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Abstract—Economic load dispatch (ELD) is a chal-
lenge optimization problem to minimize the total cost
of the thermally generated power that satisfies a set of
equality and inequality constraints. We need to maxi-
mize the power network load under several operational
constraints to solve this problem. Meanwhile, we need
to minimize the cost of power generation and minimize
the loss in the network transmission. Traditional opti-
mization methods were used to solve such problems as
linear programming. Meta-heuristic search algorithms
have shown encouraging performance in solving various
real-life engineering problems. This paper attempts
to provide a comprehensive comparison between nine
meta-heuristic search algorithms, including Genetic Al-
gorithms (GAs), Particle Swarm Optimization (PSO),
Crow Search Algorithm (CSA), Differential Evolution
(DE), Salp Swarm Algorithm (SSA), Harmony Search
(HS), Sine Cosine Algorithm (SCA), Multi-Verse Op-
timizer (MVO), and Moth-Flame Optimization Algo-
rithm (MFO) for solving the economic load dispatch
problem. Our developed results demonstrated that
meta-heuristics search algorithms (i.e., CSA and DE)
offer the optimal power set for each power station.
These computed power fulfill the supply needs and
maintain both minimum power costs and power losses
in power transmission.

Index Terms—Meta-heursitics Search algorithms,
Economic Load Dispatch, Optimization.

I. Introduction

The Economic Load Dispatch (ELD) problem is broadly
known as a challenging optimization problem [1], [2].
Numerous online units (i.e., generators) are accessible in
the ELD problem. The goal is to determine the power to
be generated by each unit to achieve the mandatory load
at minimum total fuel cost. This power planning system
can serve the energy distribution for numerous industrial,
commercial, and residential sectors to enhance the network
system accessibility. It is critical that the allocated power
network be reliable and can fulfill the customer’s needs
and minimize power losses during transmission [3], [4].

In the past, traditional optimization methods were
utilized to optimize the power distribution using linear
programming (LP), dynamic programming (DP), and La-
grange multiplier (LM). It was reported that these meth-
ods suffer a problem when dealing with non-linear con-
strained optimization problems and are incapable of find-
ing an optimal set of power weight for the network to main-
tain stability and reliability. In [5], the authors presented
a method to solve multi-objective optimization procedures
using LP. The LP technique with piecewise linearization
provided an overall economic benefit. This was reported
in terms of the total cost, time, and load fulfillment
accuracy [6]. The dynamic ELD problem was also solved
using Artificial Neural Networks trained with Levenberg
Marquardt (LM) [7]. Other methods were used to solve
the ELD problem such as algebraic method [8], Quadratic
Programming (QP) [9]–[11], and Nonlinear Programming
(NLP) [9]. It was reported that classical calculus-based
methods were unable to perform adequately to solve ELD
problems because of their highly non-linearity and several
constraints. These traditional techniques were unsuccess-
ful in dealing with the ELD problem with a non-convex
fuel cost function.

The computational intelligence society has accepted
Meta-heuristic search-based algorithms as a robust op-
timization method because of their ability to search the
complex search space of real-world industrial applications.
The main inspiration of meta-heuristic algorithms depends
on the successful integration of the randomness and local
search mechanisms in their approaches to find the optimal
solutions [12]. Thus, they can achieve both exploration and
exploitation in searching the space of possible solutions
[12], [13].

Various Meta-heuristics algorithms were used to han-
dle the ELD problem. In [13], the author presented a
comparative study on solving the ELD problem of power
systems using several meta-heuristic search algorithms.
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These algorithms can find the best-generated load from
each power unit that satisfies the distribution need while
minimizing the cost. The bat algorithm was used to
minimize the total generator cost from a thermal power
plant in [14]. Bat algorithm has a stable convergence
performance. In this study, the author shows that the
Bat algorithm can save approximately 1.23% compared to
the actual cost and 0.12% to the firefly algorithm. Several
meta-heuristics search algorithms were used to solve the
ELD problem [15]–[18]. Meta-heuristics show effective-
ness alongside minimal computational requirements with
a given ample search space. These valuable characteristics
are often make successful in solving complex optimization
problems.

