mal solution.

The load profile of any MG in presence of three different scenar-
ios can be seen in Fig. 6.

In Fig. 6 when the TOU and RTP programs are applied to the
original load curve, the electricity consumption reacts to the price
variations in any hour. In valley time, the amount of load increases
and in high price times, the loads have great desire toward the
power consumption. With gaining different load curves for each
MG, PSO algorithm tries to minimize the cost function.

In order to have a precise analysis in generation regard, in
Fig. 7a (includes 7a, b and c), the commitment of each generation
units in any MG is depicted using the mean value.

Batteries in MGs play a significant role specially in peak hours.
They are charged or discharged with taking into account the MGs
demand in any given time. Therefore, batteries can positively affect
not only the cost degradation in peak hours but also the supply-
demand balance satisfaction. With applying the DRPs into the pro-
posed problem, this unique characteristic of batteries is conspicu-
ous than before. In Fig. 8, the impact of DRPs in MGs scheduling in
a daily period can been observed. The main objective of Fig. 8 is
illustrating the effect of demand response programs on state of
charge/discharge of batteries in any given time. It is obvious that
in peak times the exploiting of batteries plays a vital role in miti-
gating the dependence of microgrids to utility grid. In other words,
energy storage systems are important elements not only in
enhancing the resiliency and reliability of MGs but also in decreas-
ing the operation costs of energy zones. As it is observed in Fig. 8,
rograms based on mean value.

Hour Load (kW) Price

MG1 MG2 MG3 ($/kW h)

13 143.89 144.77 246.00 0.045
14 174.59 117.35 204.48 0.051
15 146.80 113.31 190.61 0.057
16 172.82 159.38 207.45 0.061
17 258.05 252.04 402.02 0.062
18 318.70 264.33 375.03 0.053
19 367.40 268.67 509.36 0.046
20 372.66 222.92 373.83 0.040
21 294.51 251.99 381.53 0.037
22 238.72 223.91 340.36 0.032
23 214.65 159.97 276.60 0.027
24 135.92 137.86 223.70 0.026



Fig. 7. Commitment of generation units based on the mean value in 7a: MG1; 7b: MG2; and 7c: MG3.

Fig. 8. Charge and discharge states of the battery in any MGs based on the mean value.

Table 2
Optimal results of energy scheduling considering DRPs and their related cost reduction.

Hour Operation cost ($/h) of whole MGs, and Reduction
(Red) percentage (%) comparing to the No DRP
state

Emission cost ($/h) of whole MGs, and
Reduction (Red) percentage (%) comparing to
the No DRP state

Load consumption cost ($/h) of whole MGs, and
Reduction (Red) percentage (%) comparing to the
No DRP state

No DRP TOU Red (%) RTP Red (%) No DRP TOU Red (%) RTP Red (%) No DRP TOU Red (%) RTP Red (%)

