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ABSTRACT Photovoltaic (PV) energy generation in microgrids (MGs) is increasing. Battery energy storage
systems (BESSs) reduce the fluctuations in PV outputs caused by the intermittent availability of solar energy.
Although BESSs are advantageous for stable MG operation, they are still relatively expensive. By remaining
within the operational limits during normal and contingency operation, optimal sizing of BESS is required to
maintain security considering cost of MG system. This paper proposes a BESS sizing optimization approach
for MGs by solving the security constrained optimal power flow (SCOPF), considering the stochastic errors
in forecasting the PV outputs. The degree of compensation for the solar energy forecasting error is firstly
configured. To address these errors, the combined PV and BESS operation system is modeled by applying a
control strategy to smooth PV fluctuations and minimize battery life degradation. BESS sizing optimization,
under a certain degree of compensation, minimizes the PV penalty cost and BESS operation cost. The optimal
BESS capacity and schedule are then obtained for the MG. To enhance the convergence and computational
efficiency, decomposed-probabilistic security constrained optimal power flow (D-PSCOPF) is proposed.
It efficiently solves the problem by dividing it into a master problem and a slave problem. The base case
solution is computed in the slave problem, which induces the partial optimal size of BESS. By adding the
feasibility cut through the violation of the slave problem, the master problem derives the optimal BESS
capacity. Different case studies were analyzed, confirming the superiority and computational efficiency of
the proposed approach.

INDEX TERMS Battery energy storage system, decomposed-probabilistic security constrained optimal
power flow, PV forecasting errors, size optimization efficiency, smoothing control strategy.

NOMENCLATURE
A. INDICES AND SETS
t Index over time periods.
T Set of indices of time periods.
j Index over scenarios.
J Set of indices of all scenarios.
k Index over post-contingency cases.
K Set of indices of contingencies considered in

scenarios.
i Index over injections.
I t Set/maximum number of uncertainties

available for dispatch in any contingency at time t .
n Number of samples in a scheduling cycle.
c Electricity price.

The associate editor coordinating the review of this manuscript and

approving it for publication was S. Ali Arefifar .

B. PARAMETERS

gtjk Power flow equations in post contingency
state k of scenario j at time t .

htjk Transmission, voltage and other limits in
post-contingency state k of scenario j at
time t .

Rtimax+, Upward/downward contingency reserve
Rtimax− capacity limits for unit i at time t .
C ti
p Cost function for active injection i at time t .

C ti
R+ ,C

ti
R− Cost function for upward/downward

contingency reserve from unit i at time t .
C ti
δ+
, C ti

δ−
Cost of upward/downward load-following
ramp reserve for unit i at time t .

Cs0 Vector of costs by storage unit associated
with starting out.
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C ti
v Startup costs for unit i at time t in $

per startup.
C ti
w Shutdown costs for unit i at time t in $ per

shutdown.
Cts0 Weighted price vectors summarizing
Ctsc contributions to the value of terminal
Ctsd storage.
γ t Probability of making it to period t

without branch off the central path in a
contingency in periods.

PPV ,actual Actual power output of PV.
PPV , forecast Forecasted power output of PV.
Prate Required rated power of the BESS.
PBESS Actual charging and discharging power of

the BESS.
E Energy fluctuation of BESS at the

sampling time relative to the initial state.
Erate Rated capacity of the BESS.
Qcycle Capacity loss at the time instants.
PG Combined output power of the system.
fα Confidence rate cost.
fα,penalty Penalty cost of the PV operation at α%.
fα,BESS cost of installation and life cycle of BESS

at α%.
fα,curtail Cost of the PV curtailment at α%.
fα,reserve Cost of the reserve provision at α%.
fα,install Installation cost of BESS at α%.
fα,LC Life cycle cost of BESS at α%.
F Probability distribution function of errors.
Sk Objective function of Slave problem.
G Equality constraints.
H Inequality constraints.
S Objective function of Master problem.

C. VARIABLES
ptijk Active injection for unit i in post-contingency

state k of scenario j at time t .
Ptijk+ Upward deviation from active power contract

quantity for unit i in post-contingency state k
of scenario j at time t .

Ptijk− Downward deviation from active power contract
quantity for unit i in post-contingency state k
of scenario j at time t .

r ti+ Upward active contingency reserve quantity
provided by unit i at time t .

r ti− Downward active contingency reserve quantity
provided by unit i at time t .

δti+, δ
ti
− Upward/downward load following ramping

reserves needed from unit i at time t .
θ tjk Voltage angles for power flow in

post-contingency state k of scenario j at time t .
V tjk Voltage magnitudes for power flow in

post-contingency state k of scenario j at time t .

ptjk Active injections for power flow in
post-contingency state k of scenario j at time t .

qtjk Reactive injections for power flow in post-
contingency state k of scenario j at time t .

psc, psd Charge/discharge power injections of storage
unit.

vti, wti Binary startup/shutdown states for unit i in
period t .

e Error of PV power forecast.
α Confidence rate.
eαlow, Lower/higher bound of the confidence level
eαhigh at α%.
1t Sampling period.
SOCup, Upper/lower limit constraints of
SOClow the SOC.
γ , β Fitting coefficients.
Eα Activation energy.
Rgas Gas constant.
TK Ambient temperature.
Ah Ampere-hour throughput.
z Power-law factor.
Vnominal Nominal voltage.
φ(δg) Cycle depth of BESS.
R Battery-cell replacement cost.
η Charging/discharging efficiency.
CBESS Battery current for charge.
Ecurtail Capacity of PV curtailment.
Ereserve Capacity of reserve provision.
X State variables.
U Control variables.

