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a b s t r a c t

The proliferation of demand response programs in the smart grid provides the system operator unique
opportunities to reduce the load peak and alleviate network congestions. This paper considers the
economic dispatch problem with elastic demands which flexibly respond to the locational marginal
prices (LMPs). However, LMP is the dual variable of optimal power flow (OPF) problem and thus is
unknown before the OPF problem is solved. Without LMP, the elastic demand is unclear, and the OPF
problem cannot be set up. Given this interactive nature, it is difficult to acquire the dispatch strategy as
well as the LMP according to the traditional OPF method. This paper thoroughly addresses this problem.
Specifically, the limitation of the traditional LMP scheme in the described situation is analyzed. An
equilibrium solution may not exist because the demand function and the discontinuous LMP may not
have an intersection. To overcome this difficulty, LMP at the discontinuity point is redefined, so that the
dispatch problem always has an equilibrium solution. A mixed-integer linear programming model for the
economic dispatch problem with LMP-dependent load is proposed, and the equilibrium solution
simultaneously offers the dispatch strategy and LMPs. Case studies demonstrate the difficulties of
traditional approaches and the effectiveness of the proposed method.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

The increasing demand in modern power systems enlarges the
gap between the maximum andminimum load values across a day.
Updating power generation and transmission infrastructures is a
cost-intensive option and often leads to the less effective utilization
of system facilities during off-peak hours. Price-inspired demand
response (DR) program encourages consumers to adjust their
electricity usage in response to the price signal, and therefore
shaves the peak demands, reduces the reserve capacity and alle-
viates congestion in the power systems [1e3].

DR is a well-studied topic. Typically, DR programs can be
Province Key Research and
the National Natural Science

(W. Wei).
roughly divided into direct load control programs and price-
incentive programs. In the former category, participators can
benefit from subsidy or cost-saving if they allow the operator to
directly control their home appliances (such as air conditioners and
heaters) in the case of power shortage [4,5]. In the latter category,
participants can play a more active role by freely adjusting their
electricity usage in response to time-varying electricity prices [6,7].
The study in this paper focuses on the latter category. Several
renowned pricing schemes have been proposed and discussed in
extensive literature, such as time-of-use pricing, critical peak
pricing, and real-time pricing [3]. Since the amount of load reduc-
tion is driven by an economic signal rather than controlled directly,
to achieve a certain target, it is vital to quantify how consumers
would respond to the electricity price.

1.2. Literature review

Modeling DR using various optimization and game models is
still an active research field. According to the structure of the
optimization problems, existing studies in this direction can be

mailto:wei-wei04@mails.tsinghua.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2021.121015&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2021.121015
https://doi.org/10.1016/j.energy.2021.121015


Nomenclature

Abbreviations
DC Direct current
DR Demand response
ED Economic dispatch
KKT Karush-Kuhn-Tucker
LMP Locational marginal price.
LP Linear program
MILP Mixed-integer linear program
MINLP Mixed-integer nonlinear program
OPF Optimal power flow
SOS2 Special-ordered set of type 2

Parameters
c Vector of generator cost coefficients

P0D Vector of fixed demands
PLG Vector of generator minimum output
PMG Vector of generator maximum output
FL Vector of line flow limits
S Matrix of power transfer distribution factors

Decision Variables
PG Vector of generator output
PRD Vector of elastic demands
x Vector of LMPs
h Dual variable of power balance condition
p�, pþ Dual variables of line flow limit constraints
m�, mþ Dual variables of generation capacity constraints
l Vector of continuous weighting variables
v Vector of binary variables in SOS2 constraints
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roughly classified into three categories.

1) The first category tackles a cost-minimization problem or a
profit-maximization problem through a single-level optimiza-
tion problem under uncertainty and volatility.

For the cost-minimization formulation, DR has been integrated
with unit commitment problems [8,9]. Uncertain factors such as
renewable generation and system component outage are modeled
via scenarios under the stochastic programming framework. In
Ref. [8], reserve scheduling is determined to minimize expected
total cost. Time-of-use program is designed in Ref. [9] based on an
expected reliability index. In the situation that the probability
distribution of uncertain factors is not available, robust optimiza-
tion has been proposed to deal with unit commitment problem
considering DR. Robust optimization considers the impact of all
possible values of unknown parameters on system performance
and copes with theworst case, providing a security guarantee at the
cost of a certain level of conservatism, which is applied in
Refs. [10,11] to copewith uncertainty from both wind power output
and DR mode.

For the profit-maximization problem, the situation is that a
price-taker consumer determines the daily usage of electricity
while facing uncertain market prices, e,g., the real-time prices in
most cases. To avoid financial risks, price uncertainty is taken into
account in a stochastic programming model in Ref. [12], robust
optimization models in Refs. [13,14], and information gap decision
model in Ref. [15]. To reduce the conservatism, a three-stage hybrid
stochastic/robust optimization model is suggested in Ref. [16] for
strategic bidding of amicrogrid in the day-aheadmarket. In the first
two stages, day-ahead prices and renewable output are modeled
via scenarios in the stochastic programming framework; in the last
stage, uncertainty of real-time market prices is tackled by robust
optimization.