The goal of this research is to provide a comparison
between nine meta-heuristic search algorithms in the es-
timation of the distribution of thermal unit power over a
power network to achieve the following 1) fulfill the power
demand, 2) minimize the cost of the distributed power, and
3) minimize the loss of power in the transmission power
systems. This paper is organized as follows. In Section
III, we provide a mathematical formulation of the ELD
problem. In Section IV, we provide a solution to the ELD
problem for three case studies, and finally, we provide our
conclusion.

II. Metaheuristic Search Algorithms
Meta-heuristic algorithms gained a lot of popularity

over the last two decades. They are population-based
approaches, as given in Figure 1. Noteworthy, some of
them are well-known not only by computer scientists but
also by scientists from other fields as Particle Swarm Opti-
mization (PSO) [19], Ant colony optimization (ACO) [20]
and Genetic Algorithm (GA) [21]. Metaheuristic search
algorithms have been successfully used to solve a variety
of problems in manufacture and control system design [13],
[22]–[25]. The following points can summarize the reasons
for this popularity:

1) Simplicity as they are inspired by simple concepts
such as animal behaviors or evolutionary concepts.

2) Generality as those algorithms can adapt to any op-
timization problem without changing the algorithm
structure itself, the inputs and outputs are only
the essential parts, only you have to know how to
redesign the problem for met-heuristics.

3) Better exploration-exploitation balancing as those
algorithms have the ability to explore the search
space heavily based on their stochastic nature, which
supports avoiding local optima. They have also
shown an outstanding accuracy in exploitation in
many problems.

Meta-heuristics may be classified into the main classes:
• Evolutionary Algorithms (EAs)
• Swarm Algorithms (SAs)
• Physics-based Algorithms
• Bio-Inspired-based Algorithms

Fig. 1. Population based search algorithms

The concepts of evolution usually inspire EAs in nature.
The most popular algorithm in this branch is GA [26]. This
algorithm was proposed by Holland in 1992 and simulated
Darwinian evolution concepts. Generally, optimization is
done by evolving an initial random solution in EAs. Each
new population is created by the combination and muta-
tion of the individuals in the previous generation. Since the
best individuals have a higher probability of generating the
new population, the new population is likely to be better
than the previous generation(s).

III. Problem Formulation

The mathematical principle of the ELD problem de-
pends on formulating the power cost as a minimization
of an optimization function. The primary goal of the
ELD problem is to decrease the generation cost of power
distribution. For a particular thermal system that consists
of n generators, the total generation cost is given in
Equation 1.

Min LT =
n∑

i=1
Fi(Pi) (1)

where:

LT Total cost of power generation
Fi Fuel cost of the ith generating unit Pi

Pi Power generated from the ith generator
αi, βi, γk Weight coefficients of the ith generation

Equation 1 can be formulated in a quadratic form as
shown in Equation 2 [16], [27].

Min LT =
n∑

i=1
Fi(Pi) =

n∑
i=1

αiP
2
i + βiPi + γi (2)

In this study, we consider two types of constraints; these
constraints are referred to as equality constraints and
inequality constraints.
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A. Power Balance Constraints

It is critical that the power generator on the network can
generate power that matches both the demand power and
the expected power loss due to transmission. The power
balance can be achieved as given in Equation 3.

n∑
k=i

Pi = PD + PL (3)

Where PD and PL are the demand and lost power due to
transmission lines, respectively. We followed the guidelines
in defining the loss coefficient as provided by Kron and
Kirchmayer [28], [29]. ζ is a matrix known as the trans-
mission loss coefficients matrix and utilized to recognize
the power loss. Thus, PL, the overall transmission lost
power as a function of ζ, can be described as provided
in Equation 4.

PL =
n∑

i=1

n∑
j=1

PiζijPj (4)

where:

Pi Power generated from the ith power unit
Pj Power generated from the jth power unit
ζ Matrix of size n × n
n Number of power unit.

B. Inequality Constraints

Each power generator shall have a capacity such that
it can generate maximum and minimum power. These
constraints are defined, for the ith power unit as given
in Equation 5 [8].