D. ABBREVIATIONS
PV Photovoltaic.
MG Microgrid.
BESS Battery energy storage system.
SCOPF Security constrained optimal power flow.
D-PSCOPF Decomposed probabilistic security

constrained optimal power flow.
RES Renewable energy source.
SOC State of charge.
DOD Depth of discharge.

I. INTRODUCTION
A. BACKGROUND
Microgrids (MGs) have received increasing attention as a
means of integrating distributed generation into the power
system [1]. MGs are usually described as confined clusters
of loads, energy storage systems (ESSs), renewable energy
sources (RESs), and traditional generators. A fundamen-
tal tool in power grid analysis is the optimal power flow
(OPF) [2]. OPF aims to minimize operational cost while
ensuring secure operation within the technical limits of the
power system. In current operational schemes, a system is
considered secure when it remains within the operational
limits on normal operation as well as contingency situations.
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This principle is reflected in the OPF through additional
constraints, to a security constrained optimal power flow
(SCOPF) [3].

Forecast uncertainty in MGs is a disturbance affecting
the system. Forecast uncertainty arises from unpredictable
fluctuations in the RESs. With increasing RES penetration
rate, it has become necessary to explicitly account for uncer-
tainty while solving the optimization problems. Probabilistic
security constrained optimal power flow (PSCOPF) has been
utilized in the MGs as a solution to the security problem,
which has become more critical due to RES uncertainties [4].
One of the RESs, photovoltaic (PV) generation, has devel-
oped rapidly in recent years and is mostly used in inland
MGs. To avoid the adverse effects of PVs onMGs, additional
equipment resources and amethodological technique, such as
uncertainty modeling or probabilistic optimization methods,
are required. The battery energy storage system (BESS) is a
flexible regulated device developed to solve these problems
by smoothing the short-term PV output fluctuations. The
operation and size of BESS are key factors affecting the
smoothing effects. However, due to the relatively high cost of
the BESS, optimization of the BESS sizing is indispensable.
Accordingly, it is necessary to use PSCOPF to determine the
optimal sizing of BESS to ensure economical operation as
well as security in the MG.

B. LITERATRUE REVIEW
Solar energy photovoltaics (PVs) are one of the most abun-
dant RESs. They are expected to be a clean power elec-
tricity source in meeting electricity demands. Further, they
have broad applications in industrial, domestic, and gen-
eration systems. However, connecting a significant number
of PVs to the grids of power utilities in the future could
cause problems in power system operations due to power
output fluctuations [5]–[7]. The problem of smoothing out
power fluctuations in PV generation has attracted interest in
MG-related research.Manymeasures have been incorporated
in PV system design to meet the demands of a large PV
penetration in the system. Specifically, several control strate-
gies and configurations for hybrid energy storage devices,
such as BESS [8]–[10], superconducting magnetic energy
system [11], a flywheel energy system [12], an energy capac-
itor system [13], [14], and a fuel cell hybrid system [15], have
been proposed to smooth solar power fluctuations or enhance
power quality.

Different batteries that have distinctive characteristics,
such as energy storage density, charge/discharge rate, life
cycle, and cost. BESSs can provide flexible energy man-
agement solutions to control PV power fluctuations, thus
improving the power quality of renewable energy generation
systems.

Conventional control strategies for mitigating PV output
fluctuations using BESS typically determine the amplitude of
the power fluctuations and then adjust the BESS output [16].
In [17], BESS is used to optimize the distribution networks
that include PV, and the influences of BESS parameter are

analyzed from PV uncertainty. Least squares minimization
technique is used in [18] to minimize the error between
the targeted smoothed power and the smoothed reference
curves. When the PV power exceeds limits, the BESS is
charged or discharged to meet the requirements. However,
this strategy may not be feasible during intervals when the
state of charge (SOC) limit is exceeded. Because the BESS
is expensive, the BESS capacity needs to be optimized [19].
With the advances in power generation, extensive of research
on BESS sizing has been conducted. An analytic approach
of sizing BESS is developed in [20] providing a simple and
flexible economic analysis to estimate the profitability of
ESS to address the ESS sizing problem. In [21], optimal
sizing of renewable energy sources and BESS are conducted
considering the non-controllable parameters impacting the
renewable energy output. In [22], the size of the BESS on
a university campus was optimally determined using pre-
dictions of load and PV generation. A BESS sizing method
for a grid-connected PV generator application was proposed
in [23], which considered the technical requirement and eco-
nomic benefits of power systems. An optimization model
for sizing the BESS of grid-connected PV systems was pre-
sented in [24]; the objective of this work is to minimize
the net power purchase cost from the electric grid and the
BESS capacity loss with an electricity price change. In [25],
a performance-based sizing method involved using BESS
at a house, distribution transformer, and community levels
with a high PV penetration. In [26], a flywheel ESS con-
sidering conventional generators was sized using the genetic
algorithm.

SCOPF is a useful tool for ensuring safe operation of
power systems when renewable generators, such as wind tur-
bine generators, which introduce uncertainty, are connected
to the system [27]. It considers some contingencies, such
as generators and line outages. SCOPF ensures minimum
cost, safe operation, and system security by evaluating the
impact of renewables on power systems’ security of priority
caused by the intrinsic uncertainties of RESs [28]. Ref. [29]
not only considered a power system with high renewable
source penetration, but also developed a security constrained
model to assess the impact of BESS units on the security of
the system. To secure the system against the uncertainties
of renewable generations, the required capacity of BESS
was increased. The increasing BESS capacity necessitated
charging/discharging cycle and size optimization involving
complex calculations. In [30]–[32], the BESS operation under
increased capacity was simplified. However, to significantly
reduce, the convergence and computational speed, an ide-
alized BESS was operated without considering cycle aging
and several other constraints. Consequently, the calculated
operating cost and optimal capacity was unrealistic. How-
ever, it is possible to obtain a computational efficiency that
reflects actual BESS operation by decomposing the complex
problem while considering the operation and sizing of the
BESS, which maintains the stability of the system despite the
increase of RESs.
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C. CONTRIBUTIONS AND PAPER ORGANIZATIONS
This study presents a novel BESS sizing optimiza-
tion approach by addressing the decomposed PSCOPF
(D-PSCOPF) problem of an isolatedMGwith PV generators.
Here, the BESS is operated to counter PV fluctuations and
prediction errors to maintain the stability of the system.
The proposed approach not only solves the stability problem
caused by introducing PV by obtaining the optimal BESS
capacity, but also brings economic benefits by minimizing
the cost of the BESS and the penalty cost of the PV. The main
contributions of this study can be summarized as follows