Recently, the flexibility potentials of multi-energy systems are
exploited in DR programs, where electricity networks’ interaction
with natural gas system [17,18], combined heat and power systems
[19,20], and shared parking station for electric vehicles [21] are
2

analyzed respectively. A distributionally robust optimization
method is proposed in Ref. [22] for gas-electricity system sched-
uling with DR. Random factors are described by a family of prob-
ability distributions whose support set and mean value are given.
An interval optimization method is developed in Ref. [23] for gas-
electricity system scheduling considering DR and volatile wind
power. The work in Ref. [24] utilizes the discrete choice theory and
formulates a day-ahead dispatch model for micro-energy system
where customers may make energy substitution.

There has also been extensive study on DR integrated with
multi-objective dispatch problems where renewable obligation or
pollution emission is modeled as extra objective function [25]. A DR
mode considering electricity price, consumption hour, and
customer type is developed in Ref. [26], and is integrated in Ref. [27]
to minimize operational cost and environmental pollution simul-
taneously via a copula-scenario based uncertainty modeling tech-
nique and multi-objective group search optimization. A robust
economic dispatch model is developed in Ref. [28] considering DR
and renewable obligation with penalty, where energy supply is
guaranteed by introducing adequate spinning reserve.

2) The second category addresses simultaneous pricing and DR
scheduling in a holistic bi-level optimization problem.

At the retailer level, a retailer arbitrages energy as an interme-
diary agency between an upstream market and end consumers.
Thus, the retailer needs to estimate how consumers would respond
to the price and copewithmarket price uncertainty. In Refs. [29,30],
the interaction between the retailer and DR participators are
modeled through a bi-level program, while market price uncer-
tainty is taken into account via stochastic programming and robust
optimization, respectively. Indeed, when the capacity grows larger,
DR has the ability to influence the market price. To model market
power of the DR aggregator, the market is cleared subject to the DR
bidding strategies. Such clearing mechanisms are formulated by
one-leadermulti-follower bi-level model in Ref. [31], and stochastic
bi-level programming in Refs. [32,33]. To solve such bi-level
models, the market-clearing problem in the lower level is
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replaced by its Karush-Kuhn-Tucker (KKT) optimality condition and
further linearized, and the final problems give rise tomixed-integer
linear programs (MILPs). Heat-electricity coupled DR can be
formulated using a similar bi-level structure [34]. In Refs. [35,36],
multi-period coupling DR is observed in integrated energy systems
with electricity, heat, natural gas, and energy storage units under
bi-level frameworks. A hybrid pricing method based DR function is
expressed using price elasticity in Ref. [37], and the bi-level DR
program for the residential microgrid is converted to a single-level
mixed-integer nonlinear program (MINLP).

3) The third category endeavors to characterize an equilibrium
amongmultiple DR participators in a competitivemarket, say, in
cases that the market price depends on the total amount of
demand.

A supply function bidding based market model is studied in
Ref. [38]; a distributed DR algorithm is suggested to achieve the
Nash equilibrium, which is shown to maximize social welfare. In
Ref. [39], the pricing function is announced by the system operator.
A non-cooperative game model is proposed in Ref. [40] to describe
the transaction mechanism in the regional energy market consid-
ering integrated DR of users. The multi-period DR is considered in
Ref. [41] and is also formulated as a Nash equilibrium problem. A
Bayesian game among heterogeneous consumers is set forth.
Cooperative game theory is employed in Ref. [42] to allocate loss
reduction among participators, and in Ref. [43] to retrieve fair
pricing among utility companies in the retail market. Evolutionary
game is used in Ref. [44] to study the dynamic change of users’
preferences.

The problem studied in this paper is a particular sort of DR. It is a
variant of the DCOPF for power system economic dispatch, inwhich
elastic loads that flexibly adjust their demand in response to real-
time LMPs are taken into account. LMPs are dual variables of po-
wer balance constraints and unknown before the optimal solution
is found. However, without LMP, the elastic portion of the nodal
load is unclear, so the DCOPF problem cannot be set up. Given this
interactive nature, it is difficult to acquire the dispatch strategy as
well as the LMP according to the traditional OPF method. Such a
problem has been studied in Ref. [45] without considering network
constraints, so the system shares the same LMP. It is revealed that
the uniform pricing market can be unstable with a large fraction of
high-sensitive DR loads, and the stability condition is derived using
contraction mapping theorem since the model is simple for
analytical study. In Ref. [46], the problem is generalized to distri-
bution power market with an alternating current OPF model and
distribution LMP. An iterative algorithm is proposed to identify the
fixed point of the OPF problem with elastic demands, which in-
terprets the equilibrium of a distribution market. Because LMPs are
generally discontinuous, the equilibrium may not exist, and the
iterative algorithms may fail to converge.