1 34.0 62.8 – 62.1 – 0.82 0.83 – 0.68 17 9.84 10.20 – 10.54 –
2 24.9 56.1 – 56.3 – 0.73 0.80 – 0.80 – 8.83 9.16 – 8.82 0.1
3 16.5 42.5 – 44.4 – 0.83 0.72 12.4 0.84 – 7.72 98.01 – 8.82 0.1
4 28.9 68.2 0 69.0 – 0.77 0.77 0.3 0.74 4.5 10.66 11.06 – 9.66 9.4
5 14.8 35.5 – 33.7 – 0.76 0.81 – 0.78 – 7.79 8.08 – 7.56 2.9
6 13.9 27.2 – 34.2 – 0.74 0.65 11.4 0.59 19.6 7.60 7.89 – 7.95 –
7 50.8 87.1 – 89.3 – 0.83 0.80 3.1 0.85 – 12.95 13.44 – 14.50 –
8 66.0 65.3 1.0 25.3 61.6 0.67 0.75 – 0.74 – 16.82 16.65 1.0 6.71 60.1
9 109.9 49.6 54.9 56.1 48.9 0.76 0.85 – 0.87 – 24.57 18.98 22.8 13.96 43.2
10 129.5 70.6 45.5 80.1 38.1 0.78 0.70 9.5 0.75 3.8 28.15 21.74 22.8 18.81 33.2
11 60.6 56.3 7.1 11.9 80.3 0.77 0.74 4.4 0.81 – 16.73 16.56 1.0 9.57 42.8
12 67.3 64.9 3.6 13.0 80.7 0.73 0.75 – 0.73 5.4 17.19 17.02 1.0 10.48 39.1
13 62.6 69.6 – 17.4 72.2 0.79 0.85 – 0.87 – 18.18 18.00 1.0 12.32 32.2
14 59.9 63.2 – 10.5 82.5 0.86 0.73 15.6 0.67 22.1 16.88 16.71 1.0 13.20 21.8
15 49.8 46.3 6.9 3.8 92.4 0.79 0.70 11.8 0.84 – 15.32 15.17 1.0 13.36 12.8
16 66.7 68.5 – 13.6 79.5 0.79 0.77 2.7 0.87 – 18.35 18.16 1.0 17.04 7.1
17 144.4 82.5 42.9 85.2 41.0 0.82 0.79 3.5 0.78 5.2 31.01 23.95 22.8 38.16 –
18 156.8 87.5 44.2 92.8 40.8 0.84 0.82 1.7 0.74 11.2 32.57 25.16 22.8 34.57 –
19 208.7 115.8 44.5 126.8 39.3 0.76 0.74 1.7 0.75 – 38.94 30.08 22.8 35.57 8.7
20 166.2 100.3 39.6 102.3 38.4 0.83 0.72 13.7 0.84 – 32.96 25.46 22.8 26.53 19.5
21 154.4 83.6 45.9 88.2 42.9 0.72 0.72 – 0.84 – 31.55 24.37 22.8 23.36 26.0
22 119.0 66.6 44.0 66.9 43.7 0.77 0.75 2.4 0.74 4.1 27.30 21.09 22.8 17.60 35.5
23 79.9 24.8 68.9 47.0 41.2 0.76 0.82 – 0.75 2.08 22.14 17.10 22.8 12.13 45.2
24 69.9 121.2 – 127.3 – 0.71 0.69 2.2 0.76 – 16.91 17.55 – 20.84 –

Total 1954 1615 17.3 1357 30.6 18.62 18.3 1.8 18.6 0.1 470.9 411.5 12.6 390.4 17.1
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after applying DRPs on MGs, the state of discharge of batteries in
each microgrid is mitigated in peak hours due to the fact that the
consumed power is controlled and the consumers respond to the
increasing prices of power in peak times. As a result, the whole
consumption of power in every MG is mitigated which is resulted
in lower operation cost for microgrid owners. On the other hand, in
regular conditions and without considering DRPs, batteries have to
supply the demanded power of consumers in peak hours which the
consumption level is not comparable with those hours in presence
of DRPs. Moreover, without demand response programs, MGs are
more likely to compensate their lack of power through connecting
to main grid which faces the MG owners with intensive operation
cost because of high price rate of purchasing power frommain net-
work comparing to batteries. In contrast, there exists inverse con-
ditions in valley times for loads in TOU and RTP programs so that
the load curve increases in this time comparing to no DRPs
conditions.

In Table 2, the operation, emission, and load consumption costs
are described according to the mean value in a 24 h period.

In Table 2, the achieved solution by PSO have been described.
The operation cost is sum of the generated power, O&M, transacted
power, and emission costs. In addition, TOU and RTP programs



Fig. 9. Load consumption cost in MGs considering demand response programs based on mean value.

Table 3
Comparison of efficiency of the obtained results by PSO with the outputs of stochastic optimization method in different scenarios based on mean and standard deviation values.

Method Mean STD Time

No DRP TOU RTP NO DRP TOU RTP

PSO 1974.07 1634.10 1376.05 122.66 73.45 56.43 241
Stochastic optimization 1985.86 1644.70 1388.09 94.71 96.17 65.41 2763

Fig. 10. Comparison of cost function profile obtained by PSO with stochastic
optimization method in three different conditions of DRPs based on mean value.
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present outstanding results in optimization process so that the
programs are more likely to be beneficial not only for MGs’ owners
but also for consumers. According to the Table 2, the total
reduction for operation cost using TOU program has reached to
17.3 percent, while this percentage for RTP is 30.6. On the other
hand, the benefits of executing DRPs for consumers is significant
so that after participating all clients in demand response programs,
the consumers experienced 12.6 percent, and 17.1 percent when
they used TOU and RTP programs, respectively. The reason of less
reduction in emission cost is the fact that the consumers use elec-
tricity in low price times rather than peak times or high price
hours, so this cost will not change significantly.