• By approaching the PV forecasting error as an index
of confidence rate, even though various PV prediction
techniques exist, the interval of error that can compro-
mise economic and stability can be determined through
historical PV forecasting and actual data.

• PV fluctuation smoothing strategy based on dynamic
SOC regulation is proposed. The accuracy of combined
PV-BESS operation system is increased through the
BESS compensation strategy considering the rated out-
put/capacity and life degradation model of the BESS in
our strategy.

• Using BESS sizing optimization with PV generation,
the partial optimal BESS capacity can be obtained for
the predefined confidence rate that minimizes the initial
installation cost, aging cost, and penalty cost of PV
according to the capacity of the BESS.

• To reduce the computational burden and improve
the convergence, the proposed D-PSCOPF problem is
solved through Benders decomposition (BD). In BD,
the master problem solves PSCOPF without considering
the PV/BESS operation. The slave problem finds the
optimal BESS capacity that does not affect the stability
of the system. If a security constraint is violated, a feasi-
bility cut is added to the master problem and the BESS
sizing is obtained again.

The remainder of this paper is organized as follows.
Section II details the PSCOPF modeling and analysis.
Section III addresses BESS compensation strategy, includ-
ing combined PV-BESS operation system. Section IV mod-
els BESS sizing optimization approach. Section V proposed
D-PSCOPF modeling which applied decomposition method.
Section VI provides the simulation results for different case
studies, and Section VII concludes the paper.

II. OPTIMIZATION MODELING
A. PSCOPF MODEL
The optimization model used in this study is a PSCOPF
model that is improved to study the impact of the RESs and
BESSs. The characteristics of PSCOPF can be summarized as
follows. It allows deterministic information to be processed
as input, as well as stochastic information, which represents a
probability distribution. Thus, it can analyze variable renew-
able generation that has a stochastic nature due to its inherent
variability, and it can be used in the optimal BESS operational

planning as well as its impact on the MG. Moreover, this
model calculates the required reserves to maintain the power
system security, which is an indispensable component for the
reliable operation of the MG. Therefore, PSCOPF is advan-
tageous for computing the cost of PV generation uncertainty
because different types of reserves can be determined to
address the variability of renewable generation.

1) OBJECTIVE FUNCTION
The objective function aims to minimize the cost function of
MG operation, and it consists of six cost functions.

min
x

f (x) (1)

where

f (x) = fp (p, p+, p−)+ fr (r+, r−)+ fδ (p)

+ fI (δ+, δ−)+ fs (s0, psc, psd )+ fg(v,w) (2)

Equations (1)–(2) show a reduced form of the objec-
tive function of PSCOPF, which is structured to minimize
expected operating costs with respect to reserve costs, by con-
sidering the stochastic RESs. The cost for active power dis-
patch and redispatch are related to the amount of generated
power and the deviation between contracted power in day-
ahead t and real-time markets.

fp (p, p+, p−)

=

∑
t∈T

∑
j∈J

∑
k∈K

φtjkα

×

∑
i∈I

[C ti
p

(
ptijk

)
+ C ti

p + P
tijk
+ + C

yi
p − p

tijk
i ] (3)

Equation (3) represents the cost related to the operation
cost of the generator, with the output being computed per
generator.

The contingency reserve cost is related to balancing the net
load uncertainty within an hour.

fr (r+, r−) =
∑
t∈T

γ t
∑
i∈I

[C ti
R+

(
r ti+
)
+ C ti

R−

(
r ti−
)
] (4)

Equation (4) is used to determine unexpected accident
events such as generator failure or transmission line failure.

Load-following ramp reserve cost are incurred when meet-
ing hour-to-hour variability of net load.

fδ (p) =
∑
t∈T

γ t
∑
j∈J

φtj
∑
i∈I

C i
δ(p

tij
− p(t−1)ij) (5)

Equation (5) shows the penalty cost of PV generation,
which can cause severe output changes according to the high
variability of the PV output. Load-following ramping cost is
related to life degradation due to the stress on conventional
generators. Typically, it is attributed to high variability in
renewable generation.

fI (δ+, δ−) =
∑
t∈T

γ t
∑
i∈I

[C ti
δ+

(
δti+

)
+ C ti

δ−

(
δti−

)
] (6)
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Equation (6) shows the cost of the load after required in
case of a sudden change in power system load.

fs (s0, psc, psd ) = Cs0s0−(Cts0s0 + Ctscpsc + Ctsdpsd ) (7)

Equation (7) represents the cost related to settlement for
the initial energy stored in the BESS and the residual energy
from the last period.