Methods and modeling assumptions of DR in typical literature
mentioned above and in this paper are summarized in Table 1. As is
shown in Table 1, the requirement of full DR flexibility,
3

consideration of network constraints, and existence of market
equilibrium have not been fulfilled in a specific model in the pre-
vious study. Manipulation of convergence problems and/or
network model is quite simplified. It is urged to bridge the gap and
produce a realizable optimal dispatch strategy via an optimization
model that can guarantee existence of equilibrium.

1.3. Contributions

To address the above challenges, this paper extends the studies
in Refs. [45,46] from two aspects, constituting the contributions of
this paper:

1)We analyze themarket instability caused by the discontinuity
of LMP with a complete DCOPF model and network congestion
constraints. We proposed to redefine the value of LMP at the
discontinuous point of the price curve, so that the existence of an
equilibrium solution is guaranteed. In Ref. [45], the instability is
caused by slopes of the price curve and the demand curve at the
equilibrium point, which is different from that in this paper.
Compared with [46], the equilibrium solution always exists by a
slight modification on LMP.

2) We propose a non-iterative method to calculate the equilib-
rium solution which encapsulates the optimal dispatch strategy
and LMPs. By concentrating the KKT optimality condition and the
linearized demand function, a MILP model is built to compute the
equilibrium. We use a dedicated linearization method that in-
corporates only a few binary variables. Compared with [45,46],
there is no convergence issue because iteration is no longer needed.
Typical demand functions or inter-period deferring mode are
selected in Refs. [28,37] to avoid explicit LMP expression and thus
the convergence problem, while in this paper, demand function is
submitted by each elastic load, so the flexibility of price-incentive
DR can be fully activated.

1.4. Paper organization

The rest of this paper is organized as follows. The dispatch
problem and the LMP-dependent load model are introduced in
Section 2, followed by the analysis on limitations of traditional LMP
scheme and the new definition of LMP at discontinuous points. The
equivalent MILP model is developed in Section 3. Case studies are
conducted in Section 4. Finally, conclusions are drawn in Section 5.

2. Mathematical model

This paper studies a cost-minimum dispatch problemwith LMP-
elastic demands, which is executed as follows. First, each elastic

load submits a demand function PRDjðxjÞ to the system operator,

where xj is the LMP at consumer node j; PRDj is the power usage
depending on the LMP; Some typical functions covering practical
responsive behaviors are suggested in Ref. [45]. Once the system
operator has collected demand function bids and traditional in-
elastic loads, it executes a special OPF procedure, which offers the
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dispatch strategy and the LMP. We provide additional remarks to
clarify the problem.

1) In the proposed method, a consumer can bid a demand func-
tion whenever his preference has a change. In practice, this
demand functionmay also resemble a contract or behavior and
remains the same in a relatively long period. Therefore, the
operator only needs to collect traditional demands, which is
the same as in a standard OPF problem.

2) All generators are owned by the system or a non-profit entity,
implying that generators possess no strategic behavior or
market power. Electricity consumption is paid according to the
marginal cost, i.e., the LMP, whose model is well studied. A
tutorial can be found in Ref. [47].

3) To set up an OPF, all demands must be given. However, the
elastic demand is a function of LMP, the output of OPF. In other
words, once the LMP is released, the consumers' electricity

usage determined from PRDjðxjÞ must be equal to the demand
used in the OPF problem. In this regard, the dispatch problem
in this paper cannot be directly solved in the same way as the
traditional OPF.
2.1. DCOPF with LMP-elastic demands

The problem is formally stated as follows:

min cTPG (1a)

s:t: 1TPG � 1TPD ¼ 0 : l (1b)

�FL � SðAPG � BPDÞ � FL : p
�;pþ (1c)

PLG � PG � PMG : m�;mþ (1d)

together with

PDj ¼ P0Dj þ PRDjðxjÞ; cj (1e)

x ¼ l,1� STðpþ � p�Þ (1f)

In problem (1), matrix A/B in (1c) reconciles the dimensions
between vector PG/PD and matrix S; Greek letters following a co-
lon represents the dual variables; 1 is an all-one vector with the
same dimension as c. Objective (1a) minimizes the generation
cost; (1b)-(1d) are system-wide power balance, line flow limits,
and generator capacity constraints, respectively. In contrast to a
traditional OPF problem, the nodal demand vector PD consists of a

fixed part P0D and a LMP-elastic part PRD as in (1e), and the LMP x

intrinsically depends on the dual variables in accordance with
(1f), so does PD.

2.2. Analysis of the limitation of traditional LMP

A fixed-point method to solve problem (1) is outlined in
Algorithm 1 (Alg-FP for short). However, a fixed point may not
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exist, because LMP is generally discontinuous [48]. In such cir-
cumstances, Alg-FP may fail to converge. This phenomenon is
analyzed as follows.
Fig. 2. Definition of LMP at the discontinuous point.