In order to show the optimal costs in each MG instead of whole
NMG structure, in Fig. 9 the load consumption cost of MGs in pres-
ence of DR programs is presented.

Last but not least, In Table 3, aggregation of operation and emis-
sion costs of three MGs during 24 h is described in presence of
DRPs. As well as, the execution time in optimization process is
defined. In addition, obtained result by PSO is compared with
stochastic optimization method at the same table.

In Fig. 10, the profile of aggregation of operation and emission
costs of three MGs considering TOU and RTP programs is shown.
Two different outcomes can be extracted from Table 3. First, the
results proposed by PSO have been improved in compared to
stochastic optimization method. Also, its execution time is lower
than stochastic optimization method due to using PSO as a meta-
heuristic algorithm. Second, the outputs approve the high effi-
ciency of using demand response programs in MGs. In this table,
achieving efficient and optimal responses in MG environment is
more accessible when more consumers have tend to participate
in various number of DRPs. The results of RTP is better than TOU,
which is related to the different tariffs defined by power market.

Therefore, in today’s smart distribution grids, consumers play a
vital role in guaranteeing a microgrid in moving towards energy
efficiency, economical exploitations, and environmental or sustain-
ability discussions and this is more highlighted with operation of
networked MGs. This paper using two programs in demand
response context strives to meet the economic and environmental
issues in one of the new structures of microgrids, namely NMGs.
7. Conclusions

This paper investigated the impact of demand response
programs on optimal day-ahead scheduling in grid of microgrids
consisting of various types of RESs under potentials of new energy
management system, in which the drawbacks of the conventional
managing systems are properly addressed. In this regard, three
DR-based scenarios, namely without DRPs, solving with TOU, and
considering RTP in economic analysis, were considered in solving
the MGs optimal operation. The results clearly illustrate the
unprecedented strength of DRPs in a typical networked microgrids
due to constructive participation of consumers in the cost reduc-
tion process as well as their proper reactions to the cost changing
in different time intervals. Accordingly, the reaction of consumers
to cost fluctuations brings considerable cost reduction for both
power producers and electricity users which results in flattening
the demand curve. Additionally, the MGs optimal scheduling as a
challenging problem along with uncertain parameters was solved
easily and optimally by PSO comparing to stochastic optimization
algorithm. By using MCS approach in producing various scenarios
for uncertain parameters as well as utilizing appropriate probabil-
ity distribution functions for their modeling, proposed PSO algo-
rithm as an efficient optimization algorithm resulted in
affordable and environmental situations in compared to stochastic
optimization method in various states of DRPs.

References

[1] Smith M, Ton D. Key connections: the U.S. department of energy’s microgrid
initiative. IEEE Power Energy Mag 2013;11(4):22–7.

[2] Haddadian H, Noroozian R. Multi-microgrids approach for design and
operation of future distribution networks based on novel technical indices.
Appl Energy 2017;185(Part 1):650–63.

[3] Fang X, Yang Q, Wang J, Yan W. Coordinated dispatch in multiple cooperative
autonomous islanded microgrids. Appl Energy 2016;162:40–8.

http://refhub.elsevier.com/S0306-2619(17)30477-4/h0005
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0005
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0010
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0010
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0010
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0015
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0015


N. Nikmehr et al. / Applied Energy 198 (2017) 267–279 279
[4] Kou P, Liang D, Gao L. Distributed {EMPC} of multiple microgrids for
coordinated stochastic energy management. Appl Energy 2017;185(Part
1):939–52.

[5] Talari S, Yazdaninejad M, Haghifam M-R. Stochastic-based scheduling of the
microgrid operation including wind turbines, photovoltaic cells, energy
storages and responsive loads. IET Gener Transm Distrib 2015;9
(12):1498–509.

[6] Fathi M, Bevrani H. Adaptive energy consumption scheduling for connected
microgrids under demand uncertainty. IEEE Trans Power Deliv 2013;28
(3):1576–83.

[7] Marvasti AK, Fu Y, DorMohammadi S, Rais-Rohani M. Optimal operation of
active distribution grids: a system of systems framework. IEEE Trans Smart
Grid 2014;5(3):1228–37.

[8] Mazidi M, Monsef H, Siano P. Robust day-ahead scheduling of smart
distribution networks considering demand response programs. Appl Energy
2016;178:929–42.