P min
i ≤ Pi ≤ P max

i , i = 1, . . . , n (5)

where P min
i and P max

i correspond to the minimum ans
maximum power of the ith unit, respectively.

C. Cost Function

The meta-heuristic search algorithms adopted in this
study shall be used to optimize the cost function of the
generated power. This function can be presented as given
in Equation 6.

L =
n∑

i=1
Ci(Pi) + λ × [

n∑
i=1

Pi − PD − PL] (6)

where Ci(Pi) is the power’s cost for the Pi generator,
and λ is a penalty constant selected to penalize the losses
when any power limits are over the allowable range. λ was
arbitrarily chosen as 100 in our case.

IV. Result and Discussion

A. Optimization of Three Units Power System
In this section, we are adopting a three-unit system

presented in [8]. Our goal is to find the optimal power
generation from each Pi, i = 1, . . . , 3. We are using nine
meta-heuristic search algorithms to find the optimal pow-
ers. The demand power required is 150 megawatts (MW).
Table I shows the cost fuel coefficient of the three units
system.

Pi αi βi γi P min P max

($/MW2) ($/MW2) ($/MW2) (MW) (MW)
P1 0.0080 7.00 200 10 85
P2 0.0090 6.30 180 10 80
P3 0.0070 6.80 140 10 70

ζ =

0.000218 0.000093 0.000028
0.000093 0.000228 0.000017
0.000028 0.000017 0.000179



Table II shows the calculated power P1, P2, P3 for the
three-unit thermal system using Gas, PSO, CSA, DE,
SSA, HS, SCA, MVO, and MFO. We also show the total
processing power

∑
Pi compared to the demand load

of 150 MW. The calculated cost from each algorithm is
provided as $/hr. From these results, we can see that both
CSA and DE provided the minimum cost. The convergence
performance of proposed search algorithms are shown for
up to 500 iterations in Figure 2. This convergence curve
characterizes the calculated fitness for 500 generations
with 100 search agents (i.e., population size).
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Fig. 2. Three Units System: Convergence of evolutionary process of
several meta-heuristic search algorithms

89

TABLE I
Cost fuel coefficient of the three units system

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on December 07,2023 at 03:29:07 UTC from IEEE Xplore.  Restrictions apply. 



SSA MFO MVO SCA GA PSO HS CSA DE
P1 35.52 23.9847 32.6064 27.2953 57.3072 25.5111 53.4052 32.8112 32.8101
P2 59.71 80 65.0719 67.4894 72.084 61.0358 56.4331 64.5944 64.595
P3 57.07 48.5765 54.6698 57.5698 23.5098 65.7379 43.1074 54.9365 54.9369∑

Pi 152.29 152.56 152.35 152.35 152.90 152.28 152.95 152.34 152.34
PD 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00
Cost ($/hr) 1597.83 1600.93 1597.53 1598.12 1612.05 1599.11 1656.28 1597.48 1597.48

B. Optimization of a Six Units Power System
In this case, we studied six thermal power plant units

and explored nine meta-heuristics search algorithms to
find the optimal power for P1, . . . , P6 to minimize the
overall generation cost (see Figure 5). The thermal unit
cost coefficient is provided in Table III, and the coefficient
matrix (ζ × 10−3).

Pi αi βi γi P min P max

($/MW2) ($/MW2) ($/MW2) (MW) (MW)
P1 0.0070 7.0 240.0 100 500
P2 0.0095 10 200.0 50 200
P3 0.009 8.5 220.0 80 300
P4 0.009 11 200.0 50 150
P5 0.008 10.5 220.0 50 200
P6 0.0075 12 190.0 50 120

ζ =


0.017 0.012 0.007 −0.001 −0.005 −0.002
0.012 0.014 0.009 0.001 −0.006 −0.001
0.007 0.009 0.031 0 −0.010 −0.006

−0.001 0.001 0 0.024 −0.006 −0.008
−0.005 −0.006 −0.010 −0.006 0.129 −0.002
−0.002 −0.001 −0.006 −0.008 −0.002 0.150



The performance of the suggested meta-heuristic search
algorithms is shown for 500 generations in Figure 3.
Table IV provides the optimal generation power of various
algorithms that minimize the distribution cost for the six
power generators. CSA and DE provide the best evolu-
tionary power distribution.