Algorithm 1
Alg-FP

Step 1: Choose an initial value of system demand.
Step 2: Solve DCOPF problem (1a)-(1d) with given demands.
Step 3: Retrieve dual variables, update LMP and elastic demands according to
(1f) and (1e), respectively.

Step 4: If the change of elastic demands in two successive iterations is smaller
than a certain threshold, terminate; otherwise, return to Step 2.
Consider a simple system with three buses and two lines illus-
trated in Fig. 1. Parameters of components are given in the figure.
Now we consider the LMP as a function of demand at load bus D. If
d� 150MW, the demand is served by unit G1, so the LMP is equal to
the marginal cost c1 < c2. If d > 150MW, the incremental demand is
served by unit G2, so the LMP is qual to c2. The LMP curve is plotted
in Fig. 2(a). It is discontinuous at d ¼ 150 MW.When the demand is
inelastic, the demand function and the LMP curve intersect at the
red point in Fig. 2(a).

When DR is taken into account, the situation is different. The
simplest DR curve is depicted in Fig. 2(b): when LMP is either too
high or too low, the demand is a constant; otherwise, the demand is
a linear function in LMP. In particular, the DR function and the LMP
curve may not have an intersection. In such a circumstance, Alg-FP
will not converge, as illustrated in Fig. 2(b). Suppose the initial
point is I, the iterations repeat with a period of 2. Such kind of
instability is not caused by the choice of initial point; instead, it is
the consequence of the way how LMPs are defined. To overcome
this issue, we need to analyze and redefine the values of LMP at
discontinuous points.

2.3. Definition of LMP at discontinuous points

To obtain deeper insights of the above example, wewrite out the
KKT condition at the discontinuous point

ci ¼ l� mþi þ m�i � pþ
i þ p�

i ; i ¼ 1;2 (2a)

0 � pþ
i ⊥fim � pgi � 0; 0 � p�

i ⊥pgi � 0; i ¼ 1;2 (2b)

0 � mþi ⊥pim � pgi � 0; 0 � m�i ⊥pgi � 0; i ¼ 1;2 (2c)

pg1 þ pg2 ¼ d (2d)

where notation 0 � a⊥b � 0 stands for complementarity and
slackness conditions a � 0, b � 0, aTb ¼ 0. Since both of a and b are
non-negative vectors, aTb ¼ 0 implies aibi ¼ 0, ci elementwise.
According to the parameters given in Fig. 1, at the point where LMP
is discontinuous, generation lower and upper bounds in (2c) for
unit G1 are inactive, and thus mþ1 ¼ m�1 ¼ 0; generation upper
Fig. 1. A two-node system for the illustration of market instability.
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bound in (2c) for unit G2 is inactive, so mþ2 ¼ 0; transmission upper
bound in (2b) for line L1 (L2) is active (inactive), implying pg1 ¼ f1m,
pþ
1 � 0, pþ

2 ¼ 0; transmission lower bound in (2b) for line L1 (L2) is
inactive (active), indicating p�

1 ¼ 0, p�
2 � 0.

According to above analysis, at the discontinuous point, the KKT
conditions become

c1 ¼ l� pþ
1 ; c2 ¼ lþ m�2 þ p�

2 (3a)

f1m ¼ dðl�pþ
1 þp�

2 Þ (3b)

where d(,) and l� pþ
1 þ p�

2 represent the demand function and
LMP at bus D, respectively.

If d(,) is a constant, equation set (3) is underdetermined; the
KKT condition (2) has infinitely many feasible solutions, for
example, l ¼ c1, pþ

1 ¼ m�2 ¼ p�
2 ¼ 0 together with those already

determined satisfy KKTcondition (2), and the corresponding LMP is

x* ¼ l� pþ
1 þ p�

2 ¼ c1. In fact, by choosing different values of dual
variables, the LMP can take any value in the interval [c1, c2], and x* is
theminimum price that consumers prefer to pay. Therefore, the red
point in Fig. 2(a) is adopted in practice.

Taking DR into consideration, d(,) is a function in the LMPwhich
is equal to l� pþ

1 þ p�
2 . Since m

�
2 does not impact LMP, we simply set

it to 0; then equation set (3) is properly defined. It includes three
equations in variables l, pþ

1 , and p�
2 , and thus can be solved to

derive a unique solution. From Fig. 2(b) we can see that equation set
(3) has a unique solution marked by a red point.

If the demand function and the LMP curve intersect at the flat
region, such as in Fig. 3(a), we can observe that the demand is
locally non-elastic, so the situation can be treated as the traditional
OPF, as long as the flat region where the intersection point rests in
can be determined in advance. In Fig. 3(b), although the demand is
elastic, the traditional Alg-FP method can still converge.
Fig. 3. Flat intersections do not cause instability.
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According to above discussions, to dispatch a power systemwith
LMP-dependent demands, we have to define the value of LMP at
discontinuous points properly. Inspired by the example, we give the
following descriptive definition:

At discontinuous points, the LMP is determined by a set of equa-
tions comprised of KKT conditions and demand functions.