Furthermore, starting up and shutting down conventional
generators involves costs that affect unit commitment deci-
sions, which are presented in (8).

fg (v,w) =
∑
t∈T

γ t
∑
i∈I

[(C ti
v v

ti
+ C ti

ww
ti)] (8)

2) CONSTRAINTS
The above objective function must satisfy all constraints:
basic OPF model constraints, contingency constraints, time
variability control constraints, and generator operation sched-
ule constraints.

gtjk
(
θ tjk ,V tjk , ptjk , qtjk

)
= 0 (9)

htjk
(
θ tjk ,V tjk , ptjk , qtjk

)
≤ 0 (10)

Equations (9) and (10) represent the nonlinear power bal-
ance equation, nonlinear grid constraint, voltage constraint,
and other inequality constraints.

0 ≤ ptjk+ ≤ r
ti
+ ≤ R

ti
max+ (11)

0 ≤ ptjk− ≤ r
ti
− ≤ R

ti
max− (12)

ptijk − ptic = ptijk+ − p
tijk
− (13)

Equations (11)–(13) represent the constraints related to the
reserve capacity, redispatch, and contract variable.

III. BESS COMPENSATION STRATEGY
A. COMBINED PV AND BESS OPERATION SYSTEM
Configuring an appropriate BESS in the PV can allow for
flexible control of the power grid. The BESS can decrease
the uncertainty caused by the PV forecast error, thus meeting
the goal of tracking the planned output. The BESS sizing
optimization method proposed in this study is based on PV
forecasting error, which attributable to the difference between
the predicted and actual outputs of PVs. The rated power and
capacity of the BESS depend on the PV forecasting error. The
error of PV forecast (e) is formulated as

e = PPV ,actual − PPV , forecast (14)

By analyzing the PV historical data, the distribution of
the forecasting error can be found, and the confidence inter-
vals of errors under different confidence rates can then be
obtained. Figure 1 shows the probability of occurrence due
to the forecasting error value (p.u.). Our work assumes that
the error obeys the commonly used normal distribution. The
higher and lower bound of the confidence intervals are written
as eαlow and eαhigh. A confidence rate of α% implies that
the probability of forecast error falls into the confidence
interval α%.

B. BESS OPERATION FOR PV FORECASTING ERROR
1) RATED POWER OF BESS
The BESS is used to compensate for forecast error of the PVs
when tracking the planned output of the PVs. Accordingly,
the actual output of PVs follows the planned output (forecast).
When the error is bigger than 0, that is, if the actual PV output
is greater than the forecast output, the BESS charges, and the
PVs avoid the penalty of PV curtailment. In contrast, when
the error is smaller than 0, that is, if the actual PV output
is less than the forecast output, the BESS discharges, which
avoids the penalty of power shortage caused by a lack of
power in the PVs. Installing appropriate BESS at the outlet of
the PVs ensures that the PV output is as close to the planned
output as possible.

The probability of a large PV forecast error is small when
only considered statistically. To compensate for a large error
with a small likelihood of occurrence, as shown in Fig. 1,
it would be necessary to install a BESS with a high power
rating. However, this increases costs. Therefore, the concept
of error compensation rate is be considered in choosing an
optimal BESS capacity. The error compensation rate α% is
defined as the BESS compensating α% of the PV forecasting
error. When the BESS compensates for all forecast errors,
the error compensation rate is 100%, and the rated power
of the BESS is the maximum absolute value of the forecast
error.

Prate = max |e| (15)

FIGURE 1. Probability density function of forecasting error.

The error compensation rate is α% when the BESS com-
pensates α% error. Meanwhile, the error compensation is
(eαlow, eαhigh).
The required BESS rated power is maximum absolute

value of the higher and lower bounds of the confidence
interval as follows:

Prate = max
(
|eαlow| ,

∣∣eαhigh∣∣) (16)
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2) RATED CAPACITY OF BESS
Due to the different dispatching and operation plans of MG,
the optimal BESS rated capacity can vary. In this work,
one day is required to configure the BESS rated capac-
ity. By accumulating the BESS charging and discharging
at each sampling time, the energy fluctuation of BESS rel-
ative to the initial state at different sampling times can
defined as

E(n) =
n∑
i

(PBESS (i)×1t) (17)

PBESS (i) =


e, eαlow < e < eαhigh

eαhigh, e > eαhigh

eαlow, e < eαlow

(18)

The operation power of BESS is determined according to
the higher and lower bound of confidence interval.

The difference between the maximum and minimum
energy fluctuation during BESS operation can be calculated
by considering the energy fluctuation during the whole sam-
ple data period. Considering the SOC limits, the required
BESS capacity can be obtained, which is the rated capacity
of the BESS.

Erate =
max(E (n))− min(E (n))

SOCup − SOClow
(19)

In practice, the values should be appropriately selected in
integer 0 or 1 to avoid over-charging and over-discharging
during the actual operation of the BESS. When the com-
pensation rate is 100%, the BESS can completely com-
pensate for the PV forecasting error; PBESS (i) denotes
the forecast error e of each sampling time. A compensa-
tion degree of α%, implies that the BESS compensated for
a α% error.

3) BATTERY LIFE DEGRADATION MODELING
Because of the battery’s characteristics in electrochemical
dynamics and physics, it is difficult to check the internal
states accurately. Although there is a conflict between energy
consumption and battery life extension, there have been
various studies to minimize both energy consumption and
battery degradation in terms of energy management [33].
Therefore, it is necessary to establish a control strategy to
optimize power management and battery aging without loss
of performance. To estimate the impact of battery degradation
due to charging from PV generation, the cycle aging model is
defined following [34]

Qcycle = (γ SOC + β) ·
(
−Eα + η · Crate

Rgas · TK

)
Ah2 (20)

Fitting coefficients γ and β are defined by the SOC depen-
dence.