[9] Zhang J, Wu Y, Guo Y, Wang B, Wang H, Liu H. A hybrid harmony search
algorithm with differential evolution for day-ahead scheduling problem of a
microgrid with consideration of power flow constraints. Appl Energy
2016;183:791–804.

[10] Kamankesh H, Agelidis VG, Kavousi-Fard A. Optimal scheduling of renewable
micro-grids considering plug-in hybrid electric vehicle charging demand.
Energy 2016;100:285–97.

[11] Khodaei A. Resiliency-oriented microgrid optimal scheduling. IEEE Trans
Smart Grid 2014;5(4):1584–91.

[12] Xu Y, Zhang W, Liu W. Distributed dynamic programming-based approach for
economic dispatch in smart grids. IEEE Trans Indust Inform 2015;11
(1):166–75.

[13] Cardoso G, Stadler M, Siddiqui A, Marnay C, DeForest N, Barbosa-Póvoa A, et al.
Microgrid reliability modeling and battery scheduling using stochastic linear
programming. Electric Power Syst Res 2013;103:61–9.

[14] Arefifar SA, Yasser A-RM, El-Fouly TH. Optimum microgrid design for
enhancing reliability and supply-security. IEEE Trans Smart Grid 2013;4
(3):1567–75.

[15] Wu J, Guan X. Coordinated multi-microgrids optimal control algorithm for
smart distribution management system. IEEE Trans Smart Grid 2013;4
(4):2174–81.

[16] Nunna HK, Doolla S. Multiagent-based distributed-energy-resource
management for intelligent microgrids. IEEE Trans Indust Electron 2013;60
(4):1678–87.

[17] Wang Z, Chen B, Wang J, Chen C. Networked microgrids for self-healing power
systems. IEEE Trans Smart Grid 2016;7(1):310–9.

[18] Ni J, Ai Q. Economic power transaction using coalitional game strategy in
micro-grids. IET Gener Transm Distrib 2016;10(1):10–8.

[19] Nikmehr N, Ravadanegh SN. Optimal power dispatch of multi-microgrids at
future smart distribution grids. IEEE Trans Smart Grid 2015;6(4):1648–57.

[20] Nikmehr N, Najafi Ravadanegh S. A study on optimal power sharing in
interconnected microgrids under uncertainty. Int Trans Electr Energy Syst
2016;26(1):208–32.

[21] Khodaei A. Microgrid optimal scheduling with multi-period islanding
constraints. IEEE Trans Power Syst 2014;29(3):1383–92.

[22] Zhang P, Li W, Wang S. Reliability-oriented distribution network
reconfiguration considering uncertainties of data by interval analysis. Int J
Electr Power Energy Syst 2012;34(1):138–44.

[23] Nikmehr N, Ravadanegh SN. Reliability evaluation of multi-microgrids
considering optimal operation of small scale energy zones under load-
generation uncertainties. Int J Electr Power Energy Syst 2016;78:80–7.
[24] Kopanos GM, Georgiadis MC, Pistikopoulos EN. Energy production planning of
a network of micro combined heat and power generators. Appl Energy
2013;102:1522–34.

[25] Silvente J, Kopanos GM, Pistikopoulos EN, Espuña A. A rolling horizon
optimization framework for the simultaneous energy supply and demand
planning in microgrids. Appl Energy 2015;155:485–501.

[26] U.D. of Energy. Energy policy act of 2005; 2006.
[27] Goldman C. Coordination of energy efficiency and demand response. Lawrence

Berkeley National Laboratory; 2010.
[28] Staff F. Assessment of demand response and advanced metering. Federal

Energy Regulatory Commission, Docket AD-06-2-000; 2007.
[29] Aghaei J, Alizadeh M-I. Multi-objective self-scheduling of chp (combined heat

and power)-based microgrids considering demand response programs and
esss (energy storage systems). Energy 2013;55:1044–54.

[30] Parvania M, Fotuhi-Firuzabad M. Demand response scheduling by stochastic
scuc. IEEE Trans Smart Grid 2010;1(1):89–98.

[31] Parvania M, Fotuhi-Firuzabad M, Shahidehpour M. Optimal demand response
aggregation in wholesale electricity markets. IEEE Trans Smart Grid 2013;4
(4):1957–65.

[32] Aalami HA, Khatibzadeh A. Regulation of market clearing price based on
nonlinear models of demand bidding and emergency demand response
programs. Int Trans Electr Energy Syst 2016;26(11):2463–78.