Based on this definition, the properties of the optimal solution
are discussed as follows.

Existence. As LMP can take any value in [c1, c2] in the new
definition, the LMP curve can be regarded as continuous. Further-
more, the demand function is also continuous, the two curves must
have an intersection since the demand becomes inelastic when the
price is either too high or too low.

Uniqueness. In practice, elastic demands decrease with the in-
crease in price. If the LMP curve is increasing in demand, the
intersection is also unique. However, in a large-scale system, the
LMP depends on all nodal demands, and the situation can be very
complicated. A counter-intuitive example can be found in Ref. [47].
Nonetheless, for a real power system, it is acceptable to assume that
LMP curve is increasing in demand.

3. An equivalent MILP model

A monolithic MILP model will be developed in this section to
solve problem (1) without iteration.

3.1. KKT condition of the OPF problem

To solve problem (1b)-(1d) while considering the response (1e)-
(1f) of elastic demands, we need to optimize primal and dual var-
iables at the same time. To this end, wewrite out the following KKT
condition of problem (1b)-(1d) while treating PD as constant

cþ l,1þ ATSTðpþ � p�Þ þ mþ � m� ¼ 0
0 � p�⊥SðAPG � BPDÞ þ FL � 0
0 � pþ⊥FL � SðAPG � BPDÞ � 0

0 � m�⊥PG � PLG � 0; 0 � mþ⊥PMG � PG � 0

1TPG � 1TPD ¼ 0

(4)

Dual variables are explicitly modeled in KKT condition (4). We
can solve (4) with (1e)-(1f) simultaneously, giving rise to a
nonlinear complementarity problem. However, two difficulties
prevent such a complementarity problem from being solved effi-

ciently. One is the nonlinearity of the demand function PRDjðxjÞ in
(1e); the other is the complementarity constraints themselves,
because they violate constraint quantification conditions at any
feasible point [49] and cause numeric issues.

To circumvent these difficulties, we endeavor to develop a
monolithic MILP model, which has the same optimal solution as
problem (1), as MILPs can be reliably solved by commercial soft-
ware. On this account, we have to reformulate the demand function
and the complementarity constraints in forms that are compatible
with MILP solvers.
6

3.2. Linearizing the demand function

We express the nonlinear demand function PRDjðLMPjÞ via a
piecewise linear (PWL) function with 0e1 variables. Suppose we

have a collection of samples (prkdj ; x
k
j ), k ¼ 0, 1, /, K, where prkdj ¼

PRDjðxkj Þ. Associating each pair (prkdj ; x
k
j ) with a non-negative weight

coefficient gk
j , the PWL demand function is given by

xj ¼
X
k

gkj x
k
j ; PRDj ¼

X
k

gkj p
rk
dj ; cj (5)

ðg0j ;/ ;gKj Þ2DKþ1 is SOS2; cj (6)

where DKþ1 ¼ fx2RKþ1jx� 0;1Tx¼ 1g stands for a probability
simplex. In a special-ordered set of type 2 (SOS2), at most two
adjacent elements can take strictly positive values while remaining
ones are 0. Using the technique in Ref. [50], SOS2 constraint can be
formulated as MILP form with Q log 2KS 0e1 variables. Specifically,
we use PWL function with K ¼ 8. In such a circumstance, the SOS2
constraint in (6) evolves

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

g0j þ g1j þ g2j þ g3j � 1� v1j

g5j þ g6j þ g7j þ g8j � v1j

g0j þ g1j þ g6j � 1� v2j

g3j þ g4j þ g8j � v2j

g0j þ g4j þ g5j � 1� v3j

g2j þ g7j þ g8j � v2j

v1j; v2j; v3j2f0;1g

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

; cj (7)

In (7), only three binary variables v1j, v2j, v3j are introduced to
linearize one demand function. Suppose the demand function

PRDj
ðxjÞ is second-order continuously differentiable on interval [x,

x þ h], and its linear interpolation function is denoted by P1j(xj). Let

DM denote the upper bound of the second-order derivative of PRDj
. It

can be proved that the error bound satisfies

���PRDj

�
xj
�� P1j

�
xj
���� � DMh2

8
¼ O

�
h2

�
(8)

When we perform piecewise linear interpolation on PRDj
ðxjÞ in

interval [x0, xm] with even sampling distances, the maximum error

of approximation is Oð½ðxm � x0Þ=K�2Þ, which means that the error
can be arbitrarily small by adding more sampling points. Further-
more, the SOS2 constraint incorporates only Q log 2KS 0e1 variables.
Therefore, the piecewise linear function can provide a satisfactory
approximation of the nonlinear demand functionwhen a larger K is
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chosen. The proof of error bound (8) is given in Appendix A.