For investigating the charging cycles of the BESS during
test time periods, a discrete model of cycle aging can be

determined as follows:

Qcycle,n+1 − Qcycle,n

= 1Ah · z(γ SOC + β) ·
(
−Eα + η · Crate

Rgas · TK

)
Ahz−1n (21)

In this study, throughput in amp-hours is defined as energy
divided by nominal voltage as

1Ah =
1

3600

∫ tn−1

tm
|CBESS (t)| dt ≈

E
Vnominal

(22)

Ahn+1 = Ahn +1Ah (23)

the most important characteristics are the SOC and SOC
swing that affect the state of the degradation of the battery.
The SOC of BESS represents the ratio of the charged capac-
ity. Meanwhile, the SOC swing is defined as the change in
the SOC level during a cycle of charging and discharging.
Fig. 2 depicts the relationship between SOC and SOC swing
with the number of available cycles for the lifetime of BESS,
which is based on the experimental results. Based on these
BESS degradation characteristics, BESS operation with a
lower average SOC and swing results in a higher expected
cycle life. This allows the most efficient BESS operation
strategy to be established in the MG system.

FIGURE 2. Number of life cycles according to SOC characteristics.

4) PV FLUCTUATION SMOOTHING CONTROL STRATEGY
The traditional control strategy to smooth the PV output
fluctuation in the BESS typically determines the amplitude of
the power fluctuation, and then provides an instruction to the
BESS. In this strategy, if the PV power exceeds the threshold,
the BESS charges or discharges to meet the requirements.
However, when the SOC reaches its threshold, the BESS
is unable to execute the instructions. Therefore, our study
suggests several approaches to simultaneously solve these
problems. The first approach is to increase the size of the
BESS. This improves the PV fluctuation, but also increases
the cost. The second approach is to design a more effective
control strategy to improve the smoothing ability. The first
part is a real-time control strategy for smoothing the PV fluc-
tuation. It is designed to determinewhether the PVfluctuation
exceeds the threshold, and charging or discharging is required
to maintain the power fluctuation in a predefined adequate
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boundary as follows:

PBESS (t) =


PPV (t)− PG (t − 1)− Pmax ,
PPV (t)− PG (t − 1) > Pmax

PPV (t)− PG (t − 1)+ Pmax ,
PPV (t)− PG (t − 1) < −Pmax

(24)

The second part is an SOC-regulated strategy based on
short-term prediction and is designed to determine whether
the SOC of the BESS exceeds the normal boundary. The
SOC is dynamically regulated when the PV fluctuation does
not exceed the normal boundary. If the SOC exceeds the
normal boundary, the BESS charges or discharges to recover
the SOC to a more appropriate range. For calculating the
regulated power of the BESSmore rationally, a dynamic SOC
regulation-based PV output prediction is considered.

To facilitate our strategy, two state variables S1 and S2 are
defined. S1 represents the state value that indicates whether
the BESS is required to charge or discharge as the first action.
S2 represents the state value that indicates whether or not the
BESS acts during the entire period. S1 = 1 implies that the
first action of the BESS is discharging, whereas S1 = 0 indi-
cates that the first action of the BESS is charging. In contrast,
S2 = 1 implies that the BESS does not act during the entire
period, whereas S2= 0 implies that the BESS acts during the
entire period. The charging and discharging of the BESS are
formulated as follows:

(t) =



min

Pmax − |PPV (t)− PG (t − 1)| ,(
SOC (t)− SOChigh

)
×
Erate
1t

 ,
SOC (t) > SOChigh, S1 = 1orS2 = 1

min

Pmax − |PPV (t)− PG (t − 1)| ,

(SOC (t)− SOClow)×
Erate
1t

 ,
SOC (t) < SOClow, S1 = 0 or S2 = 1
0, others

(25)

When the SOC is greater than SOChigh, the BESS charges
first (S1 = 1) or does not act (S2 = 1) in the predicted
period, and the BESS must discharge to obtain more capacity
to charge soon. When the SOC is lesser than SOClow, the
BESS discharges first (S1 = 1) or does not act (S2 = 1) in
the predicted period, and the BESS charges.

IV. BESS SIZING OPTIMIZATION APPROACH
To optimize the BESS sizing under a certain compensation
degree, the compensation interval of the forecasting error
from this compensation degree must be first obtained in the
combined PV-BESS. The error compensation interval is not
unique under the same compensation degree. Our study aims
to determine the optimal interval, and then obtain the opti-
mal BESS sizing to minimize the cost of installation of the
PV-BESS. As shown in figure 3., optimal BESS sizing starts
with input historical PV, load, and generator data. From the
derived data of predicted and actual PV outputs, confidence
rate α% and confidence interval [eαlow, eαhigh] are obtained.

FIGURE 3. Optimal BESS sizing process.

By considering fpenalty and fBESS at α%, optimal BESS capac-
ity is obtained from following subsection. α begins at 0%
and repeats up to 100%. After comparing all the results, the
lowest cost is found at α′%, and the BESS capacity at α′% is
determined as the optimal capacity.

5) OBJECTIVE FUNCTION
Considering the economic index of PV-BESS, the objective
function is to minimize the confidence rate cost (fα), which is
consisted of penalty cost of the PV and the operation cost of
BESS at a confidence rate α%.

min fα = fα,penalty + fα,BESS (26)

where fα is the objective function, and it is divided into the
penalty cost of the PV and operation cost of the BESS.

fα,penalty = fα,curtail + fα,reserve (27)

fα,BESS = fα,install + fα,LC (28)

fα,penalty = c1 × Ecurtail + c2 × Ereserve (29)

where c1 and c2 denote the unit PV curtailment cost and the
unit cost of the reserve provision, respectively.