C. Planning IEEE 30 Bus System
The IEEE 30 bus is one of the standard power systems

that consists of six thermal power plant units. The goal
is to evolve the optimal power to be generated from the
six thermal units (see Figure 5). The IEEE 30 bus system
diagram is shown in Table V and the coefficient matrix
(ζ × 10−3) is also below.

ζ =


0.1400 0.0170 0.0150 0.0190 0.0260 0.0220
0.0170 0.0600 0.0130 0.0160 0.0150 0.0200
0.0150 0.0130 0.0650 0.0170 0.0240 0.0190
0.0190 0.0160 0.0170 0.0710 0.0300 0.0250
0.0260 0.0150 0.0240 0.0300 0.0690 0.0320
0.0220 0.0200 0.0190 0.0250 0.0320 0.0850


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Fig. 3. Six Units System: Convergence of evolutionary process of
several meta-heuristic search algorithms

Fig. 4. IEEE 30 Bus consisting of six generators test system
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Optimal generations power of various algorithms for a Three Unit System

TABLE III
Cost Coefficient of Six Units System
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Power SSA MFO MVO SCA GA PSO HS CSA DE
P1 443.5555 500 452.8114 417.6776 288.9704 471.9346 409.6441 446.9736 447.5787
P2 173.5464 200 182.2327 200 315.0599 187.8771 193.7739 173.319 173.0238
P3 269.286 236.0095 263.0214 300 116.3195 272.913 285.2534 263.7248 263.9873
P4 131.7837 150 135.484 150 160.0623 140.4767 147.215 138.9444 139.1728
P5 182.4648 128.8926 152.5703 134.1542 259.6067 100.0305 124.6418 165.6265 165.0263
P6 75.15023 60.3902 89.25042 73.43134 137.9263 102.2144 114.7046 86.8287 86.62046∑

Pi 1275.787 1275.292 1275.37 1275.263 1277.945 1275.446 1275.233 1275.417 1275.409
PD 1263 1263 1263 1263 1263 1263 1263 1263 1263
Cost ($/hr) 15447.54 15498.2 15445.69 15488.04 16135.5 15494.94 15490.75 15442.66 15442.66

Pi αi βi γi P min P max

($/MW2) ($/MW2) ($/MW2) (MW) (MW)
P1 15.240 ×10−2 38.53973 ×102 756.79886 10 125
P2 10.587 ×10−2 46.15916 ×102 451.32513 10 150
P3 2.803 ×10−2 40.39655 ×102 1049.9977 35 225
P4 03.546 ×10−2 38.30553 ×102 1243.5311 35 210
P5 2.111 ×10−2 36.32782 ×102 1658.5596 130 325
P6 1.799 ×10−2 38.27041 ×102 1356.6592 125 315

In Table VI, we provide the optimal generation power
Pi of various algorithms that minimize the distribution
cost for the six power generators. CSA and DE-based
methods offer the best performance results for the six
units P1, . . . , P6. The convergence curves of the nine meta-
heuristic search algorithms for the power load evolution
are shown in Figure 5 over 500 generations and population
size of 100.
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Fig. 5. IEEE 30 Bus: Convergence of evolutionary process of several
meta-heuristic search algorithms

V. Conclusions

In this paper, we compared several meta-heuristic search
algorithms to obtain the optimal power distribution of
three thermal power systems such that the cost of distribu-
tion is minimal. It includes Genetic Algorithms, Particle

Swarm Optimization, Crow Search Algorithm, Differen-
tial Evolution, Salp Swarm Algorithm, Harmony Search,
Sine Cosine Algorithm, Multi-Verse Optimizer, and Moth-
Flame Optimization Algorithm. Our finding was that
differential evolution and crow search algorithms demon-
strated the best performance in solving the economic load
dispatch problems by providing the minimum distribution
cost.
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