3.3. The MILP model

To explain the method more clearly without trapped into
extensive symbols and notations, the complementarity constraints
are denoted as 0 � a⊥b� 0, where b includes all dual variables, and
each element of a is a linear function depending on PG. The most
renowned method for linearizing complementarity constraints is
the Fortuny-Amat approach in Ref. [51], leading to

0 � a � Mð1� zÞ; 0 � b � Mz (9)

where z is a vector that consists of 0e1 variables with a compatible
dimension; M is a large enough constant. The binary value of zi
imposes either ai or bi being at 0, and thus complementarity con-
ditions in (4) hold. However, with this technique, the MILP model
does not have an objective function, and the branch-and-bound
procedure lacks sufficient information to prune unnecessary
branches.

Alternatively, we try to minimize aTzþ bT(1� z) subject to a� 0,
b � 0 and other constraints. If a feasible solution satisfying
complementarity exists, the optimal value must be 0. The situation
is a little different. In (9), zi ¼ 0 implies ai ¼ 0, while in the above
objective function, zi ¼ 1 implies ai ¼ 0. The objective function is
nonlinear as it contains bilinear terms like ziai and zibi. These
bilinear terms comprised of a binary variable and a continuous
variable can be equivalently converted into an MILP compatible
form with an auxiliary continuous variable wi satisfying

0 � wi � Mzi; 0 � ai �wi � Mð1� ziÞ (10)

For problem (4), we seek to minimize

Obj ¼ ð1� z1ÞTp� þ zT1ðf þ FLÞ
þð1� z2ÞTpþ þ zT2ðFL � f Þ
þð1� z3ÞTm� þ zT3

�
PG � PLG

�
þð1� z4ÞTmþ þ zT4

�
PMG � PG

� (11)

where f ¼ SðAPG � BPDÞ is the line power flow vector.
Let Obj-Lin be the linear objective function after performing

linearization technique in (10) to (11), and Cons-Lin the additional
constraints in the form of (10) which are introduced by the
Fig. 4. Five types DR functions [45].

7

linearization procedure. The proposed MILP model for problem (1)
is cast as

min Obj� Lin

s:t: Cons� Lin

cþ l,1þ ATSTðpþ � p�Þ þ mþ � m� ¼ 0

1TPG � 1TPD ¼ 0; f ¼ SðAPG � BPDÞ
p� � 0; pþ � 0; �FL � f � FL

m� � 0; mþ � 0; PLG � PG � PMG

l� STj ðpþ � p�Þ ¼
X8
k¼0

gkj x
k
j ; cj

PDj ¼ P0Dj þ
X8
k¼0

gkj p
rk
dj ; cj

�
g0j ;…;g8j

�
2D9; cj

SOS2 constraint ð7Þ; cj

(12)

where Sj.is the j-th column of matrix S. A few more discussions are
provided below.

1) The selection of variable bounds. The proper value ofM depends
on the bounds of primal and dual variables. Because dual vari-
able can be interpreted as the incremental cost at optimumwith
respect to per unit change in constraint right-hand coefficient,
the bounds of m�i and mþi can be chosen by multiplying the
generator marginal cost ci with a scalar s > 1. The bounds of l
can be set as smaxi{ci}. A rough estimation of p� and pþ can be
obtained from sensitivity tests.

2) About the generation cost function. Although we employ linear
generation cost functions in objective function (1a) for the ease
of discussion, the method remains intact if convex quadratic
cost functions are taken into account, because quadratic terms
in the Lagrangian function L will become linear after differen-
tiation, and condition vL/vpi ¼ 0 in the KKT conditions gives rise
to linear equations.

3) Sometimes, it is helpful to include complementarity constraint
(4) in the form of (9) into MILP (12), because they constitute
valid inequalities and tighten the lower bound in the branch-
and-bound procedure. However, this strategy is not always
useful, as it also complicates the feasible region.
4. Case studies

We conduct numeric tests on a modified IEEE 118-bus system.
Table 2
Computation Times With Different Load Responses (in seconds).

DR Type Algorithm DR participation level b

0.1 0.2 0.3 0.4 0.5 0.6

Inelastic LP 0.019
Type-I MILP (12) 5.54 4.61 7.19 11.8 19.3 42.2

Alg-FP 0.062(4) 0.052(3) 0.051(3) 0.055(3) fail fail
Type-II MILP (12) 6.27 7.81 12.5 17.8 15.9 63.9

Alg-FP fail 0.049(3) fail 0.060(3) 0.068(4) fail
Type-III MILP (12) 3.30 4.56 12.7 7.30 16.8 48.6

Alg-FP fail 0.053(3) 0.051(3) 0.051(3) 0.065(4) fail
Type-IV MILP (12) 4.42 4.03 10.8 18.5 26.6 48.0

Alg-FP fail 0.049(3) fail 0.053(3) 0.065(4) fail
Type-V MILP (12) 3.68 1.58 5.62 5.58 14.0 20.0

Alg-FP 0.048(3) 0.047(3) 0.047(3) 0.051(3) 0.061(4) fail



Fig. 5. Convergence test with different values of b and x0.