Ecurtail =
n∑
i

λ×
(
e [i]− eαhigh

)
×1t

λ

{
0, e[i]] < e
1, e[i]] ≥ eαhigh

(30)

Ereserve =
n∑
i

λ× (e [i]− eαlow)×1t

λ

{
0, e[i]] > eαlow
1, e[i]] ≤ eαhigh

(31)
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Here, the Ecurtail and Ereserve are determined according to the
confidence interval (eαlow, eαhigh).

fα,BESS = cinstall × Erate +
R

ηErate
φ(δg) (32)

In equation (32), the second form represents the life cycle cost
of the BESS.

6) CONSTRAINTS
Constraints on the rated power of the BESS are determined
as

0 ≤ Prate ≤ max |e| (33)

F
(
eαhigh

)
− F (eαlow) = α% (34)

Equation (33) represents the constraint on the rated power of
the BESS, and (34) represents the constraint on the higher and
lower bounds of the error confidence intervals.

V. PROPOSED D-PSCOPF MODEL
In the previous section, the optimal BESS capacity was cal-
culated according to the confidence interval of the PV volatil-
ity. However, this value represents the partial optimal BESS
capacity only in the confidence interval derived from the spe-
cific confidence level α. This partial optimal BESS capacity
is added as a BESS constraint to the SCOPF problem, and
the PV penalty cost is then derived by charging/discharging
the BESS caused by this BESS capacity. This PV cost is con-
sidered to the partial optimization of the BESS capacity and
varies the capacity calculation. In this way, it is complicated
to solve the problem that the result variable (PV penalty cost)
affects the cause variable (partial optimal BESS capacity).
Benders decomposition [35] is used to facilitate such a com-
plex calculation where the solution is based on decomposing
the problem into master and slave problems. Information
from the slave problem is used to determine whether the solu-
tions of the master problem and the slave problem variable
values are optimal. When a violation is detected in the slave
problems, Benders cut is created. This restores corresponding
constraints back to the master problem. As this process is
repeated, Benders decomposition guarantees that it converges
to the optimal solution. D-PSCOPF is applied to PSCOPF
based on the method of Benders decomposition. Through D-
PSCOPF, this problem can be efficiently solved by dividing
it into a master problem and slave problem, either. First,
in the slave problem of determining the partial optimal BESS
capacity, the base case solution is calculated. Using this value,
the PV penalty cost is obtained from the master problem,
and this cost is again included in the constraints of the slave
problem, which includes the sizing process of the BESS.
At this time, when a violation occurs, a feasibility cut is
added to the main problem. As the feasibility cut is repeatedly
created, the master problem and the slave problem converge
to the optimal valuewhich is derived at the point where the cut
is not created. Thus, the results of the master problem and the
slave problem converge to the same optimal solution. When
the BESS compensates the error of α, we refer to the error

compensation rate as α. Currently, the error compensation is
(eαlow, eαhigh), where eαlow and eαhigh denote the lower and
upper bounds of the compensation interval, respectively.

A. SLAVE PROBLEM
The objective of the slave problem is to minimize the operat-
ing cost of the PV-BESS and is formulated in (26)– (34). The
objective function is composed as follows:

Sk (uo) = Min fα,penalty + fα,BESS
s.t. Gα (Xα,Uα) = 0,

Hmin
α ≤ Hα (Xα,Uα) ≤ Hmax

α ,

δα ≤ δα′ , α = 1, 2, . . . , 100 (35)

The last equation is not included in objective function
of BESS sizing operation with PV generation, but it is a
constraint of the depth of discharge (DOD) of BESS that
affects f (α, LC). If the objective function is equal to 0, the
feasible solution ui is obtained from the i-th slave problem.
Conversely, if the objective function is greater than zero, the
slave problem supplies constraints including violations to the
master problem.

B. MASTER PROBLEM
The master problem is formulated as (1)–(13), and the con-
straints are updated by Benders cuts. In the master problem,
the optimization problem is expressed as follows:

Min S (U0) = fp (p, p+, p−)+ fr (r+, r−)

+ fδ (p)+ fI (δ+, δ−)

+ fs (s0, psc, psd )+ fg(v,w)

st. G (X0,U0) = 0

Hmin ≤ H (X0,U0) ≤ Hmax
Sk (u0) ≤ 0 (36)

The last constraint defined in (37) is referred to as a fea-
sibility cut. This is a linear constraint that limits the feasible
area to adjust the coordination of the solutions of the master
problem and subproblems. The feasibility cut is generated by
the ramp reserve constraint from the slave problem, which is
applied to themaster problemwhen there is insufficient BESS
capacity. After receiving an updated BESS capacity and PV
schedule, the master problem repeats the iteration process
by providing the PV penalty cost to the slave problem.
Sk (u0) = 0 represents the feasible cost result of the scenarios,
whereas Sk (u0) > 0 implies that the scenario result is not
feasible.

C. SOLUTION PROCEDURE
Figure 4 depicts the optimization process of calculating the
optimal BESS capacity through D-PSCOPF. The overall pro-
cedure can be implemented sequentially.

Step 1: Model the MG with generators and load.
Step 2: Set the capacity of PV to be added in MG, and

obtain PV forecast based on historical PV gener-
ation data.
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FIGURE 4. Procedure of D-PSCOPF model.

Step 3: Set the initial confidence degree α.
Step 4: Derive BESS scheduling according to α.
Step 5: Calculate the optimal BESS sizing through

D-PSCOPF considering BESS capacity.
Step 6: Using the D-PSCOPF result, the cost of BESS

and system stability are expressed as cost.
Step 7: Return to Step 3, iterate Step 3∼6 applying dif-

ferent confidence degrees.
Step 8: Determine the most suitable confidence rate,

derive the optimal BESS size and D-PSCOPF
results in that case.