[33] Shah JJ, Nielsen MC, Shaffer TS, Fittro RL. Cost-optimal consumption-aware
electric water heating via thermal storage under time-of-use pricing. IEEE
Trans Smart Grid 2016;7(2):592–9.

[34] Fouskakis D, Draper D. Stochastic optimization: a review. Int Stat Rev 2002;70
(3):315–49.

[35] Reiss PC, White MW. Household electricity demand, revisited. Rev Econ Stud
2005;72(3):853–83.

[36] Kirschen DS, Strbac G. Fundamentals of power system economics. John Wiley
& Sons; 2004.

[37] Yu N, Yu J-L. Optimal tou decision considering demand response model. In:
2006 International conference on power system technology. IEEE; 2006. p.
1–5.

[38] Wang S, Li Z, Wu L, Shahidehpour M, Li Z. New metrics for assessing the
reliability and economics of microgrids in distribution system. IEEE Trans
Power Syst 2013;28(3):2852–61.

[39] Hussain A, Bui VH, Kim HM. A resilient and privacy-preserving energy
management strategy for networked microgrids. IEEE Trans Smart Grid 2016;
PP(99). pp. 1-1.

[40] Olivares DE, Caizares CA, Kazerani M. A centralized optimal energy
management system for microgrids. In: 2011 IEEE power and energy society
general meeting. p. 1–6.

[41] Radhakrishnan BM, Srinivasan D. A multi-agent based distributed energy
management scheme for smart grid applications. Energy 2016;103:192–204.

[42] Che L, Shahidehpour M, Alabdulwahab A, Al-Turki Y. Hierarchical coordination
of a community microgrid with ac and dc microgrids. IEEE Trans Smart Grid
2015;6(6):3042–51.

[43] Eddy YSF, Gooi HB, Chen SX. Multi-agent system for distributed management
of microgrids. IEEE Trans Power Syst 2015;30(1):24–34.

[44] Jabbari-Sabet R, Moghaddas-Tafreshi S-M, Mirhoseini S-S. Microgrid operation
and management using probabilistic reconfiguration and unit commitment.
Int J Electr Power Energy Syst 2016;75:328–36.

[45] Kennedy J. Particle swarm optimization. In: Encyclopedia of machine
learning. Springer; 2011. p. 760–6.

[46] Hourly ameren corporation energy price. <https://www2.ameren.com/
RetailEnergy/rtpDownload>.

http://refhub.elsevier.com/S0306-2619(17)30477-4/h0020
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0020
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0020
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0025
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0025
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0025
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0025
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0030
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0030
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0030
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0035
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0035
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0035
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0040
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0040
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0040
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0045
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0045
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0045
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0045
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0050
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0050
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0050
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0055
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0055
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0060
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0060
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0060
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0065
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0065
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0065
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0070
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0070
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0070
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0075
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0075
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0075
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0080
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0080
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0080
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0085
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0085
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0090
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0090
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0095
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0095
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0100
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0100
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0100
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0105
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0105
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0110
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0110
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0110
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0115
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0115
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0115
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0120
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0120
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0120
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0125
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0125
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0125
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0145
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0145
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0145
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0150
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0150
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0155
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0155
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0155
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0160
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0160
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0160
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0165
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0165
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0165
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0170
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0170
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0175
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0175
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0180
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0180
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0185
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0185
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0185
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0190
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0190
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0190
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0195
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0195
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0195
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0200
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0200
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0200
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0205
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0205
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0210
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0210
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0210
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0215
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0215
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0220
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0220
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0220
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0225
http://refhub.elsevier.com/S0306-2619(17)30477-4/h0225
http://https://www2.ameren.com/RetailEnergy/rtpDownload
http://https://www2.ameren.com/RetailEnergy/rtpDownload

	Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty
	1 Introduction
	2 Networked microgrids description
	3 Problem formulation
	3.1 Economic model of DRP
	3.2 DG resources
	3.3 Load demand
	3.4 Battery
	3.5 Power transaction

	4 Proposed energy management system
	4.1 Conventional EMSs
	4.2 Configuration and merits of proposed EMS

	5 Mathematical description of objective function
	5.1 Procedure of proposed EMSs in solving optimal operation of MGs
	5.2 Uncertainty model
	5.3 Review of PSO algorithm

	6 Numerical results
	7 Conclusions
	References