Fig. 6. Values of responsive load when performing DR program.

Table 3
System performances with different load types.

Inelastic Type-I Type-IV Type-V

Total demand (GW) 3.941 3.765 3.778 3.755
Total operation cost rate
( � 103 $/h)

153.3 142.0 142.7 141.5

Cost rate saved by DR e 7.32% 6.86% 7.65%
Average LMP ($/MWh) 63.92 51.94 52.26 51.94
No. congested lines 6 4 4 3
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Complete system data can be found in Ref. [52]. Elastic demands
connect to the system at buses #15 in area 1, #42, #49, #54, #56,
#59, #60 in area 2, and #62, #80, #90 in area 3, accounting for
about 20% of the total demand. Simulations are implemented on a
laptop with Intel i5-8300H CPU and 16 GB memory. MILP is solved
by CPLEX 12.8.

In practice, DR function is bid by consumers or calibrated from
historical energy consumption data. We consider five DR functions
8

suggested in Ref. [45], which are shown in Fig. 4. According to
Ref. [45], these curves can reflect different sensitivities of respon-
sive loads in different price intervals. We assume elastic loads take
part in the DR program if LMP is in the interval [x0, x0þ 20] $/MWh;
outside this interval, their demands are either maximum or mini-
mum and do not vary with respect to LMP. We fix the maximum
value pdrub of elastic demands, and change the minimum value pdrlb ;

b ¼ pdrlb =p
dr
ub is called the DR participation level. By changing the

values of x0 and b, we investigate the system impact of DR loads and
performances of the proposed method.
4.1. Computational efficiency

First, we test solver times of MILP (12) and Alg-FP with different
DR functions and participation levels. For the inelastic cases, we
directly solve DCOPF problem (1) and retrieve the dual variables
associated with LMP. The solver time is less than a second since
DCOPF is a linear program (LP). For the remaining cases, we solve
DR program (1) via MILP (12) and using Alg-FP. Results are sum-
marized in Table 2.

When b grows larger, a higher fraction of loads joins in the DR
program, and the generation and demand get more interactive.
Longer computation time is observed when solving MILP (12). By-
and-large, the time grows with the increase in participation level b.



Fig. 7. Total load demand with different DR types and participation levels.

Fig. 8. Total operating cost rate with different DR types and participation levels.

Fig. 9. Average LMP with different DR types and participation levels.

Fig. 10. Congestion performance with different DR types and participation levels.
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Nevertheless, the computation time of the proposed MILP model
varies from several second to 1 min, which is efficient enough for
practical use. Alg-FP is always faster because it only solves several LPs.
When the DR participation level b changes from 0.1 to 0.6, Alg-FP fails
to converge in 30% ~ 50% of the total six instances.

4.2. Convergence performance

As analyzed in Section 2, the equilibrium solution may not exist
if the traditional LMP scheme is adopted. To show this effect, we
solve problem (1) using Alg-FP and via MILP (12). If oscillation
occurs in Alg-FP, there is no equilibrium solution for problem (1)
under traditional LMP. Five DR functions with different values of
x0 and b are tested, and results are given in Fig. 5. Each subplot
manifests one DR type, and each point corresponds to a pair of
parameters (x0, b). The red points manifest that Alg-FP fails to
converge; the blue ones indicate the number of iterations before
Alg-FP converges.

For the inelastic demand, no iteration is needed. For the five
types of DR functions, there are approximately 20% ~ 30% cases in
which Alg-FP fails to converge, implying that under the traditional
LMP, market instability may not be a rare event and could happen
no matter b is low or high; no regular pattern is found for such
phenomenon. MILP (12) always has a solution which can be found
in less than 2 min, because the value of LMP is softened at
discontinuous points.

To better visualize the process and results of iteration, we pick
two particular system configurations with x0 ¼ 36 $/MWh and
b ¼ 0.3, in which Type-I and Type-II DR are adopted respectively.
The change of three typical elastic demand (one in each area) are
plotted in Fig. 6(aeb) with MILP equilibrium marked in dashed
lines, where load is expressed by the proportion of its maximum
power consumption. Under Type-I DR, Alg-FP takes three iterations
to reach the equilibrium, and solving MILP gives the same results.
Under Type-II DR, the responsive load takes two different groups of
values repetitively in the iteration process, and Alg-FP fails to
produce a traditional equilibrium. While the MILP model still gives
a meaningful market-clearing point, accounting for the disconti-
nuity of traditional LMP scheme.

4.3. Impact on system performances

We investigate the impact of DR on system performances from
four aspects. Three types of DR functions are examined, including
the linear case (Type-I) and two extreme cases (Type-IV, Type-V).
x0 ¼ 36 $/MWh and b ¼ 0.3 are used in our tests. Results are
exhibited in Table 3, where

Average LMP ¼ xTPD
1TPD

(13)

By introducing responsive demands, a certain fraction of the
total demand switches to respond to the electricity price, leading to
the reduction of the total cost, the average LMP, and the number of
congested lines at the equilibrium solution. A higher cost saving is
observed with Type-V DR function in which load is more sensitive
when the price is either high or low, motivating more significant
decrease in demand.