VI. CASE STUDY
The proposed D-PSCOPF has been implemented on a
6-bus system [36] and a 14-bus system [37]. In our study,
one of the main purposes of the BESS is to maintain the
PV output following the forecasted data based on our BESS
compensation strategy. Fig. 5 depicts PV data from Brus-
sels, Belgium [38]. As shown in Fig. 5(a), field data of PV
generators from 1 March to 7 March 2021 were applied in
this work. The sampling interval was 5 min, time window
was one day, and maximum output of the PV generators was
54.59 MW. Brussels’ actual PV data was scaled by the pene-
tration rate to use the error of the current prediction technique.
Fig. 5(b) depicts the error of themeasured PV power output in
which approximately 30% of the maximum error exists. The
D-PSCOPF was implemented using the Matlab software.

To demonstrate the superiority of our BESS sizing opti-
mization approach, several cases of different approacheswere

FIGURE 5. Output and error data of PV for a week in Brussel.

evaluated. In Case 1, the BESS capacity was set to a fixed
value according to the PV capacity. Thus, the maximum value
of PV error is preset, and the BESS capacity was already
determined according to the PV error. In Case 2, BESS sizing
was performed according to the confidence interval, without
the consideration of security constraints. Finally, Case 3 was
optimized using the proposed approach.

A. 6-BUS SYSTEM
As shown in Fig. 6, the 6-bus system contains 11 transmission
lines and 3 power generation units. Three PV generators and
three BESSs are located in buses 1, 5, and 6. The total load
is 199.5 MW, which is equally distributed among the three

FIGURE 6. 6-bus test system.
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loads. The characteristics of the DGs and PV generator are
listed in Table 1.

TABLE 1. Technical data of generating units.

FIGURE 7. Partial optimal BESS capacity according to fα .

Fig. 7 depicts the BESS capacity for each reliability and
the confidence rate cost (fα) according to the confidence
rate. The BESS capacity decreases as the confidence interval
increases, even though fα exhibits a local minimum cost at
60% and a minimum cost at 80%. The partially optimal
BESS capacity is determined according to the confidence
degree of the error, and penalty cost (fpenalty) and BESS cost
(fBESS ) are then determined from the BESS capacity. At this
time, the partially optimal BESS capacity in consideration
of these costs is obtained. The D-PSCOPF optimization is
performed according to this capacity and an overall cost result
is determined. If security is violated in the process of inserting
the BESS capacity into D-PSCOPF, the BESS capacity is
modified through BD, and the optimal size and cost of the
BESS capacity are derived as a result.

Fig. 8 depicts the cost and SOC of each case. Here, the
solid line indicates the PV penalty cost, dashed line represents
the BESS cost, and dotted line indicates the SOC of the
BESS. In all cases, penalty costs remain at $0 while the PV
power is not generated, but they start to increase as the PV
generators run. Case 1, with a fixed BESS capacity (highest
capacity) without consideration of the PV prediction error,
shows that the penalty cost curve of the PV is the lowest
in all time periods, but the BESS cost and SOC curves are

the highest among all cases. Case 2 demonstrates the highest
penalty cost, but also yields a significantly lower BESS cost
compared to that in Case 1. It can be observed from Fig. 8 that
the SOC curve is also lower than that in Case 1. The penalty
cost curve in Case 3 is higher than that in Case 1 and lower
than that in Case 2 in all time windows. In addition, the cost
curve of the BESS is higher than that in Case 2 and lower than
that in Case 1. Because the sum of each cost is minimized by
the BESS sizing optimization according to PV, the cost curves
of Case 3 exist between those of Cases 1 and 2.

TABLE 2. Optimal results for each case.

Table 2 shows the optimal results for the three cases. As a
result of focusing on minimizing PV volatility in Case 1,
the penalty cost is the lowest at $2,726. Meanwhile, the
BESS cost is $7,184, indicating the highest cost among
the three cases. Thus, it has the highest value in terms of
power generation cost and overall cost despite minimizing
the penalty cost. The optimal BESS capacity at this time
is 60MW. In Case 2, which proceeded with BESS sizing
without considering security constrained, the cost of BESS
is the lowest at $5,760, but the penalty cost is about $800
higher than that of Case 1. The overall cost is reduced by
about $9,400 compared to Case 1. In Case 3, the sum of the
penalty cost and the BESS cost was the lowest among all
cases. Also, the power generation cost and overall cost show
the lowest results, and the capacity of the BESSwas 53.2MW.
Therefore, it should be noted that, these results verify that the
proposed BESS sizing optimization approach minimizes the
BESS capacity and total cost.

B. 14-BUS SYSTEM
The 14-bus system contains 20 transmission lines and
5 power generation units. Additionally, there are 5 PV gen-
erators and 5 BESSs. In this system, 259.3 MW is equally
distributed among the five loads. Table 3 depicts six sce-
narios based on the PV capacity and maximum error in the
14-bus system. The scenarios are classified into three types,
namely I, II, and III, according to the PV capacities of 50,
100, and 200 MW, respectively. Scenarios I-2, II-2, and III-2
increase the maximum PV forecast error by 50% compared
to those of Scenarios I-1, II-1, and III-1, indicating whether
the forecast variability is adequate in each case following the
combined PC and BESS operation system. These scenarios
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FIGURE 8. Confidence rate cost and SOC of each case.

TABLE 3. Scenario classification for PV capacity and maximum error.

represent the response of large disturbances caused by unex-
pected irradiation beyond the PV input data.