For further analysis of the influence brought by increasing
participation of DR loads, similar tests are conducted by changing b

from 0.1 to 0.6, while x0 remains the same. Results are plotted in
Figs. 7e10. Apparently, for all DR types, the total demand and
operation cost decrease with the growth of b. Nevertheless, when
b � 0.2, the impacts of different DR functions show little difference.
The influence on demand and cost reduction becomes more
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evident for b � 0.3, and system average LMP for b � 0.45. It is also
observed that if the percentage of Type V DR is high, the number of
congested lines is not monotonic: 5 lines are congested when
b ¼ 0.6, which is even more than the case with b ¼ 0.1. In spite of
the fact that more line flow constraints are binding, the total cost
and the average LMP still exhibit a decreasing trend. This phe-
nomenon largely depends on system data.
5. Conclusions

This paper discusses the economic dispatch problem with LMP-
dependent demands. The difficulty caused by the traditional LMP
scheme is revealed, and the LMP concept at discontinuous points is
revamped to guarantee the existence of an equilibrium solution. An
MILP model is proposed to solve the interactive dispatch problem.
Numeric experiments on a 118-bus system validate the computa-
tional efficiency and effectiveness of the proposed model.

Under traditional LMP scheme, the non-existence of an equi-
librium solution may lead to market instability (interpreted by
oscillation in numeric tests) with non-negligible possibility. The
proposed DR program with redefined LMP concept can reflect the
effect of DR integration including: 1) Transmission congestion can
be alleviated via the DR program, where load peak and market-
clearing price are reduced monotonically with the increasing DR
participation level; 2) The system impact of different DR functions
can hardly be distinguished unless the DR participation level is
sufficiently high (not smaller than 5% of the total demand in our
case), and the linear DR function has moderate performance over
the entire price range.

In conclusion, the method in this paper provides a non-iterative
approach to retrieving practical market-clearing strategy under
DCOPF with LMP-dependent demands. The market equilibrium
condition consists of the KKT condition of DCOPF and the linearized
demand function. It can be embedded in more sophisticated opti-
mization problems that study the strategic behavior or market
power of generation companies in themarket environment. In such
problems, the market-clearing problem is usually formulated as
constraint sets in order to be jointly solved together with the
decision-making problem of strategic participants.
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Appendix A. Error Bound of Linear Interpolation

We now prove that the error bound of linear interpolation sat-

isfies (8). Suppose the demand function PRDj
ðxjÞ is second-order

continuously differentiable on interval [x(1), x(2)]. Assume the

linear interpolation error of PRDj
ðxjÞ on interval [x(1), x(2)] has the

form
10
R1jðxjÞ ¼ PRDj
ðxjÞ � P1jðxjÞ ¼ KðxjÞðxj � xð1ÞÞðxj � xð2ÞÞ

where K(xj) is an undetermined function of xj, as the linear inter-
polation at the endpoints must satisfy

R1jðxðiÞÞ ¼ PRDj
ðxðiÞÞ � P1jðxðiÞÞ ¼ 0; i ¼ 1;2

Introduce auxiliary function of t

fðtÞ ¼ PRDj
ðtÞ � P1jðtÞ � KðxjÞðt� xð1ÞÞðt� xð2ÞÞ

We have f(xj) ¼ 0 and f(x(i)) ¼ R1j(x(i)) ¼ 0, i ¼ 1, 2. Therefore, f(t)
has at least three zero points on interval [x(1), x(2)]. Using Rolle's
Theorem for twice, we can derive that

v2fðtÞ
vt2

jt¼cx ¼ v2

vt2

�
PRDj

ðtÞ�P1jðtÞ�K
�
xj
��

t�xð1Þ
��

t�xð2Þ
�������

t¼cx

¼ d2

dx2j
PRDj

ðcxÞ�2K
�
xj
�¼ 0

for some cx 2 [x, x þ h]. The interpolation error is thus

R1jðxjÞ ¼ PRDj
ðxjÞ � P1jðxjÞ ¼

ðxj � xð1ÞÞðxj � xð2ÞÞ
2

d2

dx2j
PRDj

ðcxÞ

where cx depends on xj. Letting [x(1), x(2)] ¼ [x, x þ h], the error
bound satisfies

PRDj

�
xj
��P1j

�
xj
� �maxxj2½x;xþh�

(
d2

dx2j
PRDj

ðcxÞ
�
xj�x

��
xþh�xj

�
2

)

�DMmaxxj2½x;xþh�

��
xj�x

��
xþh�xj

�
2

�

�DMh2

8
¼O

�
h2

�

which proves (8).
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