Table 4 presents the optimal results according to the sce-
narios. In all scenarios for Case 1, the PV capacity increases,
and then the BESS and penalty cost increase at a similar
rate. However, the power generation cost decreases as the PV
capacity increases. The total cost decreases by approximately
$130,000 in Scenario III-1 compared to that in Scenario I-1,
and a BESS capacity of 374 MW is obtained for a PV gen-
erator capacity of 200 MW. In Scenarios I-2, II-2, and III-2,
the BESS size does not change even though the maximum
error increases. In Case 1, the BESS capacity was set to
change according to the PV size. However, when the error
increases to 50%, the penalty cost increases by approximately
$300,000.

As shown in Scenarios I, II, and III of Case 2, the capac-
ity of the battery slightly increases compared to that in
Case 1. Owing to the characteristics of Case 2, which does
not consider security constraints, the penalty cost is slightly
increased in Scenarios I-1, II-1, and III-1 compared to that in

Case 1. However, it is significantly lower than that in Case 1,
while reflecting PV errors.

In Case 3, the penalty cost was as low as $326,000 and the
BESS cost was as low as $250,000, and the overall scenario
showed significant cost savings compared to other cases.
In addition, when the prediction error increases, the BESS
capacity of 423MW,which is 82MW less than that of Case 2,
reduces penalty costs and power generation costs by approx-
imately $246,000. Based on these results, Case 3 exhibits the
most suitable result compared to those of other cases, despite
the increase in PV capacity and prediction error. Therefore,
these results confirm that the proposed approach exhibits the
most promising results for any PV capacity and unexpected
PV variability.

To demonstrate the superiority of D-PSCOPF, performance
tests were conducted while comparing with other optimiza-
tions. Comparative optimizations are considered, such as
OPF, SCOPF, and PSCOPF in Scenario III-2 of Case 3.
SCOPF and PSCOPF are the addition of the several con-
straints to the conventional OPF. Table 5 shows the perfor-
mance results for each methodology, including total cost,
penalty cost and CPU time. All methods resulted in very high
penalty cost in Case 1, and the resulting total cost was also
the highest in Case 1. OPF, in which it is difficult to reflect
the uncertainty of PV generation, had the highest penalty
cost and total cost in all cases compared to other methods.
Meanwhile, D-PSCOPF shows the lowest cost in all cases
compared to PSCOPF, which reflects the probabilistic output
of PV. In case 1 of OPF, the calculation was completed in
the shortest time due to the simple optimization configuration
compared to other methods. However, as the case became
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TABLE 4. Optimal results for each scenario on Case 1, 2 and 3.

TABLE 5. Comparison results.

more complex, the CPU time of Case 3 increased by 8 times
compared to Case 1 to record 78.55 seconds. The CPU time of
SCOPF and PSCOPF in all cases are almost similar because
PSCOPF is almost the same as SCOPF with some added

constraints. In case of adopting the conventional operation
method of BESS as in Case 1, the CPU time difference
between the existing SCOPF and D-PSCOPF is only approxi-
mately 4 s. However, in Case 2, wherein the BESS capacity is
flexibly changed, the computation speed of SCOPF increases
by approximately three times. Furthermore, Case 3, which
considers the BESS sizing and security constraints, demon-
strates an exponential increase of more than 11 times that
in Case 1. Using the master-slave problem decomposition,
Cases 2 and 3 of D-PSCOPF demonstrate a linear trend for
the increase in computation time. In addition, D-PSCOPF
requires approximately 18% of the computation time of OPF,
which is a simple optimization, in Case 3. Therefore, these
results reveal that the proposed D-PSCOPF is accurate and
efficient for solving BESS sizing optimization for use with
PV generation. As the system becomes larger, it becomes
difficult to represent the entire process by a simple system
equation, the calculation time increases, and the convergence
of a specific search area is not guaranteed; the direct opti-
mization of process simulation is limited in scope.

VII. CONCLUSION
In this study, a new computationally efficient optimization
method, D-PSCOPF, was developed and used to perform
BESS sizing optimizations in MGs, considering the stochas-
tic fluctuation of PV outputs. This method enables a flexible
preparation for the volatility of PV while sizing the capacity
of BESS to a reasonable scale. To track the planned output
of the PV, the optimized BESS was used to compensate
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the prediction error. A PV fluctuation smoothing strategy
based on dynamic SOC regulation was addressed in the
MG. Our strategy increased the accuracy of the combined
PV-BESS operation system through the BESS compensation
strategy reflecting the rated output/capacity and life degra-
dation model of the BESS. To optimize the BESS sizing
under the constraint of a certain compensation degree, the
compensation interval of the forecasting error should be first
obtained in the combined PV-BESS. Our study determined
the optimal interval, and then obtained the partial optimal
BESS sizing to minimize the cost from the installation of
the PV-BESS. This partial optimal BESS capacity was added
as a BESS constraint to the D-PSCOPF problem, and the
penalty cost of PV was then derived using the BESS capacity.
According to the D-PSCOPF, this problem can be effectively
solved by dividing it into amaster problem and slave problem.
In the slave problem, the base case solution was calculated.
Using this value, the PV penalty cost was obtained, and
this cost was again included in the constraints of the slave
problem, which includes the BESS sizing process. When
a violation occurs, a feasibility cut is added to the master
problem. If there is no violation, the optimal BESS size
can be derived. The superiority of the proposed BESS siz-
ing optimization is proved through simulations with other
cases under the condition of maintaining system stability. The
proposed BESS size optimization approach derives the most
reasonable BESS capacity to handle PV variability compared
to conventional PV-BESS operation methods. In addition,
it yields stable and economical operation results in case of
high penetration rate of PV or unexpected large disturbance.
Moreover, the convenience of calculation and optimality of
the results was demonstrated through comparison with other
optimization methods. Our future work will proceed with
BESS sizing optimization on larger-scale systems such as real
power systems and shall explore more accurate and faster
calculations of D-PSCOPF suitable for such larger systems.